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1. Introduction

As more and more applications of digital control techniques are found in electronics and

other areas, issues surrounding the dynamics of systems with discrete and continuous

components or evolution has become correspondingly more important. There is a

growing literature of both applications and theory [2, 3, 6, 23] which show that systems

which have discontinuities in their derivatives across switching surfaces arise in many

situations. Border collision bifurcations are the simplest bifurcations which can be

observed in these discrete time hybrid systems and which have no analogue in standard

bifurcation theory, and strange attractors are known to exist over regions of parameter

values for some models. For the two-dimensional normal form developed by Nusse and

Yorke [24] this is known as ‘robust chaos’ [4]. Here the attractor is the closure of
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the one-dimensional unstable manifold of a saddle fixed point or periodic orbit, with a

fractal structure in directions orthogonal to the local unstable manifold. In this paper

we show that attractors can exist for models which allow area expansion, and prove

that there are some parameter values for which the strange attractor can be a fully two-

dimensional object rather than the usual fractal attractors with dimension less than

two. Note that such fully two-dimensional attractors have been observed numerically

[11], and the existence of two-dimensional trapping regions has been established in many

cases [21]. However, in the two situations we are aware of for which the existence of a

two-dimensional strange attractor has been proved the attractor is either the closure of a

one-dimensional unstable manifold [10] (which is not the case in the examples described

here) or it can be treated by analyzing an appropriate one-dimensional map ([7, 11, 21],

the ‘Cournot’ case, see below). We aim to develop techniques which do not rely on

one-dimensional techniques, and hence have a broader application.

The systems considered in this paper are piecewise smooth and have discrete time

and continuous variables. There is a switching surface Σ dividing the regions in which

the dynamics is determined by smooth maps, and the equations are continuous across Σ.

Thus the left and right sides of Σ could be labelled by L and R respectively, and a discrete

variable defined to take values in {L,R} according to which side of Σ the continuous

variables are at time n. This discrete variable then determines which dynamical system

is applied at the next time step.

The normal form for the bifurcation which occurs if a fixed point of one of the maps

strikes the boundary was developed by Nusse and Yorke [24]. If the switching surface

is transformed to be the y−axis (x = 0) then the local evolution with x = (x, y)T is

xn+1 =

{
ALx + m if x ≤ 0

ARx + m if x ≥ 0
(1)

where the matrices AL and AR, and the vector m are defined as

Aα =

(
Tα 1

−Dα 0

)
, and m =

(
µ

0

)
(2)

for α = L,R. The constants Tα and Dα are the trace and determinant of the Jacobian

of the defining equations evaluated at the bifurcation point on the left and right of Σ,

whilst µ is the bifurcation parameter. If µ = 0 then the origin is a fixed point, and

this is clearly in Σ, whilst the challenge for bifurcation theory is to describe what can

happen if µ > 0 or µ < 0. Note that by a change of scale only the sign of µ matters if

µ 6= 0.

If |DR| and |DL| are less than one then the local dynamics which can occur has

been discussed in a number of papers [2, 4, 5, 6, 18]. In this case bifurcations analogous

to the standard saddlenode are possible, as is a border crossing in which the fixed point

simply moves across the boundary. Depending on the values of the other constants,

more complicated possibilities occur, with the creation of other periodic orbits and

even robust (attracting) chaos. The robust chaotic sets created in the normal form are

associated with the unstable manifold of a saddle, and so the attractor can be thought
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of as one-dimensional (more accurately, one dimensional in one direction and a fractal

with dimension less than one in another): there is only one positive Lyapunov exponent.

Since the determinant of the Jacobian matrix of a map shows how areas are increased

or decreased by iteration, attractors are easily observed in the determinant less than

one cases, and for this reason these results have found a number of applications.

The piecewise linear maps (1) are natural objects of study, and a series of papers

dating from the mid-1980s has investigated two-dimensional chaotic regions which can

arise if at least one of the determinants has modulus greater than one. As well as

extensive numerical investigations, bifurcation phenomena have been identified and the

existence of absorbing regions has been proved in a variety of cases [7, 11, 21, 22].

However, there are very few proofs of the existence of two-dimensional attractors for

these cases, i.e. two-dimensional regions with infinitely many unstable periodic orbits

and dense orbits. We know of two exceptions to this statement, the Cournot map cases

(TL = TR = 0) covered in [7, 21] and the special case considered by Dobryiskiy [10].

The former case reduces to analysis based on the standard theory of one-dimensional

maps, and the latter is based on a proof that the unstable manifold of a saddle is dense.

The aim of this paper is to extend the range of examples for which two-dimensional

attractors can be proved to exist using two-dimensional Markov partitions. Unlike the

example of Dobryiskiy [10] the attractor contains a repeller.

If TL = TR = 0 then (1) becomes

xn+1 = yn + µ

yn+1 =

{
−DLxn if xn ≤ 0

−DRxn if xn ≥ 0

(3)

This is a Cournot map [7, 21], i.e. a map of the form xn+1 = g(yn), yn+1 = h(xn), which

implies that xn+2 = g ◦ h(xn) and yn+2 = h ◦ g(yn). These maps for the second iterate

are one-dimensional maps, and so they can be analyzed using standard one-dimensional

techniques, which can then be re-interpreted for the original two-dimensional maps. In

our case (3) gives

xn+2 =

{
µ−DLxn if xn ≤ 0

µ−DRxn if xn ≥ 0
(4)

If DRDL < 0 then this map can have chaotic dynamics with motion dense on an interval,

and this translates to two-dimensional regions in the full two dimensional map. More

interestingly, there are choices of the parameters at which there is motion dense on a

union of disjoint intervals which are permuted by the one dimensional map [20]. This can

correspond to multiple attractors in the two-dimensional Cournot map [7, 8], though the

projection of the dynamics onto either co-ordinate axis is equivalent for each separate

attractor.

More recently the cases which arise if at least one of the systems has determinant

with modulus greater than one, so it is area expanding, have been considered. Simpson

and Meiss [26, 27] describe complicated regions of mode-locking if DLDR > 0, whilst the
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existence of unstable chaotic sets via snap-back repellers has been described if DLDR < 0

[12, 15, 16, 21]. The chaos due to snap-back repellers is unstable because of the area

expansion near the repeller, but here we describe how it is possible that this chaos can be

part of a strange attractor. Specifically, we show that for appropriate parameter values

there is an attracting two-dimensional region in phase space in which periodic orbits are

dense in this region and there is a dense orbit. In this sense the attractor appears to

have a very similar structure to that of a piecewise linear coupled map initially studied

in [25] and which was proved to have dense periodic orbits and a dense orbit in [9, 14].

The attractor also contains a snap-back repeller with all the dynamics associated with

this [16]. Moreover, there can be, on average, area expansion along orbits, and two

positive Lyapunov exponents – the contraction required to keep orbits bounded and

create an attractor is provided by the folding action across the switching boundary.

The existence of polygonal absorbing regions and some of the changes which can

occur as parameters has been studied for many years (see [21] and references therein),

where the polygonal construction is used to prove the existence of two-dimensional

absorbing regions in a variety of cases. We are not aware of a rigorous proof of the

existence of a two-dimensional transitive attractor except in the Cournot case described

above.

The remainder of the paper is organized as follows. In section two we introduce the

results from standard Markov partition theory of dynamical systems which will be used

to prove the results. We also introduce a generalization of the affine locally eventually

onto (ALEO) property developed in [14] which can be used to show that periodic orbits

are dense in a two-dimensional region, and the map is topologically transitive on this

region – these are the two properties often used to define chaos. In section three we

give an example where expansion of appropriate iterates of the map can be used to

prove the existence of attractors. Section four uses the ALEO property to establish the

existence of two-dimensional attractors for countably many parameter values. At the

end of this analysis we find ourselves in a similar situation to the analysis of the logistic

map at a time when the existence of strange attractors could be proved at Misieurewicz

points (parameter values where the orbit of the critical point has particularly simple

properties) but not more generally. We believe that the techniques introduced here

can be generalized to prove the existence of two-dimensional attractors for open sets of

parameters.

2. Markov partitions, expansion and the ALEO Property

In this section we will develop some general theory for piecewise affine maps. We begin

with a definition.

Definition 1 [19] Given D ⊆ R2 and F : D → D, an affine subdivision is a finite

collection M = {M1, . . . ,MN} of pairwise disjoint open sets in D whose boundary

∪∂Mi is a finite union of close line segments (possibly infinite or semi-infinite) such

that their ∪Mi is dense in D and F |Mi
is an affine map, i = 1, . . . , N .
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If such a subdivision exists we say F is a piecewise affine map, the subdivision is

minimal if the domains Mi are the largest domains on which FMi
is affine. Note that this

definition does not assume continuity on the boundary, and this means that piecewise

affine maps may be multi-valued, on the other hand the border-collision normal form is

a continuous piecewise affine map, so ultimately any multi-valued features of induced

maps will be resolved.

Many different properties could be used to characterize the dynamics of affine

maps; here we use the locally eventually onto property introduced by Guckenheimer

and Williams [17, 30] in the context of expanding maps of the interval. This was used

by Glendinning [14] to prove strong expansion properties of a piecewise affine map

originally introduced by Pikovsky and Grassberger [25]. The definition below is slightly

weaker than the version introduced in [14], but it is enough to imply standard chaotic

properties, see Proposition 2 below.

Definition 2 (ALEO) A piecewise affine map F : D → D has the ALEO (affine

locally eventually onto) property on the subdivision (Mi)
N
i=1 of D if for every open set

U ⊆ D and i ∈ {1, . . . , N} there exists V ⊆ U and n > 0 such that F n(V ) = Mi and

F n|V is affine.

The main tool we use to prove this property in this paper is the existence of finite

Markov partitions, although we believe that the ALEO property holds in many examples

which do not have finite Markov partitions (cf. [14]). Throughout this paper c`(U)

denotes the closure of U and int(U) denotes the interior of U . The definitions below

follow [1, 29, 28].

Definition 3 Let F be a piecewise affine map. A finite Markov partition of an

F−invariant set D is a finite subdivision

M = {M1, M2, . . . MN}
such that F (Mi) is a union of elements of M, i = 1, . . . , N . If every set in M is convex

then we say M is a convex Markov partition.

The existence of a Markov partition makes it possible to set up a symbolic dynamics

which describes the possible behaviour of orbits under F in terms of passages through the

different elements of M. This labelling may not be unique (points may have non-trivial

stable manifolds, and points on the boundary lie in two sets). This will cause us some

technical difficulties below when proving the existence of chaotic properties for the maps.

These difficulties will be resolved in one of two ways – either by proving an expansion

result which ensures that there is a unique correspondence between trajectories and

allowed symbol sequences, or by making an additional (weak) assumption on the Markov

partition.

Definition 4 Let F be a piecewise affine map and let M be a finite Markov partition

with N elements. Then the associated graph G is the directed graph with vertices labelled
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{1, . . . N} and edges from i to j iff Mj ⊆ F (Mi). The transition matrix for this graph

is HG = (hij) where hij = 1 if there is an edge from i to j and hij = 0 otherwise. The

graph is strongly connected if there is a path from each vertex to every other vertex, so

for each i and j there exists n (depending on i and j) such that (Hn)ij > 0; such a

transition matrix is called irreducible.

The graph of a Markov partition defines a symbolic dynamics in the following

standard way. Let Σ(n) denote the set of all words b0 . . . bn ∈ {1, . . . , N}n such that

hbibi+1
= 1, i = 0, . . . , n− 1

Then for each ω ∈ Σ(n) the set

Rω = Mω0 ∩ F−1(Mω1) ∩ . . . ∩ F−n(Mωn)

is closed and non-empty, where the inverse maps are chosen such that if Mωk+1
⊆ Fi(Mωk

)

then F−1(Mωk+1
) is defined using the inverse of the map Fi, proceeding inductively along

the word. Taking the limit as n →∞ we obtain one-sided infinite sequences of symbols

and as a countable intersection of closed nested sets is non-empty, if ω ∈ Σ(∞) then

Rω = ∩∞k=0F
−k(Mωk

)

(with the convention on the definition of the inverse described above) is non-empty and

if x ∈ Rω then F (x) ∈ Rσ(ω) where σ is the shift map (just delete the first term in the

sequence and relabel the resulting sequence).

Most of the following lemma is again standard for continuous maps and requires

no modification when applied to piecewise affine maps. The final statement about

convexity follows as the image or preimage of a convex set under a non-singular affine

map is convex, and a non-empty intersection of convex sets is convex.

Lemma 1 Let F : D → D be a piecewise affine map with a finite Markov partition M.

Then for 2 ≤ n ≤ ∞
(i) if ω ∈ Σ(n) then Rω is closed and non-empty;

(ii) ∪ω∈Σ(n)Rω = D;

(iii) if n < ∞ then F n restricted to Rω is affine;

(iv) if n = ∞ then F j restricted to Rω is affine for all j ∈ N;

(v) F (Rω) = Rσ(ω).

In addition, if M is convex then for all ω ∈ Σ(n) then Rω is convex.

Much of the technical effort surrounding the relationship between the symbolic

dynamics and the map itself involves describing the sets Rω for ω ∈ Σ(∞). In the ideal

case this is a point, for then the map from Σ(∞) to D is surjective. This is usually

proved using some expansive property (or conversely, a contraction property on the

inverse), but as discussed at the end of this section, the border collision normal form

is not expanding. It may well be that a better theory from the one developed below is

possible, but the results here do allow us to prove the ALEO property in the examples

considered here.
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Definition 5 A Markov partition (or its transition graph H) is said to be contracting

if Rω is a point for all ω ∈ Σ(∞).

Thus for a contracting Markov partition there can be no concerns about whether

points with nearby symbol sequences are close in D.

Proposition 1 Let F : D → D be piecewise affine and suppose that F has a finite

Markov partition M = {M1, . . . , MN} with irreducible transition matrix H. If for all

open sets U ⊂ D there exists i ∈ {1, . . . , N}, k ≥ 0 and V ⊆ U such that F k(V ) = Mi

and F k|V is affine, then F is ALEO on M.

Proof: H is irreducible, so there exists n > 0 such that for every Mi and Mj in the

partition M there exists Vij ⊂ Mi such that F n(Vij) = Mj and F n|Vij
is affine (H is

irreducible so there is an allowed path from i to j and by taking preimages backwards

along this path we obtain Vij).

By assumption, for all open U there is V ⊆ U and i and k such that F k(V ) = Mi

and F k|V , so for any Mj let V̂ ⊆ V be such that F k(V̂ ) = Vij and note that

F k+n(V̂ ) = F n(Vij) = Mj and the map is affine by construction. Hence F is ALEO on

M.

¤
The importance of this definition for the dynamics is given by the following result

about chaotic properties. Recall that a map F is topologically transitive on D if for all

open sets U and V in D there exists n such that F n(U) ∩ V 6= ∅ and F has sensitive

dependence on initial conditions (sdic) on D if there exists δ > 0 such that for all x ∈ D

and ε > 0 there exists n ≥ 0 and y ∈ D with |x− y| < ε such that |F n(x)−F n(y)| > δ.

If a continuous map on a metric space has an uncountable invariant set on which it is

topologically transitive and for which periodic orbits are dense, then it also has sensitive

dependence on initial conditions [13].

Proposition 2 Let F : D → D be piecewise affine and suppose that F has a finite

Markov partition M = {M1, . . . , MN} with irreducible transition matrix H. If F is

ALEO on M then periodic orbits are dense in D and F is topologically transitive on D.

Thus F also has sdic on D.

Proof: We start with dense periodic orbits. Let U be an open neighbourhood of

x ∈ D, and as U is open U ∩ int(Mi) 6= ∅ for some i; denote one of these non-empty

intersections as W . Then the ALEO property implies that there exists V ⊆ W and

n ≥ 1 such that V ⊆ Mi = F n(V ). Hence V contains a periodic point.

Topological transitivity is just as easy: for any open V then V ∩ int(Mr) 6= ∅ for

an appropriate choice of r, and any open U contains a subset V1 such that F k(V1) = Mr

for some k by the ALEO property.

¤
It is easy to see that a contracting Markov partition with positive topological

entropy (i.e. there exists n > 0 such that (Hn)ij > 0 for all i, j) implies the ALEO
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property. Unfortunately, in many cases this is not enough as neither AR nor AL can be

expanding (in the sense that |F (x)−F (y)| > k|x− y| for some k > 1) unless TR = 0 or

TL = 0 (respectively), which brings us back to the Cournot cases.

The issue of expansion requires a little more discussion. Note that A is expanding

if |xT AT Ax| > k|xT x| for some k > 1, in other words the eigenvalues of the symmetric

matrix AT A must lie outside the unit circle. For the case of our matrices,

AT A =

(
T 2

k + D2
k Tk

Tk 1

)
(5)

with trace T 2
k + D2

k + 1 and determinant D2
k (k = R,L). Expansion implies that

both eigenvalues of AT A lie outside the unit circle, a necessary condition for this is

Tr(AT A) ≥ 2 and det(AT A)−Tr(AT A)+1 ≥ 0. Since the last inequality is T 2
k ≤ 0 the

only possible expanding matrices of the normal form have trace zero.

We have developed two different techniques to get around this problem. In the next

section we show that although F itself is not expanding, there are some situations for

which an appropriate iterate of F is expanding, and that this is enough to prove that the

Markov partition is contracting. This is the approach used in the next section. In the

following section we use a different strategy, showing that any open interval eventually

maps over an element of the Markov partition and thus proving the ALEO property

directly.

In the next four sections we describe the attractor of the border collision normal

form (1) at two carefully chosen sets of parameters. For these parameters there is

a simple Markov partition which allows us to prove the ALEO property on two-

dimensional attractors in these cases. We believe that many other attractors of these

systems (attractors for an open set of parameter values) are transitive on a two-

dimensional region, though we have not yet developed the techniques to prove this;

the ALEO property has been shown to work in other cases, hence our insistence on

using it!

3. A finite Markov partition with local expansion

Suppose that the parameters of the border collision bifurcation can be chose as shown

in Fig. 1, where P1 = F (O) and P2 = F (P1) are in x > 0 and P3 = F (P2) has x = 0.

Moreover, P4 = F (P3) is in x < 0, F (P4) = P2 and the line P4P2 intersects the y−axis

at W = (0,−1)T , which is the preimage of O. Let V be the point of intersection of

P2P4 and P1P3 and U the intersection of P1P3 with OP2. Then by definition (points

of intersection of lines map to the points of intersection of the images of the lines)

F (U) = V and F (V ) = W . Consider the Markov partition involving the sets

M1 = OUV W, M2 = OP1U, M3 = P1P2U, M4 = P2UV

M5 = P2P3V, M6 = P3V W, M7 = P3P4W, M8 = P4OW
(6)
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Figure 1. Attracting region for parameter values (11) with F (O) = P1, F (Pk) = Pk+1,
k = 1, 2, 3, F (P4) = P2, F (W ) = O, F (V ) = W and F (U) = V ; the Markov partition
used to prove the region is transitive and has dense periodic orbits is labelled Mi.

Then

F (M1) = M1 ∪M2, F (M2) = M3 ∪M4,

F (M3) = M5, F (M4) = M6

F (M5) = M7, F (M6) = M8,

F (M7) = M1 ∪M4 ∪M8, F (M8) = M2 ∪M3

(7)

which shows that P1P2P3P4 is an absorbing region.

Theorem 1 Suppose µ > 0 in the border collision normal form (1). If TR = t, where t

is the solution of

t3 + t2 + t− 1 = 0 (8)

in [0, 1], and

DR = t2 + t + 1 = 1/t (9)

and

TL = t2, DL = −1 (10)

then the sets M1 to M8 defined in (6) form a Markov partition with covering (7) and F

is ALEO on P1P2P3P4.

The implicit equations for the parameters above translate to the approximate values

TR ≈ 0.543689, DR ≈ 1.839287, TL ≈ 0.295598, DL = −1. (11)

Proof: Without loss of generality choose µ = 1. Direct calculation shows that

P1 =

(
1

0

)
, P2 =

(
TR + 1

−DR

)
(12)
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and

P3 =

(
T 2

R + TR + 1−DR

−DR(TR + 1)

)
, (13)

so the x−component of P3 is zero if

DR = T 2
R + TR + 1 (14)

in which case P4 = (−DR(TR + 1) + 1, 0)T and the line P4P2 intersects the y−axis at

(−1, 0)T if

1

DR(TR + 1)− 1
=

DR

TR + 1 + DR(TR + 1)− 1
(15)

using similar triangles. Rewriting this as (DR +1)(TR +1)− 1 = D2
R(TR +1)−DR, and

using (14) gives

T 5
R + 3T 4

R + 4T 3
R + 2T 2

R − TR − 1 = (T 3
R + T 2

R + TR − 1)(T 2
R + 2TR + 1) = 0

and hence (8) holds. By direct evaluation this has a solution TR ∈ [0, 1] and then DR

given by (9) is greater than one, and P2 is in x > 0 as required.

The conditions (10) on DL and TL simply ensure that F (P4) = P2; numerical

calculations gives the approximations t ≈ 0.5437 (or DR = 1/t ≈ 1.8393).

To prove the ALEO property we want to show that local distances eventually

expand under iteration if points are always in the same element of the Markov partition,

hence getting a contradiction and showing that any allowed itinerary corresponds to a

unique point. It is easy to see that the transition matrix associated with the coverings

(7) has positive entropy.

If the orbit of x lies entirely in x > 0 then the point is the fixed point of the affine

map in x > 0 and is unique – it corresponds to the allowed path M1M1M1 . . ..

Now suppose that x < 0. If x ∈ M8 then the allowed path starts either

M8M2M4M6M8 . . . , M8M2M3M5M7 . . . , or M8M3M5M7 . . . .

In each case there is one iterate in x < 0 followed by either two or three iterates in x ≥ 0

before returning to x ≤ 0. Similarly if x ∈ M7 the allowed paths are either

M7M
p
1 M2M4M6M8 . . . , M7M

p
1 M2M3M5M7 . . . , or M7M4M6M8 . . .

with p ≥ 1 (p = ∞ being allowed), or M7 is followed by M8 and we have one of the

cases for M8 with an extra iteration in x < 0 at the beginning. In all cases it is easy

to see that (labelling with L and R for left and right of the y−axis respectively) the

sequences of visits to the left and right can be obtained by concatenating the symbols

LLRR, LLRRR, LRR, LRRR, and RR.

For example,

M7M
4
1 M2M4M6M8M3M5M7M8M3M5M7 . . .

corresponds to (LRRR)(RR)2(LRR)(LLRR)L . . .. Hence if each of the five

combinations of Ls and Rs corresponds to an effective expansion by a factor greater

than one, then an infinite allowed path corresponds to a unique point.
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operator B δ = det(BT B) τ = Trace(BT B) τ − 2 δ − τ + 1

A2
RA2

L 11.44 7.06 5.06 5.38

A3
RA2

L 38.71 14.21 12.21 25.51

A2
RAL 11.44 6.77 4.77 5.68

A3
RAL 38.71 15.83 13.82 23.89

A2
R 11.44 7.06 5.06 5.38

Table 1. Expansion properties for higher iterates of the map.

As shown earlier, a 2 × 2 matrix B is expanding if the trace τ and determinant

δ of the symmetric matrix BT B satisfy τ > 2 and δ − τ + 1 > 0. We have checked

numerically that each of the five combinations for B:

A2
RA2

L, A3
RA2

L, A2
RAL, A3

RAL, and A2
R

(note that the order of the operators is reversed here from the order of the symbol

sequences) do indeed correspond to expanding matrices. We could have done

the calculation explicitly and made more thoughtful approximations to prove these

inequalities rigorously, but the numerical results are unambiguous so we felt this was

unnecessary – numerical results are shown in the following table (if the final two columns

are positive then the matrix is expanding).

Thus since the transition graph has positive topological entropy, the map is ALEO.

¤

Corollary 1 For parameters defined in Theorem 1 the dynamics restricted to the

quadrilateral P1P2P3P4 is transitive and periodic orbits are dense in the quadrilateral.

4. A countable set of examples

The examples of previous sections demonstrate that the Markov partition technique can

be applied effectively to study attractors of the border-collision normal form, and we

give a last set of examples which show how to generate a countable set of parameters

for which a Markov partition exists. An example is illustrated in Fig. 2.

Suppose that µ > 0, so without loss of generality we can take µ = 1 in the

calculations below. The fixed point P ∗ in x > 0 is

P ∗ = 1
1+DR−TR

(
1

−DR

)
(16)

and AR has complex conjugate eigenvalues re±iθ, if

TR = 2r cos θ, DR = r2. (17)

We will choose r and θ so that there exists n > 1 such that the x−coordinate of

Pn = F n(O) has x = 0, with Pk = F k(O) in x > 0 for k = 1, . . . , n − 1 (this gives one

condition which TR and DR must satisfy). Then F (Pn) = Pn+1 will lie on the x−axis
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Figure 2. Attracting region showing the construction of the Markov partition used
to prove the region is transitive and has dense periodic orbits. The case n = 6 is
illustrated with TR ≈ 1.55842898, DR ≈ 1.21435044 and TL and DL given by (28).
F (O) = P1; F (Pi) = Pi+1, i = 1, . . . , 6; F (P ∗) = F (P7) = P ∗; and F (W ) = O.

in x < 0. A second condition on TR and DR is obtained by imposing that the line

from Pn+1 to P ∗ intersects the y−axis at W = (0,−1)T , which (by definition) maps to

O under F . Finally we choose TL and DL such that F (Pn+1) = P ∗. This yields the

geometry shown in Fig. 2, creating regions M0, . . . , Mn+4 defined below and which form

a Markov partition. We begin by proving that parameters at which these conditions

hold do exist for each n > 2 (recall that µ = 1 in the calculations throughout this

section).

By definition

F k(O) = (Ak−1
R + . . . + AR + I)

(
1

0

)
= (AR − I)−1(Ak

R − I)

(
1

0

)

provided r 6= 1. A tedious calculation (working in the basis of eigenvectors of AR or

otherwise) yields

Pn = F n(O)

= rn

(1+DR−TR) sin θ

(
r sin(nθ)− sin(n + 1)θ

DR sin(n + 1)θ − (TR − 1)r sin(nθ)

)

+ 1
1+DR−TR

(
1

−DR

) (18)

where, of course, TR and DR are given by (17) and the last term is P ∗. The condition

that Pn has x = 0 is therefore

rn+1 sin(nθ)− rn sin(n + 1)θ + sin θ = 0. (19)
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This is the first condition for TR and DR referred to above.

Using (19), the expression for Pn, (18) simplifies to Pn = (0, q)T where

q =
rn+1 sin(nθ)

sin θ
(20)

and so Pn+1 = (1 + q, 0)T and we will need to check that q < −1. The condition that

W is on the line from Pn+1 to P ∗ is equivalent to the statement that the slope of the

line Pn+1W equals the slope of the line WP ∗ which, after a little manipulation is

rn+1 sin(nθ) + sin θ

sin θ
=

1

1− TR

(21)

or

2rn+1 cos θ sin(nθ)− rn sin(nθ) + 2 cos θ sin θ = 0. (22)

This is the second of the two conditions which define TR and DR via (17). Expressing

rn sin(nθ) in terms of r and θ using (22), and rn sin(n + 1)θ similarly in terms of (19)

and dividing gives

2 cos θ sin(n + 1)θ = sin(nθ). (23)

and by using standard double angle formulae on the left hand side gives (at last)

sin(n + 2)θ = 0, (24)

and we choose the solution with

θn =
2π

n + 2
. (25)

Substituting this value into (19) and simplifying we find that (19) is satisfied if and only

if gn(r) = 0 where

gn(r) = 2rn+1 cos θn − rn − 1. (26)

For large r, gn(r) > 0, and if r = 1

gn(1) = −2(1− cos θn) ≤ 0. (27)

Hence, by the intermediate value theorem gn has a zero, rn > 1.

This establishes the existence of a solution (rn, θn) to the conditions determining

the desired behaviour for F k(O).

For any given n > 1, Pn+1 = (1 + q, 0)T with q given by (20) for parameters

determined by (rn, θn). The condition F (Pn+1) = P ∗ is thus

1 + TL(1 + q) = 1/(1 + DR − TR), DL(1 + q) = DR/(1 + DR − TR)(28)

which determines TL and DL (note that since 1 + q < 0 both are negative).

Theorem 2 Suppose µ > 0 in the border collision normal form (1). For each n > 0

sufficiently large let (TR, DR, TL, DL) be determined from (rn, θn) defined above via (17)

and (28). Then the border collision normal form is ALEO on a two-dimensional region.
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Remark: Numerical calculations suggest that ‘sufficiently large’ means n ≥ 6.

With the notation above (fixing µ = 1 throughout this section) and illustrated in

Fig. 2, the Markov partition will be constructed using the sets M0, . . . , Mn+3 defined

by M0 = WOP ∗, M1 = OP1P
∗ and Mk = Pk−1PkP

∗, k = 2, . . . , n (so F (Mk−1) = Mk,

k = 1, . . . , n), Mn+1 = WPnP
∗, Mn+2 = WPnPn+1 and Mn+3 = WPn+1O. Then by

definition of the end points and the parameters

F (Mn) = Mn+1 ∪Mn+2, F (Mn+1) = F (Mn+2) = Mn+3 ∪M0,

F (Mn+3) = F (M1)
(29)

which implies that the union of these regions, the polygon P1P2 . . . Pn+1, is invariant

and M0, . . . , Mn+3 form an irreducible convex Markov partition.

Let a < b < c. Then a skew tent map S : [a, c] → [a, c] is a continuous map such

that S([a, b]) = [a, c] and S([b, c]) = [a, c], and such that S is an affine map on both

[a, b] and [b, c]. The point b is called the turning point of the skew tent map. Note that

if I is any open interval in [a, b] then there exists J ⊆ I and n > 0 such that Sn|J is

affine and Sn(J) = [a, b] (e.g. [14]). The proof of Theorem 2 relies on a simple lemma

which connects the dynamics of the normal form restricted to a line to the skew tent

map. This line segment will play the same role as the diagonal in the proof of the ALEO

property for the example in [14]. The following lemma will be useful in the proof of

Theorem 2.

Lemma 2 Consider the normal form for parameters defined in Theorem 2. Then

(i) F n+2 restricted to the line segment Pn+1P
∗ is a skew tent map with turning point at

W ; and

(ii) Let Q be any region in Mk, k = 0, . . . , n+1, which fills the angle at P ∗. Then there

exists Q1 ⊆ Q and m such that Fm(Q1) = M0 and Fm|Q1 is affine.

Proof: Part (i) follows easily from the observation that F (Pn+1W ) = F (WP ∗) =

OP ∗, and then that F n+1(OP ∗) = Pn+1P
∗.

To prove (ii) consider preimages of M0 = WP ∗O under the map in R. The

preimage of W , W−1 lies on the open line segment PnP
∗, so the preimage will be the set

WP ∗W−1 ⊂ Mn+1. Its preimage is W−1P ∗W−2 ⊂ Mn with W−2 on the open segment

Pn−1P
∗. Continuing in this way we see that F−(n+2)(M0) ⊂ M0 and contains the angle

∠Pn+1P
∗O, and more generally the sets F−m(n+2)(M0), m > 0, form a nested sequence

of such regions tending to P ∗. Similarly with k ∈ {1, . . . , n + 1} fixed, F−m(n+2)+k(M0)

is in Mk and tends to P ∗ as m →∞.

¤
Remark: In fact, this shows that preimages of M0 exist in any region filling an

angle Pk−1P
∗Pk in Mk, k = 2, . . . n.

Proof of Theorem 2: To apply Proposition 1 we need to check that for all open sets

U in the absorbing region ∪Mk there exists i, n and V ⊆ U such that F n(V ) = Mi and

F |V is affine. Since the transition matrix associated with the Markov partition is easily

seen to be irreducible it is enough to show this for i = 0 (cf. Proposition 1).
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First note that rn > 1 and so DR = r2
n > 1. Simplifying the expression for DL in

(28) using gn(rn) = 0 in (26) gives

DL = −r−(n−2)
n

(
1 + r2

n − 2rn cos θn

)−1
(30)

so |DL| > 1 if rn−2
n (1 + r2

n − 2rn cos θn) < 1. Since rn → 1 and θn → 0 as n → ∞,

DL → −∞ (with DL the function of n in (28)) as n → ∞ and in particular |DL| > 1

for sufficiently large n. Therefore for large n both |DR| and |DL| are greater than

1 and hence areas are increased under iteration. Numerical simulations show that

rn−2
n (1 + r2

n − 2rn cos θn) < 1 provided n ≥ 6.

Let U be an open set in the attracting polygon and fix n large enough so that DR

and |DL| are greater than one. Let m1 ≥ 0 be the smallest positive integer such that

Fm1(U) intersects the critical line x = 0 (m1 exists because otherwise Fm|U would be

affine for each m and the area of Fm(U) would increase unboundedly, but Fm(U) is in

the finite absorbing region).

Suppose that Fm1(U) intersects WPn and let U1 ⊆ Mn+1 be the component of

Fm1(U) in R, so that Fm1(U) ∩ WPn is on its boundary. Let U2 ⊆ U such that

Fm1(U2) = U1 and Fm1|U2 is affine.

Since F (Mn+1) = Mn+3 ∪M0 and WPn maps to OPn+1, F (U1)∩Mn+3 6= ∅ and by

choosing U1 and U2 smaller if necessary we may assume that F (U1) is contained in Mn+3,

so F n+2|U1 is affine and F n+2(U1) ⊆ Mn+1 ∪ Mn+2 has a segment I ⊆ Pn+1P
∗ on its

boundary. By Lemma 2 (i) (using the expansion property of skew tent maps described

above the statement of Lemma 2) there exists J ⊆ I and m2 such that Fm2(n+2)|J is

affine and Fm2(n+2)(J) = Pn+1P
∗, so there exists U3 ⊆ F n+2(U1) with J on the boundary

such that Fm2(n+2)|U3 is affine and Pn+1P
∗, and in particular W , is on the boundary of

Fm2(n+2)(U3). By (29), Fm2(n+2)(U3) ⊆ Mn+1 ∪ Mn+2, and since it contains W on its

boundary it contains the intersection of an open neighbourhood of W with Mn+1, i.e. it

fills the angle PnWP ∗ at W . Let U4 ⊆ Fm2(n+2)(U3) be the component of Fm2(n+2)(U3)

in R with F (U4) ⊆ M0 and which fills the angle ∠WOP ∗ at O, then F n+3(U4) ⊆ M0

and fills ∠WP ∗O at P ∗. Thus Lemma 2 (ii) ensures that there exists U5 ⊆ F n+3(U4)

and m3 such that Fm3(U5) = M0 and Fm3|U5 is affine. Therefore, given an open set U ,

there exists V (⊆ U2) ⊆ U and N = m1 + (n + 2) + m2(n + 2) + (n + 3) + m3 such that

FN |V is affine and FN(V ) = M0, and hence F is ALEO on the polygon P1P2 . . . Pn+1

by Proposition 1.

If Fm1(U) intersects WO, let U1 be the component of Fm1(U) in R, then

F n+2(U1) ⊆ Mn+3∪M0 and has a segment P ∗Pn+1 on the boundary and above argument

applies.

¤

Corollary 2 For parameters such that the previous theorem holds, the closed polygon

P1P2 . . . Pn+1 is a transitive attractor and periodic orbits are dense in the polygon.
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5. Conclusion

We have shown that two-dimensional attractors with finite Markov partitions exist for

the two dimensional normal form of border collisions and this provides a means of

proving the existence of transitive two-dimensional attractors for the border collision

normal form. Numerical evidence [11, 21] suggests that these two-dimensional attractors

exist over much larger regions of parameter space than those amenable to either the

Cournot map analysis of [7] or the two-dimensional Markov partitions described here.

Our hope is that the use of the ALEO property will eventually allow us to provide a

mathematical proof of the existence of these attractors.

Acknowledgments We are grateful to Laura Gardini for some very helpful

comments and clarifications on an earlier draft version of this paper. PG is partially

funded by EPSRC grant EP/E050441/1. CHW is grateful to the University of

Manchester for support.

References

[1] Adler RL 1998 Symbolic Dynamics and Markov Partitions Bull. AMS 35 1–56
[2] Banerjee S and Grebogi C 1999 Border Collision Bifurcations in Two-Dimensional Piecewise

Smooth Maps, Phys. Rev. E, 59 4052–4061
[3] Banerjee S, Ranjan P and Grebogi C 2000 Bifurcations in two-dimensional piecewise smooth maps

— theory and applications in switching circuits, IEEE Trans. Circ. Syst., I: Fundam. Theory
Appl., 47 633–643.

[4] Banerjee S, Yorke JA and Grebogi C 1998 Robust Chaos Phys. Rev. Lett. 80 3049–3052
[5] di Bernardo M, Budd CJ and Champneys AR 2001 Grazing and Border-Collision in Piecewise-

Smooth Systems: A Unifed Analytical Framework Phys. Rev. Lett. 86 2553
[6] di Bernardo M, Budd CJ, Champneys AR and Kowalczyk P 2008 Piecewise-smooth Dynamical

Systems: Theory and Applications Springer, London
[7] Bischi G-I, Mammana C and Gardini L 2000 Multistability and cyclic attractors in duopoly games,

Chaos, Sol. & Fract. 11 543–564
[8] Cánovas JS and Lineros A 2001 Topological dynamic classification of duopoly games, Chaos, Solit.

& Fract. 12 1259–1266
[9] Dobrynskii VA 1998 The existence of two-dimensional topologically mixed attractors for some

piecewise linear maps of the plane Izv. Math. 62 53–58
[10] Dobrynskiy VA 1999 On attractors of piecewise linear 2-endomorphisms Nonl. Anal. 36 423–455
[11] Gardini L 1992 Some global bifurcations of two-dimensional endomorphisms by use of critical lines

Nonl. Anal. 18 361–399.
[12] Gardini L and Tramontana F 2010 Snap-back repellers in non smooth functions, preprint,

University of Urbino.
[13] Glasner E and Weiss B 1993 Sensitive dependence on initial conditions Nonlinearity 6 1067–1075
[14] Glendinning P 2001 Milnor attractors and topological attractors of a piecewise linear map

Nonlinearity 14 239–258
[15] Glendinning P 2010 Bifurcations of snap back repellers with application to the border collision

normal form, to appear in Int. J. Bif. & Chaos
[16] Glendinning P and Wong CH 2009 Border collision bifurcations, snap-back repellers, and chaos,

Phys. Rev. E, 79 025202(R)
[17] Guckenheimer J and Williams RF 1979 Structural stability of Lorenz attractors Publ. Math. IHES

50 59–72



Two dimensional attractors 17

[18] Hassouneh MA, Abed EH and Nusse HE 2004 Robust Dangerous Border-Collision Bifurcations in
Piecewise Smooth Systems Phys. Rev. Lett. 92 070201

[19] Ishii Y and Sands D 2007 Lap number entropy formula for piecewise affine and projective maps in
several dimensions Nonlinearity 20 2755–2772

[20] Ito S, Tanaka S and Nakada H 1979 On Unimodal Linear Transformations and Chaos Proc. Japan
Acad. Ser. A 55 231–236

[21] Mira C, Gardini L, Barugola A and Cathala JC 1996 Chaotic Dynamics in Two-Dimensional
Noninvertible Maps, World Scientific, Singapore.

[22] Mira C, Rauzy C, Maistrenko Y and Sushko I 1996 Some properties of a two-dimensional piecewise-
linear noninvertible map, Int. J. Bif. & Chaos 6 2299–2319

[23] Nusse HE, Ott E and Yorke JA 1994 Border-collision bifurcations: An explanation for ob- served
bifurcation phenomena, Phys. Rev. E, 49 1073–??

[24] Nusse HE and Yorke JA 1992 Border-collision bifurcation including ‘period two to period three’
for piecewise smooth systems, Physica D, 57 39–57

[25] Pikovsky AS and Grassberger P 1991 Symmetry breaking bifurcation for coupled chaotic attractors
J. Phys. A 24 4587–4597

[26] Simpson DJW and Meiss JD 2008 Unfolding a Codimension-Two, Discontinuous, Andronov-Hopf
Bifurcation”, Chaos, 18 033125

[27] Simpson DJW and Meiss JD 2009 Shrinking Point Bifurcations of Resonance Tongues for
Piecewise-Smooth, Continuous Maps, Nonlinearity, 22 1123–1144

[28] Tseng J 2009 Schmidt games and Markov partitions Nonlinearity 22 525–543
[29] Urbanski M 1991 The Hausdorff dimension of Julia sets of points with nondense orbit under a

hyperbolic dynamical system Nonlinearity 4 385–397
[30] Williams RF 1979 The structure of Lorenz attractors Publ. Math. IHES 50 73–100
[31] Zhusubaliyev ZT, Mosekilde E, Maity S, Mohanan S and Banerjee S 2006 Border collision route

to quasiperiodicity: Numerical investigation and experimental confirmation, Chaos, 16 023122


