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Abstract: Bipedal walking is one of the most interesting control problems in humanoids
research. Walking is modelled as a hybrid system in the sense that it involves various phases
such as single support phase, impacts with the ground (i.e. a state reset) and the double support
phase. The control system has to provide good dynamic performance in these different modes to
achieve fast walking speeds while guaranteeing its safe and robust operation. Most humanoids
use local joint PID loops (decentralized) control systems while the robot is a multivariable
system and walking involves significant interactions between the robot links. Hence in this
paper a centralized LQR multivariable controller is designed for the robot and analyzed for
its stability, robustness to noise and disturbances and dynamic performance. Then, an LQR
based iterative algorithm is used to tune the local PID servos. A comparison between the two
schemes is done, where it is shown that the multivariable LQR has better robustness and energy
efficiency. Finally, both controllers are simulated using the linearized model of a 10 degree of
freedom robot called “C-Cub”.
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1. INTRODUCTION

Control of humanoids’ walking involve significant chal-
lenges due to the high Degrees of Freedom (DoF), the pres-
ence of under actuated DoF, the hybrid nature of the sys-
tem switching back and forth between single support and
double support and external disturbances such as ground
impacts on rough terrain when walking at high speeds.
As the humanoids are built to operate autonomously their
safe interaction is vital. Therefore verifying the safe oper-
ation of humanoids is the first priority for any control sys-
tem. The design of a control system for humanoid locomo-
tion has been widely studied in the literature, but there has
been little work on their stability and robustness proofs.
ASIMO, HRP3, HRP4 and HUBO2 are among the most
advanced humanoids and have demonstrated successful
walking and running experiments at relatively high speeds.
Kaneko et al. (2005) presented a stabilizer module that
works with local PID servo controllers to stabilize various
versions of HRP robots. Kaneko et al. (2009) presented
the most recent version of the HRP robots “HRP-4C” that
has the same control architecture. The decentralized PID
control is widely used for humanoid robots and most of the

⋆ This research has been done on the CICADA project which is
financed by the EPSRC grant EP/E050441/1 and the University of
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sophistication is transferred to the higher level stabilizer
and trajectory generation. This is due to the fact that
PID control is relatively simple to implement and most
humanoids are designed with a decentralized hardware
architecture with limited internal communication speed.
Therefore the low bandwidth puts a major challenge for
real-time centralized controller implementation. In addi-
tion, these robots use the concept of Zero Moment Point
(ZMP) which was introduced thirty years ago by Vukobra-
tovic and recently reviewed by Vukobratovic and Borovac
(2004). ZMP is defined as a point on the ground where
the total moments generated by the ground reaction forces
are zero. Moreover, ZMP (as a sufficient condition) fails to
utilize the full dynamics of the robots and it also does
not provide a balance recovery strategy once it has been
violated. Therefore, considerable attention has been given
to developing more robust walking control systems in the
last decade. Capture points introduced by Pratt et al.
(2006) and foot placement estimators by Wight, et al.
(2008) are among the new methods proposed. However,
it should be noted that use of such concepts for trajectory
generation is tightly related to the underlying control
system architecture. In fact, since a humanoid robot is a
multibody system, a fundamental question arises on how
to choose the right stabilizing feedback controller. In this
paper, the performance and stability robustness proper-
ties of a multivariable feedback system is compared to a



decentralized PID feedback controller. Namely, the closed
loop tracking bandwidth, energy efficiency and robustness
to noise and disturbance are studied.

In section 2, the model of walking in single support and
double support phases is presented. A state space formu-
lation is also given for the single support model to include
reference tracking by introducing integrators. In section
3, the single support state space model is used for the
centralized and decentralized controller designs. An itera-
tive algorithm is used to derive the decentralized feedback
gains from a multivariable LQR formulation. In section
4, the relative stability measures and the corresponding
state space disturbance and noise models are presented. In
section 5, a model of C-Cub 1 developed by the Robotcub
project (2010) is used to illustrate the numerical results
in terms of regulation, bandwidth, disturbance and noise
rejection. Finally, conclusions and future directions are
presented in the last section.

2. MECHANICAL MODEL

In this section, the mechanical model of a humanoid
robot and the state space formulation is presented. C-
Cub has 70 DoF, however for initial walking tests a
minimal 3D dynamic model with 10 DoF is consid-
ered. The 10 DoF include 5 DoF in each leg. The ro-
tation about vertical axis and the torso is not con-
sidered at this stage. Further modelling and simula-
tion details are provided by Medrano-Cerda, et al.
(2010) and the C-Cub mechanical model that includes
all the dynamic parameters can be downloaded from:
http://www.cicada.manchester.ac.uk/research/icub/

2.1 Nonlinear single support model

The dynamic model of single support (swing phase) where
one foot is in contact with the ground is considered. The
model is derived in symbolic form using Robotran that
is a general dynamic Matlab based multi-body modelling
software. The C-Cub model is:

M(q)q̈ + c(q, q̇) = u (1)

where q is the angular joint positions in relative coordi-
nates, q̇ is the angular velocity, M(q) is the mass inertia
matrix which is a function of the 10 joint angles and
c(q, q̇) is the combined vector of coriolis, centripetal and
gravitational forces that is a function of joint angles and
velocities. u is a vector of torques applied to the links. The
joint angles, velocities and accelerations are expressed in
relative coordinates. These model can be linearized about
any operating point for linear control system design.

2.2 Nonlinear double support model

The double support model of C-Cub (where both feet are
in contact with the ground) is presented as a constrained
form of the single support model. The constraints result
from the geometry of the double support phase where the
robot maintains both legs on the ground.

1 C-Cub is a child humanoid robot developed by the Italian Institute
of Technology. Robotcub project (2010)

M(q)q̈ + c(q, q̇) = u + Jc(q)λ (2)

h(q) = 0, ḣ(q) = Jc(q)q̇ = 0, ḧ(q) = Jc(q̈) + J̇cq̇ = 0

where, h(q) is the nonlinear equality constraint, Jc(q)
is the jacobian of the constraint and λ is the lagrange
multiplier vector that represents the constraint forces-
torques.

2.3 The linearized single support model

C-Cub Equation (1) is be linearized around the upright
position, i.e.

Mrq̈ + Gr q̇ + Krq = u (3)

Equation (3) is used in this paper to design the single
support and double support controllers. The model in
compact format is represented as:

˙̃x = Ãx̃ + B̃u, ỹ = Cx̃ (4)

where x̃ = (q, q̇)T is the state of the system, u is the input
torque to the system, C = [In 0], In is an identity matrix
of dimension n and n is the number of joints in the robot.
Equation (4) represents the open chain model of the robot
in single support which is fully controllable.

A control system must be designed that can track desired
reference trajectories in face of modelling errors and dis-
turbances. This is addressed by introducing integral action
in the model. Let,

ż = r − ỹ = r − Cx̃ (5)

where ỹ is the measured position vector given in Equation
(4) and r is the reference input vector. The continuous
time tracking system is described by:

ẋ = Ax + Bu + Brr, y = Cclx + Drr (6)

where x =

[

x̃
z

]

, A =

[

Ã 0
−C 0

]

, B =

[

B̃
0

]

, Br =
[

B̃Gff

In

]

, y =

[

x
u

]

, Ccl =

[

Ip

−K

]

, Dcl =

[

0
Gff

]

, K

is the state feedback gain and Gff is a feed forward gain
that is defined in the next section. In addition, Ip is an
identity matrix of dimension p where p = 3n. In the next
section, the synthesis process for the centralized LQR and
the decentralized PID feedback controllers is presented.

3. CONTROL DESIGN

In this section, an LQR feedback control is presented for
stabilization and control of walking. Then, an iterative
algorithm is used to design a stabilizing decentralized PID
controller based on the LQR feedback controller. In this
paper the negative feedback convention is used.

3.1 Centralized LQR feedback controller design

In order to obtain the continuous time optimal feedback
gain K, the state feedback law u = −Kx must minimize
the cost function J subject to dynamics of the single
support model.

min J =

∞
∫

0

(xT Qx + uT Ru)dt (7)



subject to ẋ = Ax + Bu

where Q is a positive semi-definite matrix and R is a
positive definite matrix. It is well-known that the state
feedback gain K is the solution to the following algebraic
Riccati equation:

AT P + PA − PBR−1BT P + Q = 0

solving the Riccati equation above for P will result in the
optimal state feedback gain:

K = R−1BT P

Hence the closed loop system can be formulated by:

ẋ = Aclx + Brr

where Acl = A − BK, Br = [BGff In]T and Gff =
K[In 0]T . Gff is referred to as the feed-forward gain
and it is derived from the first block of the feedback gain
K that corresponds to the joint positions. The optimal
gain K serves as the basis for design of the decentralized
controller using an iterative scheme which is presented in
the next section.

3.2 Decentralized PID feedback controller design

In this section, a gradient based iterative method pre-
sented by Silva and Erraz (2006) is briefly reviewed and
used to derive the decentralized feedback gains based on
the LQR solution.

Levine and Athans (1970) have shown that the optimal
cost function can be approximated by taking its average
over a linearly independent set of initial conditions x(0),
which is equivalent to assuming that x(0) is a random
variable uniformly distributed over the surface of a p-
dimensional unit sphere. Hence the expected value of the
cost function (7) is:

Ĵ =
1

2p

∞
∫

0

tr(ΦT (t, 0)(Q + KT RK)Φ(t, 0))dt (8)

where Φ(t, 0) = e(A−BK)t is the transition matrix. In
addition, if V (K) is defined as:

V (K) =

∞
∫

0

(ΦT (t, 0)(Q + KT RK)Φ(t, 0))dt (9)

then the averaged cost Ĵ is:

Ĵ =
1

2p
tr[V (K)] (10)

It is shown by Levine and Athans (1970) that if Acl

is stable, V (K) is solution to the following Lyapunov
equation:

V Acl + AT
clV + Q + KT RK = 0 (11)

Furthermore, an iterative scheme can be used to solve
the optimal control problem using the following gradient-
based approach:

Ki = Ki−1 + α
d

dK
tr[V (Ki−1)] (12)

where α is a fixed step size used to achieve convergence to
the optimal value. The value of the gradient is given as:

d

dK
tr[V (K)] = 2(−RK + BT V (K))W (13)

where W is the solution to the following Lyapunov equa-
tion:

AclW + WAT
cl + Ip = 0 (14)

In design of decentralized controllers the actual optimal
control solution has to be modified to cater for the sparse
matrix K that will be used by the local controllers. Silva
and Erraz (2006) proposed the following updating policy:

Ki = Ki−1 + α (
d

dK
tr[V (Ki−1)]. ∗ Ea) (15)

where the operator “ . ∗ ” denotes the termwise matrix
multiplication as used in Matlab. The matrix Ea is defined
as:

Ea = [In In In] (16)

The algorithm presented above maintains the structure
of the decentralized controller but the stability of the
resulting gains may be lost. In such cases a stability
check have to be performed and the non-stabilizing gains
has to be discarded. Furthermore, to use this scheme
the centralized LQR gain K is used to derive the initial
feedback gain K0 = K. ∗ Ea, where K0 has to be a
stabilizing feedback gain for the multivariable system. It
should be noted that the algorithm presented is a solution
to the problem of decentralized PID design, but more
general constrained gradient decent algorithms can be used
to design the decentralized controllers using the available
numerical optimisation tools.

Remark 1 : A similar scheme can be used when the actuator
dynamics is considered. The result of the decentralized
controller would provide a PID on the motor side and a
PD on the link side if the integrators are closed on the
motor side and actuators are considered to be electric
motors which is the case for C-Cub. In the next section
some measures of stability and robustness analysis for
multi-variable systems are presented for comparing the two
centralized and decentralized control schemes.

4. RELATIVE STABILITY AND ROBUSTNESS
ANALYSIS

The designed control system must tolerate uncertainties,
disturbances and noise that are inherently present in any
physical system. These uncertainties are caused by approx-
imate models that represent the robot. In addition in the
environment the robot is subject to external disturbances
such as imperfect ground conditions, external forces and
sensor noise, etc. Therefore, it is of interest to investigate
the robust stability and performance of the control system
under these circumstances. In this section, the state space
models for the disturbance and measurement noise are
presented. The frequency response of these models are
used in the next section to study the disturbance and noise
rejection of the feedback system.

4.1 Disturbance and noise models

In order to study the effects of both the disturbances on the
plant output and the noise on the output measurement, the
corresponding models are formulated in state space form.
The disturbance and noise models are given by:



ẋ = Aclx + Bdd

y = Cclx + Ddd (17)

ẋ = Aclx + Bnm

y = Cclx + Dnm (18)

where Bd = −BK −

[

0 0
In 0

]

, Dd =

[

Ip

−K

]

, d is the

disturbance on the plant states (i.e. the joint positions,

velocities and integrators), Bn = Bd, Dd =

[

0
−K

]

and m

is the measurement noise on the plant output. Equations
(17 & 18) are simulated in the next section to study the
robustness of the control system.

4.2 Relative stability

The Nyquist diagram of determinant of the return dif-
ference at the input and output of the plant is utilized
to serve as a rough estimate for relative stability. The
return difference at the input and output of the plant
are Fi(s) = (In + K(sIp − A)−1B) and Fo(s) = (Ip +
(sIp − A)−1BK) respectively. Nyquist diagram for the
determinant of Fi(s) is illustrated in the next section.

5. SIMULATION RESULTS

In this section, the linear model of C-Cub with 10 DoF
is used to compare the centralized LQR and the decen-
tralized PID in terms of time response, performance and
robustness to noise and disturbances. The penalty matri-
ces for the LQR design are:

Q = diag{2500× In, 1000 × In, In}, R = 5 × In (19)

Due to the ordering of the state space model the penalties
are on joint angles, joint velocities and integrator states
respectively. The LQR feedback gains result in an optimal
cost of 607.6 while the initial gain for the iteration has a
cost of 930.5.

Remark 2 : Regarding the initial stabilizing feedback gain
that is used in the iterative scheme, it should be pointed
out that for C-Cub model the penalty on the input had
to be reduced to derive the initial decentralized stabilizing
controller (K0). This suggests that the LQR has to be of
sufficient bandwidth in order to use the algorithm pre-
sented to synthesis the equivalent decentralized controller.
Hence the iterative algorithm presented is only valid for a
subset of the possible decentralized controllers.

The step size α is set to 5e-4 and after 4000 iterations the
cost of the decentralized PID is reduced to 653.7 which is
7.6% higher than the optimal cost, as shown in Fig. 1. The
initial condition for the simulation is:

q = [.1 .2 − .2 − .1 .2 − .2 .1 .2 − .2 − .1]T

for the joint angles and zero vectors for the velocity and
integrators initial conditions. The joint angles ordering
used in this simulation is ankle lateral, ankle sagittal,
knee, hip lateral, hip sagittal for the support leg (right
leg) and mirror of this ordering is used for the swing
leg (left leg). The C-Cub’s initial posture corresponds to
bending the ankles, knee and hips in the sagittal plane
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Fig. 1. Cost of the LQR objective function Ĵ(Ki) shown
against the number of iterations.

0 0.5 1 1.5 2 2.5 3
−0.2

−0.1

0

0.1

0.2

t, (sec)

q 1
-

q 5
(r

a
d
)

Fig. 2. C-Cub support leg joint positions’ time response
to the decentralized controller (dashed line) and the
centralized controller (solid line).

for 0.2 rad and a sway of 0.1 rad in the lateral plane in
such a way that the feet are kept parallel to the ground.
The joint angles time response that regulates the angles to
zero using the centralized and the decentralized controller
is shown in Fig. 2 & 3 for the right and the left legs.
The corresponding control signals (torques) generated by
the two control schemes are illustrated in Fig. 4 & 5.
The decentralized controller is clearly using higher torque
compared to the centralized LQR controller. In particular
in Fig. 4 the transient torque required by the decentralized
controller is 5 to 6 times larger than the LQR signal. In
a comparison between the stance leg joint angles and the
corresponding torques it turns out that the decentralized
controller is moving the knee and ankle in sagittal plane
faster compared to the LQR that regulates all the joints
with a more uniform trend. This effect can cause actuator
saturation of knee and ankle joints. C-Cub can produce
torques between 40-80 N-m depending on the joints’ motor
and gearbox reduction ratio. Hence the amount of torque
shown in these figures can cause saturation during walking
when joint angles larger than 0.2 or 0.1 radians is required.

In Fig. 6, the determinant of the return difference at the
input of the plant is considered as a rough measure for
relative stability of the feedback system. In Fig. 7, the
maximum and minimum singular values of the closed loop
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Fig. 3. C-Cub swing leg joint positions’ time response
to the decentralized controller (dashed line) and the
centralized controller (solid line).
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Fig. 4. C-Cub support leg joint torques required by the
decentralized controller (dashed line) and the central-
ized controller (solid line).

0 0.1 0.2 0.3 0.4 0.5

−5

0

5

10

t, (sec)

u
6
−

u
1
0

(N
-m

)

Fig. 5. C-Cub swing leg joint torques required by the
decentralized controller (dashed line) and the central-
ized controller (solid line).

transfer function matrix from the reference input to joint
positions is shown. The closed loop bandwidth is approx-
imately 0.87 hz. In addition, the effect of disturbance
and noise on the control system as given by Equations
(17 & 18) is simulated for the C-Cub model. In Fig. 8,
a conservative measure of the maximum and minimum
singular values of the disturbance rejection model on the
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Fig. 6. Nyquist diagram of Fi(s) to investigate the relative
stability.
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Fig. 7. Singular values of the closed loop transfer function
matrix.

joint angles is illustrated. In this model the effect of
disturbance injected at the output on the joint angles is
shown. It can be seen that the centralized controller has
better attenuation of such disturbances. In Fig. 9, the
noise rejection performance of the closed loop system is
shown. Although, at the frequency range of 1e-3 to 1e-
1 rad/sec the noise on the the joint position gets ampli-
fied, in the higher frequencies where the noise is expected
there is good attenuation. In addition the feedback has
good attenuation properties for the noise on velocities
and integrator states. See Fig. 10 for the joint velocities
noise. A similar behaviour is observed for the integrators.
In terms of performance under the same bandwidth the
centralized control system provides more energy efficiency
which is illustrated by the control signals required. Also
the robustness of the centralized control system is better
for disturbance and noise rejection.

6. CONCLUSION

This paper has presented a comparison between two cen-
tralized and decentralized control schemes for safe and
robust control of walking in humanoid robots. Most ad-
vanced humanoid robots use a decentralized control sys-
tem to stabilized the robot in different phases of walking
(i.e. single support and double support) mainly due to
their hardware architecture and simplicity of PID im-
plementation, but little work has been published on the
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Fig. 10. Effect of velocities measurement noise on the joint
angles. Singular values of noise model for the joint
velocities outputs.

methods used for tuning such controllers. Given the mul-
tivariable model of the robot an iterative scheme was used
to derive the decentralized PID controller from the central-
ized design. Both controllers were designed with the same
bandwidth. The regulation performance, control signals
disturbance and noise rejection of the two controllers were

compared. Although the decentralized controller showed
comparable properties in terms of regulation of joint angles
and noise rejection, it requires relatively high control sig-
nals that can cause actuator saturation and instability of
the humanoid see Fig. 4 & 5. Furthermore, the centralized
controller showed better disturbance rejection properties
as can be seen in Fig. 8. This work, used a classical control
method as a basis for quantification of robustness and
performance of humanoid robots and it was shown that in
general a better robustness is obtained from the centralized
controller.

Future work will focus on modification of the iterative
algorithm presented and inclusion of the drive dynamics
to implement the controllers on the actual hardware.
Also robust trajectory generation methods based on foot
placement strategies will be investigated to provide a more
robust control system for the humanoid walking.
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