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Philip K. Maini*, Robert A. Gatenby', and Kieran Smallbone

Abstract

We use a range of mathematical modelling techniques to explore the acid-
mediated tumour invasion hypothesis. The models make a number of predictions
which are experimentally verified. The therapeutic implications, namely either
buffering acid or manipulating the phenotypic selection process, are described.

Mathematics Subject Classification (2010). 92C50

Keywords. Carcinogenesis — Glycolytic phenotype — Mathematical modelling

1. Biological Background

Cancer cell populations are extremely heterogeneous, displaying a wide range of
genotypic and phenotypic differences [7]. For example, studies of clinical breast
cancers have shown that every cell line exhibited a novel genotype, meaning
no prototypic cancer cell can be defined. It is likely that several of the lethal
phenotypic traits of cancer are not the direct result of genetic changes, but
rather arise from the unique physiological environments of tumours.

The tumour microenvironment is significantly different from that of nor-
mal tissue. Marked fluctuations can be seen in glucose, lactate, acidic pH and

*Philip K. Maini, Centre for Mathematical Biology, Mathematical Institute, 24-29 St
Giles’, Oxford, OX1 3LB, UK and Oxford Centre for Integrative Systems Biology, Department
of Biochemstry, South Parks Road, Oxford OX1 3QU. E-mail: maini@maths.ox.ac.uk.

TRobert A. Gatenby, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612,
USA. E-mail: robert.gatenby@moffitt.org,

{Kieran Smallbone, Manchester Centre for Integrative Systems Biology, Manchester In-
terdisciplinary Biocentre, 131 Princess Street, Manchester, M1 7DN, UK.

E-mail: kieran.smallbone@manchester.ac.uk.

PKM was partially supported by a Royal Society-Wolfson Merit award. PKM and RAG
were partially supported by NIH grant 1U54CA143970-01. KS acknowledges the support of
the BBSRC/EPSRC grant BB/C008219/1 “The Manchester Centre for Integrative Systems
Biology (MCISB)”.



3092 Philip K. Maini et al.

oxygen tensions. These variations have their roots both in poor perfusion and
metabolic changes. The chaotic vasculature of tumours creates an unbalanced
blood supply. As a consequence, many regions within tumours are found to be
transiently or chronically hypoxic (poorly oxygenated). Cells respond to peri-
ods of hypoxia by converting to anaerobic metabolism, or glycolysis, which in
turn produces lactic acid and brings about lower tissue pH. However, the pio-
neering work of Warburg [22] showed that tumour acidification can occur in-
dependently of hypoxia. The increased reliance on glycolysis to produce energy
in many aggressive tumours occurs even in the presence of sufficient oxygen.
Thus acidification is an intrinsic property of both poor vasculature and altered
tumour cell metabolism.

The constitutive adoption of increased aerobic glycolysis is known as the
glycolytic phenotype. The inefficiency of this anaerobic metabolism is compen-
sated for through a several-fold increase in cellular glucose consumption. This
phenomenon is now routinely exploited for tumour imaging through fluoro-
deoxyglucose positron emission tomography (FDG-PET). PET has confirmed
that the vast majority (> 90%) of human primary and metastatic tumours
demonstrate increased glucose uptake indicating abnormal metabolism. Fur-
thermore, PET has been used to show a direct correlation between tumour
aggressiveness and the rate of glucose consumption [4].

The presence of the glycolytic phenotype in the malignant phenotype of
such a wide range of cancers seems inconsistent with an evolutionary model of
carcinogenesis. Due to the Darwinian dynamics at play, it is reasonable to as-
sume the common appearance of a specific phenotype within a large number of
different cancer populations is evidence that it must confer a significant growth
advantage. However, the proliferative advantages gained from altered glucose
metabolism are far from clear. Firstly, anaerobic metabolism is more than an
order of magnitude less efficient than its aerobic counterpart, producing only 2
ATP molecules per glucose molecule in comparison to approximately 36 ATP
molecules. Secondly, the hydrogen ions produced as a result of glycolysis cause
a consistent acidification of the extracellular space that is toxic [17]. Intuitively,
one would expect the Darwinian forces prevailing during carcinogenesis to se-
lect against this inefficient and environmentally toxic phenotype, in favour of
more optimal metabolic regimes.

Gatenby and Gillies [11] propose that evolution of aerobic glycolysis is the
result of environmental constraints imposed by the morphology of the ducts in
which premalignant lesions evolve. Initially, normal epithelial cells grow along a
basement membrane, with the epithelial layer at most a few cells thick. Home-
ostasis mechanisms do not normally allow growth of these cells away from the
basement membrane. However, following initial genetic events in the carcino-
genesis pathways such as those depicted by the Fearon-Vogelstein model [6], the
cells become hyperplastic, leading to a thickening of the epithelial layer, push-
ing cells into the lumen and away from the membrane. Since the blood vessels
remain outside the basement membrane, nutrients and waste must diffuse over
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longer and longer distances. As a result, it is likely that hyperplastic cells beyond
the Thomlinson-Gray limit of 100-150 um [21] from the basement membrane
will experience profound hypoxia, which will initiate a sequence of critical cel-
lular adaptations and environmental changes. Specifically, it is proposed that
hypoxia leads to constitutive upregulation of glycolysis which, in turn, results
in increased H* production and acidification of the microenvironment. This
decreased extracellular pH (pHx) is toxic to the local populations, in turn se-
lecting for cells that are resistant to acid-induced toxicity. Acidosis also selects
for motile cells that eventually breach the basement membrane, gaining access
to existing and newly formed blood and lymphatic routes for metastasis.

Gatenby and Gawlinski [10] point out that the tumour phenotype that
emerges from the sequence above, constitutively increasing acid production
and becoming resistant to acid-induced toxicity, has a powerful growth advan-
tage over its normal counterparts. They propose that acidity may play a key
role in mediating tumour invasion. The key idea is that the transformed tu-
mour metabolism with increased use of glycolysis and acid secretion alters the
microenvironment by substantially reducing tumour extracellular pH, usually
by more than 0.5 pH units. The H* ions produced by the tumour then diffuse
along concentration gradients into the adjacent normal tissue. This acidification
leads to death of normal cells; tumour cells, however, are relatively resistant
to acidic pHx. Whilst normal cells die in environments with a persistent pH
below about 7, tumour cells typically exhibit a maximum proliferation rate in
a relatively acidic medium (pH 6.8) [3]. As a result, the tumour edge can be
seen as forming a travelling wave progressing into normal tissue, preceded by
another travelling wave of increased microenvironmental acidity.

2. Continuum Modelling Approaches

Population ecology methods provide a means for examining tumours, not as an
isolated collection of transformed cells, but rather as an invading species in a
previously stable multicellular population. Gatenby and Gawlinski [10] model
the tumour-host interface as a network of interacting normal and malignant cell
populations, using coupled, non-linear differential equations. The interactions
are then explored to define the crucial parameters that control tumourigenesis
and to demonstrate the limitations of traditional therapeutic strategies.
Tumour cell populations, as with any invading population in biology, must
directly perturb their environment in such a way as to facilitate their own
growth while inhibiting the growth of the original community. The commonal-
ity of altered tumour metabolism, in particular the adoption of the glycolytic
phenotype in most cancers, led Gatenby and Gawlinski to propose the acid-
mediated tumour invasion hypothesis outlined above. The authors propose that
tumour cells’ increased acid secretion, coupled with their resistance to low extra-
cellular pH, may provide a simple but complete mechanism for cancer invasion.
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The hypothesis is modelled as a system of three coupled partial differential
equations (PDEs), determining the spatio-temporal distribution of three fields:
the normal tissue density N7, the tumour tissue density N,, and the concentra-
tion of excess hydrogen ions L. The model includes: (1) logistic cellular growth;
(2) normal cell death due to exposure to acid; (3) acid production by tumour
cells; (4) acid reabsorption and buffering; and (5) spatial diffusion of acid and
cells. It takes the form

aNl Nl

1 = 5 - — ) —d{LNy, 1
5 1Ny (1 K1> 1LNp (1)
AN, N, ( Nl) ]

—= = -z DoV [ {1—- 22 VN, 2
ot ”N"’(l K2> + LD [ K, 2 (2)
—aaf r3Ny — dsL + D3V, (3)

where 71 and 77 are the growth rates of the normal and tumour cell populations,
respectively, K1 and K their carrying capacities, D5 scales the diffusion coeffi-
cient for tumour cells, d; is the normal cell susceptibility to acid, 3 the rate of
hydrogen ion production by tumour cells, d3 the combined rate of acid removal
by blood vessels and buffering, and Ds the diffusion coefficient for hydrogen
ions in tissue. Notice that there is no normal cell diffusion within the model,
in recognition of the fact that healthy tissue is well-regulated and participating
normally in an organ. Notice also that the tumour diffusion coefficient is con-
structed such that when normal tissue is at its carrying capacity, the diffusion
coefficient for tumour tissue is zero and the tumour is confined. This final as-
sumption is at the heart of the model: tumour tissue is unable to spread without
first diminishing the surrounding healthy tissue from its carrying capacity.
In non-dimensional form, Egs. (1)-(3) become

om = m(l—m)—biAn, (4)
or
% = p2m(l —m) + AoV - [(1 - m)Ven), (5)
O sym—A)+ V20 (6)
or

The system has four spatially-homogeneous steady states:

e 771 =0, 772 = 0: the trivial solution.

e m =1, 72 = 0: corresponding to normal healthy tissue with no tumour
cells present.

e m = 1—4;, n2 = 1: corresponding to tissue consisting of both normal
and tumour cells at an intermediate level, which may be interpreted as a
less aggressive (but invasive) tumour. (Note that this is only biologically
realistic for non-negative values of the density).

e 11 = 0, 772 = 1: corresponding to total tumour invasion.

S— - 1
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Linear stability analysis [15] shows us that the trivial state and the state corre-
sponding to normal cells alone are unconditionally unstable. Both the invasive
state and the coexisting state are conditionally, but mutually exclusively, sta-
ble. The critical parameter is found to be b1 = dirsKy/dsry. Depending on
the value of this dimensionless parameter, either the steady state for total de-
struction of normal tissue (6, > 1) or the steady state with the tumour and
normal cells coexisting (6; < 1) is stable. Thus as the value of d1 passes through
the critical value of 1, the entire system will change from a less aggressive to
a more aggressive invasive pattern. For example, increased tumour vascularity
will increase K, and push the system to an unstable steady state. A detailed
analytical study of this system reveals a rich variety of wave propagation dy-
namics with fast and slow waves [5].

Late-time travelling wave solutions [15] to Egs. (4)-(6) are computed in
Fig. 1. The first point of note is that the model predicts a smooth pH gradient
extending from the tumour edge into the peritumoural tissue. The authors re-
analyse data presented by Martin and Jain [12] relating to in vivo interstitial
pH profiles for the VX2 rabbit carcinoma and its surrounding normal tissue,
demonstrating that the data are consistent with the presence and approximate
range of the pH gradient predicted by the model. Most significantly, however,
the model predicts that (when §; > 1) there exists a previously unrecognised
acellular gap separating the advancing tumour and receding host tissue fronts.
In subsequent in vitro experiments, the authors found that, of 21 specimens of
human squamous cell carcinoma of the head and neck, 14 were judged to show
such a gap. Naked nuclei and morphologically disrupted cells were frequently
observed scattered within the gap, or at its edge, as predicted by the model [10].

The GG model focuses on malignant invasion and not transition from be-
nign to malignant states. This issue is addressed in [19, 20], in a model in which
this transition occurs as a critical parameter breaches a bifurcation value. This
is consistent with data [ showing that the acquisition of the angiogenic pheno-
type radically and abruptly alters the tumour growth pattern from non-invasive,
slow growth to rapidly expanding, invasive growth.

3. Hybrid Modelling Approaches

Despite the apparent success of Gatenby and Gawlinski’s model in examin-
ing large, clinically apparent tumours, its relevance to early tumour growth
is not clear. Continuous partial differential equation models are well suited
to modelling large populations, but individual-based models such as cellular
automata (CA) are more appropriate when the evolutionary dynamics of in-
dividual cells must be considered. However, traditional CA methods lack the
ability to deal with continuously varying elements such as substrate diffusion
and utilisation. Thus, hybrid CA have been developed to investigate early can-
cer development [2, 16].
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0.2} N J

(b) :

Figure 1. (From Egs. (4)~(6).) Late-time travelling wave solutions to Gatenby and
Gawlinski’s model, with respect to the moving coordinate ¢ = & — cr. Waves are
propagating from left to right and parameter values used are pp = 1, Ay = 4 x 10™5
and J;3 = 70. (a) The invasive case with §; = 12.5 > 1. Notice the formation of
an acellular gap separating the advancing tumour (n2) and receding host tissue (m)
fronts. (b) The “benign” case with §; = 0.5 < 1. Notice the coexistence of tumour
and host tissue behind the wave front. In both cases there is a smooth pH gradient
(A) extending from the tumour edge into the surrounding normal tissue.
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The cellular automaton model used here [18] is composed of an M x N array
of automaton elements with a specific rule-set governing their evolution, as well
as glucose (g), oxygen (c) and H* (h) fields, each satisfying reaction-diffusion
equations. A two-dimensional automaton is used as we focus on growth away
from the basement membrane, rather than along the duct. In the model we
reflect the avascular geometry of premalignant epithelia by assuming that one
edge of the array represents the basement membrane.

We consider the selective pressures placed on a number of different possi-
ble tumour phenotypes. Initially, the automaton consists of a single layer of
normal epithelial tissue. As well as proliferation and death, these cells may ran-
domly undergo three possible heritable changes, either through mutations or
epigenetic changes such as alterations in the methylation patterns of promoters.
The cells may become hyperplastic (allowing growth away from the basement
membrane), glycolytic (increasing their rate of glucose uptake and utilisation)
or acid-resistant (requiring a lower extracellular pH to induce toxicity). These
three changes give rise to 2% = 8 different phenotype combinations, and thus
eight competing cellular populations.

Cellular metabolism Suppose that a cell consumes glucose and oxygen at
rates ¢4 and ¢, respectively, and that they are used to produce ATP and H*
at rates ¢, and ¢p. In non-dimensional form, we have

o = {4, e ™
e = ¢ (8)
¢a = cH+n(¢py—c), (9)
d)h = d)g—c, (10)

subject to the condition ¢4 > c.

Metabolite profiles After each automaton generation, the known rates of
metabolite consumption and production for each cell are used to calculate the
corresponding metabolite profiles. Note that metabolite diffusion time-scales
(~minutes) are much shorter than the cellular proliferation time-scale (~days),
and thus we may assume that metabolites are in equilibrium at all times. As-
suming that diffusion is the primary method for metabolite movement within
the tissue, profiles are given in non-dimensional form by

d2Vic = ¢, (12)
Vih = —¢n, (13)
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which may be solved on the square grid using a finite difference approximation.
As boundary conditions, we assume zero flux at the edge furthest from the
basement membrane (as there are no sources or sinks beyond this point), and
periodic boundary conditions at the two sides. At the membrane, we assume
glucose and oxygen are fixed at their normal levels go; = co; = 1 (as the
stroma is well-vascularised); H' is also fixed, ho,; = hx, where the parameter
hx reflects the level of systemic acidosis.

Cell dynamics Cells may proliferate, adapt or die, and cells with different
phenotypic patterns respond to the microenvironmental pressures in different
ways. As such, competition is incorporated into the model: for a new population
to progress and grow, it must successfully compete for space and resources
with existing populations. The rules governing the evolution of the automaton
elements are as follows:

e If the amount of ATP produced by a cell (¢,) falls below a critical thresh-
old value, ag, it dies, and the element becomes empty; ag represents the
level of ATP required for normal cellular maintenance.

e The local H* level may also induce cellular death, with probability pgea,
defined by

| h/hN in a normal cell (14)
Pdea =1 p, /hr in an acid-resistant cell

where hy < hr. Thus the probability of cell death increases with acidity,
and the cell will always die if the H* level is greater than An or Ay,
dependent on the cell type under consideration.

o If the cell is not attached to the basement membrane, and is not hyper-
plastic, it dies.

o If the cell does not die through any of the mechanisms above, it either
attempts to divide, with probability pgiv, or becomes quiescent. The prob-
ability of division is a function of the cellular ATP production

Paiv = (#a — a0)/(1 = ag). (15)

Hence we assume that the probability of division is proportional to the
ATP generated that is not needed for maintenance. If there is more than
one neighbouring empty space, the new cell goes to the element with the
largest oxygen concentration (following [1]).

o If a cell divides, each of the two daughter cells has probability p, of ran-
domly acquiring one of the three heritable characteristics (hyperplasia,
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glycolysis and acid-resistance). In order to avoid bias in the model, we as-
sume these changes are reversible. For example, a cell displaying constitu-
tive up-regulation of glycolysis may revert to normal glucose metabolism;
if this metabolism is most appropriate for the current microenvironmen-
tal conditions, the cell will successfully compete for resources with its
neighbours.

Fig. 2 presents a typical result from our hybrid CA model. Initially, normal
epithelial cells line the basement membrane (a). Acquisition of the hyperplastic
phenotype allows growth away from the membrane towards the oxygen diffusion
limit (b). Beyond this point, cells cannot exist as the oxygen levels are insuf-
ficient to meet cellular ATP demands. This drives adaptation to a glycolytic
phenotype, less reliant on oxygen for ATP production (c). The increased ATP
levels within glycolytic cells give a competitive advantage over the existing
population, thus glycolytic cells dominate the system. Note, however, that the
total number of cells within the system has decreased; the increased reliance on
glycolysis has resulted in higher levels of acidity, in turn inducing cell death.
Further adaptation occurs to an acid-resistant phenotype (d). Increased use of
glycolysis allows growth well beyond the oxygen diffusion limit, whilst the cells
are more resistant to the resulting acidosis.

(a) T I P Y T L PR ET R FF LI TELETE]

Figure 2. The temporal evolution of a typical cellular automaton after (a)t=0, (b)
t =100, (¢) t = 250 and (d) ¢t = 300 generations. Darker denotes a more aggressive
phenotype. Shown are normal epithelial (#), hyperplastic (=), hyperplastic-glycolytic
(m) and hyperplastic-glycolytic-acid-resistant (m) cells. Cells with other phenotypic
patterns are shown as [J. Parameter values used are N = 50, n=5.6x 1072 k = 10,
dg = 1.3x 10%, d. = 5, a0 = 0.1, hy = 9.3 x 10, hr = 8.6 x 103, p. = 10~ and
hx =0.
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It is interesting to note that throughout the simulations performed, the her-
itable changes within the dominant population are accumulated in this same
order. Within our model, the underlying environmental selection parameters
drive the cells to always follow this adaptive pathway — escaping in turn from
the constraints of limited proliferation (hyperplasia), substrate availability (gly-
colysis) and waste removal (acid-resistance). The same order of progression oc-
curs despite allowing phenotypic reversibility within our model. This means
mutations are not a necessary mechanism for phenotypic variation within tu-
mour tissue; rather the model demonstrates that reversible, epigenetic changes
are sufficient to drive global change. Of course reversibility in not necessary
to observe this adaptation; if irreversible, we would see the same phenotype
emerge on a slightly shorter time-scale.

4. Potential Applications I: Bicarbonate
Treatment

Recently, we have used compartmental models to predict the effect of bicarbon-
ate treatment on humans and shown, through a sensitivity analysis, that this
could best be made more effective by combination with proton inhibitors [13].

5. Potential Applications II: Exercise

There is accumulating evidence that regular physical activity is an effective
cancer prevention strategy. Friedenrich and Orenstein [9] recently reviewed over
170 epidemiological studies and concluded that evidence for decreased cancer
risk with increased physical activity was convincing for breast and colon cancer,
probable for prostate cancer and possible for lung cancer. We hypothesise that
exercise produces toxicity within in situ cancers through transient decreases
in serum pH and, by doing so, will also transiently cause significant further
decrease in extracellular pH in the already acidic regions within in situ cancers.
This abrupt increase in acid concentrations will result in tumour cell death and
interrupt the adaptive mechanisms necessary for subsequent evolution to the
malignant phenotype. To test the hypothesis, we extend the CA to inclide
variations in systemic pH.

When investigating transient acidosis, each time-step is split into two parts:
a proportion of time 7 € [0,1] spent at high acidity hx > 1, followed by a
proportion of time 1 — 7 at normal acidity hx = 0. Letting py denote the
probability of death pges, division pgiy, or mutation p, during one time unit (as
defined previously), the corresponding probability p of occurrence during the
acidic phase is given by

p(r)=1-(1-po)T, (16)
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Figure 3. Effect of sustained acidosis. (a) Variation in the development rate R with
serum acid level hx (plotted on a log scale). Each data point is the mean value of R
calculated over 50 simulations, whilst the accompanying error bars show the standard
errors of these means. (b) Variation in epithelium survival with hx.

whilst the probability of occurrence during the normal phase is given by
p(l=7)=1~(1-py)'"". (17)

In order to examine the effects of parameter changes on system dynamics,
we define a measure of the ‘fitness’ of a specific parameter set. Let ‘invasive’
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Figure 4. Effect of transient acidosis. (a) Variation in the development rate R with
proportion of time under exercise. Exercise is assumed to correspond to high acidity
(hx = 400}, whilst during rest acidity drops to normal levels (hx = 0). (b) Variation
in epithelium survival with exercise time.

be used to describe cells displaying all three heritable changes — hyperplasia,
glycolysis and acid resistance. For a particular automaton, let T denote the
number of generations after which 95% of the cells in the system display the
invasive phenotype; thus 7' is representative of the amount of time taken for
full carcinogenesis to occur. Now let the development rate R = 7!, where we
take R = 0 if T > 5000 (equivalent to approximately 20 years) - i.e. assume no

A
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carcinogenesis occurs. Automata with a higher value of R proceed more quickly
through the carcinogenesis pathway.

From Fig. 3 (a) we see how the development rate R varies with changes in
serum acidity hx. We vary the external acid levels from hx = 0 (normal) to
hx ~ 1000, equivalent to pH 6.8, corresponding to the threshold for normal
cell survival [16]. Development rate R remains fairly constant until A ~ 100 (a
drop of around 0.1 pH units), when a marked decrease is observed. Looking
further however, we see (Fig. 3 (b)) that this result follows simply because the
harsher conditions lead to death of the entire epithelium; normal cells die out
before having the opportunity to turn cancerous.

Since the model predicts that permanent acidosis cannot arrest cancer de-
velopment, we move on to investigate transient acidosis, allowing the system
to spend a certain proportion of time at high acidity and a certain proportion
at normal acidity; this transient acidosis mimics what occurs when engaging
in rigorous exercise followed by rest. In Fig. 4 (a) we see how the development
rate R varies with the amount of time exercising. We see that only a small
proportion of time spent at low pH (h = 400, a drop of around 0.25 pH units)
leads to a significant reduction in R. By contrast to the previous figure, the
behaviour is not due to total epithelial death (Fig. 4 (b)).

6. Discussion

We have used a range of mathematical modelling techniques to explore the
acid-mediated tumour invasion hypothesis. The models have made a number
of predictions which have been experimentally verified. The therapeutic impli-
cations, namely either buffering acid or manipulating the phenotypic selection
process, have been described. It should be noted that while we have focussed
here on the competitive interaction between tumour and normal cells, there
is also a cooperative interaction between them in the production of enzymes
to degrade extracellular material. We have recently extended the Gatenby and
Gawlinski model mentioned in this paper to show that invasion may behave in
a biphasic way in response to acid [14], suggesting that more subtle therapeutic
approaches may be necessary.
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