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A SCHUR–PADÉ ALGORITHM FOR FRACTIONAL POWERS OF A
MATRIX∗

NICHOLAS J. HIGHAM† AND LIJING LIN†

Abstract. A new algorithm is developed for computing arbitrary real powers Ap of a matrix
A ∈ Cn×n. The algorithm starts with a Schur decomposition, takes k square roots of the triangular

factor T , evaluates an [m/m] Padé approximant of (1 − x)p at I − T 1/2k
, and squares the result k

times. The parameters k and m are chosen to minimize the cost subject to achieving double precision
accuracy in the evaluation of the Padé approximant, making use of a result that bounds the error
in the matrix Padé approximant by the error in the scalar Padé approximant with argument the
norm of the matrix. The Padé approximant is evaluated from the continued fraction representation
in bottom-up fashion, which is shown to be numerically stable. In the squaring phase the diagonal

and first superdiagonal are computed from explicit formulae for T p/2j
, yielding increased accuracy.

Since the basic algorithm is designed for p ∈ (−1, 1), a criterion for reducing an arbitrary real p to
this range is developed, making use of bounds for the condition number of the Ap problem. How
best to compute Ak for a negative integer k is also investigated. In numerical experiments the new
algorithm is found to be superior in accuracy and stability to several alternatives, including the use
of an eigendecomposition and approaches based on the formula Ap = exp(p log(A)).

Key words. matrix power, matrix root, fractional power, primary matrix function, Schur de-
composition, Padé approximation, Padé approximant, matrix logarithm, matrix exponential, MAT-
LAB

AMS subject classifications. 65F30

1. Introduction. The need to compute fractional powers Ap of a square matrix
A arises in a variety of applications, including Markov chain models in finance and
healthcare [8], [28], fractional differential equations [27], discrete representations of
norms corresponding to finite element discretizations of fractional Sobolev spaces [3],
and the computation of geodesic-midpoints in neural networks [11]. Here, p is an
arbitrary real number, not necessarily rational. Often, p is the reciprocal of a positive
integer q, in which case X = Ap = A1/q is a qth root of A. Various methods are
available for the qth root problem, based on the Schur decomposition and appropriate
recurrences [13], [35], Newton or inverse Newton iterations [14], [25], Padé iterations
[26], [31], or a variety of other techniques [6]; see [21, Chap. 7] and [23] for surveys.
However, none of these methods is applicable for arbitrary real p.

Arbitrary matrix powers can be defined via the Cauchy integral [21, Def. 1.11]

Ap :=
1

2πi

∫

Γ

zp(zI −A)−1dz,(1.1)

where Γ is a closed contour that encloses the spectrum Λ(A). This definition yields
many different matrices Ap, as the branch of the function zp can be chosen indepen-
dently around each eigenvalue. For practical purposes it is more useful to define Ap

uniquely as follows.
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Definition 1.1. Let A ∈ C
n×n have no eigenvalues on R

− except possibly for a

semisimple zero eigenvalue, and let p ∈ R. If A is nonsingular,

Ap = exp (p log(A)) ,(1.2)

where log(A) is the principal logarithm of A [21, Thm. 1.31]. Otherwise, write the

Jordan canonical form of A as A = Zdiag(J1, 0)Z−1, where J1 contains the Jordan

blocks corresponding to the nonzero eigenvalues. Then

Ap = Zdiag(Jp
1 , 0)Z−1,(1.3)

where Jp
1 is defined by (1.2).

It follows from the theory of matrix functions that the matrix given by Defini-
tion 1.1 is independent of the particular choice of Jordan canonical form. Moreover,
if A is real then Ap is real. For p = 1/q, with q a positive integer, Ap reduces to the
principal qth root of A [21, Thm. 7.2]. For 0 < p < 1, Ap can also be represented as
the real integral [21, pp. 174, 187]

Ap =
sin(pπ)

pπ
A

∫ ∞

0

(t1/pI + A)−1 dt.(1.4)

The aim of this work is to devise a reliable algorithm for computing Ap for ar-
bitrary p ∈ R. When A is diagonalizable, so that A = XDX−1 for a diagonal
D = diag(di) and nonsingular X, we can compute Ap = XDpX−1 = Xdiag(dp

i )X
−1.

Alternatively, for any A we can compute the Schur decomposition A = QTQ∗, with
Q unitary and T upper triangular, from which Ap = QT pQ∗. The matrix T p has
diagonal elements tpii and we can obtain the superdiagonal elements from the Parlett
recurrence if the tii are distinct [21, sec. 4.6], [33]. However, this approach breaks
down when A is nonnormal with repeated eigenvalues.

The definition (1.2) suggests another way to compute Ap: to employ existing al-
gorithms for the matrix exponential and the matrix logarithm. However, if we use the
inverse scaling and squaring method for X = log(A) [9], [21, sec. 11.5], [29] followed by
the scaling and squaring method for exp(pX) [1], [20], [22] then we are computing two
Padé approximants: one of the logarithm and the other of the exponential. We expect
benefits to accrue from employing a single Padé approximant, to (1 − x)p. In this
work we develop an algorithm for computing Ap based on direct Padé approximation
of (1− x)p.

We begin, in Section 2, by investigating the conditioning of fractional powers.
Padé approximation of (1− x)p, and in particular how to bound the error in the ap-
proximation at a matrix argument, is the subject of Section 3. Evaluation of the ma-
trix Padé approximant is considered in Section 4, where we investigate the numerical
stability of the continued fraction representation evaluated in the bottom-up fashion.
An algorithm for Ap with p ∈ (−1, 1) that employs an initial Schur decomposition,
matrix square roots, Padé approximation, and squarings, is developed in Section 5. In
Section 6 we explain how to deal with general p not necessarily in the interval (−1, 1)
and negative integer p, while in Section 7 we extend our algorithm to handle singular
matrices with a semisimple zero eigenvalue. Some alternative algorithms are consid-
ered in Section 8 and all the algorithms are compared in the numerical experiments
of Section 9. Finally, some concluding remarks are given in Section 10.

2. Conditioning. We first investigate the sensitivity of Ap to perturbations in
A. We denote by Lf (A,E) the Fréchet derivative of f at A in the direction E,
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which is a linear operator mapping E to Lf (A,E) characterized by f(A + E) =
f(A) + Lf (A,E) + o(‖E‖). We also recall the definition and characterization of
condition number

κf (A) := lim
ǫ→0

sup
‖E‖≤ǫ‖A‖

‖f(A + E)− f(A)‖

ǫ‖f(A)‖
=
‖Lf (A)‖‖A‖

‖f(A)‖
,(2.1)

where

‖Lf (X)‖ := max
Z 6=0

‖Lf (X,Z)‖

‖Z‖
.(2.2)

For background on Fréchet derivatives and condition numbers see [21, secs. 3.1, 3.2].
Let vec denote the operator that stacks the columns of a matrix into one long

vector and let ⊗ denote the Kronecker product. For any f , we have vec(Lf (A,E)) =

Kf (A)vec(E) for a certain matrix Kf (A) ∈ C
n2×n2

called the Kronecker representa-
tion of the Fréchet derivative and, moreover, ‖Lf (A)‖F = ‖Kf (A)‖2 [21, (3.20)]. It
follows that, in the Frobenius norm,

κf (A) =
‖Kf (A)‖2 ‖A‖F
‖f(A)‖F

.(2.3)

To obtain a formula for Kxp(A) we first apply the chain rule [21, Thm. 3.4] to
the expression Ap = exp(p log(A)), to obtain

Lxp(A,E) = pLexp

(
p log(A), Llog(A,E)

)
.(2.4)

Then, by applying the vec operator, we find that

vec(Lxp(A,E)) = pKexp(p log(A))vec(Llog(A,E)) = pKexp(p log(A))Klog(A)vec(E),

which implies

Kxp(A) = pKexp(p log(A))Klog(A).(2.5)

This matrix can be computed explicitly if n is small, or its norm estimated based
on a few matrix–vector products involving Kxp(A) and its conjugate transpose [21,
sec. 3.4].

We now derive some bounds for the condition number κxp(A) that give insight into
its size. First, note that, since (A + ǫI)p = Ap + pǫAp−1 + O(ǫ2) for sufficiently small
ǫ (by a general result on the convergence of a matrix Taylor series [21, Thm. 4.7]), we
have Lxp(A, I) = pAp−1 and hence ‖Lxp(A)‖ ≥ |p|‖Ap−1‖/‖I‖.

Since [21, (10.15)]

Lexp(A,E) =

∫ 1

0

eA(1−s)EeAs ds,(2.6)

we have, from (2.4),

‖Lxp(A,E)‖ = |p|

∥∥∥∥
∫ 1

0

ep log(A)(1−s)Llog(A,E)ep log(A)sds

∥∥∥∥

≤ |p|‖Llog(A,E)‖

∫ 1

0

e|p|(1−s)‖log(A)‖e|p|s‖log(A)‖ds

≤ |p|e|p|‖log(A)‖‖Llog(A)‖ ‖E‖,
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and so ‖Lxp(A)‖ ≤ |p|e|p|‖log(A)‖‖Llog(A)‖. Thus we have the upper and lower bounds

|p|‖Ap−1‖

‖I‖
≤ ‖Lxp(A)‖ ≤ |p|e|p|‖log(A)‖ ‖Llog(A)‖.(2.7)

We also have the following lower bound [21, Thm. 3.14, Cor. 3.16], with f [λ, µ] de-
noting the first divided difference of f(x) = xp,

‖Lxp(A)‖ ≥ max
λ,µ∈Λ(A)

|f [λ, µ]| = max

(
max

λ∈Λ(A)
|p||λp−1|, max

λ,µ∈Λ(A)
λ 6=µ

|λp − µp|

|λ− µ|

)
,(2.8)

which is an equality for the Frobenius norm when A is normal. When A is Hermitian
the lower bounds in (2.7) and (2.8) are the same for the 2-norm; we will make use of
the lower bound in this case in Section 6.

3. Padé approximation and error bounds. A [k/m] Padé approximant of
(1− x)p is a rational function rkm(x) = pkm(x)/qkm(x) with qkm(0) = 1 such that

(1− x)p − rkm(x) = O(xk+m+1),

where pkm and qkm are polynomials of degree at most k and m, respectively. If a
[k/m] Padé approximant exists then it is unique [4, Thm. 1.1], [5, Thm. 1.4.3], [21,
Prob. 4.2]. The aims of this section are to show the existence of Padé approximants
of (1−x)p and to investigate the error in the Padé approximant at a matrix argument
X ∈ C

n×n with ‖X‖ < 1. Throughout this section the norm is assumed to be a
subordinate matrix norm.

The scalar hypergeometric function is

2F1(α, β, γ, x) ≡ 1 +
αβ

γ
x +

α(α + 1)β(β + 1)

2!γ(γ + 1)
x2 + · · · =

∞∑

i=0

(α)i(β)i

i!(γ)i
xi,(3.1)

where α, β, γ, x ∈ R, γ is not a nonpositive integer, (a)0 = 1, and (a)i ≡ a(a +
1) . . . (a + i− 1) for i ≥ 1. Replacing x in (3.1) with X ∈ C

n×n we obtain the matrix
hypergeometric function

2F1(α, β, γ,X) ≡

∞∑

i=0

(α)i(β)i

i!(γ)i
Xi.(3.2)

Since (3.1) converges if |x| < 1 [2, Thm. 2.1.1], the matrix series (3.2) converges if
ρ(X) < 1 [21, Thm. 4.7], where ρ is the spectral radius. We are interested in the
special case where α = −p, β = 1, γ = 1, and |x| < 1:

2F1(−p, 1, 1, x) = 1− px +
p(p− 1)

2
x2 + · · · = (1− x)p.

The following lemma shows the existence of the Padé approximants of (1−x)p for all
p ∈ R.

Lemma 3.1. For p ∈ R, the [k/m] Padé approximant of (1 − x)p exists for all

nonnegative integers k and m.

Proof. It is shown in [4, p. 65], [5, sec. 2.3] that for any α, γ ∈ R the [k/m]
Padé approximant of the general hypergeometric function 2F1(α, 1, γ, x) exists for

4



k −m + 1 ≥ 0 and that the denominator qkm(x) is given explicitly by

qkm(x) =

m∑

i=0

(−m)i(−(α + k))i

i!(1− (γ + k + m))i
xi(3.3)

= 2F1(−m,−(α + k), 1− (γ + k + m), x).(3.4)

Thus [k/m] Padé approximants to (1 − x)p exist for all p ∈ R for k ≥ m. From
(1 − x)p = 1/(1 − x)−p, and the duality property that the [k/m] Padé approximant
of the reciprocal of a function is the reciprocal of the [m/k] Padé approximant of the
function [5, Thm. 1.5.1], it follows that (1 − x)p has a [k/m] Padé approximant for
k ≤ m.

We now state some properties of qkm(x). The following result of Kenney and
Laub bounds the condition number number of the matrix qkm(X).

Lemma 3.2. Let qkm(x) be the denominator polynomial of the [k/m] Padé ap-

proximant of 2F1(α, 1, γ, x) where 0 < α < γ and k − m + 1 ≥ 0. The zeros of

qkm(x) are all simple and lie in the interval (1,∞). Furthermore, for X ∈ C
n×n with

‖X‖ < 1,

‖qkm(X)‖ ≤ qkm(−‖X‖), ‖qkm(X)−1‖ ≤ qkm(‖X‖)−1(3.5)

and hence

κ(qkm(X)) ≤
qkm(−‖X‖)

qkm(‖X‖)
.(3.6)

Proof. See [30, Cor. 1 and Lem. 3], where X ∈ R
n×n is assumed; the proofs there

are nevertheless valid for complex X.

Corollary 3.3. Let qkm(x) be the denominator polynomial of the [k/m] Padé

approximant of (1−x)p with −1 < p < 1 and k−m ≥ 0. Then the zeros of qkm(x) are

all simple and lie in the interval (1,∞) and for X ∈ C
n×n with ‖X‖ < 1, the matrix

qkm(X) satisfies (3.5) and (3.6). In particular, when −1 < p < 0 these conclusions

hold for k −m + 1 ≥ 0.
Proof. It is straightforward to show that (1−x)p = 1−px · 2F1(1−p, 1, 2, x) and,

moreover, that if k ≥ m then the [k/m] Padé approximant of (1−x)p is pkm/q̃k−1,m =
1 − pxr̃k−1,m, where r̃k−1,m = p̃k−1,m/q̃k−1,m is the [k − 1/m] Padé approximant of

2F1(1− p, 1, 2, x).
Since −1 < p < 1 we have 0 < 1− p < 2, and since also (k − 1)−m + 1 ≥ 0 the

properties of q̃k−1,m(x) in Lemma 3.2 all hold. If −1 < p < 0, it follows from Lemma
3.2 with α = −p and γ = 1 that the conclusions hold for k −m + 1 ≥ 0.

Denote by E
(
2F1(α, 1, γ, ·), k,m, x

)
the error in the [k/m] Padé approximant to

2F1(α, 1, γ, x), that is,

E
(
2F1(α, 1, γ, ·), k,m, x

)
= 2F1(α, 1, γ, x)− rkm(x).(3.7)

The following lemma provides a series expansion for this error.
Lemma 3.4. For |x| < 1, k −m + 1 ≥ 0, and α not a negative integer, the error

(3.7) can be written

E
(
2F1(α, 1, γ, ·), k,m, x

)
=

qkm(1)

qkm(x)

∞∑

i=k+m+1

(α)i(i− (k + m))m

(γ)i(i + α−m)m
xi.(3.8)

5



Proof. See Kenney and Laub [30, Thm. 5]. The statement of Theorem 5 in [30]
requires 0 < α < γ, but in fact only the condition that α is not a negative integer
(and hence (i + α−m)m is nonzero) is needed in the proof.

We are now in a position to bound the error in Padé approximation of the matrix
function (I −X)p = 2F1(−p, 1, 1,X). The following result, which for −1 < p < 0 is a
special case of [30, Cor. 4], shows that the error is bounded by the error of the same
approximation at the scalar argument ‖X‖.

Theorem 3.5. For k −m ≥ 0, −1 < p < 1, and ‖X‖ < 1,

‖E
(
(I −X)p, k,m,X

)
‖ ≤ |E

(
(1− ‖X‖)p, k,m, ‖X‖

)
|.(3.9)

In particular, when −1 < p < 0, (3.9) holds for k −m + 1 ≥ 0.
Proof. For any matrix X with ‖X‖ < 1, (I − X)p = 2F1(−p, 1, 1,X) is defined

and, by (3.8),

E((I −X)p, k,m,X) = qkm(1)qkm(X)−1
∞∑

i=k+m+1

(−p)i(i− (k + m))m

i!(i− p−m)m
Xi,(3.10)

where qkm(x) is the denominator of the [k/m] Padé approximant to (1−x)p. We claim
that every coefficient in the sum has the same sign, that is, the signs are independent
of i for i ≥ k + m + 1. Indeed, (−p)i < 0 for 0 < p < 1 and (−p)i > 0 for −1 < p < 0,
and clearly (i− (k +m))m > 0 and (i−p−m)m > 0. Therefore, by Corollary 3.3 and
the second inequality in (3.5), we have

‖E((I −X)p, k,m,X)‖ ≤
|qkm(1)|

qkm(‖X‖)

∞∑

i=k+m+1

|(−p)i|(i− (k + m))m

i!(i− p−m)m
‖X‖i

=
|qkm(1)|

qkm(‖X‖)

∣∣∣∣∣

∞∑

i=k+m+1

(−p)i(i− (k + m))m

i!(i− p−m)m
‖X‖i

∣∣∣∣∣

=
∣∣E
(
(1− ‖X‖)p, k,m, ‖X‖

)∣∣.

If −1 < p < 0, the result holds for k −m + 1 ≥ 0, since Corollary 3.3 shows that the
required bound ‖qkm(X)−1‖ ≤ qkm(‖X‖)−1 still holds in this case.

In practice, we would like to select k and m to minimize the error for a given order
of approximation. The following result of Kenny and Laub [30, Thm. 6] is useful in
this respect.

Theorem 3.6. Let k−m + 1 ≥ 0 and 0 < α < γ, and let the subordinate matrix

norm ‖ · ‖ satisfy ‖M̃‖ ≤ ‖M‖ whenever 0 ≤ M̃ ≤ M , where the latter inequalities

are interpreted componentwise. Then, if X ∈ R
n×n has nonnegative entries,

‖E
(
2F1(α, 1, γ, ·), k,m,X

)
‖ ≤ ‖E

(
2F1(α, 1, γ, ·), k + 1,m− 1,X

)
‖.(3.11)

Applying Theorem 3.6 with α = −p ∈ (0, 1) and γ = 1, we obtain the correspond-
ing result for (I −X)p, where −1 < p < 0. For 0 < p < 1, the inequality (3.11) holds
for k,m satisfying k −m ≥ 0; this can be proved in the same way as Theorem 3.6,
using Corollary 3.3. We conclude that when X has nonnegative entries, the error
is reduced as k and m approach the main diagonal (k = m) and first superdiagonal
(k +1 = m) of the Padé table. In the rest of the paper we will concentrate on the use
of the diagonal Padé approximants rm ≡ rmm.
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4. Evaluating Padé approximants of (I − X)p. The Padé approximant
rm(x) to (1− x)p has the continued fraction expansion [4, p. 66], [5, p. 174]

rm(x) = 1 +
c1x

1 +
c2x

1 +
c3x

· · ·
1 +

c2m−1x

1 + c2mx

,(4.1)

where

c1 = −p, c2j =
−j + p

2(2j − 1)
, c2j+1 =

−j − p

2(2j + 1)
, j = 1, 2, . . . .

This expansion provides a convenient means to evaluate rm(X) for X ∈ C
n×n. How-

ever, just as for the logarithm [18], there are several possible methods for evaluation
at a matrix argument:

1. Top-down evaluation of (4.1).
2. Bottom-up evaluation of (4.1).
3. Evaluation of the numerator and denominator in the representation rm(x) =

pm(x)/qm(x) by Horner’s method or the Paterson and Stockmeyer method [21, sec. 4.2],
[34].

4. Evaluation of rm(x) = pm(x)/qm(x) using the representations of pm and qm

as products of linear factors (the zeros of pm and qm are all real).
5. Evaluation of the partial fraction representation rm(x) = α0+

∑m
j=1 αj/(βj − x).

A detailed comparison of these possibilities with respect to numerical stability and
computational cost is given by Lin [32]. The method that is found to be the best in the
context of the algorithm to be developed in the next section is bottom-up evaluation
of (4.1), which is summarized as follows.

Algorithm 4.1 (continued fraction, bottom-up). This algorithm evaluates the

continued fraction (4.1) in bottom-up fashion at the matrix X ∈ C
n×n.

1 Y2m = c2mX
2 for j = 2m− 1:−1: 1
3 Solve (I + Yj+1)Yj = cjX for Yj

4 end
5 rm = I + Y1

We now investigate the numerical stability of this recurrence. Let ‖ ·‖ denote any

p-norm, assume that ‖Yj‖ < 1 for all j, and let Ŷj ≡ Yj + ∆Yj denote the computed
Yj . The errors in obtaining Yj from (I +Yj+1)Yj = cjX result from forming the right-
hand side and solving the system. We assume that the solver is stable, so that [19,
sec. 9]

(I + Ŷj+1)Ŷj = cjX + Fj + Rj ,

where ‖Fj‖ ≤ u|cj |‖X‖ and ‖Rj‖ ≤ αnu(1 + ‖Ŷj+1‖)‖Ŷj‖, for some constant αn,
where u is the unit roundoff. Then (I + Yj+1)∆Yj = Fj + Rj − ∆Yj+1Yj + O(u2),
which implies

‖∆Yj‖ ≤
1

1− ‖Yj+1‖

(
u|cj |‖X‖+ αnu(1 + ‖Yj+1‖)‖Yj‖+ ‖Yj‖‖∆Yj+1‖

)
(4.2)

+ O(u2), j = 2m− 1 : −1 : 1, ‖∆Y2m‖ ≤ u|c2m|‖X‖.
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Table 4.1
Constants d in the bounds ‖∆Y1‖/‖Y1‖ ≤ du + O(u2) for different ‖X‖ and p.

p
‖X‖ 0.1 0.3 0.5 0.7 0.9
0.99 3.46e2 3.21e2 2.90e2 2.56e2 2.19e2
0.95 6.53e1 6.08e1 5.55e1 4.97e1 4.33e1
0.90 3.12e1 2.92e1 2.68e1 2.43e1 2.15e1
0.75 1.14e1 1.07e1 1.00e1 9.24e0 8.42e0
0.50 5.01e0 4.80e0 4.59e0 4.36e0 4.12e0
0.25 2.98e0 2.91e0 2.85e0 2.77e0 2.70e0
0.10 2.32e0 2.30e0 2.28e0 2.26e0 2.23e0

Table 4.2
Minimal values of m for which (4.4) holds.

p
‖X‖ 0.1 0.3 0.5 0.7 0.9
0.99 88 100 100 84 79
0.95 38 39 39 39 36
0.90 27 27 27 27 26
0.75 16 16 16 16 15
0.50 9 10 10 10 10
0.25 6 6 7 7 6
0.10 5 5 5 5 5

We can bound ‖Yj‖ from the recurrence

‖Yj‖ ≤
|cj |‖X‖

1− ‖Yj+1‖
, j = 2m− 1 : −1 : 1, ‖Y2m‖ = |c2m|‖X‖.(4.3)

Together, the recurrences (4.2) and (4.3) allow us to compute, to first order, a bound
on ‖∆Y1‖ for any given ‖X‖. An upper bound for the relative error can then be
obtained by using ‖Y1‖ ≥ |c1|‖X‖/(1+‖Y2‖) together with the upper bound for ‖Y2‖
from (4.3).

Table 4.1 shows the values of the bound for ‖∆Y1‖/‖Y1‖ for a range of p ∈ (0, 1)
and ‖X‖ ∈ (0, 1), with αn ≡ 1 (the bound scales roughly linearly with αn). Here, the
values of m, shown in Table 4.2, are chosen as the smaller of 100 and the minimal
value for which

‖rm(X)− (I −X)p‖ ≤ |(1− ‖X‖)p − rm(‖X‖)| ≤ u,(4.4)

with u = 2−53 ≈ 1.1× 10−16, where the first inequality always holds by Theorem 3.5.
The assumption ‖Yj‖ < 1 was found to be satisfied in every case. The results show
that as long as we keep ‖X‖ below 0.9, say, the numerical stability of Algorithm 4.1
will be excellent. In fact, in Algorithm 5.1 we will limit ‖X‖ to about 0.3, for other
reasons.

5. Schur–Padé algorithm for Ap. Now we develop an algorithm for computing
Ap for a real p ∈ (−1, 1), where A has no nonpositive real eigenvalues. We can restrict
p to (−1, 1) without loss of generality, since in general we can compute Ap = Ap1Ap2

with p1 ∈ (−1, 1) and p2 an integer. How best to choose p1 and p2 is considered in
Section 6.

Our algorithm exploits the relation Ap = (A1/2k

)p·2k

. We take square roots

of A repeatedly until A1/2k

is close to the identity matrix. Then, with X = I −

8



Table 5.1
θ
(p)
m , for p = 1/2 and selected m.

m 1 2 3 4 5 6 7 8 9

θ
(1/2)
m 1.53e-5 2.25e-3 1.92e-2 6.08e-2 1.25e-1 2.03e-1 2.84e-1 3.63e-1 4.35e-1

m 10 11 12 13 14 15 16 32 64

θ
(1/2)
m 4.99e-1 5.55e-1 6.05e-1 6.47e-1 6.84e-1 7.17e-1 7.44e-1 9.27e-1 9.81e-1

Table 5.2
Minimum values of θ

(p)
m , for p ∈ [−1, 1].

m 1 2 3 4 5 6 7 8 9

minp θ
(p)
m 1.51e-5 2.24e-3 1.88e-2 6.04e-2 1.24e-1 2.00e-1 2.79e-1 3.55e-1 4.25e-1

m 10 11 12 13 14 15 16 32 64

minp θ
(p)
m 4.87e-1 5.42e-1 5.90e-1 6.32e-1 6.69e-1 7.00e-1 7.28e-1 9.15e-1 9.76e-1

A1/2k

, we can use the approximation (A1/2k

)p ≈ rm(X), where rm is the [m/m]
Padé approximant to (1 − x)p. We recover an approximation to the pth power of

the original matrix from Ap ≈ rm(X)2
k

. This approach is analogous to the inverse
scaling and squaring method for the matrix logarithm [9], [21, sec. 11.5], [29]. In
order to facilitate the computation of the square roots we compute an initial Schur
decomposition A = QTQ∗, so that the problem is reduced to that for a triangular
matrix.

For any p ∈ [−1, 1] and m we denote by θ
(p)
m the largest value of ‖X‖ such that

the second inequality holds in (4.4). With u = 2−53, we determined θ
(p)
m empirically in

MATLAB, using high precision computations with the Symbolic Math Toolbox. For
p = 1/2 and a range of m ∈ [1, 64]. Table 5.1 reports the results to three significant

figures. To see how the values of θ
(p)
m vary with p for a specific m, we show in Figure 5.1

the values of θ
(p)
m corresponding to 324 different values of p between −0.999 and 0.999,

for a range of m. Table 5.2 reports the corresponding minimum values of θ
(p)
m over

p ∈ [−1, 1]. For each m, θ
(p)
m tends to 1 as p tends to −1, 0 or 1. Our results show,

however, that the relative variation of θ
(p)
m with p is slight, except when p is within

distance about 10−4 of −1, 0, or 1. We therefore base our algorithm on the values

θm = min
p∈[−1,1]

θ(p)
m ,(5.1)

and do not optimize the algorithm parameters separately for each particular p.
In designing the algorithm we minimize the cost subject to achieving the desired

accuracy, adapting a strategy used within the inverse scaling and squaring algorithm
for the matrix logarithm in [9], [21, sec. 11.5]. Computing a square root of a triangular
matrix T by the Schur method of Björck and Hammarling [7], [21, Alg. 6.3] costs n3/3
flops, while evaluating rm(T ) by Algorithm 4.1 costs (2m− 1)n3/3 flops. Bearing in
mind the squaring phase, it is therefore worthwhile to compute an extra square root
if it allows a reduction in the Padé degree m by more than 1. Considering that

‖I − T 1/2‖ = ‖(I + T 1/2)−1(I − T )‖ ≈ 1
2‖I − T‖(5.2)

once T ≈ I and that, from Table 5.2, θm/2 < θm−2 for m > 7, the cost of computing
T p when ‖I −T‖ > θ7 will be minimized if we take square roots of T repeatedly until

9
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Fig. 5.1. θ
(p)
m against p, for m = 1: 25, 32, 64; m = 1 is the lowest curve and m = 64 the highest

curve. θm in (5.1) is marked as “∗”. The curves are not symmetric about p = 0.

‖I − T 1/2k

‖ ≤ θ7. Then it is worth taking one more square root if it reduces the
required m by more than 1.

An important final ingredient of our algorithm is a special implementation of the
squaring phase, obtained by adapting the approach suggested by Al-Mohy and Higham

[1] for the matrix exponential. The squaring phase forms rm(I − T 1/2k

)2
j

≈ T p/2k−j

,

j = 1: k. But we can evaluate the diagonal and first superdiagonal elements of T p/2k−j

exactly from explicit formulae, and injecting these values into the recurrence should
reduce the propagation of errors. The diagonal entries are computed in the obvious
way. We now derive an appropriate formula for the first superdiagonal.

The (1,2) element of F =
[

λ1

0
t12
λ2

]p
is given by f12 = t12(λ

p
2 − λp

1)/(λ2 − λ1) if

λ1 6= λ2, or pλp−1
1 t12 otherwise [21, sec. 4.6]. We need a way of evaluating the divided

difference (λp
2 − λp

1)/(λ2 − λ1) accurately even when λ1 and λ2 are very close; this
formula itself suffers from cancellation. We have

λp
2 − λp

1

λ2 − λ1
=

exp(p log λ2)− exp(p log λ1)

λ2 − λ1

= exp
(

p
2

(
log λ2 + log λ1

)) exp
(

p
2

(
log λ2 − log λ1

))
− exp

(
p
2

(
log λ1 − log λ2

))

λ2 − λ1

= exp
(

p
2

(
log λ2 + log λ1

)) 2 sinh
(

p
2

(
log λ2 − log λ1

))

λ2 − λ1
.

The remaining problem is to evaluate w = log λ2 − log λ1 accurately. To avoid can-
cellation we can rewrite [21, sec. 11.6.2]

w = log

(
λ2

λ1

)
+ 2πiU(log λ2 − log λ1) = log

(
1 + z

1− z

)
+ 2πiU(log λ2 − log λ1),
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where z = (λ2−λ1)/(λ2 +λ1) and U(z) is the unwinding number of z ∈ C defined by

U(z) :=
z − log(ez)

2πi
=

⌈
Im z − π

2π

⌉
∈ Z.(5.3)

Then, using the hyperbolic arc tangent atanh(z), defined by

atanh(z) :=
1

2
log

(
1 + z

1− z

)
,(5.4)

w can be expressed as

w = 2atanh(z) + 2πiU(log λ2 − log λ1).

Hence

f12 = t12 exp
(

p
2

(
log λ2 + log λ1

)) 2 sinh
(
p
(
atanh(z) + πiU(log λ2 − log λ1)

))

λ2 − λ1
.(5.5)

Overall, we have the formula

f12 =





t12pλp−1
1 , λ1 = λ2,

t12
λp

2 − λp
1

λ2 − λ1
, |λ1| < |λ2|/2 or |λ2| < |λ1|/2,

(5.5), otherwise,

(5.6)

where we evaluate the usual divided difference if λ1 and λ2 are sufficiently far apart.
We are assuming that accurate implementations of the scalar sinh and atanh functions
are available. The definition (5.4) is that used in MATLAB; there is an alternative to
(5.4) which necessitates modifications to (5.5) described in [21, sec. 11.6.2].

Now we state the overall algorithm.
Algorithm 5.1 (Schur–Padé algorithm). Given A ∈ C

n×n with no eigenvalues

on R
− and a nonzero p ∈ (−1, 1) this algorithm computes X = Ap via a Schur

decomposition and Padé approximation. It uses the constants θm := minp θ
(p)
m in

Table 5.2. The algorithm is intended for IEEE double precision arithmetic.

1 Compute a (complex) Schur decomposition A = QTQ∗.
2 If T is diagonal, X = QT pQ∗, quit, end
3 T0 = T
4 k = 0, q = 0
5 while true
6 τ = ‖T − I‖1
7 if τ ≤ θ7

8 q = q + 1
9 j1 = min{ i: τ ≤ θi, i = 3: 7 }

10 j2 = min{ i: τ/2 ≤ θi, i = 3: 7 }
11 if j1 − j2 ≤ 1 or q = 2, m = j1, goto line 16, end
12 end
13 T ← T 1/2 using the Schur method [21, Alg. 6.3].
14 k = k + 1
15 end
16 Evaluate U = rm(I − T ) using Algorithm 4.1.
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17 for i = k:−1: 0
18 if i < k, U ← U2, end

19 Replace diag(U) by diag(T0)
p/2i

.

20 Replace first superdiagonal of U by first superdiagonal of T
p/2i

0

obtained from (5.6) with p← p/2i.
21 end
22 X = QUQ∗

Cost: 25n3 flops for the Schur decomposition plus (2k + 2m− 1)n3/3 flops for U
and 3n3 to get X: about (28 + (2k + 2m− 1)/3)n3 flops in total.

Note that line 2 simply computes T p in the obvious way when T is diagonal, that
is, when A is normal; there is no need for Padé approximation in this case.

If A is real, we could take the real Schur decomposition at line 1, and compute
the square roots of the now quasitriangular T at line 13 using the real Schur method
[17], [21, Alg. 6.7]. This would guarantee a real computed X̂ and could be faster due
to the avoidance of complex arithmetic.

6. General p ∈ R. In developing the Schur–Padé algorithm we assumed p ∈
(−1, 1). For a general noninteger p ∈ R there are two ways to reduce the power to
the interval (−1, 1). We can write

p = ⌊p⌋+ p1, p1 > 0,(6.1a)

p = ⌈p⌉+ p2, p2 < 0,(6.1b)

where p1 − p2 = 1. To choose between these two possibilities we will concentrate on
the computation of Ap1 and Ap2 and ask which of these computations is the better
conditioned. To make the analysis tractable we assume that A is Hermitian positive
definite with eigenvalues λ1 ≥ · · · ≥ λn > 0 and we use the lower bound (2.8), which
is now an equality for the Frobenius norm. Using the mean value theorem, we obtain,
for p ∈ (−1, 1) and f(x) = xp,

‖Lxp(A)‖F = max
i≤j
|f [λi, λj ]| = max

i≤j
|f ′(ξij)|, ξij ∈ [λi, λj ]

= |f ′(λn)| = |p|λp−1
n .

Hence, by (2.1) for the Frobenius norm,

κxp(A) =
|p|λp−1

n ‖A‖F
‖Ap‖F

≈
|p|λp−1

n ‖A‖2
‖Ap‖2

=

{
|p|κ2(A)1−p, p ≥ 0,
|p|κ2(A), p ≤ 0,

where κ2(A) = ‖A‖2‖A
−1‖2 = λ1/λn. Since p1 > 0 and p2 < 0, in order to minimize

the lower bound we should choose p1 if p1κ2(A)1−p1 ≤ −p2κ2(A) = (1 − p1)κ2(A),
that is, if κ2(A) ≥ exp(p−1

1 log
(
p1/(1− p1)

)
. Thus, for example, if p1 ≤ 0.5 then p1 is

always chosen, while if p1 = 0.75 or p1 = 0.99 then p1 is chosen for κ2(A) ≥ 4.3 and
κ2(A) ≥ 103.7, respectively.

Now we consider how to handle integer p. When p is positive, Ap should be
computed by binary powering [21, Alg. 4.1]. When p is negative there are several
possibilities, of which we state three. We write GEPP for Gaussian elimination with
partial pivoting.

Algorithm 6.1. This algorithm computes X = Ap for p = −k ∈ Z
−.

1 Y = Ak by binary powering
2 X = Y −1 via GEPP
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Algorithm 6.2. This algorithm computes X = Ap for p = −k ∈ Z
−.

1 Y = A−1 via GEPP
2 X = Y k by binary powering

Algorithm 6.3. This algorithm computes X = Ap for p = −k ∈ Z
−.

1 Compute a factorization PA = LU by GEPP.
2 X0 = I
3 for i = 0: k − 1
4 Solve LXi+1/2 = PXi

5 Solve UXi+1 = Xi+1/2

6 end
7 X = Xk

Algorithms 6.1 and 6.2 have the same cost. Algorithm 6.3 is more expensive as it
does not take advantage of binary powering. However, our main interest is in accuracy.
Algorithm 6.1 inverts Ak, which is potentially a much more ill conditioned matrix than
A. Intuitively, Algorithm 6.2 should therefore be preferred. Algorithm 6.3 does not
explicitly invert a matrix but relies on triangular solves, and triangular systems are
typically solved to higher accuracy than we might expect from conditioning consider-
ations [19, chap. 8]. Rounding error analysis for these three algorithms yields forward
error bounds whose respective sizes are difficult to compare [32]. Therefore we will
use numerical experiments to guide our choice (see Experiment 7 in Section 9).

7. Singular matrices. Since our aim is to develop an algorithm of the widest
possible applicability, we would like to extend Algorithm 5.1 so that it handles singular
matrices with a semisimple zero eigenvalue. If A is singular then the Schur factor T
will be singular. We reorder T (using unitary similarities) so that it has the form

T =

[
T11 T12

0 T22

]
(7.1)

where T11 is nonsingular and T22 has zero diagonal. The zero eigenvalue is semisimple
if and only if T22 = 0, by rank considerations. If T22 = 0 then U = T p is given by

U =

[
U11 T−1

11 U11T12

0 0

]
, U11 = T p

11.(7.2)

The diagonal blocks in this expression follow from the fact that any primary matrix
function of a block triangular matrix is block triangular [21, Thm. 1.13], while the
(1,2) block is obtained from the equation TU = UT . The conclusion is that we should
obtain U11 from Algorithm 5.1 and compute U12 separately from the given formula.

In floating point arithmetic we are unlikely to obtain exact zeros on the diagonal of
T . Consider, for example, the MATLAB matrix A = gallery(5), which has integer
entries and a Jordan form with one 5×5 Jordan block corresponding to the eigenvalue
0. The computed triangular Schur factor T has positive diagonal entries all of order
10−2. The computed square root (for example) from Algorithm 5.1 has norm of
order 1010. Without further computations involving “difficult rank decisions” [12,
sec. 7.6.5], which would effectively be the first stages of computing the Jordan form,
it is not possible to determine whether it makes sense to compute Ap with p 6∈ Z when
A is singular. We will therefore not pursue the development of a practical algorithm
for the singular case.
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function X = powerm(A,p,str)

%POWERM Arbitrary power of matrix.

% POWERM(A,p) computes the p’th power of A for a nonsingular,

% diagonalizable matrix A and an arbitrary real number p.

% POWERM(A,p,’nobalance’) performs the computation with balancing

% disabled in the underlying eigendecomposition.

if nargin == 3 && strcmp(str,’nobalance’)

[V,D] = eig(A,’nobalance’);

else

[V,D] = eig(A);

end

X = V*diag(diag(D).^p)/V;

Fig. 8.1. MATLAB function powerm.

8. Alternative algorithms. A number of alternatives to and variations of Al-
gorithm 5.1 can be formulated. They are based on initial reduction to Schur form, the
exp-log formula (1.2), and the Schur–Parlett algorithm of Davies and Higham [10],
[21, Alg. 9.6]. The Schur–Parlett algorithm is designed for computing f(A) for any
f for which functions of arbitrary triangular matrices can be reliably computed. It
employs a reordered and partitioned Schur triangular factor, computes f(Tii) for the
diagonal blocks Tii by the given method and obtains the off-diagonal blocks by the
block Parlett recurrence.

We summarize the main possibilities.

1. Schur-Pade: Algorithm 5.1.
2. SP-Pade: the Schur–Parlett method using Algorithm 5.1 on the diagonal

blocks Tii.
3. SP-ss-iss: the Schur–Parlett method with evaluation of exp(p log(Tii)) by

the inverse scaling and squaring method for the logarithm [21, sec. 11.5] and the
scaling and squaring method for the exponential [1].

4. tri-ss-iss: reduction to Schur form T with evaluation of exp(p log(T )) by
the inverse scaling and squaring method for the logarithm applied to the whole matrix
T and the scaling and squaring method for the exponential.

5. powerm: the algorithm discussed in Section 1 based on an eigendecomposi-
tion, which is implemented in the MATLAB function of Figure 8.1.

Note that a variant of tri-ss-iss that works directly on A instead of reducing
to Schur form is not competitive in cost with tri-ss-iss, since computing square
roots of full matrices is relatively expensive [21, Chap. 6].

We make some brief comments on the relative merits of these methods.

For the methods that employ a Schur decomposition the cost will be dominated
by the cost of computing the Schur decomposition unless ‖A‖ is large. If the matrix
is already triangular then Schur-Pade and tri-ss-iss have similar cost, and in
particular require approximately the same number of square roots.

SP-Pade differs from Schur-Pade in that it applies Padé approximation to each
diagonal block of T (possibly with a different degree for each block) rather than to T
as a whole. It is possible for the partitioning to be the trivial one, T ≡ T11, in which
case SP-Pade and Schur-Pade are identical.

An advantage in cost of SP-Pade and SP-ss-iss over Schur-Pade is that large
elements of T do not affect the number of square roots computed, and hence the cost,

14



as long as they lie in the superdiagonal blocks Tij of the Schur–Parlett partitioning
of T .

In the next section we compare these methods numerically.

9. Numerical experiments. Our numerical experiments were carried out in
MATLAB R2010a, for which the unit roundoff u = 2−53 ≈ 1.1 × 10−16. Our im-
plementations of SP-Pade and SP-ss-iss are obtained by modifying the MATLAB
function funm. For all methods except powerm we evaluate powers of 2× 2 triangular
matrices directly, using the formula (5.6).

Relative errors are measured in the Frobenius norm. For the “exact” solution we
take the matrix computed using powerm at 100 digit precision with the VPA arithmetic
of the Symbolic Math Toolbox; thus we can compute relative errors only when A is
diagonalizable.

When q = 1/p is an integer, another measure of the quality of a computed solution
X is its relative residual,

ρ(X) =
‖A−Xq‖

‖X‖η(X)
,

where η(X) =
∥∥∑q−1

i=0

(
Xq−1−i

)T
⊗Xi

∥∥ if p > 0 and η(X) =
∥∥∑−q

i=1

(
X−i

)T
⊗Xi+q−1

∥∥
if p < 0, with ⊗ denoting the Kronecker product. This is a more practically useful def-
inition of relative residual than ‖A−Xq‖/‖Xq‖, as explained in [14], [21, Prob. 7.16].

Experiment 1. We computed the pth power of the matrix

A(ǫ) =

[
1 1
0 1 + ǫ

]
,(9.1)

for p ∈ {0.1, 0.5, 0.9} and ǫ = 10−t with 65 equally spaced values of t ∈ [0, 16]. The
condition number κxp(A(ǫ)) is of order 1 for all these ǫ and p. The relative errors for
powerm are shown in Figure 9.1. Clearly, the errors deteriorate as t increases and A(ǫ)
approaches a defective matrix; the reason for the “bifurcation” in the error curves is
not clear. The other methods defined in Section 8 all produce results with relative
error less than 4u in all cases.

Experiment 2. In this experiment we formed 50 random 50 × 50 matrices with
elements from the normal (0,1) distribution; any matrix with an eigenvalue on R

− was
discarded and another random matrix generated. Then we reduced A to Hessenberg
form using the MATLAB function hess and computed A1/3 by all five methods as
well as by powerm nb, the latter denoting powerm with the ’nobalance’ argument,
which inhibits the use of balancing in the eigendecomposition. The results, with 2-
norms used in the residuals, are shown in Figure 9.2. The improved performance of
powerm nb over powerm shows that it is the balancing that is affecting the numerical
stability of powerm in this example. This is not surprising, because Watkins [36]
has pointed out that for upper Hessenberg matrices balancing can seriously degrade
accuracy in the eigendecomposition and should not be automatically used.

We note that using powerm nb in place of powerm makes no difference to the
results in Experiment 1, as balancing has no effect in that example.

Experiment 3. In this experiment we use a selection of 10 × 10 nonsingular ma-
trices taken from the MATLAB gallery function and from the Matrix Computation
Toolbox [15]. Any matrix found to have an eigenvalue on R

− was squared. We com-
puted Ap for p ∈ {1/52, 1/12, 1/3, 1/2}, these values being ones likely to occur
in applications where roots of transition matrices are required [21, sec. 2.3], [24], as
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Fig. 9.1. Experiment 1: relative errors for powerm on matrix (9.1) with ǫ = 10−t.

well as the negatives of these values. This gives 376 problems in total. We omit
tri-ss-iss from this test, as it is generally outperformed by SP-ss-iss (as can
be seen in Experiment 2). Figures 9.3 and 9.5 show the relative errors and relative
residuals. The solid line in Figure 9.3 is κxp(A)u, where κxp is computed via (2.3)
and (2.5) using codes from the Matrix Function Toolbox [16] that compute Kexp and
Klog; the problems are sorted by decreasing condition number. Figures 9.4 and 9.6
show performance profiles. A performance profile shows the proportion π of problems
where the performance ratio of a method is at least α, where the performance ratio
for a method on a problem is the error or residual of that method divided by the
smallest error or residual over all the methods. The errors and residuals lead to the
same conclusions. First, powerm often produces very good results but is sometimes
very unstable. Second, Schur-Pade SP-Pade and SP-ss-iss perform similarly, with
Schur-Pade having a slight edge overall.

Experiment 4. This experiment is identical to the previous one except that we use
the upper triangular QR factor R of each matrix and replace every negative diagonal
element of R by its absolute value. The errors and residuals and their performance
profiles are shown in Figures 9.7–9.10. For this class of matrices Schur-Pade is clearly
greatly superior to the other methods. The performance profiles are qualitatively
similar if we use the Schur factor instead of the QR factor.

Experiment 5. In this experiment we compute the three bounds in (2.7), (2.8)
as well as the true norm of the Fréchet derivative ‖Lxp(A)‖ for the same matrices
and values of p as in Experiment 3, using the Frobenius norm. The computed upper
bound, which sometimes overflowed, was set to the minimum of 1030 and itself. The
results are plotted in Figure 9.11. The results show that the lower bounds are sharper
than the upper bounds and that they are often correct to within a couple of orders of
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Fig. 9.2. Experiment 2: relative residuals for 50 random Hessenberg matrices.

magnitude, being less reliable for the very ill conditioned problems.
Experiment 6. In this experiment, we test our proposed choice of the fractional

part of p when p 6∈ [−1, 1]. For κ2(A) we use the lower bound maxi |tii|/mini |tii|
in the prescription of Section 6, where T is the triangular Schur factor. We use the
same matrices as in Experiment 3 and compute Ap for p = 3.9, 3.7, 3.3, 3.1. The
performance profiles of the relative errors are shown in Figure 9.12. Our strategy
chose p1 in 169 of the 197 cases in this experiment. Indeed, p1 is almost as good a
choice as the “optimal” choice, as can be seen in two ways. First, the performance
profile curve for p1 is almost indistinguishable from that for the “optimal” choice and
so is omitted from the figure. Second, the maximum and minimum values of the
relative error for p1 divided by that for p2 were 3.2 and 1.3× 10−16, respectively.

Experiment 7. In this final experiment we compare Algorithms 6.1, 6.2, and 6.3,
all of which compute Ap where p = −k is a negative integer. We test the algorithms
on the same set of matrices as in Experiment 3 for p = −3,−5,−7,−9. The results are
shown in Figures 9.13 and 9.14. Algorithms 6.2 and 6.3 clearly produce much more
accurate results than Algorithm 6.1, as we expected. There is little to choose between
Algorithms 6.2 and 6.3; we favour the former in view of its lower computational cost.

10. Concluding remarks. We have derived a new algorithm (Algorithm 5.1)
for computing arbitrary powers Ap of a matrix, based on diagonal Padé approximants
of (1 − x)p and the Schur decomposition. The algorithm performs in a generally
numerically stable fashion in our tests, with relative error usually less than the prod-
uct of the condition number of the problem and the unit roundoff. Our experiments
demonstrate the superiority of this approach over alternatives based on separate ap-
proximation of the exponential and logarithm in the formula Ap = exp(p log(A))
using the best available methods. The use of Algorithm 5.1 within the Schur–Parlett
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Fig. 9.3. Experiment 3: relative errors for a selection of 10 × 10 matrices and several p.
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Fig. 9.4. Experiment 3: performance profile of relative errors.
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Fig. 9.5. Experiment 3: relative residuals for a selection of 10 × 10 matrices and several p.
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Fig. 9.6. Experiment 3: performance profile of relative residuals.
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Fig. 9.7. Experiment 4: relative errors for a selection of 10×10 triangular matrices and several

p.
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Fig. 9.8. Experiment 4: performance profile of relative errors.
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Fig. 9.9. Experiment 4: relative residuals for a selection of 10 × 10 triangular matrices and

several p.
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Fig. 9.10. Experiment 4: performance profile of relative residuals.
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Fig. 9.11. Experiment 5: the lower bounds lowbnd1 in (2.7) and lowbnd2 in (2.8), the upper

bound upbnd in (2.8), and the true norm ‖Lxp (A)‖F , for the matrices in Experiment 3.
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Fig. 9.12. Experiment 6: performance profile of relative errors. The legend for first plot

applies to all four plots. Schur-Pade2 uses p2 in (6.1b) and Schur-Pade opt uses the choice defined

in Section 6.
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Fig. 9.13. Experiment 7: relative errors for Algorithms 6.1, 6.2, and 6.3 for a selection of

10 × 10 matrices and several negative integers p.
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Fig. 9.14. Experiment 7: performance profile of relative errors .
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algorithm (to compute T p
ii for the diagonal blocks Tii of the blocked and re-ordered

triangular Schur factor) merits consideration as it is generally faster than applying
it to the whole T , but Algorithm 5.1 is significantly more accurate in our tests with
triangular matrices (Experiment 4).

MATLAB has a built-in function mpower for which the function call mpower(A,p)
is equivalent to the syntax A^p. In our tests with MATLAB R2010a, mpower performs
identically to our powerm function for noninteger p, and in particular performs badly
on matrices that are defective or nearly defective. For negative integer p, mpower

performs identically to Algorithm 6.1 in our tests.
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