
Computing a Nearest Correlation Matrix with
Factor Structure

Borsdorf, Rüdiger and Higham, Nicholas J. and Raydan,
Marcos

2010

MIMS EPrint: 2009.87

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. MATRIX ANAL. APPL. c© 2010 Society for Industrial and Applied Mathematics
Vol. 31, No. 5, pp. 2603–2622

COMPUTING A NEAREST CORRELATION MATRIX WITH
FACTOR STRUCTURE∗

RÜDIGER BORSDORF† , NICHOLAS J. HIGHAM† , AND MARCOS RAYDAN‡

Abstract. An n×n correlation matrix has k factor structure if its off-diagonal agrees with that of
a rank k matrix. Such correlation matrices arise, for example, in factor models of collateralized debt
obligations (CDOs) and multivariate time series. We analyze the properties of these matrices and,
in particular, obtain an explicit formula for the rank in the one factor case. Our main focus is on the
nearness problem of finding the nearest k factor correlation matrix C(X) = diag(I −XXT ) +XXT

to a given symmetric matrix, subject to natural nonlinear constraints on the elements of the n × k
matrix X, where distance is measured in the Frobenius norm. For a special one parameter case we
obtain an explicit solution. For the general k factor case we obtain the gradient and Hessian of the
objective function and derive an instructive result on the positive definiteness of the Hessian when
k = 1. We investigate several numerical methods for solving the nearness problem: the alternating
directions method; a principal factors method used by Anderson, Sidenius, and Basu in the CDO
application, which we show is equivalent to the alternating projections method and lacks convergence
results; the spectral projected gradient method of Birgin, Mart́ınez, and Raydan; and Newton and
sequential quadratic programming methods. The methods differ in whether or not they can take
account of the nonlinear constraints and in their convergence properties. Our numerical experiments
show that the performance of the methods depends strongly on the problem, but that the spectral
projected gradient method is the clear winner.

Key words. correlation matrix, factor structure, patterned covariance matrix, positive semidef-
inite matrix, Newton’s method, principal factors method, alternating directions method, alternating
projections method, spectral projected gradient method
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1. Introduction. In many practical applications involving statistical modeling
it is required to adjust an approximate, empirically obtained correlation matrix so
that it has the three defining properties of a correlation matrix: symmetry, positive
semidefiniteness, and unit diagonal. Lack of definiteness can result from missing or
asynchronous data which, in the case of financial modeling, may be due to a company
being formed or ceasing to trade during the period of interest or markets in different
regions trading at different times and having different holidays. Furthermore, stress
testing may require individual correlations to be artificially adjusted, with subsequent
value-at-risk analysis breaking down if the perturbed matrix is not a correlation matrix
[11], [37]. In a variety of applications it is natural to replace the given empirical matrix
by the nearest correlation matrix in the (weighted) Frobenius norm [18], [38], [42],
[49]. This problem has received much attention in the last few years and can be solved
using the alternating projections method [18] or a preconditioned Newton method [6],
[36], the latter having quadratic convergence and being the method of choice.
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Caracas 1080-A, Venezuela (mraydan@usb.ve).

2603



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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In this work we are interested in the nearness problem in which factor struc-
ture is imposed on the correlation matrix. Such structure arises in factor models of
asset returns [8, sect. 3.5], collateralized debt obligations (CDOs) [3], [14], [22], and
multivariate time series [29]. To motivate this structure we consider the factor model1

ξ = Xη + Fε(1.1)

for the random vector ξ ∈ R
n, where X ∈ R

n×k, F ∈ R
n×n is diagonal, and η ∈ R

k

and ε ∈ R
n are vectors of independent random variables having zero mean and unit

variance, with η and ε independent of each other. In the terminology of factor analy-
sis [31] the components of η are the factors and X is the loading matrix. With cov(·)
and E(·) denoting the covariance matrix and the expectation operator, respectively,
it follows that E(ξ) = 0 and hence

cov(ξ) = E(ξξT ) = XXT + F 2.(1.2)

If we assume that the variance of ξi is 1 for all i then cov(ξ) is the correlation matrix

of ξ and (1.2) gives
∑k

j=1 x
2
ij + f2

ii = 1, so that

k∑
j=1

x2
ij ≤ 1, i = 1:n.(1.3)

This model produces a correlation matrix of the form

C(X) = D +

k∑
j=1

xjx
T
j = D +XXT ,(1.4a)

X = [x1, . . . , xk] =

⎡⎢⎣ yT1
...
yTn

⎤⎥⎦ = Y T ∈ R
n×k,(1.4b)

D = diag(I −XXT ) = diag(1− yTi yi),(1.4c)

and we say C(X) has k factor correlation matrix structure. Note that C(X) can be
written in the form

C(X) =

⎡⎢⎢⎢⎢⎢⎣
1 yT1 y2 . . . yT1 yn

yT1 y2 1 . . .
...

...
. . . yTn−1yn

yT1 yn . . . yTn−1yn 1

⎤⎥⎥⎥⎥⎥⎦ ,

where yi ∈ R
k. While C(X) can be indefinite for general X , the constraints (1.3)

ensure that XXT has diagonal elements bounded by 1, which means that C(X) is
the sum of two positive semidefinite matrices and hence is positive semidefinite. In
general, C(X) is of full rank; correlation matrices of low rank, studied in [16], [32],
[51], for example, form a very different set. The one factor model (k = 1) is widely
used [8], [12].

1This model is referred to in [14] as the “multifactor copula model.”
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The problem of computing a correlation matrix of k factor structure nearest
to a given matrix is posed in the context of credit basket securities by Anderson,
Sidenius, and Basu [3], wherein an ad hoc iterative method for its solution is described.
The problem is also discussed by Glasserman and Suchintabandid [14, sect. 5] and
Jäckel [22]. Here, we give theoretical analysis of the problem and show how standard
optimization methods can be used to tackle it.

We begin in section 2 by considering a correlation matrix depending on just one
parameter, for which an explicit solution to the nearness problem is available. The one
factor (n parameter) case is treated in section 3, where results on the representation,
determinant, and rank of C(X) are given, along with formulae for the gradient and
Hessian of the relevant objective function and a result on the definiteness of the
Hessian. In section 4 we consider the general k factor problem and derive explicit
formulae for the relevant gradient and Hessian.

Several suitable numerical methods are presented in section 5. We show that
the principal components-based method proposed in [3] is an alternating projections
method and explain why it cannot be guaranteed to converge. Other methods con-
sidered are an alternating directions method, a spectral projected gradient method,
and Newton and sequential quadratic programming (SQP) methods. We also derive a
rank one starting matrix that yields a smaller function value than X = 0. In section 6
we give numerical experiments to compare the performance of the methods and to
investigate different starting matrices and the effect of varying k. Conclusions are
given in section 7.

Throughout, we will use the Frobenius norm ‖A‖F = 〈A,A〉1/2 on R
n×n, where

the inner product 〈A,B〉 = trace(BTA).

2. One parameter problem. We begin by considering a one parameter matrix
C(w) that has unit diagonal and every off-diagonal element equal to w ∈ R:

C(w) = (1− w)I + weeT = I + w(eeT − I),(2.1)

where e = [1, 1, . . . , 1]T . This matrix is more general than the special case C(θe)
of the one factor matrix considered in the next section because in that case w ≡
θ2 is forced to be nonnegative. This structure corresponds to a covariance matrix
with constant diagonal and constant off-diagonal elements—a simple but frequently
occurring pattern [1], [20], [23, p. 55], [26], [41], [50].

Lemma 2.1. C(w) ∈ R
n×n (n ≥ 2) is a correlation matrix if and only if

−1
n− 1

≤ w ≤ 1.(2.2)

Proof. C(w) is a correlation matrix precisely when it is positive semidefinite. The
eigenvalues of C(w) are 1 + (n − 1)w and n − 1 copies of 1 − w, so C(w) is positive
semidefinite precisely when (2.2) holds.

We can give an explicit solution to the corresponding nearness problem,

min{ ‖A− C(w)‖F : C(w) is a correlation matrix }.(2.3)

Theorem 2.2. For A ∈ R
n×n,

min
w
‖A− C(w)‖2F = ‖A− I‖2F −

(eTAe− trace(A))2

n2 − n
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and the minimum is attained uniquely at

wopt =
eTAe− trace(A)

n2 − n
.(2.4)

The problem (2.3) has a unique solution given by the projection of wopt onto the
interval [−1/(n− 1), 1].

Proof. We want the global minimizer of

f(w) := ‖A− (I + w(eeT − I))‖2F
= ‖A− I‖2F + w2‖eeT − I‖2F − 2trace((A− I)w(eeT − I))

= ‖A− I‖2F + w2(n2 − n)− 2w trace(AeeT − A− eeT + I)

= ‖A− I‖2F + w2(n2 − n)− 2w(eTAe− trace(A)).

Since f ′(w) = 2w(n2 − n) − 2(eTAe − trace(A)), f has a unique stationary point at
wopt given by (2.4). From f ′′(w) = 2(n2 − n) > 0 it follows that f is strictly convex,
so wopt is a local and hence global minimizer. The last part follows from the convexity
of f .

It is known [18, Thm. 2.5] that if aii ≡ 1 and A has t nonpositive eigenvalues
then the solution to min{‖A − X‖F : X is a correlation matrix} has at least t zero
eigenvalues. By contrast, from Theorem 2.2 we see that for aii ≡ 1 the solution to
problem (2.3) has exactly one zero eigenvalue when wopt ≤ −1/(n−1) (i.e., eTAe ≤ 0),
and exactly n − 1 zero eigenvalues when wopt ≥ 1 (i.e., eTAe ≥ n2), and otherwise
the solution is nonsingular.

A more general version of C(w) arises when variables in an underlying model
are grouped and separate intra- and intergroup correlations are defined [15]. The
correlation matrix is now a block m ×m matrix C(Γ ) = (Cij) ∈ R

n×n, where Γ ∈
R

m×m and

Cij =

{
C(γii) ∈ R

ni×ni , i = j,
γijee

T ∈ R
ni×nj , i 	= j,

(2.5)

with n =
∑m

i=1 ni. The objective function is, with A = (Aij) partitioned conformally
with C,

f(Γ ) = ‖A− C(Γ )‖2F =

m∑
i=1

‖Aii − C(γii)‖2F +
∑
i�=j

‖Aij − γijee
T‖2F .(2.6)

The problem is to minimize f(Γ ) subject to C being in the intersection of the set of
positive semidefinite matrices and the set C of all patterned matrices of the form (2.5).
Both these sets are closed convex sets and hence so is their intersection. It follows
from standard results in approximation theory (see, for example, [30, p. 69]) that
the problem has a unique solution. This solution can be computed by the alternating
projections method, by repeatedly projecting onto the two sets in question. To obtain
the projection onto the set C we simply apply Theorem 2.2 to each term in the first
summation in (2.6) and for i 	= j set γij =

∑
(p,q)∈Sij

apq/|Sij |, where Sij is the set

of indices of the elements in Aij and |Sij | is the number of elements in Sij . The
latter projection can trivially be incorporated into Algorithm 3.3 of [18], replacing
the projection onto the unit diagonal matrices therein, without losing the algorithm’s
guaranteed convergence.
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If the intergroup correlations are equal and nonnegative, say γij ≡ β ≥ 0, and
additionally all intragroup correlations satisfy γii ≥ β, the matrix C(Γ ) can be rep-
resented as an m + 1 factor correlation matrix C(X), with X ∈ R

n×(m+1) a block
m× (m+ 1) matrix X = (Xij) with Xij ∈ R

ni , where

Xij =

{√
βe ∈ R

ni , j = 1,√
γii − βe ∈ R

ni , j = i+ 1,
0 otherwise.

To illustrate, we consider a small example where m = 2 and n1 = n2 = 2. Then X is
a block 2× 3 matrix and

XXT =

⎡
⎢⎢⎢⎣

√
β√
β

√
γ11 − β√
γ11 − β

0
0

√
β√
β

0
0

√
γ22 − β√
γ22 − β

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

√
β

√
β

√
β

√
β√

γ11 − β
√

γ11 − β 0 0

0 0
√

γ22 − β
√

γ22 − β

⎤
⎥⎥⎦ ,

which simplifies to the desired form⎡⎢⎢⎢⎣
γ11 γ11
γ11 γ11

β β
β β

β β
β β

γ22 γ22
γ22 γ22

⎤⎥⎥⎥⎦ .

3. One factor problem. We now consider the one factor problem, for which
the correlation matrix has the form, taking k = 1 in (1.4),

C(x) = diag(1− x2
i ) + xxT , x ∈ R

n.(3.1)

The off-diagonal part of C(x) agrees with that of the rank one matrix xxT , so C(x)
is of the general diagonal plus semiseparable form [46].

We first consider the uniqueness of this representation.

Theorem 3.1. Let C = C(x) for some x ∈ R
n with p nonzero elements (0 ≤ p ≤

n). If p = 1 then C = I and C = C(y) for any y with at least n− 1 zero entries. If
p = 2 and xi, xj are the nonzero entries of x then C = C(y) for y = θxiei + θ−1xjej
for any θ 	= 0. Otherwise, C = C(y) for exactly two vectors: y = ±x.

Proof. Without loss of generality we can assume C = diag(1−x2
i )+xxT has been

symmetrically permuted so that xi 	= 0 for i = 1: p and xi = 0 for i = p + 1:n. If
p = 1 then C = I and x1 is arbitrary, which gives the first part. Suppose p > 1. We
can write

C =

[
C1 0
0 I

]
,(3.2)

where C1 ∈ R
p×p has all nonzero elements. If p = 2 then c12 = x1x2 = θx1 · θ−1x2 ≡

y1y2 for any θ 	= 0 and C = C(y) with y3, . . . , yn necessarily zero. Assume p > 2 and
suppose C = diag(1− y2i ) + yyT . Then, from (3.2), yi 	= 0 for i = 1: p and yi = 0 for
i = p+ 1:n. From C = diag(1− y2i ) + yyT we have

ci,i+1ci,i+2

ci+1,i+2
= y2i , 1 ≤ i ≤ p− 2,(3.3)
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which determines the first p−2 components of yi up to their signs, and yp is determined
by yp−2yp = cp−2,p and yp−1 by yp−1yp = cp−1,p. Finally, the equations c1j = y1yj ,
1 ≤ j ≤ p, ensure that sign(yj), 2 ≤ j ≤ p, is determined by sign(y1).

Before addressing the nearness problem we develop some properties of C(x).

Lemma 3.2. The determinant of C(x) is given by

det(C(x)) =

n∏
i=1

(1− x2
i ) +

n∑
i=1

x2
i

n∏
j=1
j �=i

(1 − x2
j).(3.4)

Proof. Define the vector z(ε) by zi = xi + ε. For sufficiently small ε, z(ε) has no
element equal to 1 and D = diag(1 − z2i ) is nonsingular. Hence C(z) = D + zzT =
D(I +D−1z · zT ), from which it follows that

det(C(z)) = det(D)(1 + zTD−1z) =
n∏

i=1

(1 − z2i ) ·
(
1 +

n∑
i=1

z2i
1− z2i

)
.

On multiplying out, the formula takes the form (3.4) with x replaced by z(ε), and
letting ε → 0 gives the result, since the determinant is a continuous function of the
matrix elements.

For the case xi 	= 1 for all i the formula (3.4) is a special case of a result in [39,
sect. 2.1].

Corollary 3.3. If |x| ≤ e with xi = 1 for at most one i then C(x) is nonsingu-
lar. C(x) is singular if xi = xj = 1 for some i 	= j.

The matrix C(x) is not always a correlation matrix because it is not always
positive semidefinite. We know from the discussion of the k factor case in section 1
that a sufficient condition for C(x) to be a correlation matrix is that |x| ≤ e. This
condition arises in the factor model described in section 1 and hence is natural in the
applications. The two extreme cases are when |x| = e, in which case C = xxT is of
rank 1, and when x = 0, in which case C = I has rank n. The next result shows more
generally that the rank is determined by the number of elements of x of modulus 1.

Theorem 3.4. For C = C(x) ∈ R
n×n in (3.1) with |x| ≤ e we have rank(C) =

min(p+ 1, n), where p is the number of xi for which |xi| < 1.

Proof. By a symmetric permutation of C we can assume, without loss of generality,
that |xi| < 1 for i = 1: p and |xi| = 1 for i = p+ 1:n. The result is true for p = n by
Corollary 3.3, so assume p ≤ n− 1. Partition x = [y, z]T , where y ∈ R

p; thus |y| < e
and |z| = e. Then

C =

[
C1 yzT

zyT zzT

]
,

where C1 ∈ R
p×p is positive definite. With XT =

[
I

−zyTC−1
1

0
I

]
we have

XTCX =

[
C1 0
0 S

]
,

where

S = zzT − zyTC−1
1 yzT = zzT − (yTC−1

1 y)zzT = (1− yTC−1
1 y)zzT .
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Hence rank(C) = rank(C1)+rank(S) = p+rank(S). Now C1 = diag(1−y2i )+yyT =:
D + yyT , where D is positive definite, and the Sherman–Morrison formula gives

C−1
1 = D−1 − D−1yyTD−1

1 + yTD−1y
.

So

yTC−1
1 y =

yTD−1y

1 + yTD−1y
< 1.

Since yTC−1
1 y 	= 1 and z 	= 0, S has rank 1 and the result follows.

Now we are ready to address the nearness problem. Consider the problem of
minimizing

f(x) = ‖A− (diag(1− x2
i ) + xxT

)‖2F ,(3.5)

subject to |x| ≤ e, where A ∈ R
n×n is symmetric and we can assume without loss of

generality that aii = 1 for all i. For n = 2, f(x) = 0 is the global minimum, attained
at x = [θa12, θ−1]T for any θ 	= 0. For n = 3, f(x) = 0 is again achieved; if aij 	= 0
for all i and j then there are exactly two minimizers. But for n ≥ 4 there are more
equations than variables in A = diag(1 − x2

i ) + xxT and so the global minimum is
generally positive.

Note that because of Theorem 3.1 we could further restrict one element of x to
[0, 1]. We could go further and restrict all the elements of x to [0, 1] in order to obtain
a correlation matrix with nonnegative elements—a constraint that is imposed in [40],
[47].

The function f is clearly twice continuously differentiable, and we need to find its
gradient ∇f(x) and Hessian ∇2f(x). Setting Â = A− I and D = diag(xi), noticing
that âii ≡ 0, and using properties of the trace operator, we can rewrite f as

f(x) = 〈Â, Â〉+ 2〈Â,D2〉 − 2〈Â, xxT 〉
+ 〈xxT , xxT 〉 − 2〈xxT , D2〉+ 〈D2, D2〉

= 〈Â, Â〉 − 2xT Âx+ (xTx)2 −
n∑

i=1

x4
i .(3.6)

Lemma 3.5. For f in (3.5) we have

∇f(x) = 4
(
(xTx)x − Âx−D2x

)
,(3.7)

∇2f(x) = 4(2xxT + (xTx)I − Â− 3D2).(3.8)

Proof. We have ∇(xT Âx) = 2Âx and ∇2(xT Âx) = 2Â. Similarly, ∇(∑n
i=1 x

4
i ) =

4D2x and ∇2(
∑n

i=1 x
4
i ) = 12D2. It is straightforward to show that for h(x) = (xTx)2

we have ∇h(x) = 4(xTx)x and ∇2h(x) = 8xxT + 4(xTx)I. The formulae follow by
differentiating (3.6) and using these expressions.

Notice that at x = 0, ∇f(0) = 0 and ∇2f(0) = −4Â. For A 	= I, since Â is
symmetric and indefinite (by virtue of its zero diagonal), x = 0 is a saddle point of f .
Another deduction that can be made from the lemma is that if aii = 1 and |aij | ≤ 1
for all i and j then x = e is a solution if and only if A = eeT .

Denote the global minimizer of f by x. If f(x) = 0 then A = diag(1 − x2
i ) +

xxT is precisely of the sought structure and we call A reproducible. We ignore the
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constraint |x| ≤ e for the rest of this section. We now examine the properties of
the Hessian matrix at x for reproducible A and will later draw conclusions about the

nonreproducible case. Note that (3.8) simplifies to ∇2f(x) = 4((xTx)I+xxT −2D
2
),

where D = diag(xi). Therefore we consider the matrix

Hn = Hn(x) = (xTx)I + xxT − 2D2, x ∈ R
n.(3.9)

For example,

H4 =

⎡⎢⎣
x2
2 + x2

3 + x2
4 x1x2 x1x3 x1x4

x2x1 x2
1 + x2

3 + x2
4 x2x3 x2x4

x3x1 x3x2 x2
1 + x2

2 + x2
4 x3x4

x4x1 x4x2 x4x3 x2
1 + x2

2 + x2
3

⎤⎥⎦ .

We want to determine the definiteness and nonsingularity properties of Hn. Without
loss of generality we can suppose that

x1 ≥ x2 ≥ · · · ≥ xp > xp+1 = · · · = xn = 0,(3.10)

with p ≥ 1. If n = 4 and p = 3 then H4 has the form⎡⎢⎣
x2
2 + x2

3 x1x2 x1x3 0
x2x1 x2

1 + x2
3 x2x3 0

x3x1 x3x2 x2
1 + x2

2 0
0 0 0 x2

1 + x2
2 + x2

3

⎤⎥⎦ = diag(H3, x
2
1 + x2

2 + x2
3).

In general,

Hn = diag(Hp, Dp), Dp = (x2
1 + x2

2 + · · ·+ x2
p)In−p.

Dp has positive diagonal entries and hence the definiteness properties of Hn are de-
termined by those of Hp. So the problem has been reduced to the case of positive
xi.

Theorem 3.6. Hn is positive semidefinite. Moreover, Hn is nonsingular if and
only if at least three of x1, x2, . . . , xn are nonzero.

Proof. From the foregoing analysis we can restrict our attention to Hp and assume

that (3.10) holds. Let W = diag(x1, x2, . . . , xp). Then H̃p = WTHpW has the form
illustrated for p = 4 by

H̃4 =

⎡⎢⎢⎢⎣
x2
1(x

2
2 + x2

3 + x2
4) x2

1x
2
2 x2

1x
2
3 x2

1x
2
4

x2
2x

2
1 x2

2(x
2
1 + x2

3 + x2
4) x2

2x
2
3 x2

1x
2
4

x2
3x

2
1 x2

3x
2
2 x2

3(x
2
1 + x2

2 + x2
4) x2

1x
2
4

x2
4x

2
1 x2

4x
2
2 x2

4x
2
3 x2

4(x
2
1 + x2

2 + x2
3)

⎤⎥⎥⎥⎦ .

Thus H̃p is diagonally dominant with nonnegative diagonal elements and with equality
in the diagonal dominance conditions for every row (or column); it is therefore positive

semidefinite by Gershgorin’s theorem. Suppose H̃p is singular. Then λ = 0 is an
eigenvalue lying on the boundary of the set of Gershgorin discs (in fact it is on the

boundary of every Gershgorin disc). Hence by [21, Thm. 6.2.5], since H̃p has all

nonzero entries any null vector z of H̃p has the property that |zi| is the same for all
i. Hence any null vector can be taken to have elements zi = ±1. But it is easy to see
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that no such vector can be a null vector of H̃p for p > 2. Hence H̃p is nonsingular for

p > 2. Since Hp is congruent to H̃p, Hp is positive definite for p > 2. For p = 1, 2,
Hp is singular. The result follows.

Since x is, by definition, a global minimizer and is usually one of exactly two
distinct global minimizers ±x, by Theorem 3.1, Theorem 3.6 does not provide any
significant new information about x. However, it does tell us something about the
nonreproducible case. For general A, Ĥn = 1

4∇2f(x) can be written, using (3.8), as

Ĥn =
(
(xTx)I + xxT − 2D2

)
+ (xxT − Â−D2) = Hn + En,

where Hn, defined in (3.9), is positive semidefinite by Theorem 3.6 and moreover
positive definite if at least three components of x are nonzero. Now En has zero
diagonal and in general is indefinite. Furthermore, En is singular at a stationary
point x since Enx = 0 by (3.7). We can conclude that at a stationary point x having

at least three nonzero components the Hessian ∇2f(x) = 4Ĥn will be positive definite
if ‖En‖ is sufficiently small, that is, if |(En)ij | = |xixj − aij | is sufficiently small for
all i and j. In this case x is a local minimizer of f .

4. k factor problem. Now we consider the general k factor problem, for which
C(X) = D +

∑k
j=1 xjx

T
j as in (1.4). We require that (1.3) holds, so that C(X) is

positive semidefinite and hence is a correlation matrix.
As noted by Lawley and Maxwell [27], the representation (1.4) is far from unique

as we can replace X by XQ for any orthogonal matrix Q ∈ R
k×k without changing

C(X). This corresponds to a rotation of the factors in the terminology of factor
analysis. Some approaches to determining a unique representation are described in
[23], [27]. Probably the most popular one is the varimax method of Kaiser [24].
Given an X defining a matrix C(X) with k factor structure, this method maximizes
the function

V (P ) =

∥∥∥∥(In − 1

n
eeT
)
(XP ◦XP )

∥∥∥∥
F

over all orthogonal P and then uses the representation C(XP ). Here the symbol “◦”
denotes the Hadamard product (A ◦ B = (aijbij)). The method rotates and reflects
the rows of X so that the elements of each column differ maximally from their mean
value, which explains the name varimax.

The nearness problem for our k factor representation is to minimize

f(X) = ‖A− (I +XXT − diag(XXT ))‖2F(4.1)

over all X ∈ R
n×k satisfying the constraints (1.3). As before, A ∈ R

n×n is symmetric

with unit diagonal and we set Â = A − I. We now obtain the first and second
derivatives of f .

Since Â has zero diagonal we have 〈Â, diag(XXT )〉 = 0 and also 〈diag(XXT )−
XXT , diag(XXT )〉 = 0. The function f can therefore be written

f(X) = 〈Â, Â〉 − 2〈ÂX,X〉+ 〈XXT , XXT 〉 − 〈XXT , diag(XXT )〉.(4.2)

The next result gives a formula for the gradient, which is now most conveniently
expressed as the matrix ∇f(X) = (∂f(X)/∂xij) ∈ R

n×k.
Lemma 4.1. For f in (4.1) we have

∇f(X) = 4
(
X(XTX)− ÂX − diag(XXT )X

)
.(4.3)
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Proof. It is straightforward to show that ∇〈ÂX,X〉 = 2ÂX . Next, consider the
term h1(x) = 〈XXT , XXT 〉. Consider the auxiliary function g1 : R → R, given by
g1(t) = h1(X + tZ), for arbitrary Z ∈ R

n×k. Clearly, g′1(0) = 〈∇h1(X), Z〉. After
some algebraic manipulations we find that

g′1(0) = 2〈XTX,XTZ〉+ 2〈XTX,ZTX〉 = 4〈X(XTX), Z〉.

Therefore, ∇h1(X) = 4X(XTX). Similarly, we find that the gradient of h2(x) =
〈XXT , diag(XXT )〉 is ∇h2(X) = 4 diag(XXT )X . The result follows.

Notice that when k = 1, (4.3) reduces to (3.7).

The Hessian of f is an nk × nk matrix that is most conveniently viewed as a
matrix representation of the Fréchet derivative L∇f of ∇f . Recall that the Fréchet
derivative Lg(X,E) of g : Rm×n → R

m×n at X in the direction E is a linear operator
satisfying g(X+E) = g(X)+Lg(X,E)+o(‖E‖) [19, sect. 3.1]. We can determine the
Fréchet derivative of ∇f by finding the linear part of the expansion for ∇f(X + E).
For example, to find the derivative of the first term in (4.3) we set f1(X) = X(XTX)
and consider

f1(X + E) = f1(X) +X(XTE) +X(ETX) + E(XTX) +O(‖E‖2).

Hence Lf1(X,E) = X(XTE)+X(ETX)+E(XTX). For the third term, f3, we have,
similarly, Lf3(X,E) = diag(XET )X + diag(EXT )X + diag(XXT )E.

Lemma 4.2. For f in (4.1) we have

L∇f (X,E) = 4
(
X(XTE) +X(ETX) + E(XTX)− ÂE

− (diag(XET )X + diag(EXT )X + diag(XXT )E)
)
.(4.4)

5. Numerical methods. The problem of interest is

minimize f(X) = ‖A− (I +XXT − diag(XXT ))‖2F(5.1a)

subject to X ∈ Ω :=

{
X ∈ R

n×k :
k∑

j=1

x2
ij ≤ 1, i = 1:n

}
,(5.1b)

where A ∈ R
n×n is a given symmetric matrix. The set Ω is convex. However, since

the objective function f in (5.1a) is nonconvex we can only expect to find a local
minimum, though if we achieve f(X) = 0 we know that X is a global minimizer.

We consider several different numerical methods for solving the problem. We first
consider how to start the iterations. We will take a matrix of a simple, parametrized
form, optimize the parameter, and then show that this matrix yields a smaller function
value than the zero matrix. Let λ be the largest eigenvalue of A, which is at least 1
if A has unit diagonal, which can be assumed without loss of generality. We take for
the starting matrix X(0) a matrix αveT whose columns are all the same multiple of
the eigenvector v corresponding to λ. The scalar α is chosen to minimize f(αveT )
subject to αveT staying in the feasible set Ω. Straightforward computations show
that the optimal α is

αopt = min

{(
(λ− 1)‖v‖22

k‖v‖42 − k
∑

i v
4
i

)1/2

,
1

k1/2 maxi |vi|

}
.
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This X(0) can be inexpensively computed by using the power method or the Lanczos
method to obtain λ and v. Moreover, it is guaranteed to yield a smaller value of f
than the zero matrix if λ > 1 since, from (4.2),

f(αoptve
T ) = 〈Â, Â〉 − 2α2

optk(λ− 1)‖v‖22 + α4
optk

2‖v‖42 − α4
optk

2
∑
i

v4i

= 〈Â, Â〉 − α2
optk

(
2(λ− 1)‖v‖22 − α2

opt

(
k‖v‖42 − k

∑
i

v4i

))
≤ 〈Â, Â〉 − α2

optk

(
2(λ− 1)‖v‖22 − (λ− 1)‖v‖22

)
= 〈Â, Â〉 − α2

optk(λ− 1)‖v‖22 < f(0).

As noted by Anderson, Sidenius, and Basu [3], and as we will see later for some
problem types, minimizing f without the constraintX ∈ Ω may yield a solution of the
constrained problem (5.1). This motivates us to consider first methods that ignore or
only partly incorporate the constraint. The first method is the alternating directions
(or coordinate search) method. Regarding f as a function of just xij we have

f(xij) = const.+ 2
∑
q �=i

(
aiq −

k∑
s=1

xisxqs

)2

,

so

f ′(xij) = 4
∑
q �=i

(−xqj)

(
aiq −

k∑
s=1

xisxqs

)2

= 4

(
−
∑
q �=i

xqjaiq +
∑
q �=i

xqjxijxqj + xqj

∑
s�=j

xisxqs

)

= 4

(
xij

∑
q �=i

x2
qj +

∑
q �=i

xqj

(∑
s�=j

xisxqs − aiq

))
.

Hence f ′(xij) = 0 for

xij =

∑
q �=i xqj

(
aiq −

∑
s�=j xisxqs

)
∑

q �=i x
2
qj

.(5.2)

We can therefore repeatedly minimize over each xij in turn using (5.2). If the new
xij is not in the interval [−1, 1] we project it back onto the interval by reducing
|xij | appropriately, since xij must lie in this interval if it is in Ω. Convergence of
this method to a stationary point of f can be proved under suitable conditions [25,
sect. 8.1], [44]. After the projection step x may nevertheless lie outside Ω if k > 1,
but we do not project onto Ω because this may cause the method not to converge.

Anderson, Sidenius, and Basu [3] propose another method to solve the k factor
problem. For F (X) = I − diag(XXT ) it iteratively generates a sequence {Xi}i≥0

with

Xi = argmin
X∈Rn×k

‖A− F (Xi−1)−XXT‖F .(5.3)
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The minimizer of (5.3) is found by principal component analysis. Let PTΛP be a
spectral decomposition of A−F (Xi−1), with P orthogonal and Λ diagonal with diag-
onal elements in nonincreasing order. Then the minimizer is (in MATLAB notation)

Xi = P (:, 1: k)Λ̃1/2, where Λ̃ = diag(max(λ1, 0), . . . ,max(λk, 0)). Thus just the k
largest eigenvalues and corresponding eigenvectors of A − F (Xi−1) are needed, and
these can be inexpensively computed by the Lanczos iteration or by orthogonally re-
ducing the matrix to tridiagonal form and applying the bisection method followed by
inverse iteration [45, pp. 227 ff.]. This method is also known as the principal factors
method [13, sect. 10.4].

We note that this method is equivalent to the alternating projections method
that generates a sequence {Zi}i≥0 with Zi = PS(PU (Zi−1)), where PS and PU are
projection operators onto the sets

U := {W ∈ R
n×n : wij = aij for i 	= j},

S := {W ∈ R
n×n : W = XXT for some X ∈ R

n×k}.
The projection PS(Z) is formed by the construction described in the previous para-
graph. With X0 = Z0, the equivalence between the {Xk} and the {Zk} is given by
Zi ≡ XiX

T
i .

Although this method has been successfully used [3], [22] it is not guaranteed to
converge. The standard convergence theory [9] for the alternating projections method
is not applicable since the set S is not convex for k < n and the sets U and S do not
have a point in common unless the objective function f is zero at the global minimum.

Since there is no guarantee that the final iterates of the alternating directions and
principal factors methods lie in the feasible set Ω, we project onto this set after the
computation. To project an n× k matrix Y with rows yTi onto Ω we simply replace
any row yTi such that ‖yi‖2 > 1 by yTi /‖yi‖2. We denote this projection by P (Y ).

The next method solves the full, constrained problem (5.1) and generates a se-
quence of matrices that is guaranteed to converge r-linearly to a stationary point of
(5.1). Introduced by Birgin, Mart́ınez, and Raydan [4], [5], the spectral projected
gradient method aims to minimize a continuously differentiable function f : Rn → R

on a nonempty closed convex set. The method has the form xk+1 = xk +αkdk where
dk is chosen to be P (xk − tk∇f(xk)) − xk, with tk > 0 a precomputed scalar. The
direction dk is guaranteed to be a descent direction [4, Lem. 2.1] and the scalar αk is
selected by a nonmonotone line search strategy. The cost per iteration is low for our
problem because the projection P is inexpensive to compute. An R implementation
of the method is available [48].

Our analysis in the previous sections suggests applying a Newton method to our
problem since the gradient and the Hessian are explicitly known and can be computed
in a reasonable time. As the constraints defining Ω in (5.1b) are nonlinear for k > 1
we distinguish here between the one factor case and the k factor case.

For k = 1 we use the routine e04lb of the NAG Toolbox for MATLAB [33],
which implements a globally convergent modified Newton method for minimizing a
nonlinear function subject to upper and lower bounds on the variables; these bounds
allow us to enforce the constraint (5.1b). This method uses the first derivative and
the Hessian matrix.

For k > 1 we apply the routine e04wd of the NAG Toolbox for MATLAB, which
implements an SQP method. This routine deals with the nonlinear constraints (5.1b)
but does not use the Hessian. In order to have an unconstrained optimization method
that we can compare with the principal factors method, we apply the function fminunc
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Table 5.1

Summary of the methods, with final column indicating the available convergence results (see
the text for details).

Method Required derivatives Constraints satisfied? Convergence?
AD none needs final projection for k > 1 yes
PFM none needs final projection for all k no result
SPGM gradient yes r-linear
Newt1 (k = 1) gradient, Hessian yes quadratic
Newt2 (k > 1) gradient, Hessian needs final projection for all k quadratic
SQP (k > 1) gradient yes quadratic

of the MATLAB Optimization Toolbox [34], which implements a subspace trust region
method based on the interior-reflective Newton method. This algorithm uses the first
derivative and the Hessian. As for the principal factors method, if necessary we project
the final iterate onto the feasible set Ω to satisfy the constraints.

We will use the following abbreviations for the methods:
• AD: alternating directions method.
• PFM: principal factors method.
• SPGM: spectral projected gradient method.
• Newt1: e041b.
• Newt2: fminunc.
• SQP: e04wd.

We summarize the properties of the methods in Table 5.1.

6. Computational experiments. Our experiments were performed in MAT-
LAB R2007a using the NAG Toolbox for MATLAB Mark 22.0 on an Intel Pentium 4
(3.20 GHz). In order to define the stopping criterion used in all the algorithms we first
introduce an easy to compute measurement of stationarity. We define the function
q : Rn×k �→ R

n×k by

q(X) = P
(
X −∇f(X)

)−X.

It can be shown that a point X∗ ∈ Ω is a stationary point of our problem (5.1) if and
only if q(X∗) = 0 [10, (2.6)]. The stopping criterion is

‖q(X)‖F ≤ tol,(6.1)

where tol will be specified for the individual tests below. We use the same notation
and criterion when no constraints are imposed, in which case P is the identity and
q(x) reduces to the gradient −∇f(X).

Since the final iterates of these methods may not be in the feasible set Ω, prior to
our enforced projection onto it, we introduce a measurement of constraint violation
at a point X , given by the function v : Rn×k → R with

v(X) =

n∑
i=1

max
(‖yi‖22 − 1, 0

)
, XT = [y1, . . . , yn].(6.2)

Our test matrices are chosen from five classes.
• expij: The correlation matrix (e−|i−j|)ni,j=1 occurring in annual forward rate
correlations associated with LIBOR models [2], [7, sect. 6.9].
• corrand: A random correlation matrix generated by gallery(’randcorr’,

n).
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Table 6.1

Results for the random one factor problems with tol = 10−3.

t it itsd dist nq v t it itsd dist nq v
n = 100 n = 2000

corrand, dist0=5.6646, nq0=8e-2 corrand, dist0=26.006, nq0=5e-3
AD 0.22 110 78 5.6642 9e-4 0 3.3 5.2 1.5 26.006 9e-4 0
PFM 0.09 10 5.4 5.6642 8e-4 0 68 1.1 0.2 26.006 2e-4 0
Newt1 0.02 4.7 2.4 5.6643 3e-4 0 23 1.8 0.4 26.006 6e-4 0
SPGM 0.11 57 29 5.6642 6e-4 0 9.8 5.2 0.8 26.006 8e-4 0

corkfac, dist0=0.3697, nq0=6e0 corkfac, dist0=0.3718, nq0=3e1
AD 0.01 5.0 0.6 2.25e-5 4e-4 0 3.1 5.2 0.6 5.06e-6 4e-4 0
PFM 0.03 3.0 0 4.03e-5 6e-4 0 15 2.2 0.3 1.56e-6 1e-4 0
Newt1 0.01 2.0 0 1.45e-7 3e-6 0 16 2.0 0 1.5e-11 1e-9 0
SPGM 0.02 6.0 1.2 2.67e-5 3e-4 0 11 4.6 0.9 7.72e-6 4e-4 0

randneig, dist0=43.606, nq0=6e2 randneig, dist0=824.13, nq0=2e4
AD 0.01 5.9 0.3 40.398 3e-4 0 3.8 7.2 1.3 815.79 5e-4 0
PFM 0.03 3 0.2 40.418 6e-4 3 22 3.0 0 815.81 2e-6 15
Newt1 0.16 61.9 5.2 40.398 1e-4 0 4167 1222 22 815.79 2e-6 0
SPGM 0.02 6.0 0.0 40.398 5e-4 0 9.4 7.2 0.4 815.79 2e-4 0

• corkfac: A random correlation matrix generated by A = diag(I − XXT ) +
XXT where X ∈ R

n×k is a random matrix with elements from the uniform
distribution on [−1, 1] that is then projected onto Ω. Here the objective
function f is zero at the global minimum.
• randneig: A symmetric matrix generated by A = 1

2 (B + BT ) + diag(I − B)
where B is the first matrix out of a sequence of randommatrices with elements
from the uniform distribution on [−1, 1] such that A has a negative eigenvalue.
• cor1399: A symmetric, unit-diagonal matrix constructed from stock data
provided by a fund management company. It has dimension n = 1399 and
is highly rank-deficient but not positive semidefinite. This matrix was also
used in [6], [18].

6.1. Test results for k = 1. We first consider the one factor case. Each method
was started with the rank one matrix defined at the start of section 5.

In Tables 6.1 and 6.2 we report results averaged over 10 instances of each of the
three classes of random matrices for n = 100 and n = 2000 with tolerance tol = 10−3

and tol = 10−6, respectively. Table 6.3 gives the results for the matrix cor1399 with
tolerance tol = 10−3. We use the following abbreviations:

• t: mean computational time (seconds).
• it: mean number of iterations.
• itsd: standard deviation of the number of iterations.
• dist0: mean initial value of f(X)1/2.
• dist: mean final value of f(X)1/2 after the final projection onto the feasible
set.
• nq0: mean initial value of ‖q(X)‖F .
• nq: mean final value of ‖q(X)‖F before the final projection onto the feasible
set.
• v: mean final value of v(X) before the final projection onto the feasible set.

For the method AD one iteration is defined to be a sweep over which the objective
function f is minimized over each coordinate direction in turn.

Several comments can be made on Tables 6.1–6.3.
1. The values of v in (6.2) are all zero except for PFM on the randneig matrices,

where the final projection onto Ω causes dist for the accepted X to exceed that for the
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Table 6.2

Results for the random one factor problems with tol = 10−6.

t it itsd dist nq v t it itsd dist nq v
n = 100 n = 2000

corrand, dist0=5.6646, nq0=8e-2 corrand, dist0=26.006, nq0=5e-3
AD 0.72 393 188 5.6642 9e-7 0 3938 7282 1653 26.006 9e-7 0
PFM 0.32 31 13 5.6642 8e-7 0 827 18 5.4 26.006 8e-7 0
Newt1 0.02 7.2 2.5 5.6643 2e-8 0 36 5.0 1.6 26.006 6e-7 0
SPGM 0.22 128 44 5.6642 6e-7 0 638 760 546 26.006 8e-7 0

corkfac, dist0=0.3632, nq0=6e0 corkfac, dist0=0.3718,nq0=3e1
AD 0.02 9.8 0.5 2.73e-8 4e-7 0 6.1 9.2 2.4 8.73e-9 7e-7 0
PFM 0.06 5.6 0.5 3.19e-8 4e-7 0 21 3.2 0.4 3.91e-9 3e-7 0
Newt1 0.01 3.0 0 1.8e-14 4e-13 0 15 2.0 0 1.5e-11 1e-9 0
SPGM 0.03 9.9 2.0 1.97e-8 2e-7 0 13 8.2 2.4 6.88e-9 3e-7 0

randneig, dist0=43.606, nq0=6e2 randneig, dist0=824.13, nq0=2e4
AD 0.02 8.6 0.5 40.398 4e-7 0 3.4 10.0 0 815.79 3e-7 0
PFM 0.06 5.0 0 40.418 2e-7 3 19.0 4.0 0 815.81 1e-9 15
Newt1 0.09 61 5.7 40.398 1e-7 0 4171 1222 22 815.79 2e-6 0
SPGM 0.02 9.0 0 40.398 1e-7 0 11 9.6 0.5 815.79 2e-7 0

Table 6.3

Results for the one factor problem for cor1399 with tol = 10−3 and tol = 10−6.

t it dist nq v t it dist nq v

tol = 10−3 tol = 10−6

cor1399, dist0=118.7753, nq0=9e0
AD 1.08 6.0 118.7752 2e-4 0 1.80 10.0 118.7752 5e-7 0
PFM 0.96 2.0 118.7752 6e-5 0 1.31 3.0 118.7752 2e-7 0
Newt1 8.16 2.0 118.7752 5e-10 0 8.16 2.0 118.7752 5e-10 0
SPGM 4.83 7.0 118.7752 2e-5 0 5.67 10.0 118.7752 9e-7 0

other methods. Except in these cases the mean function values of the final iterates
of the methods do not differ significantly. In particular, for the corkfac matrices the
sequences appear to approach the global minimum. Except for the randneig problems
all the constraints are inactive at the computed final iterates, so by Theorem 3.4 the
matrices C(X) have full rank. For the randneig problems about half the constraints
are inactive, and this number is slightly bigger for the matrix returned by PFM than
for the other methods.

2. None of the methods always outperforms the others in computational time.
The relative performance of the individual methods depends on the tolerance, the
problem size and the problem type. AD performs very well for tol = 10−3 but is
the least efficient method for the corrand matrices with tol = 10−6. Turning to
the problem size, for tol = 10−3 an increased n gives a bigger time advantage of
AD over the other two methods, which is due to the remarkably low number of
approximately 4n2 operations taken by AD for each iteration, compared with the
Newton method Newt1, which requires O(n3) operations. Finally, the efficiency of
the methods depends on the matrix type, as can be seen for n = 2000 in Table 6.2,
where in execution time the first three methods rank exactly in the reverse order for
the corrand matrices compared with the randneig matrices. For the latter matrices,
many steps appear to be required to approach the region of quadratic convergence for
the Newton method.

3. Interestingly, PFM, for which we do not have a convergence guarantee, shows
robust behavior in terms of the required number of iterations and is clearly the best
method on the cor1399 matrix. It satisfies the stopping criterion in these tests in a
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few iterations for every problem instance. However, we found that for small problem
sizes PFM can show very poor convergence, as illustrated by the matrix

A =

⎡⎢⎢⎢⎣
1.0000 1.0669 −1.0604 0.4903 0.9747
1.0669 1.0000 3.2777 0.3914 1.0883
−1.0604 3.2777 1.0000 1.1075 0.8823
0.4903 0.3914 1.1075 1.0000 1.0431
0.9747 1.0883 0.8823 1.0431 1.0000

⎤⎥⎥⎥⎦ .(6.3)

For the corresponding two factor problem PFM requires 11,415,465 iterations to sat-
isfy the stopping criterion (6.1) with tol = 10−3. This matrix was found after just
22 function evaluations using the implementation mdsmax [17] of the multidirectional
search method of Torczon [43] to maximize the number of iterations required by PFM.
This is in contrast to maximizing the iterations taken by SPGM for a two factor prob-
lem with the same problem size, yielding after 2000 function evaluations in mdsmax a
matrix requiring only 118 iterations.

6.2. Choice of starting matrix, and performance as k varies. Now we
present an experiment that compares different choices of starting matrix and also
investigates the effects on algorithm performance of increasing k. Anticipating the
results of the next subsection, we concentrate on the SPGM method. We consider
four choices of starting matrix.

• Rank1mod: The matrix obtained from one iteration of the AD method start-
ing with the rank one matrix defined at the start of section 5. The reason for
using the AD method in this way is that the rank one matrix alone is prone
to yielding no descent for k > 1.
• PCA: This rank r matrix, where r is a parameter, is obtained by “modified
principal component analysis” as described, for example, in [35]. Let A =
QΛQT be a spectral decomposition with Λ = diag(λi) and λn ≥ λn−1 ≥
· · · ≥ λ1. The starting matrix is X0 = DQΛ1/2

[
Ir
0

] ∈ R
n×r, where the

diagonal matrix D is chosen such that every row of X0 is of unit 2-norm
(except that any zero row is replaced by [1, 0, . . . , 0]T ).
• NCM: The nearest correlation matrix, computed using a preconditioned New-
ton method [6], [36]. This choice of starting matrix is suggested in [28].
• Prevk rank1 and Prevk avge: These choices are applicable only when we
solve the problem for k = 1, 2, . . . in turn. We use the solution Xk−1 of
the k − 1 factor problem as our starting matrix for the k factor problem
by appending an extra column. For Prevk rank1, the extra column is that
given by Rank1mod for k = 1 applied to the matrix A ← A−Xk−1Xk−1 +
diag(Xk−1Xk−1); for Prevk avge, the last column is obtained as the aver-
aged values of each row of Xk−1. Where necessary, the resulting matrix is
projected onto the feasible set.

With n = 500, we took the matrix expij and 10 randomly generated matrices
of type randneig and ran SPGM with each of the starting matrices, for a number of
factors k ranging from 1 to 280 for expij and from 1 to 30 for randneig. Figures 6.1
and 6.2 show the results for randneig (averaged over the 10 matrices) and expij, re-
spectively. The tolerance is 10−3 and the times shown include the time for computing
the starting matrix, except in the case of Prevk rank1 and Prevk avge.

For randneig, Prevk avge yields a larger final function value than the other start-
ing matrices, and one that does not decay with k. The best of the five starting matrices
for k > 1 in terms of run time and achieved minimum is clearly NCM; interestingly,
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Fig. 6.1. Comparison of different starting values for matrices of type randneig: k against final
objective function value (left) and time (right).
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Fig. 6.2. Comparison of different starting values for matrices of type expij: k against final
objective function value (left) and time (right).

the cost of computing it is relatively small. For k = 1 the Rank1mod matrix is as
good a starting matrix as NCM and is less expensive to compute.

The time to solution as a function of k clearly depends greatly on the type of
matrix. These two examples also indicate that the minimum may quickly level off as
k increases (randneig) or may steadily decrease with k (expij).

6.3. Test results for k > 1. We now repeat the tests from section 6.1 with
values of k greater than 1. The starting matrix was NCM in every case. We averaged
the results over 10 instances of each of the three classes of random matrices for n =
1000 and k = 2, 6 and summarize the results in Table 6.4 for tol = 10−3 and Table 6.5
for tol = 10−6. We make several comments.

1. The results for SQP are omitted from the tables because this method was
not competitive in cost, although it did correctly solve each problem. In every case
it was at least an order of magnitude slower than SPGM, and was about 2000 times
slower on the corkfac matrices.
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Table 6.4

Results for the random k factor problems with tol = 10−3.

t it itsd dist nq v t it itsd dist nq v
k = 2 k = 6

corrand, dist0=18.29, nq0=7.93 corrand, dist0=18.29, nq0=13.6
AD 17 75 42 18.24 9e-4 0 95 114 60 18.13 9e-4 0
PFM 13 3.1 2.8 18.24 6e-4 0 8.2 3.2 0.6 18.13 5e-4 0
Newt2 11 9 2 18.24 7e-4 0 19 9 2.3 18.13 3e-4 0
SPGM 4 39 43 18.24 8e-4 0 4.6 45 19 18.13 8e-4 0

corkfac, dist0=8.54e-1, nq0=41.5 corkfac, dist0=1.57, nq0=46.2
AD 1.6 7 0 1.7e-5 7e-4 0 5.8 7 0 3.3e-5 8e-4 0
PFM 0.9 2 0 1.3e-5 4e-4 0 2.6 3 0 1.0e-6 2e-5 0
Newt2 2.0 2 0.6 4.9e-6 2e-4 0 3.1 3.9 0.3 1.6e-5 4e-4 0
SPGM 1.6 7 0 1.2e-5 3e-4 0 1.6 8 0.7 2.9e-5 5e-4 0

randneig, dist0=408.4, nq0=4.2e-1 randneig, dist0=408.0, nq0=2.8e-1
AD 101 431 156 408.7 9e-4 21.8 2.4e4 2.9e4 4.8e4 421.0 1e-3 121
PFM 4.2 5.0 0.9 408.7 2e-4 30.9 6.9 7.4 2.3 420.9 6e-4 127
Newt2 28 14 3.8 408.7 4e-4 30.9 121 28 10 420.9 3e-4 127
SPGM 161 1270 638 407.6 8e-4 0 71 783 447 407.3 9e-4 0

Table 6.5

Results for the random k factor problems with tol = 10−6.

t it itsd dist nq v t it itsd dist nq v
k = 2 k = 6

corrand, dist0=18.29, nq0=7.9 corrand, dist0=18.29, nq0=13.6
AD 1072 4540 4465 18.24 1e-6 0 1657 1982 1740 18.13 1e-6 0
PFM 127 24 20 18.24 8e-7 0 33 13 8.9 18.13 7e-7 0
Newt2 61 20 14 18.24 4e-7 0 49 18 9 18.13 7e-7 0
SPGM 52 507 513 18.24 8e-7 0 30 312 230 18.13 8e-7 0

corkfac, dist0=8.54e-1, nq0=41.5 corkfac, dist0=1.57, nq0=46.2
AD 2.8 12 0 1.1e-8 4e-7 0 10.0 12 0 2.0e-8 4e-7 0
PFM 1.5 4 0 1.3e-9 4e-8 0 3.1 4 0 2.2e-8 4e-7 0
Newt2 3.3 5 0.6 4.1e-9 1e-7 0 5.3 6.6 0.5 1.6e-8 3e-7 0
SPGM 2.0 10 1.3 8.0e-9 2e-7 0 2.1 13 0.7 1.7e-8 4e-7 0
SQP 788 44 12 1.4e-8 4e-7 0 3473 64 11 3.1e-8 5e-7 0

randneig, dist0=408.4, nq0=4.2e-1 randneig, dist0=408.0, nq0=2.8e-1
AD 195 826 318 408.7 9e-7 21 7e4 8.6e4 1.4e5 421.0 1e-6 121
PFM 7.3 8.6 2.1 408.7 4e-7 31 13 14 4.4 420.9 5e-7 127
Newt2 59 36 9.5 408.7 6e-5 31 165 48 16.4 420.9 1e-4 127
SPGM 454 2882 2514 407.6 8e-7 0 295 3205 1576 407.3 9e-7 0

2. As for k = 1, the values of v in (6.2) are all zero except for the randneig prob-
lems, where these values for the methods disregarding the constraints (1.3) (namely,
AD, PFM, Newt2) are significantly greater than the convergence tolerance. For AD,
therefore, projecting the components of x onto [−1, 1] does not ensure feasibility.
Moreover, the methods AD, PFM, and Newt2 return a final iterate for k = 6 and
randneig for which the mean function value is noticeably greater than the mean ini-
tial function value, caused by the projection onto the feasible set Ω at the end of
the computation. This represents a serious failure of the minimization and shows the
importance of properly treating the constraints within the method for the randneig
problems.

3. SPGM is clearly the preferred method in terms of efficiency combined with re-
liability.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

NEAREST CORRELATION MATRIX WITH FACTOR STRUCTURE 2621

7. Conclusions. We have obtained new theoretical understanding of the factor-
structured nearest correlation matrix problem, particularly through explicit results
for the one parameter and one factor cases. Our original motivation for studying this
problem came from the credit basket securities application in [3] and the knowledge
that the principal factors method has been used in the finance industry, despite the
fact that it ignores the nonlinear problem constraints (5.1b). Our experiments have
shown that this method, along with alternating directions and fminunc, often per-
forms surprisingly well—partly because the constraints are often not active at the solu-
tion. However, all three methods can fail to solve the problem, as the randneig matri-
ces show. Moreover, the principal factors method is not supported by any convergence
theory. Our conclusion is that the spectral projected gradient method is the method
of choice. It has guaranteed convergence, benefits from the ease with which iterates
can be projected onto the convex constraint set, and because of the nonmonotone line
search strategy can avoid narrow valleys at the beginning of the convergence process.
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1 (2009), pp. 95–100.

[13] J. E. Gentle, Elements of Computational Statistics, Springer-Verlag, New York, 2002.
[14] P. Glasserman and S. Suchintabandid, Correlation expansions for CDO pricing, J. Banking

Finance, 31 (2007), pp. 1375–1398.
[15] J. Gregory and J.-P. Laurent, In the core of correlation, Risk, 17 (2004), pp. 87–91.
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