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Abstract

It is highly plausible that the region of space-time far from an isolated gravitating body is, in
some sense, asymptotically Minkowskian. However theoretical studies of the full nonlinear
theory, initiated by Bondi et al. (1962), Sachs (1962) and Newman & Unti (1962), rely on
careful, clever, a-priori choices of chart (and tetrad) and so are not readily accessible to the
numerical relativist, who chooses her/his chart on the basis of quite different grounds.

This paper seeks to close this gap. Starting from data available in a typical numerical
evolution, we construct a chart and tetrad which is, asymptotically, sufficiently close to the
theoretical ones, so that the key concepts of Bondi news function, Bondi mass and its rate
of decrease can be estimated. In particular these esimates can be expressed in the numerical
relativist’s chart as numerical relativity recipes.
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1 Introduction and motivation

The two threads which underpin this study of asymptotic flatness are theoretical and numerical
relativity. We start by reviewing the former. It is widely believed that the region of space-time
far from an isolated gravitating body is, in some sense, asymptotically Minkowskian. Already
in 1962 Bondi and his coworkers (Bondi et al., 1962), (Sachs, 1962) developed asymptotic
expansions for the solution of the full nonlinear vacuum field equations, leading to a rigorous
concept of gravitational radiation in the far field. Soon afterwards Newman & Unti (1962)
produced an alternative version using the NP null tetrad formalism (Newman & Penrose, 1962).
A key ingredient in this and later work was the careful choice of a suitable coordinate chart
involving a “retarded time” coordinate u. Both groups introduced a (u, r, θ, φ) chart where θ
and φ were spherical polar coordinates. They both developed asymptotic expansions as r →
∞ holding the other coordinates fixed. Subsequent work by Penrose (Penrose, 1963) showed
that by a process of “conformal compactification”, infinity could be adjoined to the space-time
manifold and then treated by standard methods. Most modern theoretical treatments use the
Penrose conformal approach, and the “old-fashioned” chart-based approach has fallen out of
fashion. However it is closer to what most numerical relativists are calculating, and for this
reason we shall use it here.

The two groups used different charts and dependent variables. Bondi et al. (1962) chose
a (u, r, θ, φ) chart where r was an area coordinate and θ and φ were standard spherical polar
coordinates (see below). Their primary dependent variables were the metric components. New-
man & Unti (1962) produced an alternative version using a null “retarded time” coordinate u.
Then the null vector la = gabu,b is geodesic and their coordinate r was chosen to be an affine
parameter for the integral curves of la along which the other three coordinates were fixed. Their
primary dependent variables were the tetrad connection components and the tetrad components
of the Weyl curvature tensor. These ten independent Weyl tensor components are usually de-
scribed by five complex scalar functions Ψn where n = 0, 1, . . . , 4. (For a covariant physical
interpretation of the Weyl tensor see e.g., Szekeres (1965).)

Both groups were considering the limit r → ∞ with the other coordinates fixed. In the
Penrose geometrical picture (Penrose, 1963) this region is called future null infinity. Of course
both groups could have considered an “advanced time” coordinate v where the corresponding
limit is past null infinity. The Ψn in that case have similar properties and interpretation to Ψ4−n
near future null infinity.

If one wants to consider an isolated system with no extrinsic incoming radiation, then, as
explained below, the natural place to impose this is past null infinity. However both groups
looked for a condition to be imposed near future null infinity. Bondi et al. (1962) introduced an
“outgoing radiation condition” which required the vanishing of certain terms in the asymptotic
expansion of two of the metric components. This condition will be stated more precisely in
section 3. Newman & Unti (1962) made a “peeling assumption”: near future null infinity Ψ0 =
O(r−5), and with this assumption they were able to demonstrate a so-called “peeling theorem”:
Ψn = O(rn−5). Then Ψ4 = O(r−1) is interpreted as the leading term in the outgoing radiation.
In the (Bondi et al., 1962) picture the equivalent rôle is taken by the “Bondi news function”
built from first derivatives of metric components. For a comparison of the conditions in the two
schemes, showing that the outgoing radiation condition implies the peeling assumption see e.g.,
Valiente-Kroon (1999), and section 5.

By reversing the direction of time, swapping advanced time for retarded time, one could
carry out an almost identical study near past null infinity. There, assuming the analogous peeling
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condition, Ψ0 = O(r−1) is to be interpreted as the leading term in the extrinsic incoming
radiation, and a natural “no incoming radiation condition” near past null infinity would be Ψ4 =
O(r−5).

It is important to realise that the “outgoing radiation condition” or “peeling assumption”
does not preclude the presence of incoming radiation near future null infinity. Even within lin-
earized theory the “peeling theorem” allows modest amounts of incoming radiation (Deadman
& Stewart, paper in preparation).

We turn now to numerical relativity where researchers have expended considerable effort
on the (numerical) evolution of asymptotically flat space-times. A minority of researchers have
adopted the Penrose conformal approach, but most have chosen to evolve the space-time as far
out (both in space and time) as is feasible, using the traditional approach. Then some matching
process is required to interpret their numerical data in the Bondi or NP pictures. This, the goal of
this paper, turns out to be far from trivial. The choice of a coordinate chart is an intrinsic part of
the numerical evolution and the final data is available only in this chosen chart. Each numerical
relativity group has its own favoured chart or charts and they usually bear little resemblance to
the Bondi or NP ones. Furthermore this data does not contain complete information because the
inevitable occurrence of numerical errors will corrupt the values of higher derivatives—from it
one can construct reliably only a few leading terms in asymptotic expansions1.

The usual approach adopted by numerical relativists is to argue that far from the isolated
source the gravitational field is weak, and so linearized theory can be used to match the nu-
merical and the Bondi or NU pictures. Bondi et al. (1962) argued strongly against such an
approximation pointing out the fundamental nonlinearity of general relativity. Even if plausible
arguments in its favour could be found, linearization carries its own difficulties. The first is that
in a non-compactified space-time the matching process is a global one. Further given a space-
time, the choice of a simpler second space-time of which the first can be considered a linearized
perturbation, is not unambiguous. Even if such a choice could be justified the transformation
between the charts in the two space-times would not, in general, be smooth.

As a concrete example illustrating these points consider the well-known Schwarzschild met-
ric in the standard (t, r, θ, φ) chart

gSab = diag(F,−F−1,−r2,−r2 sin2 θ), (1)

where F = 1− 2M/r. In the region where r �M this might appear to be a small perturbation
of Minkowski space-time with metric

gMab = diag(1,−1,−r2,−r2 sin2 θ), (2)

but this is deceptive. Consider the scalar wave equation gabΨ;ab = 0 on the two space-times.
We would measure outgoing radiation at future null infinity by taking the limit r →∞ holding
u constant, where u is a retarded time coordinate. Two standard choices for u are

uM = t− r, uS = t− r∗, (3)
1Consider an asymptotic expansion

f(r) = f0 + f1r
−1 + f2r

−2 + . . .

as r →∞. If we interpret this as the first few terms in the Taylor series for f(q) about q = 0 where q = r−1, then
the fn are, up to numerical factors, the q-derivatives of f evaluated at q = 0.
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where
r∗ =

∫
F−1 dr = r + 2M log |r/2M − 1|+ const. (4)

Thus
uM = uS + 2M log |r/2M − 1|+ const. (5)

The Schwarzschild null infinity is given by r → ∞ holding uS constant, which implies uM →
∞, known as future timelike infinity for the Minkowski space-time. Equivalently the Minkowski
null infinity involves taking the limit with uM constant which corresponds to r → ∞ with
uS → −∞, known as spacelike infinity for the Schwarzschild spacetime. Thus the limits in the
two charts are different. This happens because of the global nature of the limiting process.

In order to achieve comparable limiting processes we need to redefine the two charts. Here
both space-times are static and so it is simplest to retain the t-coordinate. Suppose we invert
(for r > M ) the relation (4), r∗ = r∗(r) giving r = r(r∗) and introduce a new chart (t, r∗, θ, φ).
Then the Schwarzschild line element (1) becomes

gSab = diag(F,−F,−r2,−r2 sin2 θ). (6)

Using the same chart the Minkowski line element is

gMab = diag(1,−1,−r2,−r2 sin2 θ). (7)

Now the two metrics (6) and (7) are not only small perturbations of each other (for large r∗), but
they share the same causal structure, u = t− r∗ in both cases. (There are of course many other
ways of doing this, e.g., retain the r’s and change the t’s, which is the approach to be adopted in
this paper.) Note also the appearance of logarithms, which means that the transformations are
not smooth.

The purpose of this paper is to examine in more detail these issues from the point of view
of the numerical relativist. In section 2 we state what information we believe is available in
a typical numerical evolution, and we assume that this information is expressed in terms of a
given chart Xa = (T,R,Θ,Φ) which is asymptotically Minkowskian. Section 3 addresses the
construction of an approximate Bondi-like chart xa = (u, r, θ, φ) using this information. This
circumvents the problem referred to above. We write down here the explicit form of the Bondi
et al. outgoing radiation condition. We introduce a Newman-Penrose (NP) tetrad (Newman &
Penrose, 1962) adapted to the problem by Newman & Unti (1962) in section 4. At leading
order this is the usual NP tetrad for Minkowski space-time. At each order, r−1, r−2, . . . , there
are 16 real coefficients describing the tetrad. However from section 3 we know that only 10
coefficients are needed to describe the metric. There are six coefficients which describe an
infinitesimal Lorentz transformation at each order, and, for the moment, we do not make a
particular choice for them.

In section 5 we first obtain the asymptotic solution of the full nonlinear vacuum Einstein
equations. As we do so we fine-tune our chart and NP tetrad to make them closer to those of
Bondi et al. and Newman-Unti. Once we have set the Ricci curvature, to the best of our abilities,
to zero we turn to the Weyl curvature described by the Weyl scalars Ψn referred to earlier. We
find that Ψn = O(rn−5) for n = 4, 3, 2, 1, but Ψ0 = O(r−4), which would appear to violate
the NU peeling assumption. However using the information gleaned from solving the vacuum
field equations and the fine-tuning of the chart and tetrad, we can show that the Bondi outgoing
radiation condition implies the NU peeling condition so that the peeling theorem then holds.
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The bad news is that the leading terms in the Weyl scalars Ψ0 = O(r−5) and Ψ1 = O(r−4)
cannot be estimated using the information we judge to be available from the information ex-
tracted in section 2. Although these scalars can be computed in linearized theory, that theory
would appear to be an unreliable guide here near future null infinity.

The good news is that we can compute the leading terms in Ψ4 = O(r−1), equivalent to the
“Bondi news function” (and we can compute this scalar accurately within linearized theory).
The same holds for Ψ3 = O(r2), which involves nonlinear terms, but these can be removed by
the fine-tuning process. We can also compute Ψ2 = O(r−3) which involves nonlinear terms in
an essential way. This means that we can offer reliable estimates of the “Bondi mass” MB(u)
of the isolated system2, and its rate of decrease dMB/du 6 0, presumably due to the radiation
of energy, both manifestly inaccessible to linearized theory.

The final section 6 translates these results back into the Xa chart of section 2 used by a
typical numerical relativist. From her/his standpoint there is no need to go through the elaborate
construction of a theoretical chart and NP tetrad carried out in the intermediate sections. We
offer “numerical relativity recipes” so that they can compute the key quantities referred to in the
previous paragraph in their own preferred chart.

The key ideas in this paper are at least forty years old, and one might ask why were these
results were not given before? The nonlinear calculations of Bondi et al. (1962), Sachs (1962)
and Newman & Unti (1962) were made possible by careful, clever, a-priori choices of chart and
tetrad. We have to start from more or less arbitrary choices and so the resulting expressions
are horrendously complicated. In order to handle them accurately we have utilized a computer
algebra system. We used Reduce, and our Reduce 3.8 scripts can be obtained by an email
request to the authors. Our choice reflected our experience and knowledge of one particular
computer algebra system, but we used no features not available in some other systems.

We are grateful to Oliver Rinne for very useful discussions. One of us (ED) is grateful for
financial support from the UK Engineering and Physical Sciences Research Council.

2The “Bondi mass” is of course the timelike component of a 4-vector and so frame dependent. But a numerical
relativity evolution singles out a well-defined frame, and that is the one in which the mass is computed.
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2 The numerical data

Most numerical relativists would choose a quasi-spherical polar chartXa = (T,R,Θ,Φ) for the
numerical evolution of the space-time surrounding an isolated gravitational source. We could
also define an associated quasi-cartesian chart Y a = (T,X, Y, Z) where

X = R sin Θ cos Φ, Y = R sin Θ sin Φ, Z = R cos Θ.

We shall be interested in the limit R → ∞. As stated this limit is meaningless unless we
specify the behaviour of the other three coordinates under the limiting process, and we shall
rectify this omission shortly. It proves very convenient to introduce the notation

On = O(R−n) as R→∞. (8)

Our fundamental assumption is that the space-time outside an isolated source is asymptotically
Minkowskian, expressed by the idea that, as seen in the Y a chart,

gab = ηab + g
(1)
ab R

−1 + g
(2)
ab R

−2 +O3, (9)

where ηab = diag(1,−1,−1,−1) and the g(n)
ab are supposed to remain constant during the lim-

iting process. Transforming from the Minkowskian chart to the spherical polar one we find that
the metric components in the Xa chart look like

g00 = 1 + h00R
−1 + k00R

−2 +O3,

g01 = h01R
−1 + k01R

−2 +O3,

g02 = h02 + k02R
−1 +O2,

g03 = h03 + k03R
−1 +O2,

g11 = −1 + h11R
−1 + k11R

−2 +O3,

g12 = h12 + k12R
−1 +O2,

g13 = h13 + k13R
−1 +O2,

g22 = −R2 + h22R + k22 +O1,

g23 = h23R + k23 +O1,

g33 = −R2 sin2 Θ + h33R + k33 +O1.

(10)

Here the functions {hab} and {kab} are required to remain constant during the limiting process.

We shall also need the asymptotic form of the inverse metric gab which is readily obtained
from the relation gacgcb = δab. We find

g00 = 1 + h00R−1 + k00R−2 +O3,

g01 = h01R−1 + k01R−2 +O3,

g02 = h02R−2 + k02R−3 +O4,

g03 = h03R−2 + k03R−3 +O4,

g11 = −1 + h11R−1 + k11R−2 +O3,

g12 = h12R−2 + k12R−3 +O4,

g13 = h13R−2 + k13R−3 +O4,

g22 = −R−2 + h22R−3 + k22R−4 +O5,

g23 = h23R−3 + k23R−4 +O5,

g33 = −R−2 csc2 Θ + h33R−3 + k33R−4 +O5.

(11)
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Explicit formulae for hab and kab are given by equations (A1) and (A2) in appendix A. At this
level of approximation

gacgcb = δab +O3.

A numerical evolution in which the dependent variables include both gab and gab,c , usually
called a “first order formulation”, should produce accurate values for hab and its first derivatives,
and for kab. Otherwise we assume that these variables are available for discrete ranges of T , Θ
and Φ so that the corresponding derivatives can be estimated.
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3 The Bondi chart

Most of the theoretical work which has been done on outgoing gravitational radiation involves a
“Bondi chart” (u, r, θ, φ) in which u is a retarded time coordinate, see e.g., Bondi et al. (1962),
Newman & Penrose (1962), Newman & Unti (1962).

Here we take the viewpoint that the Xa = (T,R,Θ,Φ) chart introduced in section 2 is the
fundamental one in which, ultimately, all numerical calculations will be performed. Starting
from this chart we need to construct an xa = (u, r, θ, φ) one which has all the essential features
of a Bondi chart and we start by studying the function u(T,R,Θ,Φ).

Because u is a null coordinate it has to satisfy the relativistic eikonal equation

gabu,au,b = 0. (12)

This is a well-known nonlinear equation with four independent variables which is exceedingly
difficult to solve with any generality. (Even the restriction of (12) to Minkowski space-time
leads to the surprisingly rich structure of light ray caustics.) Note that there is a “gauge
freedom”—if u is a solution then so is U(u) for any differentiable function U .

The standard approach is to specify u on a spacelike hypersurface in space-time, and then
existence and local uniqueness of u is guaranteed by standard theorems. The standard approach
is of little utility in this context, for no obvious choice of data suggests itself, and so we adopt a
different approach.

Consider first the special case of a Minkowski space-time, where (12) can be rewritten as

(u,T )2 − (u,R)2 = R−2
[
(u,Θ)2 + csc2 Θ(u,Φ)2

]
= O2. (13)

Suppose we look for spherically symmetric solutions u = u(T,R). Setting ω = u,R/u,T in (13)
we find ω2 = 1. Using the gauge freedom mentioned earlier we may impose u,T = 1 to find

du = dT ± dR,

which implies
u = T ±R + const.

T −R is called retarded time and T +R is called advanced time.

Although the special case appears trivial it is the key to the general one. Within this section
only let indices i, j range over 0, 1 and let indices I, J range over 2, 3. Perusal of the display
(11) shows that gij is O0 while both giJ and gIJ are O2. Thus the eikonal equation takes the
form

giju,iu,j = O2, (14)

which should be compared with (13) above. As boundary conditions (as R→∞) we impose

u,T = 1 +O1, u,I = O1. (15)

This means that the eikonal equation takes the form

giju,iu,j = O3, (16)

which we can write as a quadratic equation for ω = u,R/u,T , and choosing the sign appropriate
for retarded time we find the solution

u,R = −(1 + 2m1/R + 2m2/R
2)u,T +O3, (17)
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where
m1 = −1

4
(h00 + 2h01 + h11), (18)

and

m2 =− 1
16

[
4k00 + 8k01 + 4k11 + (h00 − h11)

2−
4(h00 + h01)

2 + 4(h02 + h12)
2 + 4(h03 + h13)

2 csc2 θ
]
.

(19)

Thus
du = u,T dT − u,T (1 + 2m1/R + 2m2/R

2) dR +O3. (20)

We leave some freedom in u by setting

u,T = 1 +
q1
R

+
q2
R2

+O3, (21)

where q1 and q2 are R-independent functions. At the moment they are arbitrary. The require-
ment that the vacuum Einstein equations hold then determines inter alia q1, see section 6. In our
calculation q2 is not used directly.

We need next to specify a radial coordinate r = r(T,R,Θ,Φ), and the simplest choice is
r = R. This has the great practical advantage that On = O(R−n) = O(r−n). It could be
argued that our choice of r is neither the Bondi area coordinate nor an affine parameter along
the outgoing null rays as favoured by Newman & Unti (1962). However since both of those
approaches are known to be essentially equivalent, it would seem that the discussion is not
sensitive to the precise choice of r.

Then (20) implies

dT =
(
(1− q1/r − (q2 − q1

2)/r2
)
du+ (1 + 2m1/r + 2m2/r

2) dr +O3, (22)

and so (
∂T

∂u

)
r

= 1− q1
r
− q2 − q1

2

r2
+O3,

(
∂R

∂u

)
r

= 0, (23)(
∂T

∂r

)
u

= 1 +
2m1

r
+

2m2

r2
+O3,

(
∂R

∂r

)
u

= 1. (24)

Finally we consider the choice of angular coordinates θ = θ(T,R,Θ,Φ) and φ = φ(T,R,Θ,Φ).
We shall require θ = Θ +O1 and φ = Φ +O1, and so the relations, being close to the identity,
are invertible. It is more convenient to posit

Θ = θ +
y2

r
+
z2

r2
+O3, Φ = φ+

y3

r
+
z3

r2
+O3, (25)

where the functions yJ and zJ do not depend on r but are otherwise arbitrary. Equations (25)
are certainly consistent with the boundary conditions (15).

We can now specify the limiting process as r → ∞ holding u, θ and φ constant. Thus we
are regarding mn, qn, yJ , zJ , {hab} and {kab} as functions of u, θ and φ.
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Because we know the Jacobian (∂Xa/∂xb) we can write down the metric components in
the xa = (u, r, θ, φ) chart

g00 = 1 + a00/r + b00/r
2 +O3,

g01 = 1 + a01/r + b01/r
2 +O3,

g02 = −ry2,u + a02 + b02/r +O2,

g03 = −rz2,u sin2 θ + a03 + b03/r +O2,

g11 = a11/r + b11/r
2 +O3,

g12 = a12 + b12/r +O2,

g13 = a13 + b13/r +O2,

g22 = −r2 + a22r + b22 +O1,

g23 = a23r + b23 +O1,

g33 = −r2 sin2 θ + a33r + b33 +O1.

(26)

Two points should be noted here. Firstly the leading terms in g02 and g03, if non-zero, would
violate our notion of an asymptotically Minkowskian space-time, for they are not present in the
standard Minkowski line element. Thus we need to impose the conditions or “constraints”

y2,u = z2,u = 0. (27)

Explicit formulae for amn in terms of the hmn, q1, m1 and y2, z2 (after imposing (27)) are
given as (A3) in appendix A. We could also give explicit formulae for the bmn in terms of the
hmn, kmn, qn, mn, yn and znbut they are rather lengthy, and are most easily generated using a
computer algebra package.

Next recall that the u-coordinate was constructed as a solution of the eikonal equation (16).
Thus, as seen in the (u, r, θ, φ) chart g00 = O3 which implies g11 = O1 and so a11 = 0. One
may verify this directly by comparing the explicit expression for a11 given in (A3) with (18).
We will show later that by making a suitable choice for y2 and y3, we can achieve b11 = 0 so
that g11 = O3 as expected.

We now have sufficient notation available to write down the “outgoing radiation condition”
of Bondi et al. (1962) as

a33 = −a22 sin2 θ, b33 = b22 sin2 θ, b23 = 0, (28)

which we shall invoke later.
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4 The NP tetrad

Since most recent studies of gravitational radiation use a NP null tetrad (Newman & Penrose,
1962) we need to introduce one. The basics of tetrad formalisms are due to Schouten (1954).
Many textbooks contain more readable, but often succinct accounts, and Chandrasekhar (1983)
chapter 1, section 7, is a good pedagogic compromise. With small, but necessary, changes in
notation this is summarised in appendix B. The specialisation of this approach to the original NP
formalism has been given by Campbell & Wainwright (1977). It turns out that the calculations
that we need to do with it become surprisingly intricate, and so are most conveniently handled
using a computer algebra system. One of the authors implemented the appendix B formalism,
the other the (Campbell & Wainwright, 1977) one. Both of course gave the same results, a
useful guard against programming errors. Results here are reported for the former.

We use a tetrad of vectors eαa and the dual tetrad of covectors eαa. (The tetrad indices are
greek characters and always occur first.) Tetrad indices are lowered and raised using εαβ and
εαβ where

εαβ = εαβ =


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

 .

In NP notation we have

e0a = la, e1a = na, e2a = ma, e3a = ma,

e0
a = na, e1

a = la, e2
a = −ma, e3

a = −ma.
(29)

We shall require that, to leading order, la = u,a.

Setting s = 2−1/2 we write the tetrads as3

e0a = (1 + c00/r + d00/r
2 +O3, c01/r + d01/r

2 +O3,

c02 + d02/r +O2, c03 + d03/r +O2),

e1a = (1
2

+ c10/r + d10/r
2 +O3, 1 + c11/r + d11/r

2 +O3,

c12 + d12/r +O2, c13 + d13/r +O2),

e2a = (c20/r + d20/r
2 +O3, c21/r + d21/r

2 +O3,

− sr + c22 + d02/r +O2, isr sin θ + c23 + d23/r +O2),

e3a = (c30/r + d30/r
2 +O3, 1 + c31/r + d31/r

2 +O3,

− sr + c32 + d32/r +O2, −isr sin θ + c33 + d33/r +O2),

(30)

3In our calculations we actually included one extra term in each of the asymptotic expansions below. E.g., the
first component of e0

a was written as

e0
0 = 1 + c00/r + d00/r2 + j00/r3 + O4.

These “junk” terms show up in our expressions for the connection and curvature components. In any expression
where a junk term occurs we regard all terms of that (and any higher order) as being junk, and not computable
form the data described in section 2.
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and

ea0 = (1 + c00/r + d00/r2 +O3, −1
2

+ c01/r + d01/r2 +O3,

c02/r2 + d02/r3 +O4, c03/r2 + d03/r3 +O4),

ea1 = (c10/r + d10/r2 +O3, 1 + c11/r + d11/r2 +O3,

c12/r2 + d12/r3 +O4, c13/r2 + d13/r3 +O4),

ea2 = (c20/r + d20/r2 +O3, c21/r + d21/r2 +O3,

− s/r + c22/r2 + d02/r3 +O4, −is csc θ/r + c23/r2 + d23/r3 +O4),

ea3 = (c30/r + d30/r2 +O3, 1 + c31/r + d31/r2 +O3,

− s/r + c32/r2 + d32/r3 +O4, is csc θ/r + c33/r2 + d33/r3 +O4).

(31)

Each tetrad contains, at each order, 32 real coefficients. For although c2n and c3n are complex,
c2n = c3n etc. The relation eµaeνa = δµν allows one to determine the cmn in terms of the cmn
and the dmn in terms of cmn and dmn, reducing the number of unknowns, at each order, from 32
to 16. The first set of these is given as equation (A4) in appendix A . The second set is rather
lengthy and best generated using a computer algebra package.

We also have the relation εµνeµaeνb = gab, and this enables us to determine amn in terms
of cmn. Note that there are 10 amn and 16 real cmn. Given the tetrad, the metric is uniquely
determined. But for a given metric there is a 6-parameter set of tetrads which give rise to it.
They are of course Lorentz transformations of each other and the Lorentz group has 6 arbitrary
parameters. We introduce 6 arbitrary first order Lorentz parameters αm(u, θ, φ) and can deter-
mine the cmn in terms of the amn and αm. There are many different ways of doing this, and one
is written down explicitly as (A5) in appendix A. We can of course write down the dmn in terms
of the amn, bmn, αm and extra second order Lorentz parameters βm, but they are rather lengthy
and are best generated by computer algebra.
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5 The Curvature Tensors

We now use the tetrads developed in section 4 to evaluate the Ricci and Weyl curvature tensors
using the algorithm outlined in appendix B. At each stage we convert all instances of cmn and
dmn to instances of cmn and dmn using (A4) and its second order analogue. Then we convert
all instances of cmn and dmn to instances of the metric coefficients amn and bmn using (A5) and
its second order analogue. These conversions are implicit and will not be mentioned explicitly
again.

We start by looking at the Ricci tensor component R11 = Rabe1
ae1

b = Rabl
alb. We find

0 = R11 = a11,u/r
2 +O3. (32)

We chose our chart to ensure that u was approximately a null coordinate or equivalently g00 =
O3 or equivalently g11 = O1. This means that we have to enforce a11 = 0, and so the leading
term in R11 vanishes. We look next at

0 = R01 = Rabe0
ae1

b = Rabn
alb = −1

2
a11,uu/r +O2. (33)

Again the leading order term vanishes automatically. Next consider

0 = R12+R13 = −2sa12,u/r
2+O3, 0 = R12−R13 = −2isa13,u csc θ/r2+O3, (34)

where s = 2−1/2. We deduce that
a12,u = a13,u = 0. (35)

Further we can compute

0 = R02 +R03 = sa12,uu/r +O2, 0 = R02 −R03 = isa13,u csc θ/r +O2, (36)

If we inspect R23 and use (35) we find

0 = R23 = 1
2
(a22,u + a33,u csc2 θ)/r2 +O3, (37)

and we deduce that
a22,u + a33,u csc2 θ = 0. (38)

Further we may compute

R00 = −1
2
(a22,uu + a33,uu csc2 θ)/r +O2, (39)

and we see immediately from (38) that the leading term vanishes, and so furnishes no new
information. Finally inspection of the leading O2 terms in R22 ± R33 reveals that they vanish
automatically because of a11 = 0, (35) and (38). Thus we have

R22 +R23 = O3, R22 −R23 = O3. (40)

We have found, so far, that the conditions a11 = 0, (35) and (38) imply that R00, R01, R02 and
R03 are O2 while the other components are O3.

At this point we need to examine (35) more closely. Using (A3) we have

(h02 + h12 + y2),u = 0 (h03 + h13 + z2 sin2 θ),u = 0. (41)
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Now we know that the functions y2 and z2 are arbitrary, apart form the constraints (27), and so
(41) implies

(h02 + h12),u = 0 (h03 + h13),u = 0. (42)

We may therefore choose, consistent with the constraints (27),

y2 = −(h02 + h12), z2 = −(h03 + h13) csc2 θ, (43)

which, using (A3) sets
a12 = a13 = 0. (44)

The choice (43) has an added advantage that if we now express b11 in terms of the hab, kab,
m1 and m2, y2 and z2 we find that b11 = 0, so that g11 = O3. At the same time we can examine
b12 and b13 which are linear in y3 and z3 respectively. By choosing y3 and z3 appropriately we
may arrange b12 = b13 = 0.

This is a convenient point at which to examine the choice of a specific Lorentz transforma-
tion, in our tetrad, exemplified at leading order by the parameters αn, see e.g., (A5). Newman
& Penrose (1962) chose u to be a null coordinate, gabu,aub = 0 and the covector la = u,a. For a
symmetric connection it follows easily that la;bl

b = 0. Even if we set la = f(xc)u,a we find that
la;bl

b is proportional to la so that we still have a null geodesic, albeit not necessarily an affinely
parametrised one. The rest of this paragraph relies on some details of NP formalism which can
be checked swiftly using appendix B of Stewart (1993). Within NP formalism

la;bl
b = (ε+ ε)la − κ̄ma − κma, (45)

where κ and ε are NP spin coefficients defined below. Now our coordinate u is only approxi-
mately null, and our covector la is only approximately its gradient. Here κ = malbla;b = γ131

(using the notation of appendix B) turns out to be O3. However if we choose α4 = α5 =
β4 = β5 = 0, and anticipate a01 = 0 (see next paragraph), we obtain κ = O4. Also
ε + ε = nalbla;b = γ011 is O2 but if we choose α1 = 0 we find ε + ε is O3. We also found
τ = γ130 = (α2 + iα3)/r

2 + O3 or τ = O3 if we impose α2 = α3 = 0. At this stage we also
choose α6 = β6 = 0 for reasons given below.

Now we need to examine each of the remainder (next order) terms in (32), (33), (34), (36),
(37), (39) and (40). For example we now find that the O3 terms in R11 vanish if and only if
we set a01 = 0, and then R11 = O4. This also implies that the O2 terms in R01 vanish, so that
R01 = O3. We already established that R12 ± R13 = O3. Setting the leading order terms to
zero furnishes expressions for a02 and a03 which we use for subsequent simplifications. Now
R12 ± R13 = O4. We find then that our previous estimate (36) refines to R02 ± R03 = O3. We
also need to refine our estimate (37) to R23 = O4. We find R22 ± R23 = O3, where both O3

terms deliver the same relation relating the u-derivatives of a22, a23, a33 and b22, b23, b33 which
we save for later use. In deriving this result we had to choose α6 = β6 = 0 and to impose the
Bondi outgoing radiation condition (28). Then R22 ± R23 = O4. Next we reexamine (39). The
leading O2 term gives us an expression for a00,u which we store for later use. Now R00 = O3.
We have found, so far, that R00, R01, R02 and R03 are O2 while the other components are O3.

We now try to repeat the procedure of the previous paragraph. However we find that the
O4 contribution in R11 contains “junk” terms, i.e., terms which involve the third order metric
components which we have not been including; see the footnote in section 4. Thus we can
obtain no further information from the vacuum field equation R11 = 0. Similarly we find that
the O3 terms in R01 contain junk as do the O4 terms in R12 ± R13. The same applies to the O3
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terms in R02 ± R03, the O4 terms in R23 and R22 ± R33, and finally the O3 terms in R00. We
have therefore exhausted the information available from the vacuum field equations.

Assuming that we have a vacuum we can switch attention to the Weyl tensor, and we com-
pute first

Ψ4 = R0202 =
[

1
4
(a22,uu − a33,uu csc2 θ) + 1

2
ia23,uu csc θ

]
/r +O2. (46)

Using (38) we may rewrite this as

Ψ4 = N,u/r +O2, (47)

where
N = 1

2
(a22 + ia23 csc θ),u (48)

is the Bondi news function (Bondi et al., 1962).

This is a highly satisfactory result which, in spite of our rather ad hoc chart and tetrad,
mimics the treatment of Bondi et al. (1962) and Newman & Unti (1962). Further we see that
it is linear in the amn and so should appear in linearized theory. Also it does not involve the
Lorentz parameters αn and βn and so is tetrad-invariant (for tetrads which are asymptotically
Minkowskian). The remainder term in in (47) contains some O2 terms and junk O3 terms.

Next consider
Ψ3 = R0120 = Ψ

(2)
3 /r2 +O3, (49)

where
Ψ

(2)
3 = 2−1/2(N,θ − iN,φ csc θ +N cot θ) + (α4 + iα5)N,u. (50)

Note first that the r-dependence is precisely what one would have expected from the peeling
property. The first term in the coefficient Ψ

(2)
3 is linear and would have been predicted within

linearized theory. However the second term is nonlinear for it depends on the αn which de-
termine the infinitesimal Lorentz transformation of the NP tetrads (30) and (31). This is to be
expected. The NP tetrad used by Newman & Unti (1962) was chosen very specifically, while
here we are considering a class of tetrads infinitesimally close to the Minkowski one. If we
were to restrict attention to the subclass of tetrads where α4 = α5 = 0 then our result would
be consistent with linearized theory. On the other hand another choice of a4 + iα5 would give
Ψ

(2)
3 = 0. The remainder term in (49) is junk.

Next we find that
Ψ2 = R1320 = Ψ

(3)
2 /r3 +O4, (51)

where the remainder term is junk. We will return to the leading term shortly.

We find next that
Ψ1 = R0113 = Ψ

(4)
1 /r4 +O5, (52)

The coefficient Ψ
(4)
1 contains nonlinear terms, but we are unable to determine it precisely be-

cause it also contains junk terms. The peeling property is still holding though.

The peeling property would demand that Ψ0 = R1313 should be O5. However we find

Ψ0 = Ψ
(4)
0 /r4 +O5, (53)

where

Ψ
(4)
0 = 1

8
[(a22+a33 csc2 θ)(a22−2ia23 csc θ−a33 csc2 θ)+4(b22−b33 csc2 θ−2ib23 csc θ)]. (54)
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But we have not made the restrictions that were imposed by Bondi et al. (1962) or Newman
& Unti (1962) to ensure peeling. The latter restriction was to demand Ψ

(4)
0 = 0. The former

restriction was that the “outgoing radiation condition”, (Bondi et al., 1962), held. In our notation
this condition is , see (28),

a22 = −a33 csc2 θ, b22 = b33 csc2 θ, b23 = 0. (55)

Examining (54) we see that imposing the outgoing radiation condition (55) ensures Ψ
(4)
0 = 0, a

result first obtained by Valiente-Kroon (1999). With one or other condition we have

Ψ0 = Ψ
(5)
0 /r5 +O6, (56)

but the coefficient Ψ
(5)
0 contains junk terms and so we cannot evaluate it. (It also contains

nonlinear terms not predicted by linearized theory.)

To summarize: if we impose the outgoing radiation condition (55) then we obtain the peeling
property, and we can obtain explicitly the leading terms in Ψ4, Ψ3, Ψ2, but not those for Ψ1 and
Ψ0 because they contain junk terms.

We now return to the discussion of Ψ2 given by (51). The leading term coefficient is

Ψ
(3)
2 =1

2
a00 − 1

4
ia23 csc3 θ + 1

2
b22,u + 1

4
(a22 + ia23 csc θ)(a22,u − ia23,u csc θ)+

1
4
i(a23,θ − 2a22,φ) cot θ csc θ − 1

2
ia22,θφ csc θ + 1

4
i(a23,θθ − csc2 θa23,φφ) csc θ.

(57)

Here we have fixed the Lorentz parameters, as described earlier, and are imposing the outgoing
radiation condition (28).

Now the Bondi mass MB(u) can be defined by, (Bondi et al., 1962), (Newman & Unti,
1962), (Stewart, 1989),

4πMB(u) = − lim
r→∞

∫
S(u,r)

r3(Ψ2 + σλ) sin θ dθ dφ, (58)

where the integral is over the 2-surface S(u, r) given by u = const. and r = const. Here σ and
λ are NP spin coefficients given by

σ = maδla = γ313 = σ(2)/r2 +O3, λ = naδ̄ma = γ022 = λ(1)/r +O2, (59)

where
σ(2) = −1

2
(a22 − ia23 csc θ), λ(1) = −1

2
(a22,u + ia23,u csc θ). (60)

Taking the limit in (58) we have

4πMB(u) = −
∫
S(u,1)

(Ψ
(3)
2 + σ(2)λ(1)) sin θ dθ dφ. (61)

Of course the formula (58) is only valid in a specially chosen Bondi frame. The generaliza-
tion to an arbitrary NP frame is discussed in Stewart (1989). In the large r limit our frame differs
from the Bondi one by a Lorentz transformation which is close to the identity. A 2-parameter
subgroup of the Lorentz group consists of “boosts” and “spins”

l→ a2l, n→ a−2n, m→ eiψm, (62)
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where a and ψ are real. Using the formulae in appendix B of Stewart (1993) it is easy to verify
that the integrand of (61) is invariant under boosts and spins. Next consider a 2-parameter
subgroup of “null rotations about l” given by

l→ l, ,m→ m+ c̄l, n→ n+ cm+ c̄m+ cc̄l, (63)

where c is complex. Under such a transformation

Ψ2 → Ψ2 + 2cΨ1 + c2Ψ0, σ → σ + c̄κ,

λ→ λ+ cπ + 2cα + c2(ρ+ 2ε) + c3κ+ clac,a +mac,a.
(64)

We expect c = O1 and the NP scalars α, π, ρ and ε are all O1. Thus the integrand of (61) is not
changed. We should also consider null rotations about n given by

n→ n, ,m→ m+ c̄n, l→ l + cm+ c̄m+ cc̄n, (65)

so that

Ψ2 → Ψ2 + 2cΨ3 + c2Ψ4, λ→ λ+ c̄ν,

σ → σ + cτ + 2cβ + c2(µ+ 2γ) + c3ν + cnac,a +mac,a.
(66)

Now we have taken great care to ensure that l is almost geodesic ( κ = O4) and almost affinely
parametrised (ε+ε̄ = O3) and so we should only consider the transformation (65) where c = O3.
Under this restriction the integrand of (61) is not changed. Thus the formula (61) evaluated in
our frame does indeed give the Bondi mass to leading order. Next note that

Im(Ψ
(3)
2 + σ(2)λ(1)) =− 1

4
a23 csc3 θ + 1

4
a23,θ csc θ cot θ + 1

4
a23,θθ csc θ−

1
2
a22,φ csc θ cot θ − 1

2
a22,θφ csc θ − 1

4
a23,φφ csc3 θ.

(67)

When we integrate this over the unit sphere the terms in the second line give zero since their
contribution to the integrand is 2π-periodic in φ. Those in the first line contribute

1
2
π [csc θ(sin θa23),θ]

π
0 .

Now a23 must scale like sin2 θ at the end points or else the integrand is singular. It follows that
the Bondi mass must be real, and

4πMB(u) = −1
2

∫ π

0

(a00 + b22,u + a22a22,u + a23a23,u csc2 θ) sin θ dθ dφ. (68)

Finally there is a standard result, (Bondi et al., 1962), (Newman & Unti, 1962), (Stewart,
1989), for the rate of decrease of the Bondi mass

4π
dMB

du
(u) = −

∫
S(u,1)

|N |2 sin θ dθ dφ

= −1
4

∫
S(u,1)

(
(a22,u)

2 + (a23,u)
2 csc2 θ

)
sin θ dθ dφ,

(69)

demonstrating the well-known result dMB/du 6 0, the Bondi mass decreases as energy is
radiated away, a result not deducible in linearized theory. Although (69) was originally derived
in a special Bondi frame, it too holds in our approximate Bondi one, at least to leading order.
We should empasize that although the outgoing radiation condition was used in the derivation
of (68), the mass loss formula (69) holds without the need for this restriction.
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6 Implications for numerical relativity

At first glance the formalism we set up to carry out this study may seem to be cumbersome,
but it has the advantage the the results can be translated back into the Xa = (T,R,Θ,Φ) chart,
after which the theoretical chart xa = (u, r, θ, φ) can be discarded.

We chose the xa chart so that the metric coefficients a11 and b11 vanished as well as a12 and
a13. Now (

∂

∂u

)
r

=

(
∂T

∂u

)
r

(
∂

∂T

)
R

+

(
∂R

∂u

)
r

(
∂

∂R

)
T

= (1− q1r
−1)

(
∂

∂T

)
R

+O2,

(70)

using (23). In principle the function q1 is arbitrary. But the vacuum field equations implied
a01 = 0, and then equations (A3) imply

q1 = 1
2
(h00 − h11). (71)

The vacuum field equations imply (38)

a22,u + a33,u csc2 θ.

Using (A3) and (43) we have, to leading order

[h22 + 2h02,Θ + 2h12,Θ],T + [h33 + (2h03,Φ + 2h13,Φ) csc2 Θ],T csc2 Θ = 0. (72)

Other vacuum conditions can be handled in a similar way.

In order to discuss the Bondi news function and Bondi mass, it is convenient to introduce
some auxiliary functions in the numerical chart,

W =h03 + h13,

A =h22 + 2(h02,Θ + h12,Θ),

B =h23 + h02,Φ + h12,Φ +W,Θ − 2W cot Θ,

C =k22 + 2Wh23 cot Θ csc2 Θ− 4W2 cot Θ csc2 Θ + (k02 + k12),Θ−
(1

2
h11 + h22)h02,Θ − ((1

2
h00 + h01)h02),Θ + (4W cot Θ− h23)W,Θ csc2 Θ−

1
2
h02h11,Θ − h22h12,Θ + (h02 + h12)h22,Θ +Wh23,Θ csc2 Θ− (W,Θ)2 csc2 Θ

(73)

which should be readily available according to the assumptions in section 2.

Then the leading term in the Bondi news function given by (48) becomes

N = A,T + iB,T csc Θ, (74)

whose calculation might require some sophistication, although there is no reference to the in-
termediary xa = (u, r, θ, φ) chart. Because the news function is linear in the hab and their
derivatives, it could have been calculated within linearized theory.

In particular the formula (68) for the Bondi mass MB(u) translates into

MB(T −R) =− 1

8π

∫ 2π

Φ=0

∫ π

Θ=0

(
h11 +AA,T + BB,T csc2 Θ + C,T

)
sin Θ dΘdΦ. (75)
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In a similar way the formula (69) for the rate of change of MB at fixed large R is

ṀB(T −R) =− 1

16π

∫ 2π

Φ=0

∫ π

Θ=0

(
(A,T )2 + (B,T )2 csc2 Θ

)
sin Θ dΘdΦ. (76)

Working in linearized theory numerical relativists often take the leading terms in A and B
to represent the “gravitational waveforms” h+ and h×. Equations (73) suggest that other terms
are present, even in linearized theory.

Again we emphasize that the intermediate xa chart does not intrude—the formulae (74),
(75) and (76) apply in the numerical Xa = (T,R,Θ,Φ) chart. Only the first can be deduced
from linearized theory.

Why are these formulae so complicated, when compared with the original papers, Bondi
et al. (1962) and Newman & Unti (1962), or even the formulae in section 5? Well the coor-
dinates and tetrads of the originals were very carefully chosen to simplify the problem, and
much of this paper has been spent building the relationship between the numerical relativist’s
Xa = (T,R,Θ,Φ) chart and the xa = (u, r, θ, φ) chart and adapted tetrad used in this paper,
in which the formulae look almost as simple as in the original approaches. One way to avoid
the complexity is to design a numerical approach based on Penrose’s geometrical approach
(Penrose, 1963), but that brings in different problems and complexities.
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A Computational Details

The hab and kab occurring in (11) are given by

h00 = −h00, h01 = h01, h02 = h02, h03 = csc2 θh03, h11 = −h11, h12 = −h12,

h13 = − csc2 θh13, h22 = −h22, h23 = − csc2 θh23, h33 = − csc4 θh33, (A1)

and

k00 = −k00 + h2
00 − h2

01 − h2
02 − csc2 θh2

03,

k01 = k01 − h00h01 + h01h11 + h02h12 + csc2 θh03h23,

k02 = k02 − h00h02 + h01h12 + h02h22 + csc2 θh03h23,

k03 = csc2 θ(k03 − h00h03 + h01h13 + h02h23 + csc2 θh03h33),

k11 = −k11 + h2
01 − h2

11 − h2
12 − csc2 θh2

13,

k12 = −k12 + h01h02 − h11h12 − h12h22 − csc2 θh13h23,

k13 = csc2 θ(−k13 + h01h03 − h11h13 − h12h23 − csc2 θh13h33),

k22 = −k22 + h2
02 − h2

12 − h2
22 − csc2 θh2

23,

k23 = csc2 θ(−k23 + h02h03 − h12h13 − h22h23 − csc2 θh23h33),

k33 = csc4 θ(−k33 + h2
03 − h2

13 − h2
23 − csc2 θh2

33).

(A2)

The aab occurring in (26) (after imposing the conditions (27)) are given by

a00 = h00 − 2q1,

a01 = h00 + h01 + 2m1 − q1,

a02 = h02 − y3,u,

a03 = h03 − z3,u sin2 θ,

a11 = h00 + 2h01 + h11 + 4m1,

a12 = h02 + h12 + y2,

a13 = h03 + h13 + z2 sin2 θ,

a22 = h22 − 2y2,θ,

a23 = h23 − y2,φ − z2,θ sin2 θ,

a33 = h33 − 2z2,φ.

(A3)
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The relation between the tetrad components cmn and the cmn is (here s = 2−1/2)

c00 = 1
2
c01 − c00,

c01 = 1
2
c00 − 1

4
c01 − c10 + 1

2
c11,

c02 = s(c20 + c30)− 1
2
s(c21 + c31),

c03 = is[(c20 − c30)− 1
2
s(c21 − c31) csc θ],

c10 = −c01,
c11 = 1

2
c01 − c11,

c12 = s(c21 + c31),

c13 = is(c21 − c31) csc θ,

c20 = s(c02 + ic03 csc θ),

c21 = s(c12 − 1
2
c02)− is(1

2
c03 − c13) csc θ,

c22 = −1
2
(c22 + c32)− 1

2
i(c23 + c33) csc θ,

c23 = −1
2
i(c22 − c32) csc θ + 1

2
(c23 − c33) csc2 θ,

c30 = s(c02 − ic03 csc θ),

c31 = s(c12 − 1
2
c02) + is(1

2
c03 − c13) csc θ,

c32 = −1
2
(c22 + c32) + 1

2
i(c23 + c33) csc θ,

c33 = −1
2
i(c22 − c32) csc θ − 1

2
(c23 − c33) csc2 θ.

(A4)

One possible relation between the tetrad coefficients cmn and the metric coefficients amn
and Lorentz parameters αm is

c00 = α1,

c01 = 1
2
a11,

c02 = a12 − 2sα4,

c03 = a13 + 2sα5 sin θ,

c10 = 1
2
a00 − 1

2
α1,

c11 = a01 − 1
4
a11 − α1,

c12 = a02 − 1
2
a12 − s(2α2 − α4),

c13 = a03 − 1
2
a13 + s(2α3 − α5) sin θ,

c20 = α2 + iα3,

c21 = α4 + iα5,

c22 = 1
2
sa22 − is(a23 − α6) csc θ,

c23 = sα6 − 1
2
isa33 csc θ,

c30 = α2 − iα3,

c31 = α4 − iα5,

c32 = 1
2
sa22 + is(a23 − α6) csc θ,

c33 = sα6 + 1
2
isa33 csc θ,

(A5)

where s = 2−1/2. Other representations are possible.
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B Tetrad formalism

Here we define the notation and summarize the results. The reader to whom this material is
unfamiliar should consult introductory material e.g., Chandrasekhar (1983) chapter 1, section
7.

In this section a, b, c, . . . are coordinate indices while α, β, γ, . . . are tetrad indices.

At each space-time point P we introduce a basis of vectors

eα
a, α ∈ [0, 3], a ∈ [0, 3]. (B1)

Then the matrix

eα
a =

 e0
0 e0

1 . . .
e1

0 e1
1 . . .

...
... . . .


is non-singular and we denote its inverse by eαa. Thus

eα
aeβa = δα

β, eα
aeαb = δab. (B2)

The eαa represent the dual basis of covectors. As usual chart indices are lowered (raised) using
gab(gab).

An additional assumption made here is that

εαβ = gab eα
aeβ

b (B3)

is a constant symmetric matrix with inverse εαβ . Thus

εαβ ε
βγ = δα

γ. (B4)

The choice εαβ = diag(1,−1,−1,−1) gives an orthonormal tetrad, but here we choose

εαβ = εαβ =


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

 , (B5)

which gives a NP tetrad, Newman & Penrose (1962).

Then it is easy to see that

εαβ e
β
a = eαa, εαβ eβ

a = eαa, (B6)

so that tetrad indices are lowered (raised) using εαβ (εαβ).

The Ricci rotation coefficients γλµν are defined via

eµb;c = γλµνe
λ
be
ν
c, (B7)

where the metric covariant derivative has been used, and since εαβ is constant we must have
γλµν = γ[λµ]ν .

The tetrad structure constants Cγ
αβ are defined via

[eα, eβ] = Cγ
αβeγ, (B8)
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and clearly Cγ
αβ = Cγ

[αβ]. If we let (B8) act on a scalar function f , note that the metric
connection is symmetric, and use (B7), then it is easy to see that

Cγ
αβ = γγβα − γγαβ, (B9)

which implies
γλµν = 1

2
(Cνλµ − Cλµν − Cµνλ). (B10)

It is important to realise that the Cλ
µν do not involve the connection. For (B9), (B7) and the

fact that the connection is symmetric means that

Cλ
µν = eλa,b(eµ

aeν
b − eµ

beν
a). (B11)

Next the Ricci identity applied to eαb gives

Rαβγδ = γαβγ,aeδ
a − γαβδ,aeγ

a + γαβεC
ε
γδ + γεαγγεβδ − γεαδγεβη, (B12)

and finally
Rαγ = εβδRαβγδ. (B13)

Note that throughout the paper we use these forms for the curvature tensors. Thus R12 means
Rαβ with α = 1 and β = 2, which is not the same as Rab with a = 1 and b = 2.

Our algorithm starts from the sets {eαa} and {eαa}. We compute Cα
βγ from (B11) and

of course Cγαβ = εγδC
δ
αβ . Next we compute γαβγ from (B10) and finally the curvature ten-

sors from (B12) and (B13). Although this looks ponderous it can easily be automated using a
computer algebra system.

23



References
H. Bondi, M.J.G. van der Berg & A.W.K. Metzner, “Gravitational Waves in General Relativity.

VII. Waves from Axisymmetric Isolated Systems”, Proc. Roy. Soc., A269, 21–52 (1962).

S.J. Campbell & J. Wainwright, “Algebraic computing and the Newman-Penrose formalism in
general relativity”, General Relativity & Gravitation, 8, 987–1001 (1977).

S. Chandrasekhar, “The Mathematical Theory of Black Holes”, 1983, Oxford.

E.T. Newman & R. Penrose, “An Approach to Gravitational Radiation by a Method of Spin
Coefficients”, J. Math. Phys., 3, 566–579 (1962).

E.T. Newman & T.W.J. Unti, “Behavior of asymptotically flat empty spaces”, J. Math. Phys., 3,
891–901 (1962).

R. Penrose, “Conformal Treatment of Infinity”, in Relativity, Groups & Topology, ed. C.M. de
Witt and B. de Witt, Les Houches Summer School, 1963, Gordon & Breach, New York.

R.K. Sachs, “Gravitational Waves in General Relativity. VIII. Waves in asymptotically flat
Space-times”, Proc. Roy. Soc. Lond., A270, 103–126 (1962).

J.A. Schouten, “Ricci Calculus”, 1954, Springer, Berlin.

J.M. Stewart, “Numerical relativity III. The Bondi mass revisited”, Proc. Roy. Soc. Lond., A424,
211–222 (1989)

J.M. Stewart, “Advanced General Relativity”, 1993, Cambridge.

P. Szekeres, “The gravitational compass”, J. Math. Phys.,6, 1387–1391 (1965).

J.A. Valiente-Kroon, “A comment on the outgoing radiation condition for gravitational radiation
and the peeling theorem”, General Relativity & Gravitation, 31, 1219–1224 (1999).

24


