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Abstract: The precision of location tracking technology has improved greatly 
over the last few decades. We aim to show that by tracking the locations of 
individuals in a closed environment, it is now possible to record the nature and 
frequency of interactions between them. Further, that it is possible to use such 
data to predict the way in which an infection will spread throughout such  
a population, given parameters such as transmission and recovery rates.  
We accordingly present a software package that is capable of recording and 
then replaying location data provided by a high-precision location tracking 
system. The software then employs a combination of SIR modelling and the 
epidemiological technique of contact tracing in order to predict the spread of an 
infection. We use this software to conduct a number of experiments using  
a sample data set, and compare the SIR graphs generated from these to similar 
graphs generated using the traditional SIR differential equations. 
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1 Introduction 

The ability to accurately track the location of an individual has improved greatly over  
the last 30 years. From the launch of the GPS system in 1978 (Strom, 2008), through 
wireless technologies such as 802.11a/b/g and Bluetooth, and technologies such as 
assisted GPS, the accuracy of real-time location tracking systems that are widely 
available today is sub-10 m. While this is useful, and widely utilised, for many  
location-based applications, the ability to track individuals with an accuracy greater than 
this has only recently been developed. Increasingly, technologies such as RFID  
(Choi et al., 2006) and ultrawideband (http://www.ubisense.net/index.php?load=content& 
pageid=80) are being exploited to provide accurate location tracking of a large number of 
individuals. 

Many uses of this sort of technology are already apparent, for example keeping track 
of workers in a dangerous environment to protect their safety (Choi et al., 2006), and 
tracking football players to provide post-match analysis (http://www.ubisense.net/index. 
php?load=content&pageid=80). However, there are undoubtedly many more to be 
discovered as the technology matures and is more widely available. One such application 
is in the healthcare system. Location tracking systems are already being used to keep  
tabs on at-risk patients, who need constant monitoring to protect their safety 
(http://www.ekahau.com/?id=1010). Another use may well be in the tracking and 
prevention of infections, and it is this application that this paper aims to explore.  

Many diseases are passed from person to person by physical encounters – from 
intimate contact in the case of Sexually Transmitted Infections (STI), to simply being in 
the near vicinity in the case of more virulent airborne infections. While the former type of 
encounter is relatively easy to keep track of, until recently the latter has been almost 
impossible to study. With the ability to track individuals’ locations to a sub-1 metre 
accuracy, though, this may change. 

If we assume that it is possible to track the spread of an infection at the scale 
proposed, there are many possible applications of such a system with regard to the 
prevention and further understanding of epidemics. For example, during a real epidemic, 
information about contact between individuals could give doctors access to a list of 
people ordered by the probability that they are infected. This would allow informed 
targeting of treatment, and quarantine if necessary. If it were possible to alter the model 
in real-time to reflect the infection status of patients, the model would become more 
accurate as time went on, and could retro-actively be updated to calculate new lists as 
required. If recorded, such information would also be invaluable in predicting the spread 
of future infections. 

In a similar vein, given a relatively predictable system (such as a hospital), it should 
be possible to determine which individuals have the most infection-spreading contact 
with others. This would again allow doctors to create a list of people for whom 
immunisation would be a priority in the event of an epidemic. This could dramatically 
reduce its spread, as those responsible for spreading the infection to most people would 
no longer do so. 

Further applications are also possible. Given information about the people who are 
infected, and when they showed symptoms, it might be possible to determine the likely 
source of an infection within a closed system (again, such as a hospital). From this point, 
a more traditional contact tracing study could be performed to identify those at risk in the 
outside world. 
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There is a wide body of prior work on the estimation of epidemiological model 
parameters from incomplete sets of real-life observations, including Expectation 
Maximisation (EM) (Becker, 1993), Markovian (Gibson, 1997; Gibson and Renshaw, 
1998; O’Neill and Roberts, 1999) and non-Markovian approaches (Streftaris and Gibson, 
2002, 2004). In contrast, the aim of the current paper is to investigate the feasibility of 
using high-precision real-time location tracking as a basis to conduct a low-level 
emulation of the evolution of the spread of infection under the assumptions  
of epidemiological models. 

We have designed a software package that can record location tracking data and 
allows the user to analyse the data in a variety of ways in order to evaluate its 
effectiveness in the analysis of infection. This involved being able to create a scenario in 
which a given set of individuals is infected, and viewing the results of this as contacts 
between individuals occur in the monitored environment. We then analysed the results 
from the location tracking system and compared them with existing epidemiology 
models. 

The remainder of this paper is organised as follows: Section 2 briefly introduces the 
background theory of the SIR model of infection spread. Section 3 then describes the 
software package that we have developed to track and record the movements of entities 
exposed to infection, which is then used in Section 4 to obtain quantitative data regarding 
the spread of infection throughout a given scenario and provide a qualitative comparison 
with an existing infection model. Finally, Section 5 concludes and discusses opportunities 
for future work. 

2 SIR modelling 

Epidemiology is concerned with the spread of disease and its effect on people. This in 
itself encompasses a range of disciplines, from biology to sociology and philosophy,  
all of which are utilised to better understand and contain the spread of infection. 

One of the most basic models that is used in epidemiology is the SIR model. This was 
introduced as far back as 1927 by Kermack and McKendrick (1927), and although 
simple, is a good model for many infectious diseases. The SIR model assumes that  
a given fixed population whose members are at risk of a given infection can be split into 
three groups: 

• S(t) susceptible (those at risk of infection) 

• I(t) infectious (those who have been infected by the disease, and can infect
others. 

• R(t) recovered (those who have recovered from the disease, and therefore are  
no longer at risk) 

As denoted above, S, I and R are all functions of time, and vary as an epidemic 
progresses. Assuming the total population remains constant (and is denoted by N), it is 
clear that the following holds: 

S(t) + I(t) + R(t) = N.

Using this equation as a base, we then consider the transition rates between the three 
states, i.e., the rate at which susceptibles become infected, and at which those who are 
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infected recover. These are denoted by βI and ν respectively, where β is the transmission 
rate (the rate at which susceptible individuals become infected during an encounter with 
an infections individual), and ν is the rate at which those who are infected recover.  
Thus is it possible to derive a set of differential equations to describe the system: 

d
d
S IS
t

β= −

d
d
I IS I
t

β ν= −

d .
d
R I
t

ν=

While this system cannot be solved analytically, plotting it on a graph yields a typical 
timeline for an epidemic, for example as shown in Figure 1.1

Figure 1 A typical SIR model. Red represents susceptible individuals, green infectious and blue 
recovered (see online version for colours) 

This basic model can be extended to include many more factors, for example an 
incubation period. However, at a basic level the SIR model provides a reasonable 
approximation for the spread of a disease. 

3 The infection tracking software 

A disease spread model is a good analytical tool, but by their very nature models are only 
an approximation of real life. In order to evaluate a model, we need to collect empirical 
data regarding the transmission of a disease. Contact tracing is a method used by 
epidemiologists that involves creating a list of infection-spreading contact that one 
individual has had with another (Kretzschmar et al., 2000). 

For example, assume individual A has an infection that is spread by physical contact. 
Person A recalls that he has recently come into contact with persons B and C. B recalls 
that since coming into contact with A, he has come into contact with person D, and so on. 



      

      

      

   Modelling infection spread using location tracking 447    

      

      

      

      

Using this method, it is possible to build up a graph (for example Figure 2)2 of those  
who may have become infected, complete with the probability of infection if β,
the transmission rate, is known. 

Figure 2 An example of the type of graph produced by contact tracing. Each node represents an 
infected individual, and each line connects two individuals who have been in contact 
(see online version for colours)

In certain cases, this method works well. It is particularly useful in the study of STIs 
(Huerta and Tsimring, 2002), when infection-spreading encounters are likely to be 
remembered, and the timing pinpointed relatively accurately. However, if person B can 
become infected by person A simply by being within a given distance of A for a given 
time, it is obvious that the method breaks down. Short of requiring every individual  
in a given environment to record every such encounter, it is impossible to create such  
a graph. 

However, with recent advances in location tracking technology, it has become 
possible to record the location of any number of individuals reliably to a high degree  
of accuracy (sub-25 cm). This in turn makes it possible to create such a graph when even 
the briefest of encounters can be the cause of an infection being transmitted. Using  
the location tracking data, therefore, it should be possible to construct an SIR model for  
a given infection whose parameters are known by performing a contact tracing study. 

In order to evaluate the feasibility of this approach, we have implemented a prototype 
piece of software that takes data from a high-precision location tracking system  
and applies basic infection and recovery rules between the tracked entities. Our intention 
is to use this to demonstrate that it is feasible to infer information about infection from 
such location tracking data. 

3.1 Overall architecture 

The overall architecture of our approach can be seen in Figure 3. We use a high-precision 
sensor network (provided by Ubisense (http://www.ubisense.net)) to track the location of 
tagged individuals within a fixed environment. This network communicates location data 
to the central platform server over a Power-Over-Ethernet (POE) switch. Any number of 
client machines can be connected to the network, and receive updates from the server via 
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multicast IP packets. The client machines receives the location updates, which are passed 
through the C# .NET API of the location tracking system into our visualisation and 
analysis software. The information is then displayed in the application’s GUI, or can be 
saved to a database. 

Figure 3 Overall architecture of the system (see online version for colours) 

The database contains one table that contains details of sessions (a unique session id and 
an identifying session name), and one table that contains all of the session events.  
Each session event row contains the session id it relates to, a unique tag name, the x, y
and z coordinates of the tag, and the standard error and time of the reading. When a 
session is being recorded, each location received by the program is translated into a  
row of this format that can later be saved to the database. This allows for easy playback 
of the session, as each row is read in turn and translated into a visual representation  
on the map. 

3.2 GUI layout 

As shown in Figure 4, a map sits at the top right hand corner of the GUI. Each tag is 
displayed on the map in the correct position for the current time, as an icon depicting  
a person, with its name above. The text of the name is colour-coded according to its 
infection status: red for susceptible, green for infectious and blue for recovered. An area 
in which a tag might become infected (for example the area around an infectious tag),  
is depicted by a cloud of green dots. The map is capable of displaying multiple tags and 
infection sources. 
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Figure 4 A screenshot of the application in use (see online version for colours) 

To the left of the map lie the tag status windows. Between them these contain the names 
of all of the tags, and also display their constantly-updated x and y coordinates. From top 
to bottom, the three status windows correspond to susceptible, infectious and recovered 
tags. As a tag’s status changes, it moves to the correct window, and the window’s total 
(displayed just below each one) is updated accordingly. This allows the user to see at  
a glance both the location and infection status of any given tag. 

A time bar is displayed just below the map and allows the user to move both forwards 
and backwards freely through the session. The current time is also displayed in text form 
just to the left of the bar, to give a more precise view. Below the time bar are the 
Infection Source window, which lists each infection source added by the user, and the 
Tag Status Change window, which lists each change in status of a tag that is actioned by 
the user. Finally, there are various controls to start and stop playback and recording, and 
to create new, open and save sessions. These are located to the left of the time bar and  
in the File menu respectively. 

While a session is being recorded, it is played in real time on the map. This allows the 
user to monitor the session, and correct any problems that might occur in the data capture 
such as tags switching to ‘standby mode’ or excessive noise in location readings caused 
by phenomena such as signal reflections. Infection radius is represented by a cloud of 
dots, as shown in Figure 5. 
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Figure 5 Green dots representing an infectious area centred on Server 3, whose name is coloured 
green to indicate that he is infectious (see online version for colours) 

3.3 Representing spread of infection 

The user can set four parameters when playing back a recorded location data-set, which 
will be used to determine the way in which infection will spread between the tracked 
entities: 

• Infection radius: How close two entities have to be before there is a chance  
of passing an infection between them. 

• Infection persistence: How long the area that an infected entity has been in remains 
infected after they have left it. The radius of a persistent infection decreases over this 
time until it is zero. 

• Transmission rate: The rate at which an infectious entity will infect a susceptible 
entity if the latter is within the infection radius. This is different depending on  
the infection being studied. 

• Recovery time: The time before an entity’s immune system deals with an infection 
and they become ‘recovered’. 

Whenever the time is advanced to a point beyond the time currently being shown on the 
map, the program runs through each database row in turn, and performs an algorithm 
(detailed in Figure 6), to determine its status at that point. If the tag is deemed to be 
susceptible, and has been exposed to an infection source for long enough to constitute a 
contact, the program uses C#’s pseudo-random number generator to generate a double 
between 0 and 1. If this is less than the user-defined transmission rate, the tag status is set 
to infected. 

Once a user has defined the parameters to his satisfaction, and has advanced the time 
bar to the desired point, he is able to plot an SIR-style graph of the session so far  
(as shown in Figure 7). This allows him to compare sessions where different parameters 
have been set easily, and also to compare the software with the results from a standard 
infection model. 
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Figure 6 Accuracy analysis – red dots denote survey positions (see online version for colours) 

Figure 7 Algorithm to determine infection status 

4 Evaluation 

4.1 Accuracy of location tracking hardware 

In order to obtain a quantitative analysis of the Ubisense hardware’s accuracy, we set up 
an experiment, splitting the experimental area into eight equal sections, and placing  
the same tag at the same height at the centre of each section (using a laser distance 
measuring device to ensure accurate positioning), as shown in Figure 8. 

We then recorded 40 location measurements for each location, and averaged the 40 to 
obtain a location reading. We calculated the difference in each reading from the expected 
location, and averaged the errors. The averaged errors are shown in Table 1, and from 
these we calculated the total average error to be 0.25 m, or 25 cm, with an estimated 
experimental error of 3 cm. 



      

      

      

   452 A.M. Mason et al.    

      

      

      

      

Table 1 Average measurement errors for the eight survey locations 

Point 1 2 3 4 5 6 7 8 
Error (m) 0.077 0.608 0.111 0.184 0.138 0.253 0.331 0.287

Figure 8 An SIR-style graph generated by the software. Red: susceptible, green: infectious,
blue: recovered (see online version for colours)

4.2 Effect of infection model parameters 

In order to test the effect of changing the four infection model variables (infection radius, 
infection persistence, transmission rate and recovery time), we first collected a sample set 
of location data. We defined our environment generally in terms of customers and 
servers, but this could easily represent a specific situation such as healthcare  
(e.g., customers represent patients and servers represent doctors). 

In our environment, there were four customers and three servers. The inter-arrival 
times between customers entering were sampled from an exponential distribution with 
λ = 1. They were then served by Server 1 for a time also determined by an exponential 
distribution with λ = 1, before moving on to either Server 2 or Server 3 with probability 
0.7 and 0.3 respectively, and waiting there for a number of minutes determined by 
exponential distributions with parameters λ = 1.5 and 1.2, respectively. A typical 
situation during the experiment is depicted in Figure 9, where Customer C is being served 
by Server 1, and Customer B is being served by Server 2. 

Using this data set, we ran a control experiment with the following parameters: 

• the first customer was infected at time 20 s 

• the infection radius was 1 m 

• the infection persistence was 0 s 
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• the transmission rate was 0.5 infections per second 

• the recovery time was 180 s. 

We then generated an SIR graph for this experiment, shown in Figure 10, which  
shows that in total five entities (customers and servers) were infected with all recovering 
within 390 s. 

Figure 9 A screen capture showing locations from the sample data set (see online version  
for colours)

Figure 10 SIR graph for the control experiment (red: susceptible, green: infectious, blue: 
recovered) (see online version for colours)

We then carried out four sets of experiments, in which we varied one parameter in each 
set, and obtained an SIR graph for each. Varying one parameter at a time ensured that  
any change was due to that parameter alone, and not to a combination of changes.  
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However, some non-determinism was inevitably introduced by the probabilistic effect of 
the transmission rate. 

4.3  Effect of varying parameters in our simulation 

We first sought to determine if the effect of varying the infection radius and persistence 
parameters in our simulation produced intuitive results. 

4.3.1 Infection radius 

We ran simulations using values of 0.5, 1.5, 2, 2.5 and 3 m for the infection radius  
(the value of 1 m was not used as it had already been used for the control). The SIR 
graphs generated from these are shown in Figure 11. 

Figure 11 SIR graphs for increasing infection radius. Red: susceptible, green: infectious, blue: 
recovered: (a) infection radius = 0.5 m; (b) infection radius = 1m (control experiment); 
(c) infection radius = 1.5 m; (d) infection radius = 2 m; (e) infection radius = 2.5 m and 
(f) infection radius = 3 m (see online version for colours) 
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From these graphs, it is obvious that as the infection radius increases, the overall number 
of tags infected increases. This is particularly marked between 1 m (Figure 11(b)) and 
1.5 m (Figure 11(c)), where there is a jump from five to seven tags infected. This number 
remains constant from 1.5 m (Figure 11(d)) to 3 m (Figure 11(f)), although the peak of 
the infection (the point at which the number of infectious tags is highest) occurs 
progressively earlier. 

Although the infection radius is not a standard parameter that can be altered in the 
SIR equations, it is logical that as the infection radius increases, so the number of people 
infected will increase. In addition, it is likely that people will be infected sooner, as more 
fleeting contacts between individuals will become infection spreading contacts. 

4.3.2 Infection persistence 

To test the effect of varying the infection persistence (the amount of time that an area 
remains infectious after an infectious person has moved through it), we ran simulations 
using values of 15, 30, 45 and 60 s for the infection persistence. The resulting SIR graphs 
are shown in Figure 12. 

Figure 12 SIR graphs for increasing infection persistence. Red: susceptible, green: infectious, 
blue: recovered: (a) infection persistence = 0 s (control experiment); (b) infection 
persistence = 15 s; (c) infection persistence = 30 s; (d) infection persistence = 45 s
and (e) infection persistence = 60 s (see online version for colours) 
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As with the increase in infection radius, it is clear from the graphs that the total number 
of tags infected increases from five to seven when the infection persistence is increased 
from zero (comparing Figure 12(a) to (b)). However, there is little difference when  
the infection persistence is increased above this point. This may be attributed to the fact 
that there is a relatively low number of individuals in my experiment, meaning that 
nobody crosses the path that an infected person has taken that he would not otherwise 
come into contact with. This is impossible to evaluate without further study with a larger 
sample size. 

4.4 Comparison with SIR model 

The final two parameters (transmission rate and recovery rate) are included in the 
standard SIR model. This means that the experiments where we varied these factors serve 
two purposes: as above, they can be used directly to observe the results of varying the 
parameters, but they can also be used to compare the effects against a standard SIR graph 
that has been generated using the system of differential equations stated in Section 2. 

4.4.1 Transmission rate 

We ran three simulations in which the transmission rate was increased in increments of 
0.25 infections per second. The results are shown in Figure 13, where they are compared 
to plots of the corresponding differential equation systems. We generated these plots 
using the statistical package R (R Development Core Team, 2008) and an SIR modelling 
module (Debarre, 2010). 

Figure 13 SIR graphs for increasing transmission rate: (a) transmission rate = 0.25 – test data;
(b) transmission rate = 0.25 – calculated values; (c) transmission rate = 0.5 (control 
experiment) – test data; (d) transmission rate = 0.5 – calculated values; (e) transmission 
rate = 0.75 – test data; (f) transmission rate = 0.75 – calculated values; (g) transmission 
rate = 1.0 – test data and (h) transmission rate = 1.0 – calculated values (see online 
version for colours) 
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Figure 13 SIR graphs for increasing transmission rate: (a) transmission rate = 0.25 – test data;
(b) transmission rate = 0.25 – calculated values; (c) transmission rate = 0.5 (control 
experiment) – test data; (d) transmission rate = 0.5 – calculated values; (e) transmission 
rate = 0.75 – test data; (f) transmission rate = 0.75 – calculated values; (g) transmission 
rate = 1.0 – test data and (h) transmission rate = 1.0 – calculated values (see online 
version for colours) (continued) 

Looking at the graphs generated from the SIR equations, two effects are apparent when 
the transmission rate is increased. The first is that the peak number of infectious 
individuals is higher. The second is that this peak is reached sooner the higher the 
transmission rate. The first of these effects can be observed in the experiment data, 
although not as clearly as in the calculated graphs. Between Figure 13(a) and (c), the 
peak number of infectious tags increases from one to five. However, it appears that  
there is little difference in the time that it takes for these peak values to be reached.  
This discrepancy from the calculated graphs is likely to be due to the necessarily small 
sample size, and discrete nature, of the experiment data. However, it could also be 
indicative of a problem with the design of the software. As with the infection persistence 
experiment, further study is needed to determine the cause. 

4.4.2 Recovery rate 

Due to the nature of the way the location data are recorded, the recovery rate set in the 
program does not correspond with that used in the actual SIR equations. The former  
is defined as a number of seconds, while the latter is expressed as a probability. The 
reason for this discrepancy is that the experimental data are discrete (i.e., they are 
recorded at discrete time intervals, the periodicity of which varies due to the location 
tracking hardware), which makes it extremely difficult to calculate a continuous 
probability. However, broadly speaking, an increase in recovery time should correspond 
to a decrease in the standard SIR model recovery rate. Therefore, in order to compare this 
set of experiments to a calculated SIR graph, we estimated the recovery rate and 
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attempted to look for broad trends rather than a precise comparison. We ran simulations 
for recovery times of 60, 120, 180 and 240 s, the results of which can be seen in  
Figure 14. 

Figure 14 SIR graphs for increasing recovery time: (a) recovery time = 60 – test data; (b) recovery 
rate = 1 – calculated values; (c) recovery time = 120 – test data; (d) recovery rate = 0.5 
– calculated values; (e) recovery time = 180 (control experiment) – test data; (f) 
recovery rate = 0.25 – calculated values; (g) recovery time = 240 – test data and (h) 
recovery rate = 0.125 – calculated values (see online version for colours) 

Two features of the calculated graphs are apparent. The first is that the gradient  
of the recovered line decreases as the recovery rate decreases (and therefore the recovery 
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time increases). The second is that the peak number of infectious individuals increases as 
the recovery rate decreases, and after it has peaked, its gradient is less. Both of these 
trends can be seen in the experimental data, although the second more clearly than the 
first. The graphs show that as the recovery time increases, the initial gradient of the 
recovered line decreases. However, once tags have started to recover, the gradient 
increases, and is eventually very similar in all of the graphs. The peak number of 
infectious tags rises from four to six, and the gradient of the infectious line after its peak 
clearly decreases with increasing recovery time. The discrepancy between the gradient of 
the recovered line in the test data and calculated values could again be attributed to the 
small sample size, but again needs further study. However, the decrease in gradient of the 
infectious line shows a good correlation with the calculated data. 

5 Conclusion 

As a proof of concept, the combination of the high precision location tracking hardware 
and the software that we have designed is a success. Our experiments show that, in a test 
environment at least, the hardware is capable of producing location readings that are 
sufficiently accurate to monitor the movement of individuals, to the extent that a contact 
tracing study that provides meaningful results can be performed. Given the small-scale 
nature of the test environment, the fact that any results that mimic real-life models of 
infections can be obtained at all is very promising. 

Given the relative youth of the technology currently used, it is also likely that the 
accuracy of location tracking information will increase as more progress is made in the 
field. This can only help to improve the reliability of such models in the future. Likewise, 
as the concept of using location tracking data as a basis for contact tracing is relatively 
new, and we have designed the algorithms that determine the infection status of 
individuals from scratch, these can undoubtedly be improved and expanded upon, with 
the result that they will more closely match the known behaviour of infections. It is hoped 
that such a program could even help epidemiologists to learn more about the nature of 
infections, and how they spread. 

There is a large amount of further work to be done regarding the use of location 
tracking in infection modelling. Our software is largely a proof of concept, and requires 
much more extensive testing than we have been able to perform in the lab with a limited 
number of tags. Ideally, this would involve covering a hospital with a multi-cell  
high-precision location tracking network, and capturing data over a long period.  
This could then be used as a basis for improving the software and the algorithms used in 
it. However, the logistics and cost of doing this at present are considerable, and it may be 
some time before the hardware is mature enough to report accurately the amount of data 
that would be required for a large-scale study. 

It would be interesting to attempt to estimate the parameters for an epidemic model 
from interactions observed in location tracking data. It should also be possible to extend 
the existing SIR model to include more variables. The Susceptible, Exposed, Infectious, 
Recovered (SEIR) model, for example, includes an incubation period, where an 
individual has been infected but is not yet infectious. It should also be possible to include 
births and deaths, which would of course lead to a variable population size. These extra 
variables should be easy to add to the program, but each requires testing to ensure that it 
is implemented correctly. 
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It would also be useful to use the location tracking data to produce an ordered list of 
the individuals in a given environment according to how many contacts they have with 
others. This could provide invaluable information for doctors, allowing them to target 
immunisation and treatment at those who interact with a large number of people.  
It should also be possible to produce a contact graph, such as shown in Figure 2, listing 
every contact between every monitored individual in a certain period of time. 

Aside from the obvious applications in the healthcare sector, there are undoubtedly 
other uses to which software of this kind could be put. It essentially tracks social 
interactions, and as such could well have implications in the study of psychology.  
For example, the exchange of information between people can be analogised to the 
spread of an infection. 
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