
Algorithms for the Matrix Exponential and its
Fréchet Derivative

Al-Mohy, Awad H.

2010

MIMS EPrint: 2010.63

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

ALGORITHMS FOR THE MATRIX
EXPONENTIAL AND ITS FRÉCHET

DERIVATIVE

A thesis submitted to the University of Manchester
for the degree of Doctor of Philosophy

in the Faculty of Engineering and Physical Sciences

2010

Awad H. Al-Mohy
School of Mathematics

Contents

Abstract 7

Declaration 9

Copyright Statement 10

Publications 11

Acknowledgements 12

Dedication 13

1 Background 14
1.1 Introduction . 14
1.2 Definitions . 16
1.3 Properties . 18
1.4 Floating point arithmetic . 19
1.5 Forward and backward errors . 20
1.6 Fréchet derivative and conditioning of a matrix function 21

1.6.1 Kronecker form of the Fréchet derivative 22
1.6.2 Computing or estimating the condition number 23

2 A New Scaling and Squaring algorithm for the Matrix Exponential 26
2.1 Introduction . 26
2.2 Squaring phase for triangular matrices 31
2.3 The existing scaling and squaring algorithm 33
2.4 Practical bounds for norm of matrix power series 35
2.5 New algorithm . 36
2.6 Numerical experiments . 42
2.7 Cost of Padé versus Taylor approximants 46

2.7.1 Single precision . 49

3 Computing the Action of the Matrix Exponential, with an Applica-
tion to Exponential Integrators 51
3.1 Introduction . 51
3.2 Exponential integrators: avoiding the ϕ functions 52
3.3 Computing eAB . 55

3.3.1 Preprocessing and termination criterion 58
3.4 Rounding error analysis and conditioning 60

2

3.5 Computing etAB over a time interval 63
3.6 Numerical experiments . 65

4 Computing the Fréchet Derivative of the Matrix Exponential, with
an Application to Condition Number Estimation 73
4.1 Introduction . 73
4.2 Fréchet derivative via function of block triangular matrix 74
4.3 Fréchet derivative via power series . 76
4.4 Cost analysis for polynomials . 77
4.5 Computational framework . 78
4.6 Scaling and squaring algorithm for the exponential and its Fréchet

derivative (I) . 79
4.7 Condition number estimation . 87
4.8 Scaling and squaring algorithm for the exponential and its Fréchet

derivative (II) . 90

5 The Complex Step Approximation to the Fréchet Derivative of a
Matrix Function 97
5.1 Introduction . 97
5.2 Complex step approximation: scalar case 98
5.3 Complex step approximation: matrix case 98
5.4 Cost analysis . 100
5.5 Sign function . 101
5.6 Accuracy . 102
5.7 Numerical experiments . 104

6 Conclusions 108

Bibliography 111

3

List of Tables

2.1 Errors and condition numbers for A in (2.3) and B = Q∗AQ. The
columns headed “s” show the values of s used by expm to produce the
results in the previous column. The superscripts † and ‡ denote that a
particular choice of s was forced: s = 0 for † and the s ∈ [0, 25] giving
the most accurate result for ‡. 27

2.2 Parameters θm needed in Algorithm 2.3.1 and Algorithm 2.5.1 and
upper bounds for κA(qm(A)). 34

2.3 The number of matrix products π̃m in (2.33) needed for the Paterson-

Stockmeyer scheme, θ̃m defined by (2.34), and Cm from (2.36). 48

3.1 Selected constants θm for tol = 2−24 (single precision) and tol = 2−53

(double). 58
3.2 Experiment 4: speed is time for method divided by time for Algo-

rithm 3.5.2. 69
3.3 Experiment 5: speed is time for method divided by time for Algo-

rithm 3.3.2. 70
3.4 Experiment 7: cost is the number of matrix–vector products, except

for ode15s for which it “number of matrix–vector products/number of
LU factorizations/number of linear system solves”. The subscript on
poisson denotes the value of α. 71

4.1 Maximal values `m of ‖2−sA‖ such that the backward error bound
(4.19) does not exceed u = 2−53, along with maximal values θm such
that a bound for ‖∆A‖/‖A‖ does not exceed u. 80

4.2 Number of matrix multiplications, ωm, required to evaluate rm(A) and
Lrm(A, E), and measure of overall cost Cm in (4.24). 83

4.3 Matrices that must be computed and stored during the initial eA eval-
uation, to be reused during the Fréchet derivative evaluations. “LU
fact” stands for LU factorization of −um + vm, and B = A/2s. 88

4

List of Figures

2.1 {‖Ak‖1/k
2 }20

k=1 for 54 16× 16 matrices A with ‖A‖2 = 1. 29
2.2 For the 2×2 matrix A in (2.10), ‖Ak‖2 and various bounds for k = 1: 20. 30
2.3 Relative errors from Code Fragment 2.2.1 and expm mod for a single

8× 8 matrix with s = 0: 53. 32
2.4 Results for test matrix Set 1. 43
2.5 Results for test matrix Set 2. 43
2.6 Results for test matrix Set 3. 44
2.7 Results for test matrix Set 4. 44
2.8 Quantities associated with the computed r̂m ≈ rm(2−sA) for Algo-

rithm 2.5.1: relative error in r̂m (“◦”), a posteriori forward error bound
(2.31) (“×”), and nκ1(qm)u (“∗”)—an approximate a priori bound for
the error. 45

2.9 ‖A‖ versus cost in equivalent matrix multiplications of evaluating Tay-
lor and Padé approximants to eA in double precision. 48

2.10 ‖A‖ versus cost in equivalent matrix multiplications of evaluating Tay-
lor and Padé approximants to eA in single precision. 50

3.1 Experiment 1: normwise relative errors in eAb computed by Algo-
rithm 3.3.2 with and without balancing and by first computing eA by
expm or expm new. The solid line is κexp(A, b)ud. 66

3.2 Same data as in Figure 3.1 presented as a performance profile. 67
3.3 Experiment 2: t versus cost (top) and accuracy (bottom) of Algo-

rithm 3.3.2 with and without balancing for etAb. In the bottom plot
the solid lines are κexp(tA, b)us and κexp(tA, b)ud. 68

3.4 Experiment 3: relative errors (top) for Algorithm 3.5.2 and for mod-
ified version of the algorithm without the logic to avoid overscaling,
and ratio of relative errors “modified/original” (bottom). The solid
line is κexp(tA, b)ud. 68

3.5 Experiment 6: t versus ‖etAb‖2, with α = 4 (top) and α = 4.1 (bot-
tom). 70

3.6 Experiment 8: relative errors of computed û(t) in (3.4) from Algo-
rithm 3.5.2 (◦) and phipm (∗) over the interval [1, 10] for p = 5: 5: 20. 72

4.1 Normwise relative errors in Fréchet derivatives Lexp(A,E) computed by
Algorithm 4.6.3 and two variants of the Kronecker–Sylvester algorithm
for 155 matrices A with a different random E for each A, along with
estimate of cond(Lexp, A)u (solid line). 86

4.2 Same data as in Figure 4.1 presented as a performance profile. 87

5

4.3 ‖K(A)‖1 and underestimation ratio η/‖K(A)‖1, where η is the esti-
mate of ‖K(A)‖1 produced by Algorithm 4.7.1. 89

4.4 Normwise relative error for computed exponential and error estimate
comprising condition number estimate times unit roundoff. 90

4.5 Normwise relative errors in Fréchet derivatives Lexp(A,E) computed
by Algorithm 4.6.3 and Algorithm 4.8.2 for 155 matrices A with a
different random E for each A, along with estimate of cond(Lexp, A)u
(solid line). 92

4.6 Same data as in Figure 4.5 presented as a performance profile. 93
4.7 ‖K(A)‖1 and underestimation ratio η/‖K(A)‖1, where η is the esti-

mate of ‖K(A)‖1 produced by Algorithm 4.8.3. 95
4.8 Normwise relative error for computed exponential and error estimate

comprising condition number estimate times unit roundoff. 96

5.1 Relative errors for approximating Lcos(A,E) for scalars A = E = 1
using the CS approximation with (5.14) and h = 10−k, k = 0: 15. . . 104

5.2 Relative errors for approximating Lexp(A,E) using the CS approxima-
tion and the finite difference (FD) approximation (5.1), for h = 10−k,
k = 3: 20. 105

5.3 Relative errors for approximating Lexp(A,E) using the CS approxi-
mation and the finite difference (FD) approximation (5.1), for h =
10−k/‖A‖1, k = 2: 21. 106

5.4 Relative errors for approximating Lsqrt(A,E) using the CS approxi-
mation and the finite difference (FD) approximation (5.1) with the
product form of the Denman–Beavers iteration, for h = 10−k/‖A‖1,
k = 1: 15. 106

5.5 Ratios of estimate of ‖Kf (A)‖1 divided by true value for f(A) = eA,
computed using a block 1-norm estimator, where the Fréchet derivative
is approximated by the CS approximation, the finite difference (FD)
approximation (5.1), and Algorithm 4.6.3. 107

6

Abstract

New algorithms for the matrix exponential and its Fréchet derivative are presented.
First, we derive a new scaling and squaring algorithm (denoted expmnew) for com-
puting eA, where A is any square matrix, that mitigates the overscaling problem.
The algorithm is built on the algorithm of Higham [SIAM J. Matrix Anal. Appl., 26
(4):1179–1193, 2005] but improves on it by two key features. The first, specific to
triangular matrices, is to compute the diagonal elements in the squaring phase as
exponentials instead of powering them. The second is to base the backward error
analysis that underlies the algorithm on members of the sequence {‖Ak‖1/k} instead
of ‖A‖. The terms ‖Ak‖1/k are estimated without computing powers of A by using a
matrix 1-norm estimator.

Second, a new algorithm is developed for computing the action of the matrix
exponential on a matrix, etAB, where A is an n × n matrix and B is n × n0 with
n0 ¿ n. The algorithm works for any A, its computational cost is dominated by
the formation of products of A with n × n0 matrices, and the only input parameter
is a backward error tolerance. The algorithm can return a single matrix etAB or a
sequence etkAB on an equally spaced grid of points tk. It uses the scaling part of the
scaling and squaring method together with a truncated Taylor series approximation to
the exponential. It determines the amount of scaling and the Taylor degree using the
strategy of expmnew. Preprocessing steps are used to reduce the cost of the algorithm.
An important application of the algorithm is to exponential integrators for ordinary
differential equations. It is shown that the sums of the form

∑p
k=0 ϕk(A)uk that arise

in exponential integrators, where the ϕk are related to the exponential function, can
be expressed in terms of a single exponential of a matrix of dimension n + p built by
augmenting A with additional rows and columns.

Third, a general framework for simultaneously computing a matrix function, f(A),
and its Fréchet derivative in the direction E, Lf (A,E), is established for a wide range
of matrix functions. In particular, we extend the algorithm of Higham and expmnew to
two algorithms that intertwine the evaluation of both eA and L(A,E) at a cost about
three times that for computing eA alone. These two extended algorithms are then
adapted to algorithms that simultaneously calculate eA together with an estimate of
its condition number.

Finally, we show that Lf (A,E), where f is a real-valued matrix function and A
and E are real matrices, can be approximated by Im f(A + ihE)/h for some suitably
small h. This approximation generalizes the complex step approximation known in
the scalar case, and is proved to be of second order in h for analytic functions f and
also for the matrix sign function. It is shown that it does not suffer the inherent
cancellation that limits the accuracy of finite difference approximations in floating
point arithmetic. However, cancellation does nevertheless vitiate the approximation

7

when the underlying method for evaluating f employs complex arithmetic. The
complex step approximation is attractive when specialized methods for evaluating
the Fréchet derivative are not available.

8

Declaration

No portion of the work referred to in this thesis has been
submitted in support of an application for another degree
or qualification of this or any other university or other
institute of learning.

9

Copyright Statement

i. The author of this thesis (including any appendices and/or schedules to this
thesis) owns certain copyright or related rights in it (the “Copyright”) and s/he
has given The University of Manchester certain rights to use such Copyright,
including for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or elec-
tronic copy, may be made only in accordance with the Copyright, Designs and
Patents Act 1988 (as amended) and regulations issued under it or, where appro-
priate, in accordance with licensing agreements which the University has from
time to time. This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other
intellectual property (the “Intellectual Property”) and any reproductions of
copyright works in the thesis, for example graphs and tables (“Reproductions”),
which may be described in this thesis, may not be owned by the author and may
be owned by third parties. Such Intellectual Property and Reproductions can-
not and must not be made available for use without the prior written permission
of the owner(s) of the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and
commercialisation of this thesis, the Copyright and any Intellectual Property
and/or Reproductions described in it may take place is available in the Univer-
sity IP Policy (see http://www.campus.manchester.ac.uk/medialibrary/

policies/intellectual-property.pdf), in any relevant Thesis restriction
declarations deposited in the University Library, The University Library’s regu-
lations (see http://www.manchester.ac.uk/library/aboutus/regulations)
and in The University’s policy on presentation of Theses.

10

Publications

This thesis is based on five publications detailed as follows.

I Some of the material in Chapter 1 and Section 2.7 are based on the paper: N. J.
Higham and A. H. Al-Mohy. Computing Matrix Functions. Acta Numerica,
19: 159–208, 2010.

I The material in Chapter 2 is based on the paper: A. H. Al-Mohy and N. J.
Higham. A New Scaling and Squaring Algorithm for the Matrix Exponential.
SIAM J. Matrix Anal. Appl., 31(3):970–989, 2009.
(This paper won the 2009 SIAM Student Paper Prize).

I The material in Chapter 3 is based on the paper: A. H. Al-Mohy and N. J.
Higham. Computing the Action of the Matrix Exponential, with an Application
to Exponential Integrators. MIMS EPrint 2010.30, March 2010. Submitted to
SIAM J. Sci. Comput.

I The material in Chapter 4 is based on the paper: A. H. Al-Mohy and N. J.
Higham. Computing the Fréchet Derivative of the Matrix Exponential, with
an Application to Condition Number Estimation. SIAM J. Matrix Anal. Appl.,
30(4):1639–1657, 2009.

I The material in Chapter 5 is based on the paper: A. H. Al-Mohy and N. J.
Higham. The Complex Step Approximation to the Fréchet Derivative of a
Matrix Function. Numer. Algorithms, 53(1):133–148, 2010.

11

Acknowledgements

I have unbounded pleasure and am very proud that my work towards the PhD degree
has met the standards of Professor Nick Higham. I owe Nick a debt of gratitude for his
great supervision, continuous support, and sharing knowledge and expertise. Words
cannot express or carry my heartfelt gratitude, appreciation, and thanks for all the
support, guidance and time he had provided during my stay in Manchester.

My gratitude extends to Professor Sven Hammarling of NAG Ltd, Oxford, and
Dr. Françoise Tisseur of the University of Manchester for their valuable comments
on my thesis. I highly appreciate their time they spent on reading my work.

Many thanks go to the Ministry of Higher Education in Saudi Arabia for finan-
cially sponsoring my postgraduate studies and life expenses (for me and my family)
during our stay in both the US and the UK. I would also like to thank SIAM for
awarding me the 2009 SIAM Student Paper Prize.

The debt that can never be repaid is owed to my parents and my wife for their
continuous love, support, and praying. I dedicate this thesis to them.

12

Dedication

To My Parents & My Wife

13

Chapter 1

Background

1.1 Introduction

Matrix functions are as old as matrix algebra itself. In his memoir that initiated the
study of matrix algebra, Cayley [9] treated matrix square roots. The theory of matrix
functions was subsequently developed by many mathematicians over the ensuing 100
years. Today, functions of matrices are widely used in science and engineering and
are of growing interest, due to the succinct way they allow solutions to be expressed
and recent advances in numerical algorithms for computing them. New applications
are regularly being found, but the archetypal application of matrix functions is in
the solution of differential equations. Early recognition of the important role of the
matrix exponential in this regard can be found in the book Elementary Matrices and
Some Applications to Dynamics and Differential Equations by aerospace engineers
[21], which was “the first book to treat matrices as a branch of applied mathematics”
[11].

This thesis concerns new algorithms for the matrix exponential and its Fréchet
derivative and is organized as follows. The present chapter reviews basic definitions
and fundamental properties for matrix functions and Fréchet derivatives. It also
shows the relation between the Fréchet derivative and the condition number of the
matrix function and describes algorithms for exact calculation or estimation of the
condition number. This chapter supplies the necessary background for the rest of the
thesis.

Chapter 2 presents a new algorithm for computing the matrix exponential for a
general complex matrix. The algorithm implements the scaling and squaring method
for the matrix exponential, which is based on the approximation eA ≈ (rm(2−sA))2s

,
where rm(x) is the [m/m] Padé approximant to ex and the integers m and s are to be
chosen. Several authors have identified a weakness of existing scaling and squaring
algorithms termed overscaling, in which a value of s much larger than necessary
is chosen, causing a loss of accuracy in floating point arithmetic. Building on the
scaling and squaring algorithm of Higham [30], [32], which is used by the MATLAB
function expm, we derive a new algorithm that alleviates the overscaling problem. Two
key ideas are employed. The first, specific to triangular matrices, is to compute the
diagonal elements in the squaring phase as exponentials instead of from powers of rm.
The second idea is to base the backward error analysis that underlies the algorithm
on members of the sequence {‖Ak‖1/k} instead of ‖A‖, since for non-normal matrices

14

it is possible that ‖Ak‖1/k is much smaller than ‖A‖, and indeed this is likely when
overscaling occurs in existing algorithms. The terms ‖Ak‖1/k are estimated without
computing powers of A by using a matrix 1-norm estimator in conjunction with a
bound of the form ‖Ak‖1/k ≤ max

(‖Ap‖1/p, ‖Aq‖1/q
)

that holds for certain fixed p and
q less than k. The improvements to the truncation error bounds have to be balanced
by the potential for a large ‖A‖ to cause inaccurate evaluation of rm in floating
point arithmetic. We employ rigorous error bounds along with some heuristics to
ensure that rounding errors are kept under control. Our numerical experiments show
that the new algorithm generally provides accuracy at least as good as the existing
algorithm of Higham at no higher cost, while for matrices that are triangular or cause
overscaling it usually yields significant improvements in accuracy, cost, or both. At
the end of the chapter, we compare the efficiency of diagonal Padé approximant and
Taylor series within the scaling and squaring method.

In Chapter 3, a new algorithm is developed for computing the action of the matrix
exponential on a matrix, etAB, where A is an n × n matrix and B is n × n0 with
n0 ¿ n. The algorithm works for any A, its computational cost is dominated by
the formation of products of A with n × n0 matrices, and the only input parameter
is a backward error tolerance. The algorithm can return a single matrix etAB or a
sequence etkAB on an equally spaced grid of points tk. It uses the scaling part of
the scaling and squaring method together with a truncated Taylor series approxima-
tion to the exponential. It determines the amount of scaling and the Taylor degree
using the analysis developed in Chapter 2, which provides sharp truncation error
bounds expressed in terms of the quantities ‖Ak‖1/k for a few values of k, where the
norms are estimated using a matrix norm estimator. Shifting and balancing are used
as preprocessing steps to reduce the cost of the algorithm. Numerical experiments
show that the algorithm performs in a numerically stable fashion across a wide range
of problems, and analysis of rounding errors and of the conditioning of the prob-
lem provides theoretical support. Experimental comparisons with two Krylov-based
MATLAB codes show the new algorithm to be sometimes much superior in terms
of computational cost and accuracy. An important application of the algorithm is
to exponential integrators for ordinary differential equations. It is shown that the
sums of the form

∑p
k=0 ϕk(A)uk that arise in exponential integrators, where the ϕk

are related to the exponential function, can be expressed in terms of a single expo-
nential of a matrix of dimension n + p built by augmenting A with additional rows
and columns, and the algorithm developed here can therefore be employed.

In Chapter 4, we show that the implementation of the scaling and squaring method
in Chapter 2 can be extended to compute both eA and the Fréchet derivative at A
in the direction E, denoted by Lexp(A,E), at a cost about three times that for com-
puting eA alone. The algorithm is derived from the scaling and squaring method by
differentiating the Padé approximants and the squaring recurrence, re-using quanti-
ties computed during the evaluation of the Padé approximant, and intertwining the
recurrences in the squaring phase. To guide the choice of algorithmic parameters an
extension of the existing backward error analysis for the scaling and squaring method
is developed which shows that, modulo rounding errors, the approximations obtained
are eA+∆A and L(A + ∆A,E + ∆E), with the same ∆A in both cases, and with
computable bounds on ‖∆A‖ and ‖∆E‖. The algorithm for Lexp(A,E) is used to
develop an algorithm that computes eA together with an estimate of its condition

15

number. In addition to results specific to the exponential, we develop some results
and techniques for arbitrary functions. We show how a matrix iteration for f(A)
yields an iteration for the Fréchet derivative and show how to efficiently compute the
Fréchet derivative of a power series. We also show that a matrix polynomial and its
Fréchet derivative can be evaluated at a cost at most three times that of computing
the polynomial itself and give a general framework for evaluating a matrix function
and its Fréchet derivative via Padé approximation.

In Chapter 5, we show that the Fréchet derivative of a matrix function f : Rn×n →
Rn×n at A in the direction E, where A and E are real matrices, can be approximated
by Im f(A + ihE)/h for some suitably small h. This approximation, requiring a
single function evaluation at a complex argument, generalizes the complex step ap-
proximation known in the scalar case. The approximation is proved to be of second
order in h for analytic functions f and also for the matrix sign function. It is shown
that it does not suffer the inherent cancellation that limits the accuracy of finite
difference approximations in floating point arithmetic. However, cancellation does
nevertheless vitiate the approximation when the underlying method for evaluating f
employs complex arithmetic. The ease of implementation of the approximation, and
its superiority over finite differences, make it attractive when specialized methods
for evaluating the Fréchet derivative are not available, and in particular for condi-
tion number estimation when used in conjunction with a block 1-norm estimation
algorithm.

Finally, Chapter 6 presents our concluding remarks and discussions.

1.2 Definitions

The concept of matrix function has various meanings in the matrix analysis literature.
Matrix norms, determinants, traces, and condition numbers are examples of matrix
functions of the form f : Cn×n → C. Despite the importance of such functions, the
scope of this thesis is on matrix functions f : Cn×n → Cn×n defined in terms of an
underlying scalar function f .

As the definition of the elementary operations addition, subtraction, multiplica-
tion, and division is readily extended to matrices, we have the tools to obtain a value
of f , where f is a polynomial or rational function, at a matrix argument by just
replacing the scalar by the matrix and employing matrix operations. For example,
take

f(x) =
1 + x + x3

1− x2
= (1 + x + x3)(1− x2)−1, x 6= ±1.

Then for A ∈ Cn×n,
f(A) = (I + A + A3)(I − A2)−1

is well-defined if ±1 are not eigenvalues of A. The theory of matrix functions of
this type is based on the Jordan canonical form (JCF), which exists for any matrix

16

A ∈ Cn×n:

Z−1AZ = J = diag(J1, J2, . . . , Jp), (1.1a)

Jk = Jk(λk) =




λk 1

λk
. . .
. . . 1

λk


 ∈ C

mk×mk , (1.1b)

where Z is nonsingular and
∑p

k=1 mk = n.

Definition 1.2.1 Denote by λ1, . . . , λs the distinct eigenvalues of A ∈ Cn×n and let
ni be the index of λi, that is, the order of the largest Jordan block in which λi appears.
The function f is said to be defined on the spectrum of A if the values

f (j)(λk), j = 0: ni − 1, k = 1: s

exist.

Definition 1.2.2 (matrix function via JCF) Let f be defined on the spectrum of
A ∈ Cn×n and let A have the Jordan canonical form (1.1). Then

f(A) := Zf(J)Z−1 = Zdiag(f(Jk))Z
−1,

where

f(Jk) :=




f(λk) f ′(λk) · · · f (nk−1)(λk)

(nk − 1)!

f(λk)
. . .

...
. . . f ′(λk)

f(λk)




. (1.2)

When the function f is multivalued and A has a repeated eigenvalue occurring in
more than one Jordan block (i.e., A is derogatory), we will take the same branch for
f and its derivatives in each Jordan block. This gives a primary matrix function. If
different branches are taken for the same eigenvalue in two different Jordan blocks
then a nonprimary matrix function is obtained. We will be concerned here only with
primary matrix functions, and it is these that are needed in most applications. For
more on nonprimary matrix functions see [31, Sec. 1.4].

An alternative way to define f(A) is as follows.

Definition 1.2.3 (polynomial interpolation definition of f(A)) Let f be de-
fined on the spectrum of A ∈ Cn×n with the distinct eigenvalues, λ1, . . . , λs, and let
ni be the index of λi. Then f(A) := r(A), where r is the unique Hermite interpolating
polynomial of degree less than

∑s
i=1 ni that satisfies the interpolation conditions

r(j)(λi) = f (j)(λi), j = 0: ni − 1, i = 1: s. (1.3)

17

A proof of the equivalence of these two definitions can be found in [31, Thm. 1.12].
The equivalence is easily demonstrated for the mk×mk Jordan block Jk(λk) in (1.1b).
The polynomial satisfying the interpolation conditions (1.3) is then

r(t) = f(λk) + (t− λk)f
′(λk) +

(t− λk)
2

2!
f ′′(λk) + · · ·+ (t− λk)

mk−1

(mk − 1)!
f (mk−1)(λk),

which is just the first mk terms of the Taylor series of f about λk (assuming the
Taylor series exists). Hence, from Definition 1.2.3,

f(Jk(λk)) = r(Jk(λk))

= f(λk)I + (Jk(λk)− λkI)f ′(λk) +
(Jk(λk)− λkI)2

2!
f ′′(λk) + · · ·

+
(Jk(λk)− λkI)mk−1

(mk − 1)!
f (mk−1)(λk).

The matrix (Jk(λk) − λkI)j is zero except for 1s on the jth superdiagonal. This
expression for f(Jk(λk)) is therefore equal to that in (1.2).

1.3 Properties

One of the most important basic properties is that f(A) is a polynomial in A ∈ Cn×n,
which is immediate from Definition 1.2.3. However, the coefficients of that polynomial
depend on A. This property is not surprising in view of the Cayley–Hamilton theorem,
which says that any matrix satisfies its own characteristic equation: q(A) = 0, where
q(t) = det(tI−A) is the characteristic polynomial. The theorem implies that the nth
power of A, and inductively all higher powers, are expressible as a linear combination
of I, A, . . . , An−1. Thus any power series in A can be reduced to a polynomial in A
of degree at most n− 1 (with coefficients depending on A).

Other important properties are collected in the next result.

Theorem 1.3.1 ([31, Thm. 1.13]) Let A ∈ Cn×n and let f be defined on the spec-
trum of A. Then

(1) f(A) commutes with A;

(2) f(AT) = f(A)T ;

(3) f(XAX−1) = Xf(A)X−1;

(4) the eigenvalues of f(A) are f(λi), where the λi are the eigenvalues of A;

(5) if A = (Aij) is block triangular then F = f(A) is block triangular with the
same block structure as A, and Fii = f(Aii);

(6) if A = diag(A11, A22, . . . , Amm) is block diagonal then

f(A) = diag
(
f(A11), f(A22), . . . , f(Amm)

)
.

(7) f(Im⊗A) = Im⊗f(A), where ⊗ is the Kronecker product defined in Subsection
1.6.1;

(8) f(A⊗ Im) = f(A)⊗ Im.

18

It is often convenient to represent a matrix function as a power series or Taylor
series. The next result explains when such a series converges [31, Thm. 4.7].

Theorem 1.3.2 (convergence of matrix Taylor series) Suppose f has a Taylor
series expansion

f(z) =
∞∑

k=0

ak(z − α)k

(
ak =

f (k)(α)

k!

)
(1.4)

with radius of convergence r. If A ∈ Cn×n then f(A) is defined and is given by

f(A) =
∞∑

k=0

ak(A− αI)k (1.5)

if and only if each of the distinct eigenvalues λ1, . . . , λs of A satisfies one of the
conditions

(1) |λi − α| < r,

(2) |λi − α| = r and the series for f (ni−1)(λ) (where ni is the index of λi) is
convergent at the point λ = λi, i = 1: s.

The matrix function therefore can be defined everywhere from the power series
for functions having a power series with an infinite radius of convergence. Thus the
matrix exponential, cosine, and sine are, respectively, given by

eA = I + A +
A2

2!
+

A3

3!
+ · · · ,

cos(A) = I − A2

2!
+

A4

4!
− A6

6!
+ · · · ,

sin(A) = A− A3

3!
+

A5

5!
− A7

7!
+ · · · .

1.4 Floating point arithmetic

A floating point number system F is a bounded subset of the real numbers whose
elements have the representation

y = ±m× βe−t,

where m, β, e, and t are integers known as significand, base, exponent, and precision,
respectively, with 0 ≤ m ≤ βt−1. The representation of any nonzero element of F is
unique if m is selected so that βt−1 ≤ m ≤ βt − 1. The quantity u := 1

2
β1−t is called

the unit roundoff. The boundness of F implies the existence of two integers emin and
emax with emin ≤ e ≤ emax. Thus

F ⊂ [−βemax(1− β−t), βemax(1− β−t)] := R ⊂ R.

The set R is called the range of F , and an element of F closest to x ∈ R is denoted
by fl(x). The following theorem draws the relation between x and fl(x).

19

Theorem 1.4.1 ([29, Thm. 2.2]) If x ∈ R lies in the range of F then there exists
δ ∈ R such that

fl(x) = x(1 + δ), |δ| < u.

Obviously by the definition of fl(·), fl(x) = x if and only if x ∈ F . The floating point
arithmetic or finite precision arithmetic is the calculation that involves the elementary
operations: addition, multiplication, subtraction, and division on the elements of F .
These operations are known as floating point operations (flops), and the counting of
them is a very important measure of the complexity of numerical algorithms.

The standard model of the floating point arithmetic that underlies rounding error
analysis is

fl(x op y) = (x op y)(1 + δ), |δ| < u, op = +,−, ∗, /,
where x, y ∈ F and fl(x op y) lies in the range of F . In addition, the following
variant of this model can also be used

fl(x op y) =
x op y

1 + δ
, |δ| < u.

The IEEE binary arithmetic standard specifies two basic floating point formats: dou-
ble and single. The IEEE double format has a significand precision of 53 bits and
occupies 64 bits overall while the IEEE single format has a significand precision of 24
bits and occupies 32 bits. The unit roundoff in the IEEE double and single precisions
are u = 2−53 ≈ 1.11× 10−16 and u = 2−24 ≈ 5.96× 10−8, respectively, [29, Sec. 2.3],
[59, Chap. 4].

1.5 Forward and backward errors

Error analysis in numerical linear algebra and matrix functions exploits two important
types of errors known as forward and backward errors. Given a numerical algorithm
that approximates the matrix function f at a point X by Ŷ , the quantities ‖f(X)−Ŷ ‖
and ‖f(X) − Ŷ ‖/‖f(X)‖ are absolute and relative forward errors, respectively. If a

matrix ∆X exists so that Ŷ = f(X + ∆X) then ‖∆X‖ and ‖∆X‖/‖X‖ are absolute
and relative backward errors, respectively. If in floating point arithmetic either the
forward or backward error is always “small”, usually of the order of the unit roundoff,
the numerical algorithm is said to be forward stable or backward stable, respectively.
A result of the form

Ŷ + ∆Y = f(X + ∆X), ‖∆Y ‖ ≤ ε1‖Y ‖, ‖∆X‖ ≤ ε2‖X‖
is known as a mixed-forward-backward error result. If a numerical algorithm produces
sufficiently small ε1 and ε2, it is said to be mixed-forward-backward stable or, in short,
numerically stable.

When backward error, forward error, and the condition number are defined in a
consistent fashion, they are linked by the rule of thumb:

forward error . condition number× backward error.

In the next section, we review fundamental definitions, properties, and algorithms
for the Fréchet derivative and its applications in condition number measurement.

20

1.6 Fréchet derivative and conditioning of a ma-

trix function

The condition number is a measure of stability or sensitivity of a problem. In this
context, the problem is said to be well-conditioned if the condition number is small
and ill-conditioned otherwise, where the definition of large or small condition num-
ber is problem-dependent. We are interested in the condition number of a matrix
function.

Definition 1.6.1 The condition number of the matrix function f : Cn×n → Cn×n at
a point X ∈ Cn×n is defined as

cond(f, X) := lim
ε→0

sup
‖E‖≤ε‖X‖

‖f(X + E)− f(X)‖
ε‖f(X)‖ , (1.6)

where the norm is any matrix norm.

Definition 1.6.2 (Fréchet derivative of a matrix function) The Fréchet deriva-
tive of a matrix function f : Cn×n → Cn×n at a point X ∈ Cn×n is a linear operator

Cn×n Lf (X)−→ Cn×n

E 7−→ Lf (X, E)

such that
f(X + E)− f(X)− Lf (X, E) = o(‖E‖) (1.7)

for all E ∈ Cn×n. Lf (X, E) is read as “the Fréchet derivative of f at X in the
direction E”. If such an operator exists, f is said to be Fréchet differentiable. The
norm of Lf (X) is defined as

‖Lf (X)‖ := max
Z 6=0

‖Lf (X, Z)‖
‖Z‖ (1.8)

The following theorem gives a necessary condition for existence of the Fréchet deriva-
tive of the function f .

Theorem 1.6.3 ([31, Thm. 3.8]) Let f be 2n−1 times continuously differentiable
on D. For X ∈ Cn×n with spectrum in D the Fréchet derivative Lf (X,E) exists and
is continuous in the variables X and E.

The condition number of f at X can be expressed in terms of the Fréchet deriva-
tive.

Theorem 1.6.4 ([31, Thm. 3.1]) Suppose the function f : Cn×n → Cn×n is Fréchet
differentiable at X ∈ Cn×n. Then

cond(f, X) =
‖Lf (X)‖‖X‖
‖f(X)‖ .

The Fréchet derivative satisfies the following sum, product, and chain rules.

Theorem 1.6.5 ([31, Thms. 3.2–3.4]) Let g, h : Cn×n → Cn×n be Fréchet differ-
entiable at X. Then for all E ∈ Cn×n

(a) Lαg+βh(X,E) = αLg(X, E) + βLh(X, E), ∀ α, β ∈ C.

(b) Lgh(X, E) = Lg(X, E)h(X) + g(X)Lh(X, E).

(c) Lg◦h(X,E) = Lg(h(X), Lh(X,E)).

21

1.6.1 Kronecker form of the Fréchet derivative

Linear matrix equations can be conveniently represented by the Kronecker product.
Given A = [aij] ∈ Cm×n and B ∈ Cp×q, the Kronecker product is A ⊗ B = [aijB] ∈
Cmp×nq. The operator vec : Cm×n → Cmn, defined by

vec(A) = [a11, . . . , am1, a12, . . . , am2, . . . , a1n, . . . , amn]T ,

is an essential component in Kronecker forms of linear matrix equations; vec stacks
the columns of a matrix into one long vector. It is straightforward to see that vec
is linear and a bijection, so the inverse operator vec−1 is well-defined, linear, and a
bijection. The operator vec−1 rebuilds the matrix whose columns vec has stacked into
a long vector. That is, for any v ∈ Cmn, vec−1(v) = V ∈ Cm×n, where vec(V) = v.
A key result is the following lemma.

Lemma 1.6.6 ([37, Lemma 4.3.1]) For A ∈ Cm×n, B ∈ Cp×q, and X ∈ Cn×p,

vec(AXB) = (BT ⊗ A) vec(X).

Define the operator TX : Cn2 → Cn2
by TX(v) = vec(Lf (X, vec−1(v))). By

linearity of the operator Lf (X) and the operators vec and vec−1, TX is linear. As
it operates on a finite dimensional vector space, TX can be represented by a matrix
K ∈ Cn2×n2

that depends on the function f at the matrix X, so we write K := Kf (X).
Thus vec(Lf (X, vec−1(v))) = Kf (X)v. Hence for any E ∈ Cn×n with v = vec(E), we
obtain

vec(Lf (X,E)) = Kf (X) vec(E). (1.9)

The matrix Kf (X) can be seen to be exactly the Jacobian of the operator Ff : Cn2 →
Cn2

, defined by Ff (v) = vec(f(vec−1(v))), at v = vec(X).
Now we write the Kronecker forms of the rules of the Fréchet derivative stated in

Theorem 1.6.5. The next theorem appears to be new.

Theorem 1.6.7 Let g, h : Cn×n → Cn×n be Fréchet differentiable at X. Then

(a) Kαg+βh(X) = αKg(X) + βKh(X).

(b) Kgh(X) =
(
h(XT)⊗ In

)
Kg(X) +

(
In ⊗ g(X)

)
Kh(X).

(c) Kg◦h(X) = Kg(h(X))Kh(X).

Proof. Part (a) follows immediately from (1.9) by applying the vec operator to
both sides of Theorem 1.6.5 (a). For part (b), we apply the vec on both sides of
Theorem 1.6.5 (b) and use Lemma 1.6.6 and (1.9).

Kgh(X) vec(E) = vec(Lgh(X, E))

= vec
(
In Lg(X,E)h(X)

)
+ vec

(
g(X)Lh(X, E)In

)

=
(
h(X)T ⊗ In

)
vec(Lg(X, E)) +

(
In ⊗ g(X)

)
vec(Lh(X,E))

=
[(

h(XT)⊗ In

)
Kg(X) +

(
In ⊗ g(X)

)
Kh(X)

]
vec(E).

Part (c) follows by applying the vec operator on both sides of Theorem 1.6.5 (c) and
using (1.9).

Kg◦h(X) vec(E) = vec(Lg◦h(X, E))

= vec(Lg(h(X), Lh(X, E)))

= Kg(h(X)) vec(Lh(X,E))

= Kg(h(X))Kh(X) vec(E).

22

1.6.2 Computing or estimating the condition number

In view of Theorem 1.6.4, the key component of computing or estimating the condition
number is computing or estimating the norm of the Fréchet derivative, ‖Lf (X)‖.
Using the fact that ‖v‖2 = ‖ vec−1(v)‖F for every v ∈ Cn2

and (1.9), we have

‖Kf (X)‖2 = max
v 6=0

‖Kf (X)v‖2

‖v‖2

= max
v 6=0

‖Lf (X, vec−1(v))‖F

‖ vec−1(v)‖F

= ‖Lf (X)‖F . (1.10)

Thus, the condition number can be obtained exactly in the Frobenius norm via the
relation:

cond(f, X) =
‖Kf (X)‖2 ‖X‖F

‖f(X)‖F

.

Having a method for computing Lf (X,E), we can therefore compute the jth column
of Kf (X) explicitly via Kf (X)ej = vec(Lf (X, vec−1(ej))), where {ej : j = 1: n2} is
the standard basis for Cn2

.

Algorithm 1.6.8 (exact condition number) Given a function f and its Fréchet
derivative and X ∈ Cn×n, this algorithm computes cond(f,X) in the Frobenius norm.

1 for j = 1 : n2

2 Compute Y = Lf (X, vec−1(ej))
3 K(:, j) = vec(Y)
4 end
5 cond(f, X) = ‖K‖2‖X‖F /‖f(X)‖F

Cost: O(n5) flops if f(X) and Lf (X,E) cost O(n3) flops.
This algorithm is prohibitively expensive for large n in practice, so the condition

number needs to be estimated. That is, we need to estimate ‖Kf (X)‖2. A candidate is
the power method to estimate the square root of the modulus of the largest eigenvalue
of Kf (X)∗Kf (X) since

‖Kf (X)‖2 = ‖Kf (X)∗Kf (X)‖1/2
2 = λmax(Kf (X)∗Kf (X))1/2.

Of course we do not intend to form the matrix Kf (X) explicitly as this is very costly.
What is required by the power method is the action of the matrices Kf (X) and
Kf (X)∗ on vectors z and w, respectively, which can be achieved using

vec−1(Kf (X)z) = Lf (X, vec−1(z)), vec−1(Kf (X)∗w) = L?
f (X, vec−1(w)). (1.11)

Here, L?
f (X) = Lf (X

∗), the adjoint operator of Lf (X) with respect to the inner

product 〈X,Y 〉 = trace(Y ∗X) on Cn×n, and f(z) = f(z). If f : Rn×n → Rn×n, f = f
and hence L?

f (X) = Lf (X
∗).

The following algorithm is essentially the usual power method applied to Kf (X)
implicitly by exploiting the relations (1.10) and (1.11) [31, Sec. 3.4], [42].

23

Algorithm 1.6.9 (power method on Fréchet derivative) Given X ∈ Cn×n and
the Fréchet derivative L of a function f , this algorithm uses the power method to pro-
duce an estimate η ≤ ‖Lf (X)‖F .

1 Choose a nonzero starting matrix Z0 ∈ Cn×n.
2 for k = 0:∞
3 Wk+1 = Lf (X,Zk)
4 Zk+1 = L?

f (X,Wk+1)
5 ηk+1 = ‖Zk+1‖F /‖Wk+1‖F

6 if converged, η = ηk+1, quit, end
7 end

This is an elegant approach to estimate the norm of the Fréchet derivative. How-
ever, it lacks a starting matrix and a convergence test and because of its linear
convergence rate the number of iteration required is unpredictable. The LAPACK
matrix norm estimator applying a 1-norm variant of the power method overcomes
these difficulties. It has advantages over the usual power method underlying Algo-
rithm 1.6.9 in terms of having a “built-in” starting matrix, convergence test, and
a more predictable number of iterations. The next algorithm forms the basis of all
the condition number estimation in LAPACK and is used in the MATLAB function
rcond [29, Sec. 26.3].

Algorithm 1.6.10 ([31, Alg. 3.21]) Given A ∈ Cn×n this algorithm computes γ
and v = Aw such that γ ≤ ‖A‖1 with γ = ‖v‖1/‖w‖1. For z ∈ C, define sign as
sign(z) = z/|z| and sign(0) = 1.

1 v = A(n−1e)
2 if n = 1, quit with γ = |v1|, end
3 γ = ‖v‖1, ξ = sign(v), x = A∗ξ
4 k = 2
5 repeat
6 j = min{ i: |xi| = ‖x‖∞ }
7 v = Aej, γ = γ, γ = ‖v‖1

8 if (A is real and sign(v) = ±ξ) or γ ≤ γ, goto line 12, end
9 ξ = sign(v), x = A∗ξ

10 k ← k + 1
11 until (‖x‖∞ = xj or k > 5)
12 xi = (−1)i+1(1 + i−1

n−1
), i = 1 : n

13 x = Ax
14 if 2‖x‖1/(3n) > γ
15 v = x, γ = 2‖x‖1/(3n)
16 end

For increased reliability and efficiency, Higham and Tisseur [34] generalize Algo-
rithm 1.6.10 to a block algorithm iterating with an n × t matrix, where t ≥ 1; for
t = 1, Algorithm 1.6.10 (without lines 12–16) is recovered. The MATLAB func-
tion normest1 implements [34, Alg. 2.4] and we use it for estimating matrix 1-norms
throughout this thesis. In spite of the advantages of 1-norm estimators, there is no
analogue of (1.10) for the 1-norm, but the next lemma shows how ‖Kf (X)‖1 compares
with ‖Lf (X)‖1.

24

Lemma 1.6.11 ([31, Lemma 3.18]) For X ∈ Cn×n and any Fréchet differentiable
function f : Cn×n → Cn×n,

‖Lf (X)‖1

n
≤ ‖Kf (X)‖1 ≤ n‖Lf (X)‖1. (1.12)

We can apply [34, Alg. 2.4] implicitly on ‖Kf (X)‖1 using (1.11).

Algorithm 1.6.12 (block 1-norm estimator for Fréchet derivative) Given a
matrix X ∈ Cn×n this algorithm uses a block 1-norm estimator to produce an es-
timate η of ‖Lf (X)‖1, given the ability to compute Lf (X, E) and L?

f (X, E) for any
E. More precisely, η ≤ ‖Kf (X)‖1, where ‖Kf (X)‖1 satisfies (1.12).

1 Apply Algorithm 2.4 from Higham and Tisseur [34] with parameter t = 2 to
the Kronecker matrix representation Kf (X) of Lf (X), making use of
the relations in (1.11).

Key properties of Algorithm 1.6.12 are that it typically requires about 4t Fréchet
derivative evaluations and it almost invariably produces an estimate of ‖Kf (X)‖1

correct to within a factor 3. A factor n of uncertainty is added when we take η as an
estimate of ‖Lf (X)‖1. Overall, the algorithm is a very reliable means of estimating
‖Lf (X)‖1 to within a factor 3n.

25

Chapter 2

A New Scaling and Squaring
algorithm for the Matrix
Exponential

2.1 Introduction

The scaling and squaring method is the most popular method for computing the
matrix exponential. It is used, for example, in Mathematica (function MatrixExp),
MATLAB (function expm), SLICOT (subroutine MB05OD) [65], and the Expokit
package [63]. It is also used in more general contexts, such as for computing the group
exponential of a diffeomorphism [8]. The method is based on the approximation

eA = (e2−sA)2s ≈ rm(2−sA)2s

, (2.1)

where rm is the [m/m] Padé approximant to ex and the nonnegative integers m and s
are chosen in a prescribed way that aims to achieve full machine accuracy at minimal
cost. The [k/m] Padé approximants rkm(x) = pkm(x)/qkm(x) to the exponential
function are known explicitly for all k and m:

pkm(x) =
k∑

j=0

(k + m− j)!k!

(k + m)! (k − j)!

xj

j!
, qkm(x) =

m∑
j=0

(k + m− j)! m!

(k + m)! (m− j)!

(−x)j

j!
. (2.2)

Note that pkm(x) = qmk(−x), which reflects the property (ex)−1 = e−x of the expo-
nential function [30].

The method behaves reliably in floating point arithmetic across a wide range of
matrices, but does have a weakness manifested in a subtle phenomenon known as
overscaling, in which a large ‖A‖ causes a larger than necessary s to be chosen, with
a harmful effect on accuracy. We illustrate the phenomenon with the matrix

A =

[
1 b
0 −1

]
, eA =

[
e b

2
(e− e−1)

0 e−1

]
. (2.3)

Our computations are carried out in MATLAB 7.10 (R2010a), which uses IEEE
double precision arithmetic with unit roundoff u = 2−53 ≈ 1.1×10−16. We computed
the exponential of A using expm, which implements the algorithm of Higham [30],

26

Table 2.1: Errors and condition numbers for A in (2.3) and B = Q∗AQ. The columns
headed “s” show the values of s used by expm to produce the results in the previous
column. The superscripts † and ‡ denote that a particular choice of s was forced:
s = 0 for † and the s ∈ [0, 25] giving the most accurate result for ‡.

b expm(A) s expm(A)† funm(A) expm(B) s expm(B)‡ s funm(B) κexp(A)
103 1.7e-15 8 1.9e-16 1.9e-16 2.8e-12 8 2.6e-13 4 2.9e-14 1.6e5
104 1.8e-13 11 7.6e-20 3.8e-20 4.0e-8 12 1.9e-10 1 4.1e-10 1.6e7
105 7.5e-13 15 1.2e-16 1.2e-16 2.2e-5 15 5.0e-7 4 1.3e-8 1.6e9
106 1.3e-11 18 2.0e-16 2.0e-16 8.3e-4 18 7.5e-6 13 7.5e-8 1.6e11
107 7.2e-11 21 1.6e-16 1.6e-16 1.2e2 22 6.9e-1 14 6.2e-4 1.6e13
108 3.0e-12 25 1.3e-16 1.3e-16 4.4e37 25 1.0e0 3 6.3e-2 1.6e15

and funm, which is applicable to general matrix functions and implements the Schur–
Parlett method of Davies and Higham [13], [31, Sec. 10.4.3]. For b ranging from 103

to 108, the normwise relative errors in the Frobenius norm are shown in the columns
of Table 2.1 headed “expm(A)” and “funm(A)”. We see that while funm provides
full accuracy in every case, the accuracy for expm deteriorates with increasing b. As
b increases so does the chosen s in (2.1), with m equal to 13 in each case, which
is the maximum value that expm allows. For b = 108 the diagonal elements of eA

are approximated by rm(x)225 ≈ (
(1 + x/2)/(1− x/2)

)225

with x = ±2−25 ≈ ±10−8.
Approximately half the digits of x are lost in forming 1±x and the repeated squarings
can only amplify the loss. The essential problem is loss of significance due to too large
a choice of s. If we force expm to take smaller values of s (still with m = 13) we find
that the accuracy of the computed exponential increases as s decreases, until a result
correct to full machine precision is obtained for s = 0, as shown in the column of
the table headed “expm(A)†”. Note that s = 0 corresponds to disregarding the large
values of a12 completely.

To gain some more insight we note the following expression for the exponential of
a block 2× 2 block triangular matrix (see, e.g., [31, Prob. 10.12], [70]):

exp

([
A11 A12

0 A22

])
=


eA11

∫ 1

0

eA11(1−s)A12e
A22s ds

0 eA22


 . (2.4)

Note that A12 appears only in the (1,2) block of eA, where it enters linearly. This
suggests that the approximation procedure for eA should be unaffected by ‖A12‖ and
should depend only on ‖A11‖ and ‖A22‖. And if A11 and A22 are upper triangular
this argument can be recurred to reason that only the diagonal elements of A should
influence the parameters m and s. The need for exponentials of triangular matrices
does arise in practice, for example in the solution of radioactive decay equations [55],
[74].

In practice A is most often full, rather than (block) triangular. Of course a full
matrix A can be reduced by unitary similarities to a triangular matrix T via a Schur
decomposition, but applying the scaling and squaring method to T is not numerically
equivalent to applying it to A. To investigate possible overscaling for full matrices
we repeated the experiment above using B = Q∗AQ, where A is as in (2.3) and Q

27

is a random orthogonal matrix, different for each b. The relative normwise errors
are shown in the second group of columns of Table 2.1. We see that both expm and
funm produce errors increasing with b, those from expm being somewhat larger. The
column headed “ expm(B)‡” shows that by forcing an optimal choice of s, expm can
be made significantly more accurate, so expm is again suffering from overscaling.

To determine whether the computed results from expm are acceptable we need to
know the condition number of the problem, which is

κexp(A) := lim
ε→0

sup
‖E‖≤ε‖A‖

‖eA+E − eA‖
ε‖eA‖ . (2.5)

We evaluated this condition number in the Frobenius norm (for which κexp(A) =
κexp(B)) using a combination of Algorithm 1.6.8 and Algorithm 4.6.3, implemented
in a modified version of expm cond from the Matrix Function Toolbox [26]. The
results are shown in the final column of Table 2.1. For a stable method we expect
an error bounded by a modest multiple of κexp(A)u. Thus funm is performing stably
but expm is behaving unstably, especially for b = 107, 108.

For the original A, the errors for expm are all substantially less than κexp(A)u, but
of course this condition number allows arbitrary perturbations and so is not appro-
priate for this triangular A. For structured condition numbers for (block) triangular
matrices see Dieci and Papini [18].

Our simple 2 × 2 example reveals two things. First, that for triangular matrices
overscaling can happen because of large off-diagonal elements. Second, that for full
matrices overscaling is also possible and may cause unstable behavior of the scaling
and squaring method.

The goal of this work is to modify the scaling and squaring method in order to
overcome the overscaling problem. To this end we employ two novel ideas, one specific
to triangular matrices and one applying to general matrices.

Triangular matrices. For the triangular matrix (2.3) we noted that the diagonal
elements are calculated inaccurately by expm for large |b|. A simple solution is to
replace the diagonal elements of the computed exponential by eaii . To benefit the
off-diagonal elements as well, we can replace the values rm(2−saii)

2j
in the squaring

phase by e2j−saii , thereby attenuating the propagation of errors.
Full matrices. For full matrices we introduce a new way of sharpening the trun-

cation error bounds that are used in the derivation of the method. This allows the
method to take a potentially smaller s, and hence evaluate the Padé approximant at a
larger-normed matrix and require fewer squarings. We will argue that the sharpening
is likely to have a particularly beneficial effect when overscaling is possible.

Our key idea is to exploit the sequence {‖Ak‖1/k}. It is easy to see that

ρ(A) ≤ ‖Ak‖1/k ≤ ‖A‖, k = 1: ∞, (2.6)

where ρ is the spectral radius, and moreover ‖Ak‖1/k → ρ(A) as k → ∞ [36,

Cor. 5.6.14]. Figure 2.1 plots the sequence {‖Ak‖1/k
2 }20

k=1 for 54 nonnormal 16 × 16
matrices A, normalized (without loss of generality) so that ‖A‖2 = 1, drawn from the
MATLAB function gallery function, from the Matrix Computation Toolbox [25],
and from the eA literature. We see that typically the sequence is decreasing, although
very non-monotonic behavior is possible. It is this decrease that we will exploit.

28

2 4 6 8 10 12 14 16 18 20
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.1: {‖Ak‖1/k
2 }20

k=1 for 54 16× 16 matrices A with ‖A‖2 = 1.

In the derivation of the scaling and squaring algorithm of [30] a power series

h`(x) =
∞∑

k=`

ck xk

has to be bounded at the matrix argument A (or, more precisely, 2−sA, but we drop
the scale factor for now), where ` = 2m + 1. The bound used previously is [30], [31,
Sec. 10.3]

‖h`(A)‖ ≤
∞∑

k=`

|ck|‖A‖k. (2.7)

The following theorem provides a sharper bound.

Theorem 2.1.1 Let h`(x) =
∑∞

k=` ck xk be a power series with radius of convergence

ω, and let h̃`(x) =
∑∞

k=` |ck|xk. For any A ∈ Cn×n with ρ(A) < ω we have

‖h`(A)‖ ≤ h̃`(‖At‖1/t), (2.8)

where ‖At‖1/t = max{‖Ak‖1/k : k ≥ ` and ck 6= 0}.

Proof. The existence of t is guaranteed since the sequence {‖Ak‖1/k} is bounded
above and convergent, as noted above. We have

‖h`(A)‖ ≤
∞∑

k=`

|ck|‖Ak‖ =
∞∑

k=`

|ck|
(‖Ak‖1/k

)k

≤
∞∑

k=`

|ck|
(‖At‖1/t

)k
= h̃`(‖At‖1/t).

29

0 5 10 15 20
10

0

10
2

10
4

10
6

10
8

10
10

‖A‖k

2

‖Ak‖2

(‖A5‖
1/5

2
)k

(‖A10‖
1/10

2
)k

‖Ak‖
1/k
2

Figure 2.2: For the 2×2 matrix A in (2.10), ‖Ak‖2 and various bounds for k = 1: 20.

The bound (2.8) is clearly sharper than (2.7) since ‖At‖1/t ≤ ‖A‖, and it can be
arbitrarily smaller. In particular, if A 6= 0 is nilpotent and ` ≥ n then the bound
(2.8) is zero while (2.7) is nonzero unless h`(x) ≡ 0. Note that as essentially a special
case of Theorem 2.1.1, if the sequence {‖Ak‖}k≥i is nonincreasing then

‖Ak‖ ≤ (‖Ai‖1/i
)k

, k ≥ i. (2.9)

To see why (2.8) may help to avoid overscaling, consider the matrix

A =

[
0.9 500
0 −0.5

]
, (2.10)

for which the 2-norms of the powers of A decay monotonically for k ≥ 5, despite the
large (1,2) element. Figure 2.2 plots ‖Ak‖2, the crude bound ‖A‖k

2, and the more

refined bounds (‖A5‖1/5
2)k valid for k ≥ 5 and (‖A10‖1/10

2)k valid for k ≥ 10, by (2.9).
The crude bound is an extreme overestimate and the refined bounds are a significant
improvement. The reason for the improvement is that when A is powered the large
(1,2) element multiplies the diagonal elements and there is both multiplicative and
subtractive cancellation, resulting in little or no growth. The refined bounds take
advantage of this. For the power series h`, such a reduction in the bound for ‖Ak‖
translates into a reduction in the bound for h`(A), and this in turn can lead to a
much smaller s being chosen in the scaling and squaring method.

In essence, what we are doing is using the behavior of the first few powers of A
to extract information about the non-normality of A. In the scaling and squaring
method we will exploit the powers that must be computed anyway during the course
of the algorithm, thereby gaining potentially improved accuracy and reduced cost.
This idea has already been used in an ad hoc way by Hargreaves and Higham [24],
who in the context of computing the matrix cosine express error bounds in terms of
‖A2‖1/2 instead of ‖A‖, but here we are exploiting the idea more systematically.

30

This chapter is organized as follows. We begin, in Section 2.2, by showing how
to improve the squaring phase of the scaling and squaring method for triangular
matrices. In Section 2.3 we summarize the scaling and squaring algorithm of Higham.
Section 2.4 presents new bounds for norms of matrix powers that are then exploited
in Section 2.5 to produce a new algorithm that is often more accurate, more efficient,
or both. Numerical experiments that illustrate the benefits of the new algorithm
are given in Section 2.6. Section 2.7 presents a comparison between the efficiency of
diagonal Padé approximants and Taylor approximants within the scaling and squaring
method for the matrix exponential.

Finally, we make connections with earlier work. The overscaling phenomenon was
first identified by Kenney and Laub [44]. It was later analyzed by Dieci and Papini
[17] for the case of block 2× 2 block upper triangular matrices (Aij)

2
i,j=1. The latter

analysis suggests that if the scaling and squaring method is used with s determined
so that 2−s‖A11‖ and 2−s‖A22‖ are appropriately bounded, without consideration of
‖A12‖, then an accurate approximation to eA will still be obtained. However, no
algorithm for general A was proposed in [17].

2.2 Squaring phase for triangular matrices

Our new approach for triangular matrices was inspired by the practical observation
that the scaling and squaring method seems to be immune to overscaling for nilpo-
tent triangular matrices T—those with zero diagonal elements. Indeed, the diagonal
entries of rm(2−sT) are correctly computed as ones and remain as ones through the
squaring process. Now for a general upper triangular matrix T , the scaling and squar-
ing method computes rm(2−sT) =: Ds + Fs, where Ds is diagonal and Fs is strictly
upper triangular, and then forms

Di−1 + Fi−1 = (Di + Fi)
2, i = s : −1 : 1,

after which D0 + F0 ≈ eT . Hence we have the recurrence

Di−1 = D2
i

Fi−1 = Di Fi + Fi Di + F 2
i

}
i = s : −1 : 1. (2.11)

Clearly, errors in the computation of the Di propagate into the off-diagonals contained
in Fi−1. Indeed a single error εI (say) in Di transmits into Fi−1 as 2εFi and into Di−1

as 2εDi, so there is potential exponential error growth. We can virtually remove
errors in the diagonal and thereby attenuate the overall error growth by computing
Di = exp(2−idiag(T)) at each stage instead of computing Ds = rm(2−sdiag(T)) and
then repeatedly squaring. Thus the final steps of the scaling and squaring method
are rewritten as follows.

Code Fragment 2.2.1

1 Form X = rm(2−sT). % First phase of method (unchanged).
2 Replace diag(X) by exp(2−sdiag(T)).
3 for i = s− 1:−1: 0
4 X ← X2

31

0 10 20 30 40 50

10
−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

s

expm_mod
Code Fragment 2.2.1

Figure 2.3: Relative errors from Code Fragment 2.2.1 and expm mod for a single 8×8
matrix with s = 0: 53.

5 Replace diag(X) by exp(2−idiag(T)).
6 Replace (first) superdiagonal of X by explicit formula

for superdiagonal of exp(2−iT) from [31, eq. (10.42)].
7 end

Note that we have gone further in line 6 by computing the correct superdiagonal as
well, since it is available from an accurate formula at negligible cost.

We give a numerical example to illustrate the benefits of this approach. We take
the matrix formed by the MATLAB code, with n = 8,

T = gallery(’triw’,n,-1); T(1,n) = 1e4; T(1:n+1:n^2) = -(1:n).^2

The MATLAB function expm chooses s = 11 and m = 13 for this matrix and produces
a relative error 8.4 × 10−14. For s from 0 to 53 we compare Code Fragment 2.2.1,
using m = 13, with a modified version expm mod of expm that accepts a user-specified
choice of s. The normwise relative errors for both methods are plotted in Figure 2.3.
The optimum value of s for expm mod is 4, for which a relative error 4.9 × 10−16 is
achieved; as s increases the relative error deteriorates rapidly until it reaches 1 at
s = 53. However, Code Fragment 2.2.1 remains fully accurate for all s ≥ 4, showing
the effectiveness of the strategy of injecting the correct diagonal into the recurrence.

This approach can be extended to quasi-triangular matrices T , which are block
triangular matrices whose diagonal blocks Tii are 1× 1 or 2× 2. Such T arise in the
real Schur decomposition of a real matrix, in which case the 2 × 2 blocks Tii have
distinct eigenvalues that are nonreal complex conjugates. We need to compute the
exponentials of the diagonal blocks

A =

[
a b
c d

]
,

32

which we assume have distinct eigenvalues λ1, λ2. From the general formula f(A) =
f(λ1)I + f [λ1, λ2](A− λ2I), where f [λ1, λ2] is a divided difference [31, Prob. 1.9], we
obtain

eA =
eλ1 − eλ2

λ1 − λ2

A +

(
eλ1 − λ2

eλ1 − eλ2

λ1 − λ2

)
I.

The eigenvalues of A are (a + d)/2 ± µ, where µ = 1
2

√
(a− d)2 + 4bc. After some

manipulation we obtain

eA = e(a+d)/2

[
cosh(µ) + 1

2
(a− d) sinch(µ) b sinch(µ)

c sinch(µ) cosh(µ)− 1
2
(a− d) sinch(µ)

]
, (2.12)

where

sinch(x) =

{
sinh(x)/x, x 6= 0,
1, x = 0.

This formula is not always evaluated to high relative accuracy, so the use of extra
precision in its evaluation might be justified.

Combining this formula with an initial real Schur decomposition we have the
following outline applicable to any A ∈ Rn×n.

Code Fragment 2.2.2

1 Compute the real Schur decomposition, A = QTQ∗,
with block q × q upper quasi-triangular T = (Tij).

2 Form X = rm(2−sT).
3 Replace diag(Xii) by exp(2−sdiag(Tii)), i = 1: q, using (2.12).
4 for i = s− 1:−1: 0
5 X ← X2

6 Replace diag(Xii) by exp(2−idiag(Tii)), i = 1: q, using (2.12).
7 end
8 X ← QXQ∗

Note that this approach has the advantage that it works entirely in real arith-
metic, in contrast to the Schur–Parlett method specialized to the exponential, which
necessarily uses the complex Schur form [13], [31, Sec. 10.4.3].

Our main interest is in improving the scaling and squaring method for full matrices
without using a Schur decomposition. In the next section we summarize the derivation
of the existing algorithm on which we will work.

2.3 The existing scaling and squaring algorithm

In this section we review the scaling and squaring algorithm of Higham [30]. Write
the [m/m] Padé approximant of ex as rm(x) = pm(x)/qm(x). We will later need the
properties that pm has positive coefficients and qm(x) = pm(−x).

Let νm = min{ |t| : qm(t) = 0 } and

Ωm = {X ∈ Cn×n : ρ(e−Xrm(X)− I) < 1 and ρ(X) < νm }. (2.13)

33

Table 2.2: Parameters θm needed in Algorithm 2.3.1 and Algorithm 2.5.1 and upper
bounds for κA(qm(A)).

m θm κA(qm(A))
3 1.495585217958292e-2 1.0e0
5 2.539398330063230e-1 1.3e0
7 9.504178996162932e-1 2.6e0
9 2.097847961257068e0 8.2e0

13 (Alg. 2.3.1) 5.371920351148152e0 2.2e2
13 (Alg. 2.5.1) 4.25 7.1e1

The functions
h2m+1(X) = log(e−X rm(X)) (2.14)

are defined for X ∈ Ωm, where log denotes the principal logarithm, and so for X ∈ Ωm

we have rm(X) = eX+h2m+1(X). Now choose s so that 2−sA ∈ Ωm. Then

rm(2−sA)2s

= eA+2sh2m+1(2−sA) =: eA+∆A (2.15)

and the matrix ∆A = 2sh2m+1(2
−sA) represents the backward error resulting from

the approximation of eA by the scaling and squaring method. Over Ωm, the functions
h2m+1 have a power series expansion

h2m+1(X) =
∞∑

k=2m+1

ck Xk.

Higham [30] employs a variant of the bound

‖∆A‖
‖A‖ =

‖h2m+1(2
−sA)‖

‖2−sA‖ ≤ h̃2m+1(‖2−sA‖)
‖2−sA‖ , (2.16)

where h̃2m+1(x) =
∑∞

k=2m+1 |ck|xk. For m = 1: 21, he uses high precision arithmetic
to compute the values

θm = max{ θ : h̃2m+1(θ)/θ ≤ u }, (2.17)

some of which are listed in Table 2.2. He finds that θm < νm. Thus in exact arith-
metic, ‖∆A‖ ≤ u‖A‖ if s is chosen so that ‖2−sA‖ ≤ θm and rm(2−sA)2s

is used to ap-
proximate eA. Higham’s cost analysis eliminates even degrees of Padé approximants
and reveals that m = 13 is the optimal degree to use when scaling is required. When
‖A‖ ≤ θ13, his algorithm chooses the first m ∈ {3, 5, 7, 9, 13} such that ‖A‖ ≤ θm.

For m = 3, 5, 7, 9, Higham uses the evaluation scheme

pm(A) = A

(m−1)/2∑

k=0

b2k+1A2k +

(m−1)/2∑

k=0

b2kA2k =: (um + vm)(A), (2.18)

where A2k = A2k. For m = 13, he uses the scheme

p13(A) = A
[
A6(b13A6 + b11A4 + b9A2) + b7A6 + b5A4 + b3A2 + b1I

]
(2.19)

+ A6(b12A6 + b10A4 + b8A2) + b6A6 + b4A4 + b2A2 + b0I

=: (u13 + v13)(A),

34

where A2 = A2, A4 = A2
2, and A6 = A2A4. Since qm(A) = pm(−A), we have

qm(A) = (−um + vm)(A) and rm(A) is obtained from the equation

(−um + vm)(A)rm(A) = (um + vm)(A). (2.20)

The algorithm of Higham [30], which forms the basis of the MATLAB function
expm, can be summarized as follows.

Algorithm 2.3.1 This algorithm evaluates the matrix exponential X = eA of A ∈
Cn×n by the scaling and squaring method. It uses the parameters θm given in Table 2.2.
The algorithm is intended for IEEE double precision arithmetic.

1 for m = [3 5 7 9]
2 if ‖A‖1 ≤ θm, evaluate X = rm(A) using (2.18) and (2.20), quit, end
3 end
4 A ← 2−sA with s = dlog2(‖A‖1/θ13)e
5 Evaluate r13(A) using (2.19) and (2.20).

6 X = r13(A)2s

by repeated squaring.

Cost: (πm + s)M + D, where m is the degree of Padé approximant used and πm

(tabulated in [30, Table 2.2]) is the cost of evaluating pm and qm.

2.4 Practical bounds for norm of matrix power se-

ries

The bound for ‖h`(A)‖ in Theorem 2.1.1 is not readily usable in the form stated
since it employs ‖At‖1/t and we will rarely know the value of t. We now develop
a more convenient form of bound that will be used in the next section to improve
Algorithm 2.3.1. We denote by N the set of positive integers.

Lemma 2.4.1 For any k ≥ 1 such that k = pm1 + qm2 with p, q ∈ N and m1,m2 ∈
N ∪ {0},

‖Ak‖1/k ≤ max
(‖Ap‖1/p, ‖Aq‖1/q

)
.

Proof. Let δ = max(‖Ap‖1/p, ‖Aq‖1/q). The bound follows from the inequality

‖Ak‖ ≤ ‖Apm1‖‖Aqm2‖
≤ (‖Ap‖1/p

)pm1
(‖Aq‖1/q

)qm2

≤ δpm1δqm2 = δk.

Theorem 2.4.2 Define h` and h̃` as in Theorem 2.1.1 and suppose ρ(A) < ω and
p ∈ N. Then

(a) ‖h`(A)‖ ≤ h̃`

(
max(‖Ap‖1/p, ‖Ap+1‖1/(p+1))

)
if ` ≥ p(p− 1).

(b) ‖h`(A)‖ ≤ h̃`

(
max(‖A2p‖1/(2p), ‖A2p+2‖1/(2p+2))

)
if ` ≥ 2p(p − 1) and h` is

even.

35

Proof. For the first part, let Xp = {m ∈ N : m ≥ p(p − 1) } and Yp = { (p +
1)m1 + pm2 : m1,m2 ∈ N∪{0} }. We have Xp ⊂ Yp since any element k ∈ Xp can be
written as k = pq+r with q ≥ p−1 and 0 ≤ r < p. Then k = (p+1)r+p(q−r) ∈ Yp,
since q − r ≥ p− r − 1 ≥ 0. Hence by Lemma 2.4.1 we have

‖Ak‖1/k ≤ max{ ‖Ap+1‖1/(p+1), ‖Ap‖1/p }, k ≥ p(p− 1),

and the result follows from Theorem 2.1.1. Part (b) follows similarly from the rela-
tions

{ ` : ` even, ` ≥ 2p(p− 1) } = 2Xp ⊂ 2Yp

= { (2p + 2)m1 + 2pm2 : m1,m2 ∈ N ∪ {0} }.

To illustrate Theorem 2.4.2, suppose ` = 12. In view of the inequality ‖A2k‖1/(2k) ≤
‖Ak‖1/k, the p that minimizes max(‖Ap‖1/p, ‖Ap+1‖1/(p+1)) subject to ` ≥ p(p− 1) is
either p = 3 or p = 4. So the first part of the theorem gives

‖h12(A)‖ ≤ h̃12

(
min

(
max(‖A3‖1/3, ‖A4‖1/4), max(‖A4‖1/4, ‖A5‖1/5)

))
. (2.21)

If h12 is even we can apply the second part of the theorem, for which the optimal
choice of p is 3, which gives

‖h12(A)‖ ≤ h̃12

(
max(‖A6‖1/6, ‖A8‖1/8)

)
. (2.22)

For a normal matrix and the 2-norm these upper bounds are both identical to the
bound h12(‖A‖2), but for nonnormal matrices they can be significantly smaller. For

A in (2.10), we have ‖h12(A)‖2 ≤ h̃12(‖A‖2) ≈ h̃12(500), but ‖h12(A)‖2 ≤ h̃12(3.82)

from (2.21) and ‖h12(A)‖2 ≤ h̃12(2.39) from (2.22), demonstrating the benefit of
exploiting the structure of h12 as an even function. Figure 2.1 suggests that it will
typically be the case that (2.22) is sharper than (2.21).

2.5 New algorithm

We now derive a new algorithm that builds on Algorithm 2.3.1. Our development
focuses on increasing the sharpness of the inequality in (2.16) by using the bounds of
the previous section.

The function h2m+1 in (2.14) is odd, which follows from the fact that Padé ap-
proximants to the exponential function satisfy rm(−x) = (rm(x))−1 [31, Sec. 10.3]:

h2m+1(−x) = log(exrm(−x))

= log((e−xrm(x))−1)

= − log(e−xrm(x)) = −h2m+1(x).

Therefore for X ∈ Ωm we can write

h2m+1(X) = X

∞∑

k=2m

ck+1 Xk =: Xφ2m(X),

36

where the φ2m are even functions. Let φ̃2m(x) =
∑∞

k=2m |ck+1|xk. We can now refine
the bound in (2.16) using Theorem 2.4.2(b):

‖∆A‖
‖A‖ =

‖h2m+1(2
−sA)‖

‖2−sA‖ =
‖2−sAφ2m(2−sA)‖

‖2−sA‖ (2.23a)

≤ ‖φ2m(2−sA)‖ ≤ φ̃2m(2−sαp(A)),

where

αp(A) = max
(‖A2p‖1/(2p), ‖A2p+2‖1/(2p+2)

)
(2.23b)

and we choose p to minimize αp(A) subject to 2m ≥ 2p(p− 1). As we have φ̃2m(θ) =

h̃2m+1(θ)/θ, clearly this analysis does not affect the calculation of the values θm in
(2.17), but it does affect the choice of scaling parameter s. Whereas before, the pair
(s,m) could be used if 2−s‖A‖ ≤ θm, now the requirement is only

2−sαp(A) ≤ θm, (2.24)

and for a given m this is potentially satisfied with a much smaller s when A is
nonnormal. A significant computational saving could therefore accrue.

At this point, we have an improved way to choose the parameters m and s, but
we have not yet considered the effect of rounding errors. The analysis in [30] shows
that Algorithm 2.3.1 is not unduly affected by rounding errors except, possibly, in the
squaring phase. But with our more liberal choice of parameters numerical stability
needs further analysis. We will combine rigorous error bounds with some heuristics
in order to arrive at our final algorithm.

The main aim is to check that the evaluation of rm is accurate in floating point
arithmetic. Let A ← 2−sA, so that A denotes the scaled matrix, and consider the
evaluation of pm(A) by the schemes described in the previous section. It is shown in
[30] that the computed matrix p̂m(A) satisfies

‖pm(A)− p̂m(A)‖1 ≤ γ̃mnpm(‖A‖1) <∼ γ̃mn‖pm(A)‖1 e‖A‖1 , (2.25)

where γ̃k = cku/(1−cku) with c a small integer constant. While this is a satisfactory
bound for the values of ‖A‖ allowed by Algorithm 2.3.1, it is not so for an algorithm
based on (2.24), because ‖A‖ can be arbitrarily large. Therefore we will use the
sharper error bound [31, Thm. 4.5]

max(‖pm − p̂m‖1, ‖qm − q̂m‖1) ≤ γ̃mn‖pm(|A|)‖1 = γ̃mn‖pm(|A|)T e‖∞, (2.26)

where e = [1, 1, . . . , 1]T and we have used the properties of pm and qm mentioned at
the start of Section 2.3 together with the relations

‖B‖1 = ‖|B|‖1 = ‖ |B|T e‖∞. (2.27)

The bound (2.26) can be computed in just O(n2) operations.
The a priori bound (2.26) applies to several different evaluation schemes and does

not exploit the particular properties of our scheme. In particular, it contains |A|m,
which is clearly pessimistic since our schemes for pm and qm do not explicitly evaluate

37

the mth power of A. However, it turns out that the bound is surprisingly sharp when
used within our algorithm in practice. We have found that if the inequality

‖p̂m(|A|)T e‖∞/ min(‖p̂m‖1, ‖q̂m‖1) ≤ ceθm (2.28)

is satisfied for a suitable integer constant c then this is a reliable indicator that p̂m

and q̂m have been computed to close to full precision (in other words, we can ignore
the term γ̃mn in (2.26)). We have tried the alternative of computing a running error
bound (an a posteriori bound that is the smallest possible) [29, Sec. 3.3], but found
that it brings no benefits.

Suppose that (2.28) is not satisfied, which suggests that the evaluation of pm

or qm may have been insufficiently accurate. Since the weaker bound (2.25) is sat-
isfactory for Algorithm 2.3.1, this means that s < smax, where smax is the scaling
parameter selected by Algorithm 2.3.1. We could simply revert to smax and execute
Algorithm 2.3.1, but instead we will use a strategy that in certain cases increases
s based on the available information. One approach is to increase s so that (2.28)
is satisfied. However, we have found a more heuristic approach to perform better
in practice. Let A denote the original, unscaled matrix. Returning to the bound
(2.23a), using |h2m+1(A)| ≤ h̃2m+1(|A|) we have

‖∆A‖1

‖A‖1

=
‖h2m+1(2

−sA)‖1

‖2−sA‖1

≤ ‖h̃2m+1(2
−s|A|)‖1

‖2−sA‖1

≤ |c2m+1|‖ |2
−sA|2m+1 ‖1

‖2−sA‖1

+
∞∑

k=2m+2

|ck|‖ |2
−sA|k ‖1

‖2−sA‖1

(2.29)

≤ φ̃2m(‖2−sA‖1).

We select the smallest integer `m ≥ 0 so that |c2m+1|‖|2−s−`mA|2m+1‖1/‖2−s−`mA‖1 ≤
u, that is,

`m = max

(⌈
log2

(
|c2m+1|‖|2

−sA|2m+1‖1

u‖2−sA‖1

)
/(2m)

⌉
, 0

)
. (2.30)

If `m > 0 then we increase s to s + `m. The value s + `m cannot exceed smax as long
as s ≤ smax. To see why, write smax = s + t and note that by the definition of smax

we have φ̃2m(‖2−smaxA‖1) ≤ u, which yields from (2.29) that

|c2m+1|‖ |2
−s−tA|2m+1 ‖1

‖2−s−tA‖1

≤ u.

As `m is chosen to be the smallest nonnegative integer such that this relation holds,
we have t ≥ `m, that is, s + `m ≤ smax. Note that we can evaluate ‖|2−sA|2m+1 ‖1

in O(n2) operations by repeated matrix–vector products, as ‖|2−sA|2m+1e‖∞. Also,
while ‖|2−sA|2m+1 ‖1 can be large, we have |c2m+1| ¿ 1, so `m should not typically
be large. Experiments show that this heuristic choice of `m has the ability usually to
increase s just when needed. If (2.28) is satisfied we proceed with this s; otherwise
we revert to Algorithm 2.3.1, reusing as many of the computed quantities as possible.

To obtain rm(A), with A once again denoting the scaled matrix 2−sA, we solve
the multiple right-hand side linear system (2.20) with the coefficient matrix qm(A) =

38

−U + V , where U = um(A), V = vm(A). Since ρ(A) ≤ αp(A) ≤ θm < νm by (2.6)
and (2.24), the matrix qm(A) is nonsingular and the series qm(A)−1 =

∑∞
k=0 ak Ak

converges absolutely. But in addition we want qm(A) to be well conditioned, so that
the system (2.20) can be solved accurately in floating point arithmetic. For any ε > 0,
there exists a consistent matrix norm ‖ · ‖A such that ‖A‖A ≤ ρ(A) + ε ≤ αp(A) + ε.
The corresponding condition number is

κA(qm(A)) = ‖qm(A)‖A‖qm(A)−1‖A

≤ pm(αp(A) + ε)
∞∑

k=0

|ak|(αp(A) + ε)k ≤ pm(θm + ε)
∞∑

k=0

|ak|(θm + ε)k,

where we have used the properties of pm and qm mentioned at the start of this
section. We choose ε = u and list these upper bounds for κA(qm(A)) in Table 2.2.
Since the norm ‖ · ‖A can be very badly scaled the practical value of these bounds for
a particular A is difficult to judge. However, we can compute an a posteriori forward
error bound for (2.20). This bound is, with X denoting rm and the residual matrix

R̂ = fl(U + V − (−U + V)X̂) for the computed U and V ,

‖X − X̂‖M

‖X̂‖M

≤ ‖|(−U + V)−1|(|R̂|+ γn+1(|−U + V ||X̂|+ |U + V |)‖M

‖X̂‖M

, (2.31)

where ‖X‖M = maxi,j |xij| and γk = ku/(1− ku). This bound is from [29, eq. (7.31)]
and is essentially the best possible forward error bound. Given that we already have
an LU factorization of −U + V from solving the linear system, this bound can be
cheaply estimated without computing (−U+V)−1, as described in [29, Sec. 15.1]. The
cost of forming the bound (2.31) is therefore essentially one matrix multiplication—
that needed for R.

We are now in a position to design the new algorithm. Higham’s cost analysis
and evaluation schemes stated above remain applicable. From (2.23b) it is easily seen
that α3(A) ≤ α2(A) ≤ α1(A). Thus, for m = 3, 5, 7, 9 the optimal values of p subject
to the constraint 2m ≥ 2p(p − 1) are p = 2, 2, 3, 3, respectively, and for m = 13 the
optimal value of p is 3 or 4 (either of α3(A) and α4(A) can be the smaller). Thus,
using the 1-norm, we need to compute the quantities

αp = max
(
d2p, d2p+2

)
, p = 2: 4, d2j := ‖A2j‖1/(2j)

1 , j = 2: 5.

However, computing the d2j requires computing powers of A that are not needed to
evaluate rm, for which the highest explicitly computed power is, depending on A, the
eighth or lower. We will use the powers of A that are evaluated in the schemes (2.18)
and (2.19), and for other powers compute norm estimates using the block 1-norm
estimation algorithm of Higham and Tisseur [34], which for an n× n matrix carries
out a 1-norm power iteration whose iterates are n×t matrices, where t is a parameter
that we take to be 2. This algorithm typically requires the evaluation of about 4t
matrix–vector products and almost invariably produces a norm estimate (which is,
in fact, a lower bound on the norm) correct to within a factor 3.

Now we describe the details of how to choose m and s, with s minimal, so that
the bound in (2.23a) is no larger than u.

39

1. Compute A2 = A2 and set s = 0 and m = 3, so p = 2 is the optimal value such
that 2m ≥ 2p(p− 1), as explained above. We need η1 = max(d4, d6). Since A4

and A6 are not needed by r3, use estimates of d4 and d6 obtained by applying
the norm estimator to A2

2 and A3
2 (a product A3

2x required by the estimator
is computed by three matrix–vector multiplications with A2, for example). If
η1 ≤ θ3 quit, otherwise continue to step 2.

2. Compute A4 = A2
2 and set m = 5, for which p = 2 is again the optimal value

such that 2m ≥ 2p(p − 1). Now we have d4 and can reuse the estimate of d6,
setting η2 = max(d4, d6). If η2 ≤ θ5 quit, otherwise continue to step 3.

3. Compute A6 = A4A2. For m ∈ {7, 9}, p = 3 is the optimal value such that
2m ≥ 2p(p − 1). We compute η3 = max(d6, d8), in which we estimate d8 by
applying the norm estimator to A2

4. If η3 ≤ θ7 set m = 7, else if η3 ≤ θ9 set
m = 9, else continue to step 4.

4. Set m = 13, for which either p = 3 or p = 4 is the optimal value such that 2m ≥
2p(p − 1). The highest power of A that we compute to evaluate r13 by (2.19)
is A6, so we use the norm estimator to estimate d10 and set η4 = max(d8, d10).
Choose the smallest s ≥ 0 such that 2−sη5 ≤ θ13, where η5 = min(η3, η4).

We introduce two more algorithmic refinements. First, we use θ13 = 4.25 in
place of the value θ13 = 5.37 used in Algorithm 2.3.1 (see Table 2.2). The reason
is that this produces a slightly better conditioned denominator polynomial q13 and
our experiments show that in the context of our more liberal choice of s this is
beneficial to the accuracy of the computed exponential. This refinement can lead to
s exceeding smax, but only by 1, and in this case `m = 0 as can be seen from (2.29).
The second refinement is that for each putative m we compute the correction (2.30)
before evaluating pm and qm and checking the inequality (2.28) and, if the correction is
nonzero, we proceed to the next larger choice of m. This is simply another means for
trying to avoid an inaccurate evaluation (or, put another way, wasted computation).

Now we write the new scaling and squaring algorithm for the matrix exponential.

Algorithm 2.5.1 This algorithm evaluates the matrix exponential X = eA of A ∈
Cn×n by the scaling and squaring method. It is intended for IEEE double precision
arithmetic. It uses the parameters θm given in Table 2.2 and the following functions

• normest, which when invoked as normest(A1, A2, . . . , Ak) produces an estimate
of ‖A1A2 . . . Ak‖1 and when invoked as normest(A,m) produces an estimate of
‖Am‖1;

• ell(A,m), which returns the integer max(d(log2(α/u)/(2m)e), 0),
where α = |c2m+1|normest(|A|, 2m + 1)/‖A‖1.

1 A2 = A2

2 d6 = normest(A2, 3)1/6, η1 = max
(
normest(A2, 2)1/4, d6

)
3 if η1 ≤ θ3 and ell(A, 3) = 0
4 Evaluate p3(A) and q3(A) using (2.18).
5 if ‖p3(|A|)T e‖∞/ min(‖p3‖1, ‖q3‖1) ≤ 10eθ3

40

6 Evaluate r3 using (2.20), quit.
7 end
8 end

9 A4 = A2
2, d4 = ‖A4‖1/4

1

10 η2 = max
(
d4, d6

)
11 if η2 ≤ θ5 and ell(A, 5) = 0
12 Evaluate p5(A) and q5(A) using (2.18).
13 if ‖p5(|A|)T e‖∞/ min(‖p5‖1, ‖q5‖1) ≤ 10eθ5

14 Evaluate r5 using (2.20), quit.
15 end
16 end

17 A6 = A2A4, d6 = ‖A6‖1/6
1

18 d8 = normest(A4, 2)1/8, η3 = max(d6, d8)
19 for m = [7, 9]
20 if η3 ≤ θm and ell(A,m) = 0
21 Evaluate pm(A) and qm(A) using (2.18).
22 if ‖pm(|A|)T e‖∞/ min(‖pm‖1, ‖qm‖1) ≤ 10eθm

23 Evaluate rm using (2.20), quit.
24 end
25 end
26 end
27 η4 = max

(
d8, normest(A4, A6)

1/10
)

28 η5 = min(η3, η4)
29 s = max

(dlog2(η5/θ13)e, 0
)

30 s = s + ell(2−sA, 13)
31 A ← 2−sA, A2 ← 2−2sA2, A4 ← 2−4sA4, A6 ← 2−6sA6

32 Evaluate p13(A) and q13(A) using (2.19).
33 if ‖p13(|A|)T e‖∞/ min(‖p13‖1, ‖q13‖1) ≤ (10 + smax)e

θ13

34 Evaluate r13 using (2.20), quit.
35 else
36 s1 = smax − s, s = smax

37 A ← 2−s1A, A2 ← 2−2s1A2, A4 ← 2−4s1A4, A6 ← 2−6s1A6

38 Evaluate r13 using (2.19) and (2.20).
39 end
40 if A is triangular
41 Invoke Code Fragment 2.2.1.
42 else

43 X = r13(A)2s

by repeated squaring.
44 end

Cost: (πm + s)M + D, where m is the degree of Padé approximant used and πm

(tabulated in [30, Table 2.2]) is the cost of evaluating pm and qm. If line 36 is
executed then the cost is (π13 + s + 3)M + D. If any of the tests at lines 5, 13, and
22 fail then there is some wasted work in evaluating lower degree pm and qm that are
not used.

Note that we have not included the bound (2.31) because it would require an
extra matrix multiplication and the algorithm performs well in practice without the

41

use of it. It is easy to check that if line 33 is reached then Algorithm 2.3.1 would
choose m = 13, so at line 36 the algorithm is reverting to Algorithm 2.3.1.

2.6 Numerical experiments

We now compare Algorithm 2.3.1, as implemented in expm, and Algorithm 2.5.1
experimentally. We will use four sets of test matrices.

Set 1 Matrices from the literature on developing methods for eA (including (2.3)
with b = 107), mostly intended to be difficult for the scaling and squaring
method. All are of dimension 10 or less.

Set 2 10 × 10 matrices from MATLAB (in particular, from the gallery function),
and from the Matrix Computation Toolbox [25].

Set 3 The upper triangular Schur factors of the matrices from Set 2.

Set 4 Test matrices provided with EigTool [73], which are mainly discretizations of
operators. The matrices are of variable dimension, which we have taken to be
as close as possible to n = 50.

The tests in [30] and [31] used Sets 1 and 2 together.
Our tests were done in MATLAB 7.10 (R2010a). We compute normwise relative

errors ‖X̂ − eA‖F /‖eA‖F of the computed X̂ by approximating eA by the result
computed at 100 digit precision using Symbolic Math Toolbox. For Sets 1 and 3,
Algorithm 2.5.1 produces many errors of zero, but to facilitate the plots we replace
a zero error for this algorithm by 10−18.

For each set we present the results as four plots in a 2×2 grid; see Figures 2.4–2.7.
The (1,1) plot shows the relative errors for the two algorithms, where the matrices
are sorted by decreasing value of the condition number κexp(A) in (2.5), and κexp(A)u
is shown as a solid line. The (1,2) plot shows the log10 of the ratio of relative errors,
sorted in increasing order, and this same ordering is also used by the (2,1) and (2,2)
plots. The (2,1) plot shows the values of s chosen by each method. The (2,2) plot
shows the ratio of the costs of the algorithms, where cost is measured as described
after the statement of each algorithm and we regard M and D as equal. Note that
this measure of cost is appropriate only for n À 10, but since the choice of s and
m depends only on ‖A‖1 for Algorithm 2.3.1 and on ‖Ak‖1/k

1 for certain k for Algo-
rithm 2.5.1, these results are indicative of the relative costs for much larger matrices.
We note that the cost ratio cannot exceed 8/7 ≈ 1.14, and can be greater than 1 only
because of the differing values for θ13 for the two algorithms (see Table 2.2).

The main points to note are as follows.

(1) Algorithm 2.5.1 did not revert to Algorithm 2.3.1 (on line 36) for any of the test
matrices. Moreover, the tests at lines 5, 13, and 22 never failed to be satisfied. The
correction (2.30) was nonzero at line 30 on 6, 10, 0, and 2 occasions on the four test
sets, respectively. If we remove line 30 then there are 6 reversions in Test 1, 1 in Test
2, and none in Tests 3 and 4. The value of ell at lines 3, 11, and 20 was nonzero
once for Test 1, 5 times for Test 2, and not at all for Tests 3 and 4.

42

0 10 20 30
10

−20

10
−10

10
0

Relative error

Alg. 2.3.1
Alg. 2.5.1

0 10 20 30
−20

−15

−10

−5

0

5

log
10

 of ratio of errors: Alg 2.5.1/Alg 2.3.1

5 10 15 20 25 30
0

10

20

30

40

50

Values of s

Alg. 2.3.1
Alg. 2.5.1

0 10 20 30

0.2

0.4

0.6

0.8

1

Ratio of cost: Alg 2.5.1/Alg 2.3.1

Figure 2.4: Results for test matrix Set 1.

0 10 20 30 40 50
10

−20

10
−10

10
0

Relative error

Alg. 2.3.1
Alg. 2.5.1

0 10 20 30 40 50
−1.5

−1

−0.5

0

0.5

1

log
10

 of ratio of errors: Alg 2.5.1/Alg 2.3.1

10 20 30 40 50

0

5

10

15

20

Values of s

Alg. 2.3.1
Alg. 2.5.1

0 10 20 30 40 50
0.8

0.9

1

1.1

1.2
Ratio of cost: Alg 2.5.1/Alg 2.3.1

Figure 2.5: Results for test matrix Set 2.

43

0 10 20 30 40 50
10

−20

10
−10

10
0

Relative error

Alg. 2.3.1
Alg. 2.5.1

0 10 20 30 40 50
−6

−5

−4

−3

−2

−1

0

1

log
10

 of ratio of errors: Alg 2.5.1/Alg 2.3.1

10 20 30 40 50

0

5

10

15

20

Values of s

Alg. 2.3.1
Alg. 2.5.1

0 10 20 30 40 50
0.2

0.4

0.6

0.8

1

1.2
Ratio of cost: Alg 2.5.1/Alg 2.3.1

Figure 2.6: Results for test matrix Set 3.

0 5 10 15
10

−16

10
−14

10
−12

Relative error

Alg. 2.3.1
Alg. 2.5.1

0 5 10 15
−1.5

−1

−0.5

0

0.5

log
10

 of ratio of errors: Alg 2.5.1/Alg 2.3.1

5 10 15
0

1

2

3

4

5

6
Values of s

Alg. 2.3.1
Alg. 2.5.1

0 5 10 15
0.2

0.4

0.6

0.8

1

Ratio of cost: Alg 2.5.1/Alg 2.3.1

Figure 2.7: Results for test matrix Set 4.

44

0 5 10 15 20 25 30 35
10

−18

10
0

Set 1

0 10 20 30 40 50 60
10

−17

10
−15

10
−12

Set 2

0 10 20 30 40 50 60
10

−20

10
−10

10
0

Set 3

0 2 4 6 8 10 12 14
10

−20

10
−15

10
−10

Set 4

Figure 2.8: Quantities associated with the computed r̂m ≈ rm(2−sA) for Algo-
rithm 2.5.1: relative error in r̂m (“◦”), a posteriori forward error bound (2.31) (“×”),
and nκ1(qm)u (“∗”)—an approximate a priori bound for the error.

(2) For Set 1, Algorithm 2.5.1 has a cost up to about 5 times smaller than Algo-
rithm 2.3.1 while achieving error barely any larger and sometimes orders of magnitude
smaller. This is due to Algorithm 2.5.1 frequently choosing a smaller s.

(3) For Set 2 there is no significant difference in the accuracy of the two algorithms.
But in 22% of the cases Algorithm 2.5.1 is less expensive than Algorithm 2.3.1, by
up to 17% while in just two cases it is more expensive, by 12%.

(4) For Set 3, Algorithm 2.5.1 is more accurate than Algorithm 2.3.1 in almost every
case, often by orders of magnitude. This is mainly due to exploiting triangularity in
the squaring phase.

(5) For Set 4, Algorithm 2.5.1 is superior to Algorithm 2.3.1 in speed and accuracy
for three of the matrices and performs equivalently to it for the rest except for one
case.

(6) Figure 2.8 provides information about the linear systems (2.20) that are solved
to obtain rm(2−sA). It shows the relative error ‖rm − r̂m‖1/‖rm‖1 along with the a
posteriori bound (2.31) and the approximate a priori bound nκ1(qm)u for this error.
The results show that (a) the relative error is reasonably small in every case, (b)
the system is sometimes solved to much better accuracy than the condition number
κ1(qm) would suggest (see Set 1), and (c) the a posteriori bound is a surprisingly
good predictor of the actual error.

These experiments and our additional investigations lead us to conclude that no
benefit is gained from using the test (2.28) to gauge whether the evaluation of pm and
qm has been sufficiently accurate. Therefore we recommend the following simplifica-
tion of Algorithm 2.5.1, which we emphasize performs identically to Algorithm 2.5.1
on the tests reported here.

45

Algorithm 2.6.1 This algorithm is identical to Algorithm 2.5.1 except that lines 5,
7, 13, 15, 22, 24, 33, and 35–39 are removed.

1 A2 = A2

2 d6 = normest(A2, 3)1/6, η1 = max
(
normest(A2, 2)1/4, d6

)
3 if η1 ≤ θ3 and ell(A, 3) = 0
4 Evaluate r3(A) using (2.18) and (2.20)
5 quit
6 end

7 A4 = A2
2, d4 = ‖A4‖1/4

1

8 η2 = max
(
d4, d6

)
9 if η2 ≤ θ5 and ell(A, 5) = 0

10 Evaluate r5(A) using (2.18) and (2.20)
11 quit
12 end

13 A6 = A2A4, d6 = ‖A6‖1/6
1

14 d8 = normest(A4, 2)1/8, η3 = max(d6, d8)
15 for m = [7, 9]
16 if η3 ≤ θm and ell(A,m) = 0
17 Evaluate rm(A) using (2.18) and (2.20)
18 quit
19 end
20 end
21 η4 = max

(
d8, normest(A4, A6)

1/10
)

22 η5 = min(η3, η4)
23 s = max

(dlog2(η5/θ13)e, 0
)

24 s = s + ell(2−sA, 13)
25 A ← 2−sA, A2 ← 2−2sA2, A4 ← 2−4sA4, A6 ← 2−6sA6

26 Evaluate r13(A) using (2.19) and (2.20)
27 if A is triangular
28 Invoke Code Fragment 2.2.1.
29 else

30 X = r13(A)2s

by repeated squaring.
31 end

2.7 Cost of Padé versus Taylor approximants within

the scaling and squaring method

In this section we compare the efficiency of diagonal Padé approximants and Taylor
approximants within the scaling and squaring method for the matrix exponential,
based on the use of refined backward error bounds in both cases.

For A ∈ Cn×n we use the Paterson-Stockmeyer scheme [60], [31, Sec. 4.2] to
evaluate Tm(A) =

∑m
k=0 Ak/k! as

Tm(A) =
∑̀

k=0

gk(A)(Aτ)k, ` = bm/τc, (2.32)

46

where 1 ≤ τ ≤ m is an integer and

gk(A) =

{ ∑τ
i=1 Aτ−i/(τk + τ − i)!, k = 0 : `− 1,

∑m
i=`τ Ai−`τ/i!, k = `.

Horner’s rule is used on (2.32). This scheme evaluates Tm(A) at a number of matrix
multiplications equal to

π̃m = ` + τ − 1− φ(m, τ), φ(m, τ) =

{
1, if τ | m,
0, otherwise.

(2.33)

The choice τ =
√

m approximately minimizes this quantity [31, Sec. 4.2], so we take
τ either b√mc or d√m e since both yield the same operation count [23, Thm. 1.7.4].

The analysis in Section 2.3 is applicable to any rational approximation to ex, not
just diagonal Padé approximants, so we can replace rm therein by Tm. Thus with
hm+1(x) = log(e−xTm(x)) =

∑∞
k=m+1 ck xk we calculate the parameters

θ̃m = max{ θ : h̃m+1(θ)/θ ≤ u = 2−53 }, (2.34)

where h̃m+1(x) =
∑∞

k=m+1 |ck|xk, using the same techniques described as in Section

2.3. Then we know that Tm(2−sA)2s
has backward error at most u for ‖2−sA‖ ≤ θ̃m.

We select s as the smallest nonnegative integer such that 2−s‖A‖ ≤ θ̃m, which is

given by s = max(dlog2(‖A‖/θ̃m)e, 0). Then the number of matrix multiplications
required to evaluate Tm(2−sA)2s

is

bm/d√m ec+ d√m e − 1− φ(m, d√m e)︸ ︷︷ ︸
π̃m

+ max(dlog2(‖A‖/θ̃m)e, 0). (2.35)

When s > 0 we are interested in m that minimizes the cost. To obtain a suitable
measure of the cost we ignore the constant terms in (2.35) (since they are common
to each m) and consider

Cm = bm/d√m ec+ d√m e − φ(m, d√m e)− log2(θ̃m). (2.36)

We tabulate π̃m and θ̃m for m = 1: 30 in Table 2.3 and find that m = 16 is the
global minimizer of Cm, which suggests using T16(2

−sA)2s
to approximate eA when

‖A‖ ≥ θ̃16 ≈ 0.78. Corresponding analysis was done for Padé approximants by [30]
and we use the number of matrix multiplications πm from [30, Table 2.2] below.

Now we analyze the cost of Taylor and Padé approximants with scaling and squar-
ing when applying the two methods simultaneously on the matrix A. Assume first
that ‖A‖ ≥ θ13 ≈ 5.3. Computing T16(2

−sA) requires six matrix multiplications
and so the overall cost from (2.35) of approximating eA is cT := 6 + s while Algo-
rithm 2.3.1, which chooses a nonnegative integer t so that 1

2
θ13 < ‖2−tA‖ ≤ θ13,

computes r13(2
−tA)2t

with cost cP := 6+4/3+ t, where the term 4/3 accounts for the
solution of the multiple right-hand side linear system for the Padé approximant. Since
1
2
θ13 < 4θ̃16 there are two cases to consider. First, when ‖2−tA‖ ∈ (4θ̃16, θ13] we have

2−t−3‖A‖ ≤ 1
8
θ13 < θ̃16 and hence s = t+3. Therefore, 1 < cT /cP = (9+t)/(71

3
+t) ≤

27/22. Secondly, when ‖2−tA‖ ∈ (1
2
θ13, 4θ̃16] we have 2−t−2‖A‖ ≤ θ̃16 and hence

47

Table 2.3: The number of matrix products π̃m in (2.33) needed for the Paterson-

Stockmeyer scheme, θ̃m defined by (2.34), and Cm from (2.36).

m θ̃m π̃m Cm m θ̃m π̃m Cm m θ̃m π̃m Cm

1 1.5e-8 0 26.99 11 2.14e-1 5 8.22 21 1.62 8 8.30
2 2.6e-8 1 27.21 12 3.00e-1 5 7.74 22 1.82 8 8.14
3 1.4e-5 2 19.14 13 4.00e-1 6 8.32 23 2.01 8 7.99
4 3.4e-4 2 14.52 14 5.14e-1 6 7.96 24 2.22 8 7.85
5 2.4e-3 3 12.70 15 6.41e-1 6 7.64 25 2.43 8 7.72
6 9.1e-3 3 10.79 16 7.81e-1 6 7.36 26 2.64 9 8.60
7 2.4e-2 4 10.39 17 9.31e-1 7 8.10 27 2.86 9 8.48
8 5.0e-2 4 9.32 18 1.09 7 7.87 28 3.08 9 8.38
9 9.0e-2 4 8.48 19 1.26 7 7.67 29 3.31 9 8.27
10 1.44e-1 5 8.79 20 1.44 7 7.48 30 3.54 9 8.18

10
−4

10
−3

10
−2

10
−1

10
0

1

2

3

4

5

6

7

8

9

10

‖A‖

Taylor series
Pade approximant

Figure 2.9: ‖A‖ versus cost in equivalent matrix multiplications of evaluating Taylor
and Padé approximants to eA in double precision.

48

s = t + 2. Therefore, 1 < cT /cP = (8 + t)/(71
3

+ t) ≤ 12/11. Thus any algorithm
based on Taylor series will cost up to 23% more than the Padé approximant-based
Algorithm 2.3.1 and cannot have a lower cost for ‖A‖ > 4θ̃16. Moreover the Taylor
series requires a larger amount of scaling (since we are scaling to reduce ‖A‖ below
0.78 instead of 5.4), which is undesirable from the point of view of possible numerical
instability in the squaring phase.

A remaining question is whether when ‖A‖ < θ13 a Taylor series can be more
efficient than a Padé approximant. The answer can be seen from Figure 2.9, where
“◦” indicates the points (θ̃m, π̃m), m = 4, 6, 9, 12, 16, 20, 25, 30, and “¤” indicates the
points (θm, πm+4/3), m = 3, 5, 7, 9, 13. Notice that the dotted curve, which represents

the cost of Taylor series, lies below the solid curve in three intervals: [0, θ̃6], (θ3, θ̃9],

and (θ5, θ̃12]. Therefore, it is more efficient to use Tm(A) rather Algorithm 2.3.1 if ‖A‖
lies in any of these intervals. Precisely, in view of Figure 2.9, Tm(A), m = 4, 6, 9, 12,

is more efficient if ‖A‖ lies, respectively, in the intervals [0, θ̃4], (θ̃4, θ̃6], (θ3, θ̃9], or

(θ5, θ̃12].
The above analysis is for computations in double precision. For single precision

we reach similar conclusion.

2.7.1 Single precision

We repeat the analysis above (with the same notations) for u = 2−24 ≈ 6× 10−8, the

unit roundoff for IEEE single precision arithmetic, and recalculate the parameters θ̃m

in (2.34). We find that m = 9 minimizes Cm in (2.36). Thus T9(2
−sA)2s

, where s ≥ 0

is the optimal integer such that 2−s‖A‖ ≤ θ̃9 ≈ 0.78, is the candidate for approx-
imating eA in single precision arithmetic. [30] shows that [7/7] Padé approximant
r7(2

−tA)2t
is the one to be chosen for the approximation, where t ≥ 0 is the optimal

integer such that 2−t‖A‖ ≤ θ7 ≈ 3.9. Suppose now that ‖A‖ ≥ θ7. Thus comput-
ing T9(2

−sA)2s
costs cT := 4 + s by Table 2.3 while the cost of Padé approximant is

cP := 4+4/3+t. Now we write s in terms of t and compare the costs for both methods.

Notice that 1
2
θ7 < 4θ̃9 < θ7. Since the optimal choice of t implies that 2−t‖A‖ > 1

2
θ7,

there are two cases to consider. First, if 2−t‖A‖ ∈ (4θ̃9, θ7] then 2−t−3‖A‖ ≤ 1
8
θ7 < θ̃9

and hence s = t + 3. In this case 1 < cT /cP = (7 + t)/(51
3

+ t) ≤ 21/16. Secondly,

if 2−t‖A‖ ∈ (1
2
θ7, 4θ̃9] then 2−t−2‖A‖ ≤ θ̃9 and hence s = t + 2. Similarly, we obtain

1 < cT /cP ≤ 9/8. Therefore, Padé approximant is more efficient that Taylor series
for all matrices A with ‖A‖ ≥ θ7. When ‖A‖ < θ7 Figure 2.10 shows the comparison.

Respectively, “◦” indicates the points (θ̃m, π̃m), m = 4, 6, 9, 12, 16, 20, 25, and “¤”
indicates the points (θm, πm + 4/3), m = 3, 5, 7. It shows that Tm(A), m = 4, 6, 9 are

more efficient that rm(A), m = 3, 3, 5, respectively, over the intervals [0, θ̃4], (θ̃4, θ̃6],

and (θ3, θ̃9].

49

10
−2

10
−1

10
0

1

2

3

4

5

6

7

8

9

‖A‖

Taylor series
Pade approximant

Figure 2.10: ‖A‖ versus cost in equivalent matrix multiplications of evaluating Taylor
and Padé approximants to eA in single precision.

50

Chapter 3

Computing the Action of the
Matrix Exponential, with an
Application to Exponential
Integrators

3.1 Introduction

The most popular method for computing the matrix exponential is the scaling and
squaring method that we investigate profoundly in Chapter 2. For a matrix A ∈ Cn×n

it exploits the relation eA = (e2−iA)2i ≈ (rm(2−iA))2i
, where rm is an [m/m] Padé

approximant of the exponential. The parameters m and i can be determined so
that truncation errors correspond to a backward error no larger than a specified
tolerance (for example, the unit roundoff). In some applications, notably in the
numerical solution of ordinary differential equations (ODEs) and in the approximation
of dynamical systems [6, Chap. 4], it is not eA that is required but the action of eA on
a matrix, eAB, where B ∈ Cn×n0 with n0 ¿ n, and often n0 = 1, so that B is a vector.
The exponential of a sparse matrix is generally full, so when A is large and sparse
it is not practical to form eA and then multiply it into B. Our first contribution in
this work is to derive a new algorithm for computing eAB without explicitly forming
eA. The algorithm allows one to work directly with sparse matrices, and hence take
advantage of sparsity. We adapt the scaling and squaring method by computing
eAB ≈ (Tm(s−1A))sB, where Tm is a truncated Taylor series rather than a rational
approximation (thus avoiding linear system solves) and s multiplications of n× n by
n × n0 matrices are carried out instead of log2 s squarings of n × n matrices. We
employ several key ideas:

(1) Careful choice of the parameters m and s, exploiting estimates of ‖Ap‖1/p for
several p, in order to keep the backward error suitably bounded while minimizing
the computational cost.

(2) Shifting, and optional balancing, to reduce the norm of A.

(3) Premature termination of the truncated Taylor series evaluations.

51

This basic approach is equivalent to applying a Runge–Kutta or Taylor series method
with fixed stepsize to the underlying ODE y′(t) = Ay(t), y(0) = B, for which y(t) =
etAB, which is the sixth of Moler and Van Loan’s “19 dubious ways” [54, Sec. 4],
[72]. However, in (1)–(3) we are fully exploiting the linear nature of the problem
in a way that a general purpose ODE integrator cannot. Moreover, our algorithmic
parameters are determined by backward error considerations, whereas standard local
error control for an ODE solver is forward error-based. We also adapt our method
to compute approximations of etkAB, for tk equally spaced on an interval [t0, tq], in
such a way that overscaling is avoided no matter how small the stepsize.

Our second contribution concerns the numerical solution of systems of n nonlinear
ODEs by exponential integrators. These methods integrate the linear part of the
system exactly and approximate the nonlinear part, making use of a set of ϕ functions
closely related to the exponential, evaluated at an n×n matrix. We show that these
methods can be implemented by evaluating a single exponential of an augmented
matrix of order n+p, where p−1 is the degree of the polynomial used to approximate
the nonlinear part of the system, thus avoiding the need to compute any ϕ functions.
In fact, on each integration step the integrator is shown to produce the exact solution
of an augmented linear system of ODEs of dimension n + p. The replacement of ϕ
functions with the exponential is important because algorithms for the ϕ functions
are much less well developed (though see [46], [64], for example) than those for the
exponential itself.

The organization of this chapter is as follows. In the next section we derive a theo-
rem that shows how to rewrite linear combinations of ϕ functions of the form required
in exponential integrators in terms of a single exponential of a slightly larger matrix.
In Section 3.3 we derive our algorithm for computing eAB and discuss preprocessing
to increase its efficiency. Analysis of the behavior of the algorithm in floating point
arithmetic is given in Section 3.4, where a condition number for the eAB problem
is derived. We extend the algorithm in Section 3.5 to compute etAB on an equally
spaced grid of t values, in such a way that the phenomenon of overscaling that has
previously afflicted the scaling and squaring method is avoided. Detailed numerical
experiments are given in Section 3.6, including comparison with two Krylov-based
codes.

3.2 Exponential integrators: avoiding the ϕ func-

tions

Exponential integrators are a class of time integration methods for solving initial
value problems written in the form

u ′(t) = Au(t) + g(t, u(t)), u(t0) = u0, t ≥ t0, (3.1)

where u(t) ∈ Cn, A ∈ Cn×n, and g is a nonlinear function. Spatial semidiscretization
of partial differential equations (PDEs) leads to systems in this form. The matrix A
usually represents the Jacobian of a certain function or an approximation of it, and
it is usually large and sparse. The solution of (3.1) satisfies the nonlinear integral
equation

u(t) = e(t−t0)Au0 +

∫ t

t0

e(t−τ)Ag(τ, u(τ)) dτ. (3.2)

52

By expanding g in a Taylor series about t0, the solution can be written as [53,
Lem. 5.1]

u(t) = e(t−t0)Au0 +
∞∑

k=1

ϕk

(
(t− t0)A

)
(t− t0)

k uk, (3.3)

where

uk =
dk−1

dtk−1
g(t, u(t)) |t=t0 , ϕk(z) =

1

(k − 1)!

∫ 1

0

e(1−θ)zθk−1 dθ, k ≥ 1.

By suitably truncating the series in (3.3), we obtain the approximation

u(t) ≈ û(t) = e(t−t0)Au0 +

p∑

k=1

ϕk

(
(t− t0)A

)
(t− t0)

k uk. (3.4)

The functions ϕ`(z) satisfy the recurrence relation

ϕ`(z) = zϕ`+1(z) +
1

`!
, ϕ0(z) = ez,

and have the Taylor expansion

ϕ`(z) =
∞∑

k=0

zk

(k + `)!
. (3.5)

A wide class of exponential integrator methods is obtained by employing suitable
approximations to the vectors uk in (3.4), and further methods can be obtained by
the use of different approximations to g in (3.2). See Hochbruck and Ostermann [35]
for a survey of the state of the art in exponential integrators.

We will show that the right-hand side of (3.4) can be represented in terms of the
single exponential of an (n + p)× (n + p) matrix, with no need to explicitly evaluate
ϕ functions. The following theorem is our key result. In fact we will only need the
special case of the theorem with ` = 0.

Theorem 3.2.1 Let A ∈ Cn×n, W = [w1, w2, . . . , wp] ∈ Cn×p, τ ∈ C, and

Ã =

[
A W
0 J

]
∈ C(n+p)×(n+p), J =

[
0 Ip−1

0 0

]
∈ Cp×p. (3.6)

Then for X = ϕ`(τÃ) with ` ≥ 0 we have

X(1 : n, n + j) =

j∑

k=1

τ k ϕ`+k(τA)wj−k+1, j = 1: p. (3.7)

Proof. It is easy to show that, for k ≥ 0,

Ãk =

[
Ak Mk

0 Jk

]
, (3.8)

53

where Mk = Ak−1W + Mk−1J and M1 = W , M0 = 0. For 1 ≤ j ≤ p we have
WJ(:, j) = wj−1 and JJ(:, j) = J(:, j − 1), where we define both right-hand sides to
be zero when j = 1. Thus

Mk(:, j) = Ak−1wj + (Ak−2W + Mk−2J)J(:, j)

= Ak−1wj + Ak−2wj−1 + Mk−2J(:, j − 1)

= · · · =
min(k,j)∑

i=1

Ak−iwj−i+1.

We will write Mk(:, j) =
∑j

i=1 Ak−iwj−i+1 on the understanding that when k < j we
set to zero the terms in the summation where i > k (i.e., those terms with a negative

power of A). From (3.5) and (3.8) we see that the (1,2) block of X = ϕ`(τÃ) is

X(1 : n, n + 1 : n + p) =
∞∑

k=1

τ kMk

(k + `)!
.

Therefore, the (n + j)th column of X is given by

X(1 : n, n + j) =
∞∑

k=1

τ kMk(:, j)

(k + `)!
=

∞∑

k=1

1

(k + `)!

(
j∑

i=1

τ i(τA)k−iwj−i+1

)

=

j∑
i=1

τ i

(∞∑

k=1

(τA)k−i

(k + `)!

)
wj−i+1

=

j∑
i=1

τ i

(∞∑

k=0

(τA)k

(` + k + i)!

)
wj−i+1 =

j∑
i=1

τ iϕ`+i(τA)wj−i+1.

With τ = 1, j = p, and ` = 0, Theorem 3.2.1 shows that, for arbitrary vectors
wk, the sum of matrix–vector products

∑p
k=1 ϕk(A)wj−k+1 can be obtained from the

last column of the exponential of a matrix of dimension n + p. A special case of the
theorem is worth noting. On taking ` = 0 and W = [c 0] ∈ Cn×p, where c ∈ Cn,
we obtain X(1 : n, n + j) = τ jϕj(τA)c, which is a relation useful for Krylov methods
that was derived by Sidje [63, Thm. 1]. This in turn generalizes the expression

exp

([
A c
0 0

])
=

[
eA ϕ1(A)c
0 1

]

obtained by Saad [61, Prop. 1].
We now use the theorem to obtain an expression for (3.4) involving only the

matrix exponential. Let W (:, p− k + 1) = uk, k = 1: p, form the matrix Ã in (3.6),
and set ` = 0 and τ = t− t0. Then

X = ϕ0

(
(t− t0)Ã

)
= e(t−t0)Ã =

[
e(t−t0)A X12

0 e(t−t0)J

]
, (3.9)

where the columns of X12 are given by (3.7), and, in particular, the last column of
X12 is

X(1 : n, n + p) =

p∑

k=1

ϕk

(
(t− t0)A

)
(t− t0)

k uk.

54

Hence, by (3.4) and (3.9),

û(t) = e(t−t0)Au0 +

p∑

k=1

ϕk

(
(t− t0)A

)
(t− t0)

k uk

= e(t−t0)Au0 + X(1 : n, n + p)

=
[

In 0
]
e(t−t0)Ã

[
u0

ep

]
. (3.10)

Thus we are approximating the nonlinear system (3.1) by a subspace of a slightly
larger linear system

y′(t) = Ãy(t), y(t0) =

[
u0

ep

]
.

To evaluate (3.10) we need to compute the action of the matrix exponential on a
vector. We focus on this problem in the rest of this chapter.

An important practical matter concerns the scaling of Ã. If we replace W by ηW
we see from (3.7) that the only effect on X = eÃ is to replace X(1 : n, n+1 : n+p) by
ηX(1 : n, n+1 : n+p). This linear relationship can also be seen using properties of the
Fréchet derivative [31, Thm. 4.12]. For methods employing a scaling and squaring
strategy a large ‖W‖ can cause overscaling, resulting in numerical instability. To
avoid overscaling a suitable normalization of W is necessary. In the 1-norm we have

‖A‖1 ≤ ‖Ã‖1 ≤ max
(‖A‖1, η‖W‖1 + 1

)
,

since ‖J‖1 = 1. We choose η = 2−dlog2(‖W‖1)e, which is defined as a power of 2 to
avoid the introduction of rounding errors. The variant of the expression (3.10) that
we should evaluate is

û(t) =
[

In 0
]
exp

(
(t− t0)

[
A ηW
0 J

]) [
u0

η−1ep

]
. (3.11)

Experiment 8 in Section 3.6 illustrates the importance of normalizing W .

3.3 Computing eAB

Let rm be a rational approximation to the exponential function, which we assume to
be good near the origin, and let A ∈ Cn×n and B ∈ Cn×n0 with n0 ¿ n. Choose an
integer s ≥ 1 so that es−1A is well-approximated by rm(s−1A). Exploiting the relation

eAB = (es−1A)sB = es−1Aes−1A · · · es−1A︸ ︷︷ ︸
s times

B, (3.12)

the recurrence

Bi+1 = rm(s−1A)Bi, i = 0: s− 1, B0 = B (3.13)

yields the approximation Bs ≈ eAB. Since A is possibly large and sparse and we
wish to assume only the capability to evaluate matrix products with A, we choose
for rm a truncated Taylor series

Tm(s−1A) =
m∑

j=0

(s−1A)j

j!
. (3.14)

55

Note that throughout this chapter, “matrix product” refers to the product of an
n × n matrix with an n × n0 matrix, and this reduces to a matrix–vector product
when n0 = 1. We will exploit the backward error analysis of Higham [30], [32], as
refined in Chapter 2, for determining the scaling parameter s for a given m. Let

Ωm = {X ∈ Cn×n : ρ(e−XTm(X)− I) < 1 },
where ρ is the spectral radius. Then the function

hm+1(X) = log(e−X Tm(X))

is defined for X ∈ Ωm, where log denotes the principal logarithm [31, Thm. 1.31],
and it commutes with X. Hence for X ∈ Ωm we have Tm(X) = eX+hm+1(X). Now
choose s so that s−1A ∈ Ωm. Then

Tm(s−1A)s = eA+shm+1(s−1A) =: eA+∆A,

where the matrix ∆A = shm+1(s
−1A) represents the backward error resulting from

the truncation errors in approximating eA by Tm(s−1A)s. Over Ωm, the functions
hm+1 have a power series expansion

hm+1(X) =
∞∑

k=m+1

ck Xk.

We want to ensure that

‖∆A‖
‖A‖ =

‖hm+1(s
−1A)‖

‖s−1A‖ ≤ tol,

for any matrix norm and a given tolerance, tol. By Theorem 2.4.2(a) we have

‖∆A‖
‖A‖ =

‖hm+1(s
−1A)‖

‖s−1A‖ ≤ h̃m+1(s
−1αp(A))

s−1αp(A)
, (3.15)

where h̃m+1(x) =
∑∞

k=m+1 |ck|xk and

αp(A) = max
(
dp, dp+1

)
, dp = ‖Ap‖1/p, (3.16)

with p arbitrary subject to m + 1 ≥ p(p − 1). The reason for working with αp(A)
instead of ‖A‖ is that αp(A) ¿ ‖A‖ is possible for nonnormal A, so (3.15) is sharper

than the bound h̃m+1(s
−1‖A‖)/(s−1‖A‖). For example, consider

A =

[
1 a
0 −1

]
, |a| À 1, ‖A2k‖1 = 1, ‖A2k+1‖1 = 1 + |a|, (3.17)

for which dj = ‖Aj‖1/j
1 ¿ ‖A‖1 for j ≥ 2.

Define
θm = max{ θ : h̃m+1(θ)/θ ≤ tol }. (3.18)

Then for any m and p with m + 1 ≥ p(p− 1) we have ‖∆A‖ ≤ tol‖A‖ provided that
s ≥ 1 is chosen so that s−1αp(A) ≤ θm. For each m, the optimal value of the integer
s is given by s = max

(dαp(A)/θme, 1
)
.

56

The computational cost of evaluating Bs ≈ eAB by the recurrence (3.13) with
rm = Tm is Cm(A) products of an n× n matrix with an n× n0 matrix, where

Cm(A) := sm = m max
(dαp(A)/θme, 1

)
(3.19)

and n0 is the number of columns of B. Here, we are assuming that (3.13) is evaluated
by explicit formation of the matrices AkBi [31, Alg. 4.3].

Note that this approach, based on the recurrence (3.13), is related to the scaling
and squaring method for computing eA in that it shares the same form of approxi-
mation and backward error analysis, but it does not exploit repeated squaring in the
final phase. In the case where s = 2k and n0 = 1, (3.13) employs 2km matrix–vector
products whereas the scaling and squaring method uses k matrix–matrix products in
the squaring phase.

The sequence {Cm(A)} is found to be generally decreasing, though it is not nec-
essarily monotonic. Indeed the sequence {αp(A)} has a generally nonincreasing trend
for any A, and with tol in (3.18) corresponding to single or double precision we find
that {m/θm} is strictly decreasing. Thus the larger is m, the less the cost. However,
a large value of m is generally unsuitable in floating point arithmetic because it leads
to the evaluation of Tm(A)B with a large ‖A‖, and as the analysis in the next section
explains, numerical instability may result. Thus we impose a limit mmax on m and
obtain the minimizer m∗ over all p such that p(p− 1) ≤ mmax + 1. For the moment
we drop the max in (3.19), whose purpose is simply to cater for nilpotent A with
Aj = 0 for j ≥ p. Thus we have

Cm(A) = mdαp(A)/θme.

Note that d1 ≥ dk in (3.16) for all k ≥ 1 and so α1(A) ≥ α2(A). Hence we do
not need to consider p = 1. Let pmax denote the largest positive integer p such that
p(p− 1) ≤ mmax + 1. Then the optimal cost is

Cm∗(A) = min
{

mdαp(A)/θme : 2 ≤ p ≤ pmax, p(p− 1)− 1 ≤ m ≤ mmax

}
, (3.20)

where m∗ denotes the smallest value of m at which the minimum is attained. The
optimal scaling parameter is s = Cm∗(A)/m∗, by (3.19). Our experience indicates
that pmax = 8 and mmax = 55 are appropriate choices. The above error and cost
analysis are valid for any matrix norm, but it is most convenient to use the 1-norm.
As we did in Chapter 2, we will use the block 1-norm estimation algorithm of Higham
and Tisseur [34] to approximate the quantities dp = ‖Ap‖1/p

1 needed to evaluate αp(A).
This algorithm estimates ‖G‖1 via about 2 actions of G and 2 actions of G∗, all on
matrices of ` columns, where the positive integer ` is a parameter that we set to 2.
Therefore computing αp(A) for p = 2: pmax, and thus dp for p = 2: pmax + 1, costs
approximately

4`

pmax+1∑
p=2

p = 2`pmax(pmax + 3) (3.21)

matrix–vector products. If

‖A‖1 ≤ 2
`

n0

θmmax

mmax

pmax(pmax + 3) (3.22)

57

Table 3.1: Selected constants θm for tol = 2−24 (single precision) and tol = 2−53

(double).

m 5 10 15 20 25 30 35 40 45 50 55
single 1.3e-1 1.0e0 2.2e0 3.6e0 4.9e0 6.3e0 7.7e0 9.1e0 1.1e1 1.2e1 1.3e1

double 2.4e-3 1.4e-1 6.4e-1 1.4e0 2.4e0 3.5e0 4.7e0 6.0e0 7.2e0 8.5e0 9.9e0

then the cost—namely n0mmax‖A‖1/θmmax matrix–vector products—of evaluating Bs

with m determined by using ‖A‖1 in place of αp(A) in (3.19) is no larger than the
cost (3.21) of computing the αp(A), and so we should certainly use ‖A‖1 in place of
the αp(A). This observation leads to a significant reduction in cost for some matrices.
See Experiments 1 and 2 in Section 3.6 for examples where (3.22) is satisfied. Thus
m and s are determined as follows.

Code Fragment 3.3.1 ([m∗, s] = parameters(A, tol)) This code determines m∗ and
s given A, tol, mmax, and pmax.

1 if (3.22) is satisfied
2 m∗ = argmin1≤m≤mmax

md‖A‖1/θme
3 s = d‖A‖1/θme
4 else
5 Let m∗ be the smallest m achieving the minimum in (3.20).
6 s = max

(
Cm∗(A)/m∗, 1

)
7 end

If we wish to exponentiate the matrix tA for several values of t then, since αp(tA) =
|t|αp(A), we can precompute the matrix S ∈ R(pmax−1)×mmax given by

spm =

{
αp(A)

θm

, 2 ≤ p ≤ pmax, p(p− 1)− 1 ≤ m ≤ mmax,

0, otherwise
(3.23)

and then for each t obtain Cm∗(tA) as the smallest nonzero element in the matrix
d|t|Sediag(1, 2, . . . ,mmax), where m∗ is the column index of the smallest element.
Table 3.1 lists some of the θm values corresponding to us = tol = 2−24 ≈ 6.0 × 10−8

(single precision) and ud = tol = 2−53 ≈ 1.1× 10−16 (double precision). These values
were determined as described in Section 2.7.

3.3.1 Preprocessing and termination criterion

Further reduction of the scaling parameter s can be achieved by choosing an appro-
priate point about which to expand the Taylor series of the exponential function. For
any µ ∈ C, both the series

∑∞
k=0 Ak/k! and eµ

∑∞
k=0(A − µI)k/k! yield eA, but the

convergence of the second can be faster if µ is selected so that ‖A−µI‖ ≤ ‖A‖. Two
different ways to approximate eA via the matrix A− µI are from the expressions

eµ
[
Tm(s−1(A− µI))

]s
,

[
eµ/sTm(s−1(A− µI))

]s
.

58

These two expressions are not equivalent numerically. The first is prone to overflow
when A has an eigenvalue with large negative real part [31, Sec. 10.7.3], since it
explicitly approximates eA−µI . The second expression avoids this problem and is
therefore preferred.

Since we will base our algorithm on the 1-norm, the most natural choice of µ is
the one that minimizes ‖A − µI‖1, for which an explicit expression is given in [31,

Thm. 4.21]. However, it is the values dp(A) = ‖Ap‖1/p
1 in (3.16), not ‖A‖1, that

govern the construction of our approximation, and choosing the shift to minimize
‖A−µI‖1 does not necessarily produce the smallest values of dp(A−µI). Indeed we
have found empirically that the shift that minimizes the Frobenius norm ‖A−µI‖F ,
namely µ = trace(A)/n, leads to smaller values of the dp for the 1-norm. A partial
explanation follows from the observation that if A = QTQ∗ is a Schur decomposition
then (A − µI)p = Q(T − µI)pQ∗. Hence if A − µI has zero trace then T − µI has
diagonal elements with both positive and negative real parts, and this tends to result
in cancellation of any large off-diagonal elements when the matrix is powered, as
illustrated by (3.17).

Importantly, incorporating shifts does not vitiate the backward error analysis
above: if we choose m∗ based on the αp(A − µI) values, the same backward error
bounds can be shown to hold.

Another way to reduce the norm is by balancing. Balancing is a heuristic that
attempts to equalize the norms of the ith row and ith column of A, for each i, by a
diagonal similarity transformation, Ã = D−1AD. The balancing algorithm available
in LAPACK and MATLAB uses the 1-norm and also attempts to permute the ma-
trix to block upper triangular form, something that is important for the eigenvalue
problem but not relevant to the computation of eAB. With balancing, we compute
eAB = DeÃD−1B. There is no guarantee that ‖Ã‖1 < ‖A‖1, or that the αp(A)

values are reduced; we would certainly not use balancing if ‖Ã‖1 > ‖A‖1. Balancing
affects the backward error analysis: the best backward error bound for A involves
an extra factor κ(D), though in practice this factor is not seen (see Experiment 1 in
Section 3.6). In the context of the eigenvalue problem it is known that balancing can
seriously degrade accuracy in special cases [71]. We regard balancing as an option to
be used with care and not always to be automatically applied.

The derivation of the θm takes no account of the matrix B, so our choice of m is
likely to be larger than necessary for some B. We know that our procedure returns
eA+∆AB with normwise relative backward error ‖∆A‖/‖A‖ ≤ tol. We now consider
truncating the evaluation of Tm(A)Bi in (3.13), and in so doing allow a normwise
relative forward error of at most tol to be introduced. With A denoting the scaled
and shifted matrix, we will accept Tk(A)Bi for the first k such that

‖Ak−1Bi‖
(k − 1)!

+
‖AkBi‖

k!
≤ tol‖Tk(A)Bi‖. (3.24)

The left-hand side of (3.24) is meant to approximate the norm of the tail of the series,∑m
j=k+1 AjBi/j!. Taking two terms rather than one better captures the behavior of

the tail, as illustrated by (3.17); we have found empirically that two terms gives
reliable performance.

Our algorithm for computing etAB, where the scalar parameter t is now included
for convenience, is summarized as follows. The algorithm is intended for use with

59

tol = us or tol = ud, for which we know the corresponding θm values (see Table 3.1).
However, it is straightforward to determine (once and for all) the θm corresponding
to any other value of tol.

Algorithm 3.3.2 (F = F(t, A, B,balance)) Given A ∈ Cn×n, B ∈ Cn×n0, t ∈ C,
and a tolerance tol, this algorithm produces an approximation F ≈ etAB. The logical
variable balance indicates whether or not to apply balancing.

1 if balance

2 Ã = D−1AD

3 if ‖Ã‖1 < ‖A‖1, A = Ã, B = D−1B, else balance = false, end
4 end
5 µ = trace(A)/n
6 A = A− µI
7 if t‖A‖1 = 0, m∗ = 0, s = 1, goto 9, end % The case tA = 0.
8 [m∗, s] = parameters(tA) % Code Fragment 3.3.1
9 F = B, η = etµ/s

10 for i = 1: s
11 c1 = ‖B‖∞
12 for j = 1: m∗
13 B = tAB/(sj), c2 = ‖B‖∞
14 F = F + B
15 if c1 + c2 ≤ tol‖F‖∞, quit, end
16 c1 = c2

17 end
18 F = ηF , B = F
19 end
20 if balance, F = DF , end

The cost of the algorithm is determined by the number of matrix products; these
products occur at line 13 and in the parameters function.

Note that when n0 > 1 we could simply invoke Algorithm 3.3.2 n0 times to
compute eAbj, j = 1: n0, which may require fewer flops than a single invocation of
eAB, since the termination test at line 15 may be satisfied earlier for some bj than for
B as whole. The advantage of working with B is the ability to invoke level 3 BLAS
[19] [20], which should lead to faster execution.

3.4 Rounding error analysis and conditioning

To assess the numerical stability of Algorithm 3.3.2 in floating point arithmetic we
analyze the rounding errors in forming the product Tm(A)B, where Tm(A) is the
truncated Taylor series (3.14). For simplicity we assume that A does not need scaling
(that is, s = 1). We then determine the conditioning of the problem and see if our
forward error bound reflects the conditioning. We know that Tm(A) = eA+E with
‖E‖ ≤ tol‖A‖. The analysis includes two parameters: the backward error in the
approximation of the exponential, tol, and the precision of the underlying floating
point arithmetic, u. The norm is the 1-norm or the ∞-norm.

60

Lemma 3.4.1 Let X = Tm(A)B be formed as in Algorithm 3.3.2, but for simplicity
ignoring lines 5, 6, and 15, and assume that s = 1 in that algorithm with tolerance tol.
Then the computed X̂ in floating point arithmetic with unit roundoff u ≤ tol satisfies
X̂ = eA+EB + R, where ‖E‖ ≤ tol‖A‖ and ‖R‖ ≤ γ̃mn Tm(‖A‖)‖B‖ ≤ γ̃mn e‖A‖‖B‖.

Proof. Standard error analysis for the evaluation of matrix products [29, Sec. 3.5]

shows that ‖X − X̂‖ ≤ γ̃mn Tm(‖A‖)‖B‖. The analysis in Section 3.3 shows that
X = eA+EB, with ‖E‖ ≤ tol‖A‖. The result follows on using Tm(‖A‖) ≤ e‖A‖.

Lemma 3.4.1 shows that X̂ satisfies a mixed forward–backward error result where
the normwise relative backward error bound is tol and the forward error bound is a
multiple of ue‖A‖‖B‖. Since ‖A‖ can exceed 1 the forward error bound is potentially
large. To judge whether the forward error bound is acceptable we compare it with a
perturbation analysis for the problem.

We derive a perturbation result for the product X = f(A)B, where f is an
arbitrary matrix function and then specialize it to the exponential. As in Section
1.6, we denote by Lf (A, ∆A) the Fréchet derivative of f at A in the direction ∆A
and by vec the operator that stacks the columns of its matrix argument into a long
vector. We will use the fact that vec(Lf (A,∆A)) = Kf (A) vec(∆A), with Kf (A)
the n2×n2 Kronecker matrix representation of the Fréchet derivative. The following
lemma makes no assumption about ‖A‖.
Lemma 3.4.2 Let X = f(A)B and X +∆X = f(A+∆A)(B+∆B) both be defined,
where ‖∆A‖F ≤ ε‖A‖F and ‖∆B‖F ≤ ε‖B‖F . Then, assuming that f is Fréchet
differentiable at A,

‖∆X‖F

‖X‖F

≤ ε

(‖f(A)‖2‖B‖F

‖X‖F

+
‖(BT ⊗ I)Kf (A)‖2‖A‖F

‖X‖F

)
+ o(ε), (3.25)

and this bound is attainable to within a factor 2 to first order in ε.

Proof. We have

X + ∆X =
(
f(A) + Lf (A,∆A) + o(‖∆A‖F)

)
(B + ∆B).

Applying the vec operator, and using the fact that vec(UV) = (V T ⊗ I) vec(U), gives

vec(∆X) = vec(f(A)∆B) + (BT ⊗ I)Kf (A) vec(∆A) + o(ε).

Taking the 2-norm and exploiting the relation ‖ vec(X)‖2 = ‖X‖F we have

‖∆X‖F ≤ ε‖f(A)‖2‖B‖F + ε‖(BT ⊗ I)Kf (A)‖2‖A‖F + o(ε),

which is equivalent to (3.25). Since ∆B and ∆A are arbitrary it is clear that ‖∆X‖F

can attain each of the first two terms in the latter bound with only one of ∆B and
∆A nonzero, and hence the bound is attainable to within a factor 2 to first order.

In view of the lemma we can regard

κf (A,B) :=
‖f(A)‖2‖B‖F

‖X‖F

+
‖(BT ⊗ I)Kf (A)‖2‖A‖F

‖X‖F

(3.26)

61

as a condition number for the f(A)B problem. We can weaken this expression to

κf (A,B) ≤ ‖f(A)‖F‖B‖F

‖X‖F

(1 + κf (A)), (3.27)

where (see Section 1.6)

κf (A) :=
‖Lf (A)‖F‖A‖F

‖f(A)‖F

, ‖Lf (A)‖F := max
Z 6=0

‖Lf (A,Z)‖F

‖Z‖F

= ‖Kf (A)‖2.

(3.28)
Applying (3.27) with f the exponential gives

κexp(A,B) ≤ ‖eA‖F‖B‖F

‖X‖F

(1 + κexp(A)). (3.29)

For comparison with Lemma 3.4.1 we will, for simplicity, replace all norms by the
2-norm, since constant factors are not important. For the condition number in the
2-norm we have [31, Lem. 10.15]

‖A‖2 ≤ κexp(A) ≤ e‖A‖2‖A‖2

‖eA‖2

. (3.30)

If κexp(A) is close to its upper bound in (3.30) then the forward error bound from
Lemma 3.4.1 is smaller than the bound for κexp(A,B) in (3.29) by a factor ‖A‖2.
However, there is equality in the lower bound (3.30) for normal A [31, Lem. 10.16],
[69]. So for normal A, the normwise relative forward error bound for ‖R‖2/‖X‖2

from Lemma 3.4.1 exceeds κexp(A,B)u by about

e‖A‖2/(‖eA‖2(1 + ‖A‖2)), (3.31)

which ranges between 1/(1 + ‖A‖2) and e2‖A‖2/(1 + ‖A‖2). For Hermitian A, the
upper bound is attained when A is negative semidefinite. However, when we apply
this analysis to Algorithm 3.3.2 A refers to the shifted matrix A − (trace(A)/n)I,
which has extremal eigenvalues of equal magnitude and opposite signs, and so (3.31)
always attains its lower bound. Thus for Hermitian matrices our shifting strategy
ensures stability.

An example is instructive. Let A = diag(−20.5,−1) and B = [1 1]T . With
x = eAb and x̂ the computed product from Algorithm 3.3.2 with tol = ud, we find
that

‖x− x̂‖2

‖x‖2

= 6.0× 10−16,
|x1 − x̂1|
|x1| = 2.6× 10−9,

|x2 − x̂2|
|x2| = 6.0× 10−16.

Since Ã := A − trace(A)/2 = diag(−9.75, 9.75), Algorithm 3.3.2 takes s = 1 and

therefore evaluates a truncated Taylor series for the unscaled matrix Ã. This leads
to substantial cancellation in the first component, since the terms in Taylor series for
e−9.75 grow substantially before they decay, but the second component is computed
accurately. While there is loss of accuracy in the smaller component, in the normwise
sense the computation is entirely satisfactory, as the analysis above predicts, and
normwise stability is all we can expect of an algorithm designed for general A.

The conclusion from this analysis is that it is desirable to keep ‖A‖ small in order
for Algorithm 3.3.2 to reflect the conditioning of the problem, but that a large ‖A‖
does not necessarily imply numerical instability for nonnormal A.

62

3.5 Computing etAB over a time interval

In practice, it may be required to evaluate etAB for several values of t belonging to a
time interval [t0, tq]. Suppose that q equally spaced steps are to be taken. Denote the
grid points by tk = t0 + kh, k = 0: q, where h = (tq − t0)/q. If et0AB is available and
Algorithm 3.3.2, applied to e(tq−t0)A, selects a scaling parameter s equal to q, then the
algorithm automatically generates the required matrices as intermediate quantities,
as is clear from (3.12). In general, though, we need an efficient strategy for computing
these matrices. The most obvious way to evaluate Bk = etkAB, k = 0: q, is directly
from the formula, using Algorithm 3.3.2. However, since the cost of the algorithm is
proportional to αp(tA) = |t|αp(A), it is more efficient if we reduce each tk by t0 by
forming B0 = et0AB and then (recall that F denotes an invocation of Algorithm 3.3.2)

Bk = F(kh, A,B0), k = 1: q. (3.32)

A further reduction in cost accrues if we obtain each Bk from the preceding one:

Bk = F(h,A, Bk−1), k = 1: q. (3.33)

In deciding on the best approach we need to consider the effects of rounding
errors. We have seen in Chapter 2 that the scaling and squaring method for eA

can suffer from overscaling, which occurs when the initial scaling A ← 2−iA reduces
‖A‖ by more than is necessary to achieve the required accuracy and the resulting
extra squarings degrade the accuracy due to propagation of rounding errors in the
squaring phase. The same danger applies here, but now overscaling can be caused
by a too-small stepsize h. The danger is illustrated by the example of computing
(1 + x/100)100 when x is so small that ex ≈ 1 + x is a good enough approximation;
the former expression is clearly much more seriously affected by rounding errors.
The gist of the matter can be seen by considering how B1 and B2 are computed;
both (3.32) and (3.33) compute B1 = ehAB0, but (3.32) computes B2 = e2hAB0

while (3.33) uses B2 = ehAB1 = ehA(ehAB0). It may be that 2hA needs no scaling
(i.e., Algorithm 3.3.2 chooses s = 1 when applied to 2hA), so that B1 and B2 are
obtained at exactly the same cost from (3.32) as from (3.33). Although these two
ways of obtaining B2 are equivalent in exact arithmetic, in floating point arithmetic
the formula B2 = ehA(ehAB0) is more likely to suffer from overscaling.

The following algorithm reduces the chance of overscaling with no cost penalty. It
uses the direct formula (3.32) whenever it can do so without increasing the cost (that
is, without scaling), but uses (3.33) when (3.32) requires scaling and (3.33) does not.

Code Fragment 3.5.1 This algorithm computes Bk = etkAB for k = 0: q, where
tk = t0 + kh and h = (tq − t0)/q, for the case where q > s∗, where s∗ is the value
determined by Algorithm 3.3.2 applied to (tq − t0)A.

1 s = s∗
2 d = bq/sc, j = bq/dc, r = q − dj
3 h = (tq − t0)/q
4 Z = F(t0, A, B) % B0

5 d̃ = d
6 for i = 1: j + 1

63

7 if i > j, d̃ = r, end

8 for k = 1: d̃
9 Bk+(i−1)d = F(kh,A, Z)

10 end
11 if i ≤ j, Z = Bid, end
12 end

Note that the same parameter s, namely s = 1, is used on each invocation of
Algorithm 3.3.2 on line 9 of Code Fragment 3.5.1. Some useful computational savings
are possible in line 9 by saving and re-using matrix products. We have

Tm(kh,A, Z) =
m∑

`=0

(khA)`Z

`!
=

[
Z (hA)Z . . . 1

m!
(hA)mZ

]
︸ ︷︷ ︸

Km




1
k
...

km


 . (3.34)

When invoked at line 9 of Code Fragment 3.5.1, Algorithm 3.3.2 generally increases
the value of m∗ as k increases until m∗ reaches its maximal value (not necessarily

mmax) at k = d̃. It would be enough to form the matrix Km for the maximal
value of m and reuse it for the smaller values of k. However, this would destroy
the computational saving obtained from the stopping test that Algorithm 3.3.2 uses.
Instead, we will build up the required block columns of Km gradually during the
computation by using the stopping test.

With the aid of Code Fragment 3.5.1 and Algorithm 3.3.2, we can write the final
algorithm. We will use the notation X:,j to denote the jth block column of the
n × n0(q + 1) matrix X partitioned into n × n0 blocks; if n0 = 1 (so that B is a
vector) then X:,j = X(:, j) in the usual notation.

Algorithm 3.5.2 Given A ∈ Cn×n, B ∈ Cn×n0, and a tolerance tol, this algorithm
computes a matrix X ∈ Cn×n0(q+1) such that X:,k+1 ≈ etkAB, k = 0: q, where tk =
t0 + kh and h = (tq − t0)/q. The logical variable balance indicates whether or not to
apply balancing.

1 if balance

2 Ã = D−1AD

3 if ‖Ã‖1 < ‖A‖1, A = Ã, B = D−1B, else balance = false, end
4 end
5 µ = trace(A)/n
6 [m∗, s] = parameters((tq − t0)(A− µI))
7 X:,1 = F(t0, A, B, false)
8 if q ≤ s
9 for k = 1: q

10 X:,k+1 = F(h,A, X:,k, false)
11 end
12 if balancing was used, X = DX, end
13 quit
14 end
15 A = A− µI

64

16 d = bq/sc, j = bq/dc, r = q − dj, d̃ = d
17 Compute Cm∗(dA) from (3.20).
18 Z = X(: , 1)
19 for i = 1: j + 1

20 if i > j, d̃ = r, end
21 K:,1 = Z, m̂ = 0

22 for k = 1: d̃
23 F = Z, c1 = ‖Z‖∞
24 for p = 1: m∗
25 if p > m̂
26 K:,p+1 = hAK:,p/p % Form K:,p+1 if not already formed.
27 end
28 F = F + kpK:,p+1

29 c2 = kp‖K:,p+1‖∞
30 if c1 + c2 ≤ tol‖F‖∞, quit, end
31 c1 = c2

32 end
33 m̂ = max(m̂, p)
34 X:,k+(i−1)d+1 = ekhµF
35 end
36 if i ≤ j, Z = X:,id+1, end
37 end
38 if balance, X = DX, end

3.6 Numerical experiments

We give a variety of numerical experiments to illustrate the efficiency and accuracy
of our algorithms. All were carried out in MATLAB 7.10 (R2010a) on machines with
Core i7 or Core 2 Duo E6850 processors, and errors are computed in the 1-norm,
unless stated otherwise.

In some of our experiments we will employ two existing codes from the literature,
both of which use Krylov techniques along with time-stepping to traverse the inter-
val [0, t]. The MATLAB function expv of Sidje [63] evaluates etAb using a Krylov
method with a fixed dimension (default 30) for the Krylov subspace. The MATLAB
function phipm of Niesen [57] uses Krylov techniques to compute a sum of the form∑p

k=0 ϕk(tA)uk. The size of the Krylov subspace is changed dynamically during the
integration, and the code automatically recognizes when A is Hermitian and uses
the Lanczos process instead of the Arnoldi process. We use both functions with
their default parameters, except for the convergence tolerance, which varies in our
experiments.

We will not attempt to show the benefits of using the αp(A) in place of ‖A‖1,
as these have already been demonstrated in Chapter 2 for the scaling and squaring
algorithm. In all our experiments B is a vector, b.

Experiment 1. The first experiment tests the behavior of Algorithm 3.3.2 in float-
ing point arithmetic. We use a combination of all four sets of test matrices described

65

0 50 100 150

10
−15

10
−10

10
−5

10
0

Alg. 3.3.2
Alg. 3.2.2 (balance)
expm_new
expm

Figure 3.1: Experiment 1: normwise relative errors in eAb computed by Algo-
rithm 3.3.2 with and without balancing and by first computing eA by expm or
expm new. The solid line is κexp(A, b)ud.

in Section 2.6, giving 155 matrices in total, with dimensions n up to 50. For each ma-
trix A, and a different randomly generated vector b for each A, we compute x = eAb
in three ways:

• using Algorithm 3.3.2 with and without balancing, with tol = ud,

• as expm(A)*b, where expm is the MATLAB function for the matrix exponential,
which implements the scaling and squaring algorithm of [30], [32],

• as expm new(A)*b, where expm new implements Algorithm 2.6.1.

Figure 3.1 displays the relative errors ‖eAb− x̂‖2/‖eAb‖2, where the “exact” answer
is obtained by computing at 100 digit precision with the Symbolic Math Toolbox.
The matrices are sorted by decreasing value of the condition number κexp(A, b) in
(3.26), and κexp(A, b)ud is shown as a solid line. We compute κexp(A, b) exactly, using
the function expm_cond in the Matrix Function Toolbox [26] to obtain the Kronecker
matrix representation Kexp(A) of the Fréchet derivative. Figure 3.2 displays the same
data as a performance profile, where for a given α the corresponding point on each
curve indicates the fraction p of problems on which the method had error at most a
factor α times that of the smallest error over all methods in the experiment.

Figure 3.1 reveals that all the algorithms behave in a generally forward stable
manner. Figure 3.2 shows that Algorithm 3.3.2 has the best accuracy, beating both
expm and the more accurate expm new. Balancing has little effect on the errors, but
it can greatly reduce the cost: the quantity “s without balancing divided by s with
balancing” had maximum value 1.6 × 104 and minimum value 0.75, with the two
values of s differing in 11 cases. The test (3.22) was satisfied in about 77% of the
cases.

Experiment 2. In this experiment we take for A the matrix gallery(’lesp’,10),
which is a nonsymmetric tridiagonal matrix with real, negative eigenvalues, and bi =

66

2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

p

Alg. 3.3.2
Alg. 3.3.2 (balance)
exp_new
expm

Figure 3.2: Same data as in Figure 3.1 presented as a performance profile.

i. We compute etAb by Algorithm 3.3.2 for 50 equally spaced t ∈ [0, 100], with and
without balancing, for tol = us and tol = ud. The results are shown in Figure 3.3. We
see a linear growth of the cost of the algorithm with t, as expected. The relative errors
are all below the corresponding solid line representing κexp(tA, b)u, which shows that
the algorithm is behaving in a forward stable manner. Balancing has no significant
effect on the error but leads to a useful reduction in cost. In this test the inequality
(3.22) was satisfied in 5% of the cases.

Experiment 3. Now we investigate the effectiveness of Algorithm 3.5.2 at avoiding
overscaling when dense output is requested over an interval. We take for A the
matrix gallery(’frank’,3), b has equally spaced elements on [−1, 1], and tol =
ud; balancing leaves this matrix unchanged. We apply Algorithm 3.5.2 twice with
t ∈ [0, 10] and q = 200, once in its given form and again with the “if” test at line 8
forced to be satisfied, thus turning off the logic for avoiding overscaling. The relative
errors are shown in Figure 3.4. The improved accuracy provided by our strategy for
avoiding overscaling is clear.

Experiment 4. Our next experiment is a variation of one from Trefethen, Weide-
man, and Schmelzer [68, Sec. 3], in which A ∈ R9801×9801 is a multiple of the standard
finite difference discretization of the 2D Laplacian, namely the block tridiagonal ma-
trix constructed by -2500*gallery(’poisson’,99) in MATLAB. We compute eαtAb
for the b specified in [68] for q = 100 equally spaced values of t on [0, 1], with α = 0.02
(the problem as in [68]) and α = 1. We use four different methods.

1. Algorithm 3.5.2, with tol = ud. Since A is symmetric, balancing is not needed.

2. The MATLAB functions expv and phipm, both called q times with error tol-
erance ud. Since both functions use a time-stepping strategy to advance eτAb
from τ = 0 to τ = t, our repeated calls to expv and phipm result in wasted
computation, but they are unavoidable because the functions do not offer the
option of “dense output” to return intermediate vectors.

67

0 10 20 30 40 50 60 70 80 90 100
0

2000

4000

6000

t

Matrix−vector products

single
double
single (balance)
double (balance)

0 10 20 30 40 50 60 70 80 90 100
10

−16

10
−12

10
−8

10
−4

t

Relative error

Figure 3.3: Experiment 2: t versus cost (top) and accuracy (bottom) of Algo-
rithm 3.3.2 with and without balancing for etAb. In the bottom plot the solid lines
are κexp(tA, b)us and κexp(tA, b)ud.

0 1 2 3 4 5 6 7 8 9 10
10

−17

10
−16

10
−15

10
−14

t

Relative error

Alg 3.5.2 (modified)
Alg 3.5.2

0 1 2 3 4 5 6 7 8 9 10
10

−1

10
0

10
1

10
2

Ratio of relative errors

t

Figure 3.4: Experiment 3: relative errors (top) for Algorithm 3.5.2 and for modified
version of the algorithm without the logic to avoid overscaling, and ratio of relative
errors “modified/original” (bottom). The solid line is κexp(tA, b)ud.

68

Table 3.2: Experiment 4: speed is time for method divided by time for Algo-
rithm 3.5.2.

α = 0.02 α = 1
speed cost diff speed cost diff

Algorithm 3.5.2 1 1119 1 49544
expv 46.6 25575 4.5e-15 66.0 516429 6.2e-14
phipm 10.5 10744 5.5e-15 9.3 150081 6.3e-14

rational 107.8 700 9.1e-14 7.9 700 1.0e-12

3. The MATLAB code in [68, Fig. 4.4], which uses a best rational L∞ approxima-
tion to the exponential of type (N − 1, N) with N = 14. It is called repeatedly
for each t-value. Unlike the previous two methods, the dominant computational
cost is the solution of linear systems with matrices of the form αI − βA, which
is done via the backslash operator.

The results are given in Table 3.2, where “cost” denotes the number of matrix–vector
products for the first three methods and the number of linear system solves for the
rational approximation method, and “diff” is the normwise relative difference between
the matrix of result vectors computed by Algorithm 3.5.2 and the other methods.

Here, ‖A‖1 = 2×104, and Algorithm 3.5.2 takes s = 21 for α = 0.02 and s = 1014
for α = 1. In spite of the fairly heavy scaling, this algorithm is still substantially
faster than expv, phipm, and the rational approximation method. Algorithm 3.5.2
needed to use its logic to avoid overscaling for α = 0.02 but not for α = 1.

We used the MATLAB profile function to profile the M-files in this experiment.
We found that Algorithm 3.5.2 spent 88% of its time doing matrix–vector products.
By contrast, expv and phipm spent 12% and 28% of their time, respectively, on
matrix–vector products and most of the rest within the Arnoldi recurrence or in
evaluating matrix exponentials via expm (1% and 6%, respectively). Note that the
vectors in the Arnoldi and Lanczos recurrences are generally full if b is, so the inner
products and additions in these recurrences can be of similar cost to a matrix–vector
product when A is very sparse, as it is here.

Experiment 5. This experiment uses essentially the same tests as Niesen and
Wright [58, Experiment 1], which in turn are based on those of Sidje [63]. The
three matrices belong to the Harwell-Boeing collection and are obtained from the
University of Florida Sparse Matrix Collection [14], [15]. For the first two matrices
we compute eAtb. The matrices and problem details are:

• orani678, n = 2529, t = 100, b = [1, 1, . . . , 1]T ;

• bcspwr10, n = 5300, t = 10, b = [1, 0, . . . , 0, 1]T .

The third matrix is gr_30_30, with n = 900, t = 2, b = [1, 1, . . . , 1]T , and we compute
e−tAetAb. The tolerance is us and for the first two problems we regard the solution
computed with Algorithm 3.3.2 with tol = ud as the exact solution. Balancing is
not applied because MATLAB does not support balancing of matrices stored with
the sparse attribute; however, balancing is certainly possible for sparse matrices, and
several algorithms are developed by Chen and Demmel [10]. The results are shown

69

Table 3.3: Experiment 5: speed is time for method divided by time for Algo-
rithm 3.3.2.

Algorithm 3.3.2 phipm expv
‖A‖1 speed cost error speed cost error speed cost error

orani678 1.0e5 1 1278 1.6e-16 5.9 651 1.2e-13 19.4 8990 4.0e-14
bcspwr10 1.4e2 1 338 2.0e-15 1.2 103 6.6e-15 5.5 341 2.6e-14
gr_30_30 3.2e1 1 80 7.2e-9 1.5 40 1.9e-9 3.0 124 9.5e-8

0 20 40 60 80 100

10
−10

10
−5

10
0

10
5

t

‖etA
b‖2

Alg. 3.5.2
phipm
rational
expv

0 20 40 60 80 100

10
−10

10
−5

10
0

10
5

t

‖etA
b‖2

Alg. 3.5.2
phipm
rational
expv

Figure 3.5: Experiment 6: t versus ‖etAb‖2, with α = 4 (top) and α = 4.1 (bottom).

in Table 3.3. All three methods deliver the required accuracy, but Algorithm 3.3.2
proves to be the fastest.

Experiment 6. This example reveals the smoothness of the solution computed
by Algorithm 3.5.2. The matrix A is -gallery(’triw’,20,alpha), which is upper
triangular with constant diagonal −1 and all superdiagonal elements equal to −α.
We take bi = cos i and compute the norms ‖etAb‖2 with tol = ud for α = 4 and
α = 4.1 by all the methods discussed above for t = 0: 100. The best rational L∞
approximation is applicable since A has real, negative eigenvalues. Balancing has no
effect on this matrix. Figure 3.5 shows that Algorithm 3.5.2 is the only method to
produce a smooth curve that tracks the growth and decay of the exponential across
the whole interval, and indeed each computed norm for Algorithm 3.5.2 has relative
error less than 5 × 10−14. The accuracy of the other methods is affected by the
nonnormality of A, which is responsible for the hump. The rational approximation
method solves linear systems with condition numbers up to order 1012, which causes
its ultimate loss of accuracy. The Krylov methods are so sensitive to rounding errors
that changing α from 4 to 4.1 produces quite different results, and qualitatively so
for phipm. The problem is very ill-conditioned: κexp(A, b) ≥ u−1

d for t >∼ 53.

Experiment 7. Since our approach is in the spirit of the sixth of Moler and Van
Loan’s “19 dubious ways” [54, Sec. 4], it is appropriate to make a comparison with a
direct implementation of their “Method 6: single step ODE methods”. For the Lapla-
cian matrix and vector b from Experiment 4, we compute eαAb, for α = 1 and α = 4,

70

Table 3.4: Experiment 7: cost is the number of matrix–vector products, except for
ode15s for which it “number of matrix–vector products/number of LU factoriza-
tions/number of linear system solves”. The subscript on poisson denotes the value
of α.

Algorithm 3.3.2 ode45 ode15s
Time Cost Error Time Cost Error Time Cost Error

orani678 0.13 878 4.0e-8 3.29 14269 2.7e-8 132 7780/606/7778 1.6e-6
bcspwr10 0.021 215 7.2e-7 0.54 3325 9.5e-7 2.96 1890/76/1888 4.8e-5
poisson1 3.76 29255 2.2e-6 8.6 38401 3.7e-7 2.43 402/33/400 8.3e-6
poisson4 15 116849 9.0e-6 35.2 154075 2.2e0 3.07 494/40/492 1.4e-1

using Algorithm 3.3.2 with tol = us, and the ode45 and ode15s functions from MAT-
LAB, with absolute and relative error tolerances (used in a mixed absolute/relative
error criterion) both set to us. The ode45 function uses an explicit Runge–Kutta (4,5)
formula while ode15s uses implicit multistep methods. We called both solvers with
time interval specified as [0 t/2 t] instead of [0 t] in order to stop them returning
output at each internal mesh point, which substantially slows the integration. The
results in Table 3.4 show the superior efficiency of Algorithm 3.3.2 over ode45. The
ode15s function performs variably, being extremely slow for the orani678 problem,
but faster than Algorithm 3.3.2 for the poisson problem with α = 1, in this case
being helped by the fact that A is highly sparse and structured, so that the linear
system solves it requires are relatively inexpensive. However, both ODE solvers fail
to produce the desired accuracy for the poisson problem with α = 4.

Experiment 8. Our final experiment illustrates the application of Theorem 3.2.1
in order to compute the exponential integrator approximation (3.4) via (3.11). We
take for A ∈ R400×400 the symmetric matrix -gallery(’poisson’,20) and random
vectors uk, k = 0: p, with elements from the normal (0,1) distribution, where p =
5: 5: 20. The matrix W ∈ R400×p has columns W (:, p − k + 1) = uk, k = 1: p. For
each p, we compute û(t) at each t = 1: 0.5: 10 by Algorithm 3.5.2 (with t0 = 1,
tq = 10, and q = 18) and by phipm, which has the ability to compute û(t) via the
expression (3.4). For computing errors, we regard as the “exact” solution the vector
obtained by using expm to compute the exponential on the right-hand side of (3.11).
We set the tolerance to ud for both algorithms. Figure 3.6 plots the results. The total
number of matrix–vector products is 1097 for Algorithm 3.5.2 and 3749 for phipm.

The relative error produced by Algorithm 3.5.2 is of order ud for all t and p,
whereas the relative error for phipm deteriorates with increasing t, the more rapidly
so for the larger p, suggesting instability in the recurrences that the code uses. The
practical implication is that p, which is the degree of the polynomial approximation
in an exponential integrator, may be need to be limited for use with phipm but is
unrestricted for our algorithm. The run time for this experiment is 0.093 seconds for
Algorithm 3.5.2 and 0.62 seconds for phipm.

The importance of the normalization by η in (3.11) is seen if we multiply W by
106 and repeat the experiment with the default η and then η = 1. The maximum
relative errors for Algorithm 3.5.2 in the two cases are 2.3× 10−15 and 3.3× 10−12.

71

2 4 6 8 10

10
−15

10
−10

10
−5

10
0

t

p = 5

2 4 6 8 10

10
−15

10
−10

10
−5

10
0

t

p = 10

2 4 6 8 10

10
−15

10
−10

10
−5

10
0

t

p = 15

2 4 6 8 10

10
−15

10
−10

10
−5

10
0

t

p = 20

Figure 3.6: Experiment 8: relative errors of computed û(t) in (3.4) from Algo-
rithm 3.5.2 (◦) and phipm (∗) over the interval [1, 10] for p = 5: 5: 20.

72

Chapter 4

Computing the Fréchet Derivative
of the Matrix Exponential, with an
Application to Condition Number
Estimation

4.1 Introduction

The sensitivity of a Fréchet differentiable matrix function f : Cn×n → Cn×n (see
Section 1.6) to small perturbations is governed by the Fréchet derivative.

It is desirable to be able to evaluate efficiently both f(A) and the Fréchet deriva-
tive in order to obtain sensitivity information or to apply an optimization algorithm
requiring derivatives. However, while the numerical computation of matrix functions
is quite well developed, fewer methods are available for the Fréchet derivative, and
the existing methods for Lf (A,E) usually do not fully exploit the fact that f(A) is
being computed [31].

The norm of the Fréchet derivative yields a condition number as Theorem 1.6.4
states, so when evaluating f(A) we would like to be able to efficiently estimate
cond(f, A). The computation of Lf (A, Z) at several Z is the key component of
this process as established in Section 1.6.

The main aim of the work in this chapter is to develop an efficient algorithm for
simultaneously computing eA and Lexp(A,E) and to use it to construct an algorithm
for computing eA along with an estimate of cond(exp, A). The need for such algo-
rithms is demonstrated by a recent paper in econometrics [38] in which the authors
state that “One problem we did discover, that has not been accentuated in the lit-
erature, is that altering the stability properties of the coefficient matrix through a
change in just one parameter can dramatically alter the theoretical and computed
matrix exponential.” If A = A(t) depends smoothly on a vector t ∈ Cp of param-
eters then the change in eA induced by small changes θh in t (θ ∈ C, h ∈ Cp) is

73

approximated by θLexp(A,
∑p

i=1 hi ∂A(t)/∂ti), since

f(A(t + θh)) = f

(
A + θ

p∑
i=1

∂A(t)

∂ti
hi + O(θ2)

)

= f(A) + Lf

(
A, θ

p∑
i=1

∂A(t)

∂ti
hi + O(θ2)

)
+ o(θ)

= f(A) + θLf

(
A,

p∑
i=1

∂A(t)

∂ti
hi

)
+ o(θ).

Thus a single Fréchet derivative evaluation with h = ej (the jth unit vector) provides
the information that the authors of [38] needed about the effect of changing a single
parameter tj.

We begin in Section 4.2 by recalling a useful connection between the Fréchet
derivative of a function and the same function evaluated at a certain block triangular
matrix. We illustrate how this relation can be used to derive new iterations for
computing Lf (A, E) given an iteration for f(A). Then in Section 4.3 we show how
to efficiently evaluate the Fréchet derivative when f has a power series expansion,
by exploiting a convenient recurrence for the Fréchet derivative of a monomial. In
Section 4.4 we show that under reasonable assumptions a matrix polynomial and
its Fréchet derivative can both be evaluated at a cost at most three times that of
evaluating the polynomial itself. Then in Section 4.5 we show how to evaluate the
Fréchet derivative of a rational function and give a framework for evaluating f and
its Fréchet derivative via Padé approximants. In Section 4.6 we apply this framework
to the scaling and squaring algorithm for eA, Algorithm 2.3.1. We extend Higham’s
analysis to show that, modulo rounding errors, the approximations obtained from
the new algorithm are eA+∆A and Lexp(A + ∆A,E + ∆E), with the same ∆A in
both cases—a genuine backward error result. The computable bounds on ‖∆A‖ and
‖∆E‖ enable us to choose the algorithmic parameters in an optimal fashion. The new
algorithm is shown to have significant advantages over existing ones. In Section 4.7 we
combine the new algorithm for Lexp(A,E) with an existing matrix 1-norm estimator to
develop an algorithm for computing both eA and an estimate of its condition number,
and we show experimentally that the condition estimate can provide a useful guide
to the accuracy of the scaling and squaring algorithm. Similarly in Section 4.8, we
extend the new scaling and squaring algorithm (Algorithm 2.6.1) that we developed in
Chapter 2 to an algorithm for computing both eA and Lexp(A,E), and then adapt it to
an algorithm for simultaneously evaluating eA and estimating its condition number.

4.2 Fréchet derivative via function of block trian-

gular matrix

The following result shows that the Fréchet derivative appears as the (1, 2) block
when f is evaluated at a certain block triangular matrix. Let D denote an open
subset of R or C.

74

Theorem 4.2.1 Let f be 2n − 1 times continuously differentiable on D and let the
spectrum of X lie in D. Then

f

([
X E
0 X

])
=

[
f(X) L(X, E)

0 f(X)

]
. (4.1)

Proof. See Mathias [52, Thm. 2.1] or Higham [31, Sec. 3.1]. The result is also
proved by Najfeld and Havel [56, Thm. 4.11] under the assumption that f is analytic.

The significance of Theorem 4.2.1 is that given a smooth enough f and any method
for computing f(A), we can compute the Fréchet derivative by applying the method
to the 2n×2n matrix in (4.1). The doubling in size of the problem is unwelcome, but
if we exploit the block structure the computational cost can be reduced. Moreover,
the theorem can provide a simple means to derive, and prove the convergence of,
iterations for computing the Fréchet derivative.

To illustrate the use of the theorem we consider the principal square root function,
f(A) = A1/2, which for A ∈ Cn×n with no eigenvalues on R− (the closed negative
real axis) is the unique square root X of A whose spectrum lies in the open right
half-plane. The Denman–Beavers iteration

Xk+1 =
1

2

(
Xk + Y −1

k

)
, X0 = A,

Yk+1 =
1

2

(
Yk + X−1

k

)
, Y0 = I

(4.2)

is a Newton variant that converges quadratically with [31, Sec. 6.3]

lim
k→∞

Xk = A1/2, lim
k→∞

Yk = A−1/2. (4.3)

It is easy to show that if we apply the iteration to Ã =
[

A
0

E
A

]
then iterates X̃k and

Ỹk are produced for which

X̃k =

[
Xk Fk

0 Xk

]
, Ỹk =

[
Yk Gk

0 Yk

]
,

where

Fk+1 =
1

2

(
Fk − Y −1

k GkY
−1
k

)
, F0 = E,

Gk+1 =
1

2

(
Gk −X−1

k FkX
−1
k

)
, G0 = 0.

(4.4)

By applying (4.3) and Theorem 4.2.1 to Ã we conclude that

lim
k→∞

Fk = Lx1/2(A,E), lim
k→∞

Gk = Lx−1/2(A,E). (4.5)

Moreover, scaling strategies for accelerating the convergence of (4.2) [31, Sec. 6.5]
yield corresponding strategies for (4.4).

The next result shows quite generally that differentiating a fixed point iteration
for a matrix function yields a fixed point iteration for the Fréchet derivative.

75

Theorem 4.2.2 Let f and g be 2n− 1 times continuously differentiable on D. Sup-
pose that for any matrix X ∈ Cn×n whose spectrum lies in D, g has the fixed point
f(X), that is, f(X) = g(f(X)). Then for any such X, Lg at f(X) has the fixed point
Lf (X, E) for all E.

Proof. Applying the chain rule to f(X) ≡ g(f(X)) gives the relation Lf (X, E) =
Lg(f(X), Lf (X, E)), which is the result.

The iteration (4.4) for computing the Fréchet derivative of the square root function
is new, and other new iterations for the Fréchet derivative of the matrix square root
and related functions can be derived, and their convergence proved, in the same
way, or directly by using Theorem 4.2.2. In the case of the Newton iteration for
the matrix sign function this approach yields an iteration for the Fréchet derivative
proposed by Kenney and Laub [43, Thm. 3.3] (see also [31, Thm. 5.7]) and derived
using Theorem 4.2.1 by Mathias [52].

In the rest of this chapter we consider the situation in which the underlying
method for computing f(A) is based on direct approximation rather than iteration,
and we develop techniques that are more sophisticated than a direct application of
Theorem 4.2.1.

4.3 Fréchet derivative via power series

When f has a power series expansion the Fréchet derivative can be expressed as a
related series expansion.

Theorem 4.3.1 Suppose f has the power series expansion f(x) =
∑∞

k=0 akx
k with

radius of convergence r. Then for A,E ∈ Cn×n with ‖A‖ < r, the Fréchet derivative

Lf (A,E) =
∞∑

k=1

ak

k∑
j=1

Aj−1EAk−j. (4.6)

Proof. See [31, Prob. 3.6].

The next theorem gives a recurrence that can be used to evaluate (4.6).

Theorem 4.3.2 Under the assumptions of Theorem 4.3.1,

Lf (A,E) =
∞∑

k=1

akMk, (4.7)

where Mk = Lxk(A,E) satisfies the recurrence

Mk = M`1A
`2 + A`1M`2 , M1 = E, (4.8)

with k = `1 + `2 and `1 and `2 positive integers. In particular,

Mk = Mk−1A + Ak−1M1, M1 = E. (4.9)

In addition,
‖f(A)‖ ≤ f̃(‖A‖), ‖Lf (A)‖ ≤ f̃ ′(‖A‖), (4.10)

where f̃(x) =
∑∞

k=0 |ak|xk.

76

Proof. Since the power series can be differentiated term-by-term within its radius
of convergence, we have

Lf (A, E) =
∞∑

k=1

akMk, Mk = Lxk(A,E).

One way to develop the recurrence (4.8) is by applying Theorem 4.2.1 to the monomial
xk = x`1+`2 . A more direct approach is to use the product rule for Fréchet derivatives
from Theorem 1.6.5 to obtain

Mk = Lxk(A,E) = Lx`1 (A,E)A`2 + A`1Lx`2 (A,E) = M`1A
`2 + A`1M`2 .

Taking `1 = k − 1 and `2 = 1 gives (4.9). It is straightforward to see that ‖f(A)‖ ≤
f̃(‖A‖). Taking norms in (4.6) gives

‖Lf (A,E)‖ ≤ ‖E‖
∞∑

k=1

k |ak|‖A‖k−1 = ‖E‖f̃ ′(‖A‖),

and maximizing over all nonzero E gives ‖Lf (A)‖ ≤ f̃ ′(‖A‖).
The recurrence (4.8) will prove very useful in the rest of the chapter.

4.4 Cost analysis for polynomials

Practical methods for approximating f(A) may truncate a Taylor series to a polyno-
mial or use a rational approximation. Both cases lead to the need to evaluate both
a polynomial and its Fréchet derivative at the same argument. The question arises
“what is the extra cost of computing the Fréchet derivative?” Theorem 4.3.2 does not
necessarily answer this question because it only describes one family of recurrences
for evaluating the Fréchet derivative. Moreover, the most efficient polynomial eval-
uation schemes are based on algebraic rearrangements that avoid explicitly forming
all the matrix powers. Does an efficient evaluation scheme for a polynomial p also
yield an efficient evaluation scheme for Lp?

Consider schemes for evaluating pm(X), where pm is a polynomial of degree m
and X ∈ Cn×n, that consist of s steps of the form

q
(k)
1 (X) = q

(k−1)
2 (X)q

(k−1)
3 (X) + q

(k−1)
4 (X), k = 1: s, (4.11a)

deg q
(k)
i < m, i = 1: 4, k < s, deg q

(k)
i ≥ 1, i = 2: 3, (4.11b)

where the qi are polynomials, q
(k)
i , i = 2: 4, is a linear combination of q

(1)
1 , . . . , q

(k−1)
1 ,

and pm(X) = q
(s)
1 (X). This class contains all schemes of practical interest, which

include Horner’s method, evaluation by explicit powers, and the Paterson and Stock-
meyer method [60] (all of which are described in [31, Sec. 4.2]), as well as more ad
hoc schemes such as those described below. We measure the cost of the scheme by
the number of matrix multiplications it requires. The next result shows that the
overhead of evaluating the Fréchet derivative is at most twice the original cost.

77

Theorem 4.4.1 Let p be a polynomial and let πp denote the cost of evaluating p(X)
by any scheme of the form (4.11). Let σp denote the extra cost required to compute
Lp(X,E) by using the scheme obtained by differentiating the scheme for p(X). Then
σp ≤ 2πp.

Proof. The proof is by induction on the degree m of the polynomial. For m = 1,
p1(x) = b0+b1x and the only possible scheme is the obvious evaluation p1(X) = b0I +
b1X with π1 = 0. The corresponding Fréchet derivative scheme is Lp1(X, E) = b1E
and σ1 = 0, so the result is trivially true for m = 1. Suppose the result is true for
all polynomials of degree at most m− 1 and consider a polynomial pm of degree m.
By (4.11) the last stage of the scheme can be written pm(X) = q

(s−1)
2 (X)q

(s−1)
3 (X) +

q
(s−1)
4 (X), where the polynomials qi ≡ q

(s−1)
i , i = 2: 4 are all of degree less than m.

Note that πpm = πq2 + πq3 + πq4 + 1 and by the inductive hypothesis, σqi
≤ 2πqi

,
i = 2: 4. Now Lpm(X, E) = Lq2(X, E)q3(X) + q2(X)Lq3(X, E) + Lq4(X, E) by the
product rule and so

σpm ≤ σq2 + σq3 + σq4 + 2 ≤ 2(πq2 + πq3 + πq4 + 1) = 2πpm ,

as required. This proof tacitly assumes that there are no dependencies between the
q
(k)
i that reduce the cost of evaluating p, for example, q

(s−1)
2 = q

(s−1)
3 . However, any

dependencies equally benefit the Lp evaluation and the result remains valid.

To illustrate the theorem, consider the polynomial p(X) = I + X + X2 + X3 +
X4 + X5. Rewriting it as

p(X) = I + X
(
I + X2 + X4

)
+ X2 + X4,

we see that p(X) can be evaluated in just three multiplications via X2 = X2, X4 =
X2

2 , and p(X) = I + X(I + X2 + X4) + X2 + X4. Differentiating gives

Lp(X,E) = Lx(1+x2+x4)(X, E) + M2 + M4

= E(I + X2 + X4) + X(M2 + M4) + M2 + M4,

where M2 = XE + EX and M4 = M2X2 + X2M2 by (4.8). Hence the Fréchet
derivative can be evaluated with six additional multiplications, and the total cost is
nine multiplications.

4.5 Computational framework

For a number of important functions f , such as the exponential, the logarithm, and
the sine and cosine, successful algorithms for f(A) have been built on the use of
Padé approximants: a Padé approximant rm of f of suitable degree m is evaluated
at a transformed version of A and the transformation is then undone. Here, rm(x) =
pm(x)/qm(x) with pm and qm polynomials of degree m such that f(x) − rm(x) =
O(x2m+1) [40]. It is natural to make use of this Padé approximant by approximating
Lf by the Fréchet derivative Lrm of rm. The next result shows how to evaluate Lrm .

Lemma 4.5.1 The Fréchet derivative Lrm of the rational function rm(x) = pm(x)/
qm(x) satisfies

qm(A)Lrm(A,E) = Lpm(A,E)− Lqm(A,E)rm(A). (4.12)

78

Proof. Applying the Fréchet derivative product rule to qmrm = pm gives

Lpm(A,E) = Lqmrm(A,E) = Lqm(A,E)rm(A) + qm(A)Lrm(A,E),

which rearranges to the result.

We can now state a general framework for simultaneously approximating f(A)
and Lf (A,E) in a way that reuses matrix multiplications from the approximation of
f in the approximation of Lf .

1. Choose a suitable Padé degree m and transformation function g and set A ←
g(A).

2. Devise efficient schemes for evaluating pm(A) and qm(A).

3. Fréchet differentiate the schemes in the previous step to obtain schemes for
evaluating Lpm(A,E) and Lqm(A,E). Use the recurrences (4.8) and (4.9) as
necessary.

4. Solve qm(A)rm(A) = pm(A) for rm(A).

5. Solve qm(A)Lrm(A,E) = Lpm(A,E)− Lqm(A,E)rm(A) for Lrm(A,E).

6. Apply the appropriate transformations to rm(A) and Lrm(A,E) that undo the
effect of the initial transformation on A.

In view of Theorem 4.4.1, the cost of this procedure is at most (3πm +1)M +2D,
where πmM is the cost of evaluating both pm(A) and qm(A), and M and D denote a
matrix multiplication and the solution of a matrix equation, respectively.

If we are adding the capability to approximate the Fréchet derivative to an existing
Padé-based method for f(A) then our attention will focus on step 1, where we must
reconsider the choice of m and transformation to ensure that both f and Lf are
approximated to sufficient accuracy.

In the next sections we apply this framework to the matrix exponential.

4.6 Scaling and squaring algorithm for the expo-

nential and its Fréchet derivative (I)

Our aim here is to adapt Algorithm 2.3.1 that we review in Section 2.3 to compute
Lexp(A,E) along with eA. A recurrence for the Fréchet derivative of the exponential
can be obtained by differentiating (2.1). Note first that differentiating the identity
eA = (eA/2)2 using the chain rule of Theorem 1.6.5 along with Lx2(A,E) = AE +EA
gives the relation

Lexp(A,E) = Lx2

(
eA/2, Lexp(A/2, E/2)

)
(4.13)

= eA/2Lexp(A/2, E/2) + Lexp(A/2, E/2)eA/2.

Repeated use of this relation leads to the recurrence

L̃s = Lexp(2
−sA, 2−sE),

L̃i−1 = e2−iAL̃i + L̃i e
2−iA, i = s : − 1: 1 (4.14)

79

Table 4.1: Maximal values `m of ‖2−sA‖ such that the backward error bound (4.19)
does not exceed u = 2−53, along with maximal values θm such that a bound for
‖∆A‖/‖A‖ does not exceed u.

m 1 2 3 4 5 6 7 8 9 10
θm 3.65e-8 5.32e-4 1.50e-2 8.54e-2 2.54e-1 5.41e-1 9.50e-1 1.47e0 2.10e0 2.81e0
`m 2.11e-8 3.56e-4 1.08e-2 6.49e-2 2.00e-1 4.37e-1 7.83e-1 1.23e0 1.78e0 2.42e0

m 11 12 13 14 15 16 17 18 19 20
θm 3.60e0 4.46e0 5.37e0 6.33e0 7.34e0 8.37e0 9.44e0 1.05e1 1.17e1 1.28e1
`m 3.13e0 3.90e0 4.74e0 5.63e0 6.56e0 7.52e0 8.53e0 9.56e0 1.06e1 1.17e1

for L̃0 = Lexp(A,E). Our numerical method replaces Lexp by Lrm and e2−iA by

rm(2−sA)2s−i
, producing approximations Li to L̃i:

Xs = rm(2−sA),

Ls = Lrm(2−sA, 2−sE),

Li−1 = Xi Li + Li Xi

Xi−1 = X2
i

}
i = s : − 1: 1. (4.15)

The key question is what can be said about the accuracy or stability of L0 relative
to that of the approximation X0 = (rm(2−sA))2s

to eA. To answer this question we
recall the key part of the error analysis from Section 2.3. Select s ≥ 0 such that
2−sA ∈ Ω and hence

rm(2−sA) = e2−sA+h2m+1(2−sA) (4.16)

Differentiating (4.16) gives, using the chain rule,

Ls = Lrm(2−sA, 2−sE)

= Lexp

(
2−sA + h2m+1(2

−sA), 2−sE + Lh2m+1(2
−sA, 2−sE)

)
. (4.17)

From (4.15), (4.16), and (4.17),

Ls−1 = rm(2−sA)Ls + Lsrm(2−sA)

= e2−sA+h2m+1(2−sA) Lexp

(
2−sA + h2m+1(2

−sA), 2−sE + Lh2m+1(2
−sA, 2−sE)

)

+ Lexp

(
2−sA + h2m+1(2

−sA), 2−sE + Lgm(2−sA, 2−sE)
)
e2−sA+h2m+1(2−sA)

= Lexp

(
2−(s−1)A + 2h2m+1(2

−sA), 2−(s−1)E + Lh2m+1(2
−sA, 2−(s−1)E)

)
,

where we have used (4.13) and the fact that L is linear in its second argument.
Continuing this argument inductively, and using

Xi = X2s−i

s =
(
e2−sA+h2m+1(2−sA)

)2s−i

= e2−iA+2s−ih2m+1(2−sA),

we obtain the following result.

Theorem 4.6.1 If 2−sA ∈ Ωm in (2.13) then L0 from (4.15) satisfies

L0 = Lexp

(
A + 2sh2m+1(2

−sA), E + Lh2m+1(2
−sA,E)

)
. (4.18)

80

Theorem 4.6.1 is a backward error result: it says that L0 is the exact Fréchet
derivative for the exponential of a perturbed matrix in a perturbed direction. We
emphasize that the backward error is with respect to the effect of truncation errors in
the Padé approximation, not to rounding errors, which for the moment are ignored.

We have X0 = eA+∆A and L0 = Lexp(A + ∆A,E + ∆E) with the same ∆A =
2sh2m+1(2

−sA). We already know from the analysis in Section 2.3 how to choose s
and m to keep ∆A acceptably small. It remains to investigate the norm of ∆E =
Lh2m+1(2

−sA,E).

Recall that h̃2m+1(x) is the function used in the bound (2.16), which is the power
series resulting from replacing the coefficients of the power series expansion of the
function h2m+1(x) = log(e−xrm(x)) by their absolute values. Using the second bound
in (4.10) we have

‖∆E‖
‖E‖ =

‖Lh2m+1(2
−sA,E)‖

‖E‖ ≤ ‖Lh2m+1(2
−sA)‖ ≤ h̃ ′2m+1(θ), (4.19)

where θ = ‖2−sA‖. Define `m = max{ θ : h̃ ′2m+1(θ) ≤ u }, where u = 2−53 ≈
1.1×10−16 is the unit roundoff for IEEE double precision arithmetic. Using Symbolic
Math Toolbox we evaluated `m, m = 1: 20, by summing the first 150 terms of the
series symbolically in 250 decimal digit arithmetic. Table 4.1 shows these values
along with analogous values θm calculated in [30], which are the maximal values of θ
obtained from (2.17). In every case `m < θm, which is not surprising given that we
are approximating Lrm by an approximation chosen for computational convenience
rather than its approximation properties, but the ratio θm/`m is close to 1. For each
m, if θ ≤ `m then we are assured that

X0 = eA+∆A, L0 = Lexp(A + ∆A,E + ∆E), ‖∆A‖ ≤ u‖A‖, ‖∆E‖ ≤ u‖E‖;
in other words, perfect backward stability is guaranteed for such θ.

In order to develop an algorithm we now need to look at the cost of evaluating rm =
pm/qm and Lrm , where rm is the [m/m] Padé approximant to ex. Higham [30] shows
how to efficiently evaluate pm(A) and qm(A) by using the schemes (2.18) and (2.19);
the number of matrix multiplications, πm, required to compute pm(A) and qm(A) is
given in [30, Table 2.2]. As Theorem 4.4.1 suggests, the Fréchet derivatives Lpm and
Lqm can be calculated at an extra cost of 2πm multiplications by differentiating the
schemes for pm and qm. We now give the details.

Recall the scheme (2.18) for m = 3, 5, 7, 9

pm(A) = A

(m−1)/2∑

k=0

b2k+1A
2k +

(m−1)/2∑

k=0

b2kA
2k =: um(A) + vm(A).

It follows that qm(A) = −um(A) + vm(A) since qm(A) = pm(−A), and hence

Lpm = Lum + Lvm , Lqm = −Lum + Lvm .

We obtain Lum(A, E) and Lvm(A,E) by differentiating um and vm, respectively:

Lum(A,E) = A

(m−1)/2∑

k=1

b2k+1M2k + E

(m−1)/2∑

k=0

b2k+1A
2k (4.20)

Lvm(A,E) =

(m−1)/2∑

k=1

b2kM2k. (4.21)

81

The Mk = Lxk(A, E) are computed using (4.8).
For m = 13, we write the scheme (2.19) for p13(A) = u13(A) + v13(A) in the form

u13(A) = Aw(A), w(A) = A6w1(A) + w2(A), v13(A) = A6z1(A) + z2(A),

w1(A) = b13A
6 + b11A

4 + b9A
2, w2(A) = b7A

6 + b5A
4 + b3A

2 + b1I,
z1(A) = b12A

6 + b10A
4 + b8A

2, z2(A) = b6A
6 + b4x

4 + b2A
2 + b0I.

Differentiating these polynomials yields

Lu13(A, E) = ALw(A,E) + Ew(A),

Lv13(A, E) = A6Lz1(A,E) + M6z1(A) + Lz2(A,E),

where

Lw(A,E) = A6Lw1(A,E) + M6w1(A) + Lw2(A,E),

Lw1(A,E) = b13M6 + b11M4 + b9M2,

Lw2(A,E) = b7M6 + b5M4 + b3M2,

Lz1(A,E) = b12M6 + b10M4 + b8M2,

Lz2(A,E) = b6M6 + b4M4 + b2M2.

Then Lp13 = Lu13 + Lv13 and Lq13 = −Lu13 + Lv13 . We finally solve for rm(A) and
Lrm(A,E) the equations

(−um + vm)(A)rm(A) = (um + vm)(A),

(−um + vm)(A)Lrm(A,E) = (Lum + Lvm)(A,E)

+(Lum − Lvm)(A,E)rm(A). (4.22)

We are now in a position to choose the degree m and the scaling parameter s.
Table 4.2 reports the total number of matrix multiplications, ωm = 3πm+1, necessary
to evaluate rm and Lrm for a range of m, based on [30, Table 2.2] and the observations
above. In evaluating the overall cost we need to take into account the squaring phase.
If ‖A‖ > `m then in order to use the [m/m] Padé approximant we must scale A by
2−s so that ‖2−sA‖ ≤ `m, that is, we need s = dlog2(‖A‖/`m)e. From the recurrence
(4.15), we see that 3s matrix multiplications are added to the cost of evaluating rm

and Lrm . Thus the overall cost in matrix multiplications is

ωm + 3s = 3πm + 1 + 3 max(dlog2 ‖A‖ − log2 `me, 0). (4.23)

To minimize the cost we therefore choose m to minimize the quantity

Cm = πm − log2 `m, (4.24)

where we have dropped the constant terms and factors in (4.23). Table 4.2 reports
the Cm values. The table shows that m = 13 is the optimal choice, just as it is for
the scaling and squaring method for the exponential itself [30]. The ωm values also
show that only m = 1, 2, 3, 5, 7, 9 need be considered if ‖A‖ < `13. As in [30] we rule
out m = 1 and m = 2 on the grounds of possible loss of significant figures in floating
point arithmetic.

82

Table 4.2: Number of matrix multiplications, ωm, required to evaluate rm(A) and
Lrm(A,E), and measure of overall cost Cm in (4.24).

m 1 2 3 4 5 6 7 8 9 10
ωm 1 4 7 10 10 13 13 16 16 19
Cm 25.5 12.5 8.5 6.9 5.3 5.2 4.4 4.7 4.2 4.7

m 11 12 13 14 15 16 17 18 19 20
ωm 19 19 19 22 22 22 22 25 25 25
Cm 4.4 4.0 3.8 4.5 4.3 4.1 3.9 4.7 4.6 4.5

It remains to check that the evaluation of Lpm , Lqm , and Lrm is done accurately in
floating point arithmetic. The latter matrix is evaluated from (4.22), which involves
solving a matrix equation with coefficient matrix qm(A), just as in the evaluation
of rm, and the analysis from [30] guarantees that qm(A) is well conditioned for the
scaled A. It can be shown that for our schemes for evaluating Lpm we have

‖Lpm(A,E)− fl(Lpm(A,E))‖1 ≤ γ̃n2p′m(‖A‖1)‖E‖1 ≈ γ̃n2e‖A‖1/2‖E‖1,

where we have used the facts that pm has positive coefficients and pm(x) ≈ ex/2.
Here, γ̃k = cku/(1 − cku), where c denotes a small integer constant. At least in an
absolute sense, this bound is acceptable for ‖A‖ ≤ `13. An entirely analogous bound
can be obtained for Lqm , since qm(x) = pm(−x).

The following code fragment exploits the evaluation schemes for Padé approxi-
mants and their Fréchet derivatives as described above. We will use it several of our
later algorithms.

Code Fragment 4.6.2 (outputs = XL(m,A, inputs)) This code evaluates the Padé
approximant for the matrix exponential, X := rm(A), or its Fréchet derivative,
L := Lrm(A,E) or both depending on the given inputs. The potential inputs are
{A2k}d

k=1, where d = (m − 1)/2 if m ∈ {3, 5, 7, 9} or d = 3 if m = 13, and the
matrices E, Wm, W (for m = 13), X, and the LU factorization of −U + V , denoted
“ LU fact.”.

1 if m ∈ {3, 5, 7, 9}
2 for k = 0 : (m− 1)/2
3 if A2k /∈ inputs, compute A2k: = A2k, end
4 end

5 if Wm /∈ inputs, Wm =
∑(m−1)/2

k=0 b2k+1A2k, end
6 U = AWm

7 V =
∑(m−1)/2

k=0 b2kA2k

8 if E ∈ inputs
9 Evaluate M2k: = Lx2k(A,E), k = 1 : (m− 1)/2, using (4.8).

10 Lu = A
∑(m−1)/2

k=1 b2k+1M2k + EWm

11 Lv =
∑(m−1)/2

k=1 b2kM2k

12 end
13 else if m = 13

83

14 for k = 1: 3
15 if A2k /∈ inputs, compute A2k: = A2k, end
16 end
17 W1 = b13A6 + b11A4 + b9A2

18 W2 = b7A6 + b5A4 + b3A2 + b1I
19 Z1 = b12A6 + b10A4 + b8A2

20 Z2 = b6A6 + b4A4 + b2A2 + b0I
21 if W /∈ inputs, W = A6W1 + W2, end
22 U = AW
23 V = A6Z1 + Z2

24 if E ∈ inputs
25 M2 = AE + EA, M4 = A2M2 + M2A2, M6 = A4M2 + M4A2

26 Lw1 = b13M6 + b11M4 + b9M2

27 Lw2 = b7M6 + b5M4 + b3M2

28 Lz1 = b12M6 + b10M4 + b8M2

29 Lz2 = b6M6 + b4M4 + b2M2

30 Lw = A6Lw1 + M6W1 + Lw2

31 Lu = ALw + EW
32 Lv = A6Lz1 + M6Z1 + Lz2

33 end
34 end
35 if “LU fact.” /∈ inputs
36 Compute LU factorization of −U + V .
37 end
38 if X /∈ inputs
39 Solve (−U + V)X = U + V for X.
40 if E ∈ inputs
41 Solve (−U + V)L = Lu + Lv + (Lu − Lv)X for L.
42 end

This code presents the central part of the forthcoming algorithms, so it is very
crucial to understand how to exploit it. We illustrate this by the following example.
For evaluating X = XL(7, A, A2), the code only executes lines 1–7 and lines 35–39,
but avoids recompting A2 in line 3 since it is already given. The lines 9–11 and line
41 will not be executed since they require E , which is not given.

The linear systems at lines 39 and 41 have the same coefficient matrix, so an LU
factorization can be computed once and reused.

We now state the complete algorithm that intertwines the computation of the
matrix exponential with its Fréchet derivative.

Algorithm 4.6.3 Given A,E ∈ Cn×n this algorithm computes X = eA and L =
Lexp(A,E) by a scaling and squaring algorithm. It uses the parameters `m listed in
Table 4.1. The algorithm is intended for IEEE double precision arithmetic.

1 for m = [3 5 7 9]
2 if ‖A‖1 ≤ `m

3 [X, L] = XL(m,A, E) % Code Fragment 4.6.2.
4 quit

84

5 end
6 end
7 s = dlog2(‖A‖1/`13)e, the minimal integer such that ‖2−sA‖1 ≤ `13.
8 A ← 2−sA and E ← 2−sE
9 [X,L] = XL(13, A, E) % Code Fragment 4.6.2.

10 for k = 1: s
11 L ← XL + LX
12 X ← X2

13 end

Cost: (ωm + 3s)M + 2D, where m is the degree of Padé approximant used and ωm is
given in Table 4.2.

Since Lexp(A, αE) = αLexp(A,E), an algorithm for computing Lexp(A,E) should
not be influenced in any significant way by ‖E‖, and this is the case for Algo-
rithm 4.6.3. Najfeld and Havel [56] propose computing Lexp(A,E) using their version
of the scaling and squaring method for the exponential in conjunction with (4.1).
With this approach E affects the amount of scaling, and overscaling results when
‖E‖ À ‖A‖, while how to scale E to produce the most accurate result is unclear.

To assess the cost of Algorithm 4.6.3 we compare it with Algorithm 2.3.1 and with
a “Kronecker–Sylvester scaling and squaring algorithm” of Kenney and Laub [44],
which is based on a Kronecker sum representation of the Fréchet derivative. In the
form detailed in [31, Sec. 10.6.2], this latter algorithm scales to obtain ‖2−tA‖ ≤ 1,
evaluates the [8/8] Padé approximant to tanh(x)/x at the scaled Kronecker sum,
and then uses the recurrence (4.15) or the variant (4.14) that explicitly computes
Xi = e2−iA in each step. It requires one matrix exponential, (17 + 3t)M , and the
solution of 8 Sylvester equations if (4.15) is used, or s matrix exponentials, (18+2t)M ,
and the same number of Sylvester equation solutions if (4.14) is used.

To compare the algorithms, assume that the Padé degree m = 13 is used in
Algorithms 2.3.1 and 4.6.3. Then Algorithm 4.6.3 costs (19 + 3s)M + 2D and Al-
gorithm 2.3.1 costs (6 + s)M + D. Two conclusions can be drawn. First, Algo-
rithm 4.6.3 costs about three times as much as just computing eA. Second, since
the cost of solving a Sylvester equation is about 60n3 flops, which is the cost of 30
matrix multiplications, the Kronecker–Sylvester algorithm is an order of magnitude
more expensive than Algorithm 4.6.3. To be more specific, consider the case where
‖A‖ = 9, so that s = 1 in Algorithms 2.3.1 and 4.6.3 and t = 4, and ignore the cost
of computing the matrix exponential in the less expensive “squaring” variant of the
Kronecker–Sylvester algorithm. Then the operation counts in flops are approximately
48n3 for Algorithm 4.6.3 (eA and Lexp(A,E)), 16n3 for Algorithm 2.3.1 (eA only), and
538n3 for the Kronecker–Sylvester algorithm (Lexp(A,E) only). A further drawback
of the Kronecker–Sylvester algorithm is that it requires complex arithmetic, so the
effective flop count is even higher.

Other algorithms for Lexp(A,E) are those of Kenney and Laub [42] and Mathias
[51] (see also [31, Sec. 10.6.1]), which apply quadrature to an integral representa-
tion of the Fréchet derivative. These algorithms are intended only for low accuracy
approximations and do not lend themselves to combination with Algorithm 2.3.1.

We describe a numerical experiment that tests the accuracy of Algorithm 4.6.3.
We took the 155 test matrices we used in Experiment 1 of Section 3.6, which are a

85

combination of all four sets of tests matrices described in Experiment 2.6. We eval-
uated the normwise relative errors of the computed Fréchet derivatives Lexp(A,E),
using a different E, generated as randn(n), for each A. The “exact” Fréchet deriva-
tive is obtained using (4.1) with the exponential evaluated at 100 digit precision via
Symbolic Math Toolbox. Figure 4.1 displays the Frobenius norm relative errors for
Algorithm 4.6.3 and for the Kronecker–Sylvester algorithm in both “squaring” and
“exponential” variants. Also shown is a solid line representing a finite difference ap-
proximation to cond(Lexp, A)u, where cond(Lexp, A) is a condition number defined in
terms of the Jacobian of the map L regarded as a function of A and E (we use (1.6)
with a small, random E); this line indicates the accuracy we would expect from a
forward stable algorithm for computing the Fréchet derivative. Figure 4.1 shows that
all the methods are performing in a reasonably forward stable manner but does not
clearly reveal differences between the methods.

Figure 4.2 plots the same data as a performance profile: for a given α the cor-
responding point on each curve indicates the fraction p of problems on which the
method had error at most a factor α times that of the smallest error over all three
methods. The results show clear superiority of Algorithm 4.6.3 over the Kronecker–
Sylvester algorithm in terms of accuracy, for both variants of the latter algorithm.
Since Algorithm 4.6.3 is also by far the more efficient, as explained above, it is clearly
the preferred method.

0 50 100 150

10
−15

10
−10

10
−5

10
0

Algorithm 4.6.3
Kronecker−Sylvester (exp)
Kronecker−Sylvester (squaring)

Figure 4.1: Normwise relative errors in Fréchet derivatives Lexp(A,E) computed by
Algorithm 4.6.3 and two variants of the Kronecker–Sylvester algorithm for 155 ma-
trices A with a different random E for each A, along with estimate of cond(Lexp, A)u
(solid line).

86

2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

p

Algorithm 4.6.3
Kronecker−Sylvester (exp)
Kronecker−Sylvester (squaring)

Figure 4.2: Same data as in Figure 4.1 presented as a performance profile.

4.7 Condition number estimation

We now turn our attention to estimating the condition number of the matrix expo-
nential, which from Theorem 1.6.4 is

κexp(A) =
‖Lexp(A)‖‖A‖

‖eA‖ .

Algorithm 4.6.3 can compute Lexp(A,E) for any direction E. This is an essential
component to compute or estimate ‖Lexp(A)‖ by Algorithms 1.6.8, 1.6.9, and 1.6.12,
using the fact that L?

exp(A,W) ≡ Lexp(A
∗,W) (see Subsec. 1.6.2).

Our interest is in how to combine Algorithms 4.6.3 and 1.6.12 in the most efficient
manner. We need to evaluate Lexp(A,E) and Lexp(A

∗, E) for a fixed A and several
different E, without knowing all the E at the start of the computation. To do so we
will store matrices accrued during the initial computation of eA and reuse them in
the Fréchet derivative evaluations. This of course assumes the availability of extra
storage, but in modern computing environments ample storage is usually available.

In view of the evaluation schemes (2.18)–(4.21) and (4.22), for m ∈ {3, 5, 7, 9}
we need to store A2k, k = 1: d(m−1)/2, where d = [0 1 2 2], along with Wm(A) =∑(m−1)/2

k=0 b2k+1A
2k, rm(A), and the LU factorization of (−um + vm)(A). For m = 13,

the matrix A needs to be scaled, to B = A/2s. According to the scheme used in
Algorithm 4.6.3 we need to store B2k, k = 1: 3, W ≡ w(B), the LU factorization of
(−um + vm)(B), and rm(B)2i

, i = 0: s− 1. Table 4.3 summarizes the matrices that
need to be stored for each m.

The following algorithm computes the matrix exponential and estimates its con-
dition number. Since the condition number is not needed to high accuracy we use the
parameters θm in Table 4.1 (designed for eA) instead of `m (designed for L(A,E)).
The bound in (4.19) for the Fréchet derivative backward error ‖∆E‖/‖E‖ does not

87

Table 4.3: Matrices that must be computed and stored during the initial eA evalu-
ation, to be reused during the Fréchet derivative evaluations. “LU fact” stands for
LU factorization of −um + vm, and B = A/2s.

m
3 r3(A) LU fact. W3(A)
5 r5(A) A2 LU fact. W5(A)
7 r7(A) A2 A4 LU fact. W7(A)
9 r9(A) A2 A4 LU fact. W9(A)

13 r13(B)2
i

, i = 0: s− 1 B2 B4 B6 LU fact. W

exceed 28u for m ≤ 13 when we use the θm, so the loss in backward stability for
the Fréchet derivative evaluation is negligible. If the condition estimate is omit-
ted, the algorithm reduces to Algorithm 2.3.1. The algorithm exploits the relation
Lf (A

∗, E) = Lf (A,E∗)∗, which holds for any f with a power series expansion with
real coefficients, by (4.6).

Algorithm 4.7.1 Given A ∈ Cn×n this algorithm computes X = eA by the scaling
and squaring method (Algorithm 2.3.1) and an estimate γ ≈ κexp(A) using the block
1-norm estimator (Algorithm 1.6.12). It uses the values θm listed in Table 4.1. The
algorithm is intended for IEEE double precision arithmetic.

1 α = ‖A‖1

2 for m = [3 5 7 9]
3 if α ≤ θm

4 [X, {A2k}(m−1)/2
k=1 ,Wm, “LU fact.”] = XL(m,A) % Code Fragment 4.6.2.

% The output matrices need to be stored (see Table 4.3).
5 Use Algorithm 1.6.12 to produce an estimate η ≈ ‖Lexp(A)‖1.

. To compute L = Lexp(A,E) for a given E:

6 L = XL(m,A, E, X, {A2k}(m−1)/2
k=1 , Wm, “LU fact.”)

7 To compute L = L?
exp(A,E) for a given E:

8 L = XL(m,A, E∗, X, {A2k}(m−1)/2
k=1 ,Wm, “LU fact.”)

9 L = L∗

10 goto line 27
11 end
12 % Use degree m = 13.
13 s = dlog2(α/θ13)e, the minimal integer such that 2−sα ≤ θ13.
14 A ← 2−sA
15 [Xs, {A2k}3

k=1,W, “LU fact.”] = XL(13, A)
16 for i = s:−1: 1
17 Xi−1 = X2

i

18 end
% {Xi}s

i=1 and the output matrices need to be stored (see Table 4.3).
19 X = X0

20 Use Algorithm 1.6.12 to produce an estimate η ≈ ‖Lexp(Ã)‖1,

where Ã denotes the original input matrix A.

88

0 20 40 60 80 100 120 140
10

−2

10
4

10
10

10
16

10
24

||K(A)||
1

0 20 40 60 80 100 120 140

0.6

0.7

0.8

0.9

1

Underestimation ratio

Figure 4.3: ‖K(A)‖1 and underestimation ratio η/‖K(A)‖1, where η is the estimate
of ‖K(A)‖1 produced by Algorithm 4.7.1.

. To compute Lexp(Ã, E) for a given E:
21 E ← 2−sE
22 L = XL(13, A, E, Xs, {A2k}3

k=1,W, “LU fact.”)
23 for i = s:−1: 1
24 L ← XiL + LXi

25 end

. To compute L?
exp(Ã, E) for a given E:

26 Execute lines 21–25 with E replaced by its conjugate
transpose and take the conjugate transpose of the result.

27 γ = ηα/‖X‖1

The cost of Algorithm 4.7.1 is the cost of computing eA plus the cost of about 8
Fréchet derivative evaluations, so obtaining eA and the condition estimate multiplies
the cost of obtaining just eA by a factor of about 17. This factor can be reduced to
9 if the parameter t in the block 1-norm power method is reduced to 1, at a cost of
slightly reduced reliability.

In our MATLAB implementation of Algorithm 4.7.1 we invoke the function funm_

condest1 from the Matrix Function Toolbox [26], which interfaces to the MATLAB
function normest1 that implements the block 1-norm estimation algorithm (Algo-
rithm 1.6.12).

With the same matrices as in the test of the previous section we used Algo-
rithm 4.7.1 to estimate ‖K(A)‖1 and also computed ‖K(A)‖1 exactly by forming
K(A) using Algorithm 1.6.8. Figure 4.3 plots the norms and the estimates. The
worst underestimation ratio is 0.61, so the estimates are all within a factor 2 of the
true 1-norm.

Finally, we invoked Algorithm 4.7.1 on the same set of test matrices and computed
the “exact” exponential in 100 digit precision. Figure 4.4 plots the error in the

89

0 50 100 150
10

−20

10
−15

10
−10

10
−5

10
0

error
error estimate

Figure 4.4: Normwise relative error for computed exponential and error estimate
comprising condition number estimate times unit roundoff.

computed exponential along with the quantity γu: the condition estimate multiplied
by the unit roundoff, regarded as an error estimate. If the scaling and squaring
algorithm were forward stable and the condition estimate reliable we would expect
the error to be bounded by φ(n)γu for some low degree polynomial φ. The overall
numerical stability of the scaling and squaring algorithm is not understood [31],
but our experience is that the method usually does behave in a forward stable way.
Figure 4.4 indicates that the condition estimate from Algorithm 4.7.1 provides a
useful guide to the accuracy of the computed exponential from the algorithm.

4.8 Scaling and squaring algorithm for the expo-

nential and its Fréchet derivative (II)

In this section we extend Algorithm 2.6.1 to an algorithm for simultaneously com-
puting eA and Lexp(A,E). Then we adapt it to an algorithm for computing eA and
estimating its condition number. The algorithms inherit the improved scaling strat-
egy of Algorithm 2.6.1 and its ability to exploit triangularity.

We have established at the beginning of this chapter the notion that if a numerical
algorithm is available for a matrix function, then it can be “Fréchet differentiated”
to yield an algorithm for intertwining the computation of the matrix function itself
and its Fréchet derivative. This was done to produce Algorithm 4.6.3, where we
differentiated the evaluation schemes underling Algorithm 2.3.1.

We will evaluate eA and Lexp(A, E) using the recurrence (4.15) for A and E
with s being the scaling parameter determined by Algorithm 2.6.1. Our numerical
experiment below shows that the algorithm behaves in a highly stable manner.

We begin by adapting Code Fragment 2.2.1 as follows

90

Code Fragment 4.8.1

1 Form X = rm(2−sT) and L = Lrm(2−sT, 2−sE).
2 Replace diag(X) by exp(2−sdiag(T)).
3 for i = s− 1:−1: 0
4 L ← XL + LX
5 X ← X2

6 Replace diag(X) by exp(2−idiag(T)).
7 Replace (first) superdiagonal of X by explicit formula

for superdiagonal of exp(2−iT) from [31, eq. (10.42)].
8 end

We write the algorithm using the functions normest and ell as defined in Algo-
rithm 2.5.1.

Algorithm 4.8.2 Given A,E ∈ Cn×n this algorithm computes X = eA and L =
Lexp(A,E) by a scaling and squaring algorithm. It uses the functions and the pa-
rameters of Algorithm 2.6.1. The algorithm is intended for IEEE double precision
arithmetic.

1 A2 = A2

2 d6 = normest(A2, 3)1/6, η1 = max
(
normest(A2, 2)1/4, d6

)
3 if η1 ≤ θ3 and ell(A, 3) = 0
4 [X, L] = XL(3, A, A2, E) % Code Fragment 4.6.2.
5 quit
6 end

7 A4 = A2
2, d4 = ‖A4‖1/4

1

8 η2 = max
(
d4, d6

)
9 if η2 ≤ θ5 and ell(A, 5) = 0

10 [X, L] = XL(5, A, A2, A4, E)
11 quit
12 end

13 A6 = A2A4, d6 = ‖A6‖1/6
1

14 d8 = normest(A4, 2)1/8, η3 = max(d6, d8)
15 for m = [7, 9]
16 if η3 ≤ θm and ell(A,m) = 0
17 [X, L] = XL(m,A, A2, A4, A6, E)
18 quit
19 end
20 end
21 η4 = max

(
d8, normest(A4, A6)

1/10
)

22 η5 = min(η3, η4)
23 s = max

(dlog2(η5/θ13)e, 0
)

24 s = s + ell(2−sA, 13)
25 A ← 2−sA, A2 ← 2−2sA2, A4 ← 2−4sA4, A6 ← 2−6sA6

26 E ← 2−sE
27 [X,L] = XL(13, A, A2, A4, A6, E)
28 if A is triangular

91

0 50 100 150

10
−15

10
−10

10
−5

10
0

Algorithm 4.8.2
Algorithm 4.6.3

Figure 4.5: Normwise relative errors in Fréchet derivatives Lexp(A,E) computed by
Algorithm 4.6.3 and Algorithm 4.8.2 for 155 matrices A with a different random E
for each A, along with estimate of cond(Lexp, A)u (solid line).

29 Invoke Code Fragment 4.8.1.
30 else
31 for k = 1: s
32 L ← XL + LX
33 X ← X2

34 end
35 end

We now assess this algorithm. Since Algorithm 4.6.3 shows superiority over the
Kronecker–Sylvester algorithm in both “squaring” and “exponential” variants, it suf-
fices to test Algorithm 4.8.2 versus Algorithm 4.6.3. We exactly use the same test
matrices used for the experiment shown in Figure 4.1. We plot the test in Figure 4.5,
and then present the same data as a performance profile in Figure 4.6. Obviously, Al-
gorithm 4.8.2 demonstrates superiority over Algorithm 4.6.3. It really reflects the ad-
vantage of the scaling strategy and exploitation of triangularity that Algorithm 2.6.1
uses.

Similar to Algorithm 4.7.1, the following algorithm computes the matrix exponen-
tial and estimates its condition number. It is an adapted version of Algorithm 4.8.2
and stores the matrices shown in Table 4.3.

Algorithm 4.8.3 Given A ∈ Cn×n this algorithm computes X = eA by the scaling
and squaring method (Algorithm 2.6.1) and an estimate γ ≈ κexp(A) using the block
1-norm estimator (Algorithm 1.6.12). It uses the functions and the parameters of
Algorithm 2.6.1. The algorithm is intended for IEEE double precision arithmetic.

1 α = ‖A‖1

2 A2 = A2

92

2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

p

Algorithm 4.8.2
Algorithm 4.6.3

Figure 4.6: Same data as in Figure 4.5 presented as a performance profile.

3 d6 = normest(A2, 3)1/6, η1 = max
(
normest(A2, 2)1/4, d6

)
4 if η1 ≤ θ3 and ell(A, 3) = 0
5 [X, W3, “LU fact.”] = XL(3, A, A2) % Code Fragment 4.6.2.
6 Use Algorithm 1.6.12 to produce an estimate η ≈ ‖Lexp(A)‖1.

. To compute L = Lexp(A,E) for a given E:
7 L = XL(3, A, E, X, A2,W3, “LU fact.”)
8 To compute L = L?

exp(A,E) for a given E:
9 L = XL(3, A, E∗, X,A2, W3, “LU fact.”)

10 L = L∗

11 goto line 58
12 end

13 A4 = A2
2, d4 = ‖A4‖1/4

1

14 η2 = max
(
d4, d6

)
15 if η2 ≤ θ5 and ell(A, 5) = 0
16 [X, W5, “LU fact.”] = XL(5, A, A2, A4)
17 Use Algorithm 1.6.12 to produce an estimate η ≈ ‖Lexp(A)‖1.

. To compute L = Lexp(A,E) for a given E:
18 L = XL(5, A, E, X, A2, A4,W5, “LU fact.”)
19 To compute L = L?

exp(A,E) for a given E:
20 L = XL(5, A, E∗, X,A2, A4,W5, “LU fact.”)
21 L = L∗

22 goto line 58
23 end

24 A6 = A2A4, d6 = ‖A6‖1/6
1

25 d8 = normest(A4, 2)1/8, η3 = max(d6, d8)
26 for m = [7, 9]
27 if η3 ≤ θm and ell(A,m) = 0

93

28 [X, {A2k}(m−1)/2
k=4 ,Wm, “LU fact.”] = XL(m,A, {A2k}3

k=1)
% The output matrices need to be stored (see Table 4.3).

29 Use Algorithm 1.6.12 to produce an estimate η ≈ ‖Lexp(A)‖1.
. To compute L = Lexp(A,E) for a given E:

30 L = XL(m,A, E, X, {A2k}(m−1)/2
k=1 , Wm, “LU fact.”)

31 To compute L = L?
exp(A,E) for a given E:

32 L = XL(m,A, E∗, X, {A2k}(m−1)/2
k=1 ,Wm, “LU fact.”)

33 L = L∗

34 goto line 58
35 end
36 % Use degree m = 13.
37 η4 = max

(
d8, normest(A4, A6)

1/10
)

38 η5 = min(η3, η4)
39 s = max

(dlog2(η5/θ13)e, 0
)

40 s = s + ell(2−sA, 13)
41 A ← 2−sA, A2 ← 2−2sA2, A4 ← 2−4sA4, A6 ← 2−6sA6

42 [Xs,W, “LU fact.”] = XL(13, A, {A2k}3
k=1)

43 if A is triangular
44 Invoke Code Fragment 2.2.1 and return {Xi}s

i=1

45 else
46 for i = s:−1: 1
47 Xi−1 = X2

i

48 end
49 end

% {Xi}s
i=1 and the output matrices need to be stored (see Table 4.3).

50 X = X0

51 Use Algorithm 1.6.12 to produce an estimate η ≈ ‖Lexp(Ã)‖1,

where Ã denotes the original input matrix A.

. To compute Lexp(Ã, E) for a given E:
52 E ← 2−sE
53 L = XL(13, A, E, Xs, {A2k}3

k=1,W, “LU fact.”)
54 for i = s:−1: 1
55 L ← XiL + LXi

56 end

. To compute L?
exp(Ã, E) for a given E:

57 Execute lines 52–56 with E replaced by its conjugate
transpose and take the conjugate transpose of the result.

58 γ = ηα/‖X‖1

With the same test matrices used in Figure 4.3, we invoked Algorithm 4.8.3 to
estimate ‖K(A)‖1 and also computed ‖K(A)‖1 exactly by forming K(A) using Al-
gorithm 1.6.8, where Lexp(A,E) therein is computed by Algorithm 4.8.2. Figure 4.7
plots the norms and the estimates. The worst underestimation ratio is 0.61, which is
same as the underestimation ratio produced by Algorithm 4.7.1. However, we observe
by comparing the plots in the bottom of Figure 4.7 and Figure 4.3 that the number of
matrices for which whose ‖K(A)‖1 is underestimated by Algorithm 4.8.3 is less than
the number of matrices for which ‖K(A)‖1 is underestimated by Algorithm 4.7.1.

94

0 20 40 60 80 100 120 140
10

−2

10
4

10
10

10
16

10
24

||K(A)||
1

0 20 40 60 80 100 120 140

0.6

0.7

0.8

0.9

1

Underestimation ratio

Figure 4.7: ‖K(A)‖1 and underestimation ratio η/‖K(A)‖1, where η is the estimate
of ‖K(A)‖1 produced by Algorithm 4.8.3.

Finally, for full comparison we use Algorithm 4.8.3 to reproduce the test shown in
Figure 4.4, which was produced by Algorithm 4.7.1. Figure 4.8 displays the results.

Our conclusion is that Algorithm 4.8.3 behaves in a stable manner and reliably
estimates the condition number. Moreover, it is more stable than Algorithm 4.7.1.

95

0 50 100 150
10

−20

10
−15

10
−10

10
−5

10
0

error
error estimate

Figure 4.8: Normwise relative error for computed exponential and error estimate
comprising condition number estimate times unit roundoff.

96

Chapter 5

The Complex Step Approximation
to the Fréchet Derivative of a
Matrix Function

5.1 Introduction

Given a Fréchet differentiable matrix function f : Cn×n → Cn×n (see Section 1.6),
its Fréchet derivative determines the sensitivity of f to small perturbations in the
input matrix. When calculating f(A), it is desirable to be able to efficiently estimate
cond(f, A), and from 1.6.4 and (1.8) we see that this will in general required the
evaluation of Lf (A,Z) for certain Z. Thus it is important to be able to compute
or estimate the Fréchet derivative reliably and efficiently. A natural approach is to
approximate the Fréchet derivative by the finite difference

Lf (A,E) ≈ f(A + hE)− f(A)

h
, (5.1)

for a suitably chosen h. This approach has the drawback that h needs to be selected
to balance truncation errors with errors due to subtractive cancellation in floating
point arithmetic, and as a result the smallest relative error that can be obtained is
of order u1/2, where u is the unit roundoff [31, Sec. 3.4].

In this work we pursue a completely different approach. Like (5.1), it requires one
additional function evaluation, but now at a complex argument:

Lf (A,E) ≈ Im
f(A + ihE)

h
, (5.2)

where i =
√−1. This complex step (CS) approximation is known in the scalar

case but has not, to our knowledge, been applied previously to matrix functions.
The approximation requires A and E to be real and f to be real-valued at real
arguments. The advantage of (5.2) over (5.1) is that in principle (5.2) allows h to
be chosen as small as necessary to obtain an accurate approximation to Lf (A,E),
without cancellation errors contaminating the result in floating point arithmetic. It
also provides an approximation to f(A) from this single function evaluation. Unlike
(5.1), however, it requires the use of complex arithmetic.

97

In Section 5.2 we review the complex step approximation for scalars. We extend
the approximation to the matrix case in Section 5.3 and show that it is second order
accurate for analytic functions f . The computational cost is considered in Section 5.4.
In Section 5.5 we show that the CS approximation is also second order accurate
for the matrix sign function, which is not analytic. In Section 5.6 we show that
good accuracy can be expected in floating point arithmetic for sufficiently small h,
but that if the method for evaluating f uses complex arithmetic then catastrophic
cancellation is likely to vitiate the approximation. Finally, numerical experiments are
given in Section 5.7 to illustrate the advantages of the CS approximation over finite
differences, the role of the underlying method for evaluating f , and the application
of the approximation to condition number estimation.

5.2 Complex step approximation: scalar case

For an analytic function f : R→ R, the use of complex arithmetic for the numerical
approximation of derivatives of f was introduced by Lyness [48] and Lyness and
Moler [49]. The earliest appearance of the CS approximation itself appears to be in
Squire and Trapp [66]. Later uses of the formula appear in Kelley [41, Sec. 2.5.2]
and Cox and Harris [12], while Martins, Sturdza, and Alonso [39] and Shampine [62]
investigate the implementation of the approximation in high level languages.

The scalar approximation can be derived from the Taylor series expansion, with
x0, h ∈ R,

f(x0 + ih) =
∞∑

k=0

(ih)k f (k)(x0)

k!
= f(x0) + ihf ′(x0)− h2f ′′(x0)

2!
+ O(h3). (5.3)

Equating real and imaginary parts yields

f(x0) = Re f(x0 + ih) + O(h2), f ′(x0) = Im
f(x0 + ih)

h
+ O(h2). (5.4)

Unlike in the finite difference approximation (5.1), subtractive cancellation is not
intrinsic in the expression Im f(x0+ih)/h, and this approximation therefore offers the
promise of allowing h to be selected based solely on the need to make the truncation
error sufficiently small. Practical experience reported in the papers cited above has
indeed demonstrated the ability of (5.4) to produce accurate approximations, even
with h as small as 10−100, which is the value used in software at the National Physical
Laboratory according to [12].

In the next section we generalize the complex step approximation to real-valued
matrix functions over Rn×n.

5.3 Complex step approximation: matrix case

Assume that the Fréchet derivative Lf (A,E) is defined, a sufficient condition for
which is that f is 2n − 1 times continuously differentiable on an open subset of R
or C containing the spectrum of A by Theorem 1.6.3. Replacing E by ihE in (1.7),
where E is independent of h, and using the linearity of Lf , we obtain

f(A + ihE)− f(A)− ihLf (A,E) = o(h).

98

Thus if f : Rn×n → Rn×n and A,E ∈ Rn×n then

lim
h→0

Im
f(A + ihE)

h
= Lf (A,E),

which justifies the CS approximation (5.2). However, this analysis does not reveal
the rate of convergence of the approximation as h → 0. To determine the rate we
need a more careful analysis with stronger assumptions on f .

Denote by L
[j]
f (A,E) the jth Fréchet derivative of f at A in the direction E, given

by

L
[j]
f (A,E) =

dj

dtj
f(A + tE)

∣∣∣
t=0

,

with L
[0]
f (A,E) = f(A) and L

[1]
f ≡ Lf . The next result provides a Taylor expansion

of f in terms of the Fréchet derivatives.

Theorem 5.3.1 Let f : C→ C have the power series expansion f(x) =
∑∞

k=0 akxk

with radius of convergence r. Let A,E ∈ Cn×n such that ρ(A+µE) < r, where µ ∈ C.
Then

f(A + µE) =
∞∑

k=0

µk

k!
L

[k]
f (A,E),

where

L
[k]
f (A,E) =

∞∑

j=k

ajL
[k]

xj (A,E).

The Fréchet derivatives of the monomials satisfy the recurrence

L
[k]

xj (A,E) = AL
[k]

xj−1(A,E) + kEL
[k−1]

xj−1 (A,E). (5.5)

Proof. Najfeld and Havel [56, pp. 349–350] show that

(A + µE)j =

j∑

k=0

µk

k!
L

[k]

xj (A,E)

and that the L
[k]

xj satisfy the recurrence (5.5). By the assumption on the spectral
radius, we have

f(A + µE) =
∞∑

j=0

aj (A + µE)j

=
∞∑

j=0

aj

(
j∑

k=0

µk

k!
L

[k]

xj (A, E)

)

=
∞∑

k=0

µk

k!

∞∑

j=k

ajL
[k]

xj (A,E).

By the sum rule for Fréchet derivatives [31, Thm. 3.2], the inner summation in the

last expression is L
[k]
f (A,E).

99

Replacing µ in Theorem 5.3.1 by ih, where h ∈ R, we obtain

f(A + ihE) =
∞∑

k=0

(−1)k

(2k)!
h2kL

[2k]
f (A,E) + i

∞∑

k=0

(−1)k

(2k + 1)!
h2k+1L

[2k+1]
f (A,E).

To be able to extract the desired terms from this expansion we need f : Rn×n → Rn×n

and A,E ∈ Rn×n. Then

f(A) = Re f(A + ihE) + O(h2), (5.6a)

Lf (A,E) = Im
f(A + ihE)

h
+ O(h2). (5.6b)

Theorem 5.3.1 can be used to develop approximations to higher Fréchet derivatives
(cf. [47]), but we will not pursue this here.

The analyticity of f is sufficient to ensure a second order approximation, but it
is not necessary. In Section 5.5 we consider the matrix sign function, which is not
analytic, and show that the CS approximation error is nevertheless O(h2).

5.4 Cost analysis

The CS approximation has the major attraction that it is trivial to implement, as
long as code is available for evaluating f at a complex argument. We now look at the
computational cost, assuming that the cost of evaluating f(A) is O(n3) flops, where
a flop is a real scalar addition or multiplication.

First we note that the cost of multiplying two n × n real matrices is 2n3 flops.
To multiply two n × n complex matrices requires 8n3 flops if complex scalar multi-
plications are done in the obvious way. However, by using a formula for multiplying
two complex scalars in 3 real multiplications the cost can be reduced to 6n3 flops at
the cost of weaker rounding error bounds [28], [29, Chap. 23]. For an algorithm for
computing f(A) whose cost is dominated by level 3 BLAS operations it follows [27],
[7] that the cost of computing the CS approximation to Lf (A,E) is 3–4 times that of
the cost of computing f(A) alone, though of course the CS approximation does yield
approximations to both f(A) and Lf (A,E).

Next, we compare with another way of computing the Fréchet derivative, which
is from Theorem 4.2.1

f

([
A E
0 A

])
=

[
f(A) Lf (A,E)

0 f(A)

]
. (5.7)

This formula requires the evaluation of f in real arithmetic at a 2n×2n matrix, which
in principle is 8 times the cost of evaluating f(A). However, it will usually be possible
to reduce the cost by exploiting the block triangular, block Toeplitz structure of the
argument. Hence this approach may be of similar cost to the CS approximation.
In Section 4.6 we note a drawback of (5.7) connected with the scaling of E. Since
Lf (A, αE) = αLf (A,E) the norm of E can be chosen at will, but the choice may
affect the accuracy of a particular algorithm based on (5.7) and it is difficult to know
what is the optimal choice.

100

Another comparison can be made under the assumption that f is a polynomial,
which is relevant since a number of algorithms for evaluating f(A) make use of poly-
nomials or rational approximations. Let πm be the number of matrix multiplications
required to evaluate f(A) by a particular scheme. Theorem 4.4.1 shows that for a
wide class of schemes the extra cost of computing Lf (A,E) via the scheme obtained
by differentiating the given scheme for f(A) is at most 2πm if terms formed during the
evaluation of f(A) are re-used. The CS approximation is therefore likely to be more
costly, but it requires no extra coding effort and is not restricted to polynomials.

5.5 Sign function

The matrix sign function is an example of a function that is not analytic, so the
analysis in Section 5.3 showing a second order error for the CS approximation is not
applicable. We prove in this section that the CS approximation nevertheless has an
error of second order in h for the sign function.

For A ∈ Cn×n with no eigenvalues on the imaginary axis, sign(A) is the limit of
the Newton iteration

Xk+1 =
1

2

(
Xk + X−1

k

)
, X0 = A. (5.8)

Moreover, the iterates Ek defined by

Ek+1 =
1

2

(
Ek −X−1

k EkX
−1
k

)
, E0 = E (5.9)

converge to Lsign(A,E). Both iterations converge quadratically; see [31, Thms. 5.6,
5.7]. The next theorem uses these iterations to determine the order of the error of
the CS approximation.

Theorem 5.5.1 Let A,E ∈ Rn×n and let A have no eigenvalues on the imaginary
axis. In the iteration

Zk+1 =
1

2

(
Zk + Z−1

k

)
, Z0 = A + ihE, h ∈ R (5.10)

the Zk are nonsingular for all h sufficiently small and

Re sign(A + ihE) = lim
k→∞

Re Zk = sign(A) + O(h2),

Im sign(A + ihE) = lim
k→∞

Im
Zk

h
= Lsign(A,E) + O(h2).

Proof. Write Zk = Mk + iNk ≡ Re Zk + i Im Zk. It suffices to show that

Mk = Xk + O(h2), Nk = hEk + O(h3), (5.11)

where Xk and Ek satisfy (5.8) and (5.9), which we prove by induction. First, set
k = 1 and assume that ρ(EA−1) < 1/h, which is true for sufficiently small h. Then
we have the expansion

(A + ihE)−1 = A−1

∞∑
j=0

(−ih)j(EA−1)j.

101

Therefore the first iteration of (5.10) gives

M1 =
1

2

(
A + A−1

)
+ O(h2), N1 =

h

2

(
E − A−1EA−1

)
+ O(h3),

so that (5.11) holds for k = 1. Suppose that (5.11) holds for k. Then we can write
Mk = Xk + h2Rk, for some matrix Rk ∈ Rn×n. Assuming ρ(RkX

−1
k) < 1/h2, which

again is true for sufficiently small h, we have

M−1
k = X−1

k

∞∑
j=0

h2j(−RkX
−1
k)j = X−1

k + O(h2). (5.12)

Now assume ρ(NkM
−1
k) < 1, which is true for sufficiently small h since Nk = O(h).

Then, using (5.12) and (Mk + iNk)
−1 = M−1

k

∑∞
j=0(−i)j(NkM

−1
k)j, we have

Mk+1 =
1

2

(
Mk + M−1

k + M−1
k

∞∑
j=1

(−1)j(NkM
−1
k)2j

)

=
1

2

(
Xk + X−1

k

)
+ O(h2),

Nk+1 =
1

2

(
Nk −M−1

k NkM
−1
k + M−1

k

∞∑
j=1

(−1)j+1(NkM
−1
k)2j+1

)

=
h

2

(
Ek −X−1

k EkX
−1
k

)
+ O(h3),

which completes the induction.

Note that another approach to proving Theorem 5.5.1 would be to use existing
perturbation theory for the matrix sign function, such as that of Sun [67]. However,
the perturbation expansions in [67] make use of the Schur and Jordan forms and do
not readily permit the real and imaginary parts to be extracted.

The cost of evaluating the Ek in (5.9) is twice the cost of evaluating the Xk

(assuming an LU factorization of Xk is computed for (5.8) and re-used). The CS
approximation provides an approximation to Lsign(A,E) by iterating (5.8) with a
complex starting matrix, so the cost is 3–4 times that for computing sign(A) alone.
Given the ease of implementing (5.9) one would probably not use the CS approxima-
tion with the Newton iteration. However, with other methods for evaluating sign(A),
of which there are many [31, Chap. 5], the economics may be different.

5.6 Accuracy

What accuracy can we expect from the CS approximation in floating point arithmetic?
Equivalently, how accurately is the imaginary part of f(A + ihE) computed when h
is small, bearing in mind that the imaginary part is expected to be of order h, and
hence much smaller than the real part? In order to obtain an accurate result it is
necessary that the information contained in hE is accurately transmitted through to
the imaginary part of f(A + ihE), and this is most likely when the imaginary part
does not undergo large growth and then reduction (due to subtractive cancellation)
during the computation.

102

It is straightforward to show that the sum and product of two complex matrices
with tiny imaginary part has tiny imaginary part and that the inverse of a matrix
with tiny imaginary part has tiny imaginary part. It follows when a polynomial or
rational function with real coefficients is evaluated at a matrix with tiny imaginary
part the result has tiny imaginary part. Hence when we evaluate f(A+ihE) using an
algorithm for f based on polynomial or rational approximations with real coefficients
there is no a priori reason to expect damaging cancellation within the imaginary part.
In particular, there is no a priori lower bound on the accuracy that can be expected,
unlike for the finite difference approximation (5.1), for which such a lower bound is
of order u1/2.

However, numerical instability is possible if the algorithm for f(A) itself employs
complex arithmetic, as we now show. Suppose we compute C = cos(A) by the simple
algorithm [31, Alg 12.7]

X = eiA, (5.13a)

C = (X + X−1)/2. (5.13b)

The CS approximation gives

Lcos(A, E) ≈ Im
cos(A + ihE)

h
= Im

eiA−hE + e−iA+hE

2h
. (5.14)

Making the simplifying assumption that A and E commute, in which case Lcos(A,E) =
−E sin(A) [31, Sec. 12.2], we have

eiA−hE + e−iA+hE = eiAe−hE + e−iAehE

= cos(A)(e−hE + ehE) + i sin(A)(e−hE − ehE),

and the CS approximation reduces to

Lcos(A,E) ≈ sin(A)(e−hE − ehE)

2h
.

Thus −E is being approximated by (e−hE − ehE)/(2h), and the latter expression
suffers massive subtractive cancellation for small h. We illustrate in Figure 5.1 with
A and E both the scalar 1. These computations, and those in the next section, were
performed in MATLAB 7.10 (R2010a), with unit roundoff u = 2−53 ≈ 1.1 × 10−16.
Note that the CS approximation deteriorates once h decreases below 10−5, yielding
maximum accuracy of about 10−10. This weakness of the CS approximation for scalar
problems is noted by Martins, Sturdza, and Alonso [50].

The unwanted resonance between complex arithmetic in the underlying algorithm
and the pure imaginary perturbation used by the CS approximation affects any algo-
rithm based on the Schur form, such as those in [13], [22], [46]. Since B := A+ ihE is
nonreal, the complex Schur form B = QTQ∗, with Q unitary and T upper triangular,
must be used. In general, Q will have real and imaginary parts of similar norm (since
A may have some nonreal eigenvalues), and likewise for T . The O(h) imaginary part
of f(B) = Qf(T)Q∗ is therefore the result of massive cancellation, which signals a
serious loss of accuracy of the CS approximation in floating point arithmetic. The
first experiment in the next section illustrates this phenomenon.

103

10
−15

10
−10

10
−5

10
0

10
−15

10
−10

10
−5

10
0

Figure 5.1: Relative errors for approximating Lcos(A, E) for scalars A = E = 1 using
the CS approximation with (5.14) and h = 10−k, k = 0: 15.

5.7 Numerical experiments

We now give some experiments to illustrate the CS approximation and its advantage
over the finite difference approximation (5.1).

For our first experiment we take A = gallery(’triw’,10), the unit upper tri-
angular matrix with every superdiagonal element equal to −1, and a random matrix
E = randn(10). The function is f(A) = eA, which we compute both by the MAT-
LAB function expm, which implements the scaling and squaring method [30], and by
the MATLAB function funm, which handles general matrix functions via the Schur–
Parlett method [13] and treats the diagonal Schur form blocks specially in the case
of the exponential.

For h ranging from 10−3 to 10−20, Figure 5.2 plots the normwise relative er-
ror ‖Lexp(A,E) − L̂‖1/‖Lexp(A,E)‖1, where L̂ represents the approximate Fréchet
derivative from the finite-difference approximation (5.1) or the CS approximation
(5.2). The “exact” Lexp(A,E) is obtained via the relation (5.7) evaluated at 100 digit
precision using Symbolic Math Toolbox.

In this example the CS approximation has full accuracy when using expm with
h ≤ 10−8, reflecting its O(h2) error (see (5.6b)). By contrast, the finite difference
approximation returns its best result at around h = 10−8 with error of O(h), and then
diverges as h decreases, just as the theory on the choice of h suggests [31, Sec. 3.4].
Equipping the CS approximation with funm leads to poor results, due to the complex
arithmetic inherent in the Schur form (see Section 5.6), though the results are superior
to those obtained with finite differences. Note that the fact that A has real eigenvalues
does not help: as a result of A being highly nonnormal (indeed defective, with a single
Jordan block), the perturbed matrix B = A + ihE has eigenvalues with imaginary
parts of order 10−2 for all the chosen h!

Interestingly, the error for the CS approximation with expm remains roughly con-
stant at around 10−16 for h decreasing all the way down to 10−292, at which point
it starts to increase, reaching an error of 10−1 by the time h underflows to zero at
around 10−324.

The performance of the CS approximation is of course method-dependent. Fig-
ure 5.3 repeats the previous experiment except that we set a15 = 106 and compare
expm with expm new, the latter function using Algorithm 2.6.1 designed to avoid over-
scaling. The large off-diagonal element of A causes expm to overscale in its scaling
phase, that is, to reduce ‖A‖ much further than necessary in order to achieve an

104

10
−20

10
−16

10
−12

10
−8

10
−4

10
−16

10
−12

10
−8

10
−4

10
0

10
4

h

R
el

at
iv

e
er

ro
r

FD: funm
CS: funm
FD: expm
CS: expm

Figure 5.2: Relative errors for approximating Lexp(A,E) using the CS approximation
and the finite difference (FD) approximation (5.1), for h = 10−k, k = 3: 20.

accurate result: the relative error of the computed exponentials is of order 10−11 for
expm and 10−16 for expm new. We see from Figure 5.3 that there is a corresponding
difference in the accuracy of the Fréchet derivative approximations. But the superi-
ority of the CS approximation over the finite difference approximation is evident for
both expm and expm new.

Our next experiment involves a different function: the principal matrix square
root, A1/2. The Fréchet derivative Lsqrt(A,E) is the solution L of LX + XL = E,
where X = A1/2 [31, Sec. 6.1]. The product form of the Denman–Beavers iteration,

Mk+1 =
1

2

(
I +

Mk + M−1
k

2

)
, M0 = A, (5.15)

Xk+1 =
1

2
Xk(I + M−1

k), X0 = A, (5.16)

is a variant of the Newton iteration, and Mk → I and Xk → A1/2 quadratically as
k →∞ [31, Sec. 6.3]. With A the 8× 8 Frank matrix (gallery(’frank’,8)), which
has positive real eigenvalues, and E = randn(8), we apply the CS approximation
using this iteration as the means for evaluating (A + ihE)1/2. Figure 5.4 shows the
results, along with the errors from finite differencing. Again we see second order
convergence of the CS approximations, which follows from the analyticity of the
square root. Note, however, that the minimal relative error of order 104u. Since
‖Lsqrt(A, E)‖1 ≈ 9×103 this is consistent with the maxim that the condition number
of the condition number is the condition number [16].

Our final experiment illustrates the use of the CS approximation in condition
estimation. As (1.6) shows, to estimate cond(f, A) we need to estimate ‖Lf (A)‖,
and this can be done by applying a matrix norm estimator to the Kronecker matrix
form Kf (A) ∈ Cn2×n2

of Lf (A), defined by vec(Lf (A,E)) = Kf (A) vec(E), where

105

10
−25

10
−20

10
−15

10
−10

10
−15

10
−10

10
−5

10
0

h

R
el

at
iv

e
er

ro
r

FD: expm
FD: expm_new
CS: expm
CS: expm_new

Figure 5.3: Relative errors for approximating Lexp(A,E) using the CS approximation
and the finite difference (FD) approximation (5.1), for h = 10−k/‖A‖1, k = 2: 21.

10
−15

10
−13

10
−11

10
−9

10
−7

10
−5

10
−3

10
−1

10
−15

10
−12

10
−9

10
−6

10
−3

10
0

h

R
el

at
iv

e
er

ro
r

FD
CS

Figure 5.4: Relative errors for approximating Lsqrt(A,E) using the CS approximation
and the finite difference (FD) approximation (5.1) with the product form of the
Denman–Beavers iteration, for h = 10−k/‖A‖1, k = 1: 15.

106

5 10 15 20 25
10

−1

10
0

10
1

CS (min = 9.1e−001, max = 3.8e+006)

5 10 15 20 25
10

−1

10
0

10
1

FD (min = 3.6e−010, max = 1.0e+010)

5 10 15 20 25
10

−1

10
0

10
1

Scaling and squaring (min = 9.1e−001, max = 1.1e+000)

Figure 5.5: Ratios of estimate of ‖Kf (A)‖1 divided by true value for f(A) = eA,
computed using a block 1-norm estimator, where the Fréchet derivative is approxi-
mated by the CS approximation, the finite difference (FD) approximation (5.1), and
Algorithm 4.6.3.

vec is the operator that stacks the columns of a matrix into one long vector [31,
Chap. 3]. We will use the block 1-norm estimation algorithm of Higham and Tis-
seur [34], which requires the ability to form matrix products Kfy ≡ vec(Lf (A, E)
and KT

f y ≡ vec(Lf (A,ET)T), where vec(E) = y (where we are assuming A ∈ Rn×n

and f : Rn×n → Rn×n). We use a modified version of the function funm_condest1

from the Matrix Function Toolbox [26], which interfaces to the MATLAB function
normest1 that implements the block 1-norm estimation algorithm. With f the ex-
ponential, evaluated by expm, we approximate the Fréchet derivative using three
different approaches: the CS approximation, finite differences, and Algorithm 4.6.3,
which is a specialized method based on scaling and squaring and Padé approximation.
We take a collection of 28 real matrices from the literature on methods for eA, which
are mostly ill conditioned or badly scaled and are all of dimension 10 or less. For
the finite difference approximation (5.1) we take the value h = (u‖f(A)‖1)

1/2/‖E‖1,
which is optimal in the sense of balancing truncation error and rounding error bounds
[31, Sec. 3.4]. For the CS approximation we take h = tol‖A‖1/‖E‖1 with tol = u2;
we found that for tol = u1/2 and tol = u the estimates were sometimes very poor on
the most badly scaled problems. The exact ‖Kf (A)‖1 is obtained by explicitly com-
puting Kf (A) using expm_cond from the Matrix Function Toolbox [26]. The ratios
of the estimate divided by ‖Kf (A)‖1 are shown in Figure 5.5. All should be at most
1, so a value larger than 1 is a sign of inaccurate Fréchet derivative approximations.
The results show that the condition estimates obtained with the CS approximation
are significantly more reliable than those from finite differences (one estimate of the
wrong order of magnitude as opposed to four), but that neither is as reliable as when
the Fréchet derivative is computed by a method specialized to the exponential.

107

Chapter 6

Conclusions

The propensity of the scaling and squaring method to overscaling has been known
for over a decade. The new algorithm developed here, Algorithm 2.6.1, remedies
this weakness in two different ways. First, it exploits triangularity, when present,
to ensure that the diagonal and first off-diagonal are computed accurately during
the squaring phase, benefitting all elements of the computed exponential. Second, it
employs more refined truncation error bounds, based on the quantities ‖Ak‖1/k, which
can be much smaller than the bounds based on ‖A‖ that were used previously. These
refined bounds enable the algorithm to produce a result that often has one or both of
the advantages of being more accurate and having a lower computational cost than
the original algorithm from [30] (Algorithm 2.3.1). A general conclusion of this work
is that although matrix norms are sometimes described as a blunt instrument, they
can extract much more information than might be thought about the behavior of a
matrix power series, through the use of (estimates of) the norms of a small number
of matrix powers.

A remaining open question is to understand, and ideally improve, the numerical
stability of the squaring phase of the scaling and squaring method. Our treatment of
the triangular case is a first step in this direction.

Our new algorithm, Algorithm 3.5.2 for the eAB problem (and its special case
Algorithm 3.3.2), has a number of attractive features. Suppose, first, that B ∈ Rn is
a vector. The algorithm spends most of its time computing matrix–vector products,
with other computations occupying around 12% of the time. Thus it fully benefits
from problems where matrix–vector products are inexpensive, or their evaluation
is optimized. The algorithm is essentially direct rather than iterative, because the
number of matrix–vector products is known after the initial norm estimation phase
and depends only on the values dk = ‖Ak‖1/k

1 for a few values of k (sometimes just
k = 1). No convergence test is needed, except the test for early termination built
into the evaluation of the truncated Taylor series. Our experiments demonstrate
excellent numerical stability in floating point arithmetic, and this is supported (but
not entirely explained) by the analysis in Section 3.4. The numerical reliability of the
algorithm is emphasized by the fact that in Experiment 1 it has a better relative error
performance profile than evaluation of eAb using the best current method for eA. A
particular strength of the algorithm is in the evaluation of eAt at multiple points on
the interval of interest, because the scaling used by the algorithm naturally produces
intermediate values, and the design of the algorithm ensures that when extremely

108

dense output is required overscaling is avoided.
These benefits contrast with Krylov methods, of which we tested two particular

examples. These methods are genuinely iterative, so their cost is difficult to predict
and the choice of convergence test will influence the performance and reliability. They
also typically require the selection or estimation of the size of the Krylov subspace.
Moreover, the cost of the methods is not necessarily dominated by the matrix–vector
products with A; depending on the method and the problem it can be dominated by
the computations in the Arnoldi or Lanczos recurrence, and the cost of evaluating
exponentials of smaller Hessenberg matrices is potentially significant.

For the case where B is a matrix with n0 > 1 columns, Algorithm 3.5.2 is partic-
ularly advantageous because the logic of the algorithm is unchanged and the compu-
tational effort is now focused on products of n× n and n× n0 matrices. The Krylov
codes expv and phipm must be called repeatedly on each column of B and thus can-
not benefit from the greater efficiency of matrix products. An algorithm for eAB
based on block Krylov subspaces might avoid this drawback, but no such algorithm
is currently available.

The weakness of Algorithm 3.5.2 is its tendency for the cost to increase with
increasing ‖A‖ (though it is the dk that actually determine the cost). This weakness
is to some extent mitigated by preprocessing, but for symmetric A balancing has no
effect and dk ≈ ‖A‖ (there is equality for the 2-norm, but the algorithm uses the
1-norm). Note also that Algorithm 3.5.2 requires matrix–vector products with both
A and A∗ for the norm estimation. However, if A is non-Hermitian and known only
implicitly and A∗x cannot be formed, we can revert to the use of ‖A‖1 in place of
the αp(A).

In summary, Algorithm 3.5.2 emerges as the best method for the eAB problem
in our experiments. It has several features that make it attractive for black box use
in a wide range of applications: its applicability to any A, its predictable cost after
the initial norm estimation phase, its excellent numerical stability, and its ease of
implementation.

We have established the notion that if a numerical algorithm for a matrix func-
tion based on rational approximation or iterative method) is available, it can be ex-
tended to an algorithm for simultaneously computing the matrix function itself and
its Fréchet derivative. We extended the algorithm of Higham [30] (Algorithm 2.3.1)
and the backward error analysis underling it to Algorithm 4.6.3 that calculates si-
multaneously the matrix exponential and its Fréchet derivative. Similarly, we ex-
tended Algorithm 2.6.1, which improves on the algorithm of Higham, to an Algo-
rithm 4.8.2 for computing the matrix exponential and its Fréchet derivative. Both
Algorithm 4.6.3 and Algorithm 4.8.2 were adapted to Algorithm 4.7.1 and Algo-
rithm 4.8.3, respectively, that both compute the matrix exponential and return an
estimate of its condition number.

The LAPACK Users’ Guide states [5, p. 77] that “Our goal is to provide error
bounds for most quantities computed by LAPACK.” This is a desirable goal for any
numerical algorithm, and in order to achieve it error analysis must be developed that
yields a reasonably sharp error bound that can be efficiently estimated. For matrix
function algorithms a complete error analysis is not always available, and for the
forward error a bound of the form cond(f, A)u is the best we can expect in general.
To date relatively little attention has been paid to combining evaluation of f(A)

109

with computation of the Fréchet derivative L(A,E) and estimation of the condition
number cond(f, A). We are currently applying and extending the ideas developed
here to other transcendental functions such as the logarithm and the sine and cosine
and will report on this work in future.

The CS approximation of Chapter 5 provides an attractive way to approximate
Fréchet derivatives Lf when specialized methods for f but not Lf are available. This
situation pertains, for example, to the functions ψk(z) =

∑∞
j=0 zj/(j + k)!, k ≥ 0 [31,

Sec. 10.7.4], related to the matrix exponential, for which efficient numerical methods
are available [45], [64]. The CS approximation is trivial to implement assuming the
availability of complex arithmetic. In floating point arithmetic its accuracy is not
limited by the cancellation inherent in finite difference approximations, and indeed
the accuracy of the computed approximation is in practice remarkably insensitive
to the choice of the parameter h, as long as it is chosen small enough: typically
h ≤ u1/2‖A‖/‖E‖ suffices thanks to the O(h2) approximation error.

The main weakness of the CS approximation is that it is prone to damaging
cancellation when the underlying method for evaluating f employs complex arith-
metic. But for many algorithms, such as those based on real polynomial and rational
approximations or matrix iterations, this is not a concern.

The CS approximation is particularly attractive for use within a general purpose
matrix function condition estimator. It is intended to update the function funm_

condest1 in the Matrix Function Toolbox [26] to augment the current finite difference
approximation with the CS approximation, which will be the preferred option when
it is applicable.

110

Bibliography

[1] Awad H. Al-Mohy and Nicholas J. Higham. Computing the Fréchet derivative
of the matrix exponential, with an application to condition number estimation.
SIAM J. Matrix Anal. Appl., 30(4):1639–1657, 2009.

[2] Awad H. Al-Mohy and Nicholas J. Higham. A new scaling and squaring algo-
rithm for the matrix exponential. SIAM J. Matrix Anal. Appl., 31(3):970–989,
2009.

[3] Awad H. Al-Mohy and Nicholas J. Higham. The complex step approximation to
the Fréchet derivative of a matrix function. Numer. Algorithms, 53(1):133–148,
2010.

[4] Awad H. Al-Mohy and Nicholas J. Higham. Computing the action of the ma-
trix exponential, with an application to exponential integrators. MIMS EPrint
2010.30, Manchester Institute for Mathematical Sciences, The University of
Manchester, UK, March 2010. 23 pp.

[5] E. Anderson, Z. Bai, C. H. Bischof, S. Blackford, J. W. Demmel, J. J. Dongarra,
J. J. Du Croz, A. Greenbaum, S. J. Hammarling, A. McKenney, and D. C.
Sorensen. LAPACK Users’ Guide. Third edition, Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 1999. xxvi+407 pp. ISBN 0-
89871-447-8.

[6] Athanasios C. Antoulas. Approximation of Large-Scale Dynamical Systems. So-
ciety for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2005.
xxv+479 pp. ISBN 0-89871-529-6.

[7] Per Ling Bo K̊agström and Charles F. Van Loan. GEMM-based level 3 BLAS:
High performance model implementations and performance evaluation bench-
mark. ACM Trans. Math. Software, 24(3):268–302, 1998.

[8] Matias Bossa, Ernesto Zacur, and Salvador Olmos. Algorithms for computing
the group exponential of diffeomorphisms: Performance evaluation. In Com-
puter Vision and Pattern Recognition Workshops, 2008 (CVPRW ’08), IEEE
Computer Society, 2008, pages 1–8.

[9] Arthur Cayley. A memoir on the theory of matrices. Philos. Trans. Roy. Soc.
London, 148:17–37, 1858.

[10] Tzu-Yi Chen and James W. Demmel. Balancing sparse matrices for computing
eigenvalues. Linear Algebra Appl, 309:261–287, 2000.

111

[11] A. R. Collar. The first fifty years of aeroelasticity. Aerospace (Royal Aeronautical
Society Journal), 5:12–20, 1978.

[12] M. G. Cox and P. M. Harris. Numerical analysis for algorithm design in metrol-
ogy. Software Support for Metrology Best Practice Guide No. 11, National
Physical Laboratory, Teddington, UK, 2004. 75 pp.

[13] Philip I. Davies and Nicholas J. Higham. A Schur–Parlett algorithm for com-
puting matrix functions. SIAM J. Matrix Anal. Appl., 25(2):464–485, 2003.

[14] Timothy A. Davis. University of Florida sparse matrix collection. http://www.
cise.ufl.edu/research/sparse/matrices/.

[15] Timothy A. Davis and Yifan Hu. The University of Florida sparse matrix collec-
tion. Manuscript available at http://www.cise.ufl.edu/research/sparse/

matrices/, 2010. 28 pp.

[16] James W. Demmel. On condition numbers and the distance to the nearest ill-
posed problem. Numer. Math., 51:251–289, 1987.

[17] Luca Dieci and Alessandra Papini. Padé approximation for the exponential of a
block triangular matrix. Linear Algebra Appl., 308:183–202, 2000.

[18] Luca Dieci and Alessandra Papini. Conditioning of the exponential of a block
triangular matrix. Numer. Algorithms, 28:137–150, 2001.

[19] J. J. Dongarra, J. J. Du Croz, I. S. Duff, and S. J. Hammarling. A set of Level 3
basic linear algebra subprograms. ACM Trans. Math. Software, 16:1–17, 1990.

[20] Iain S. Duff, Michael A. Heroux, and Roldan Pozo. An overview of the Sparse
Basic Linear Algebra Subprograms: The new standard from the BLAS Technical
Forum. ACM Trans. Math. Software, 28(2):239–267, 2002.

[21] R. A. Frazer, W. J. Duncan, and A. R. Collar. Elementary Matrices and Some
Applications to Dynamics and Differential Equations. Cambridge University
Press, 1938. xviii+416 pp. 1963 printing.

[22] Chun-Hua Guo and Nicholas J. Higham. A Schur–Newton method for the matrix
pth root and its inverse. SIAM J. Matrix Anal. Appl., 28(3):788–804, 2006.

[23] Gareth Hargreaves. Topics in Matrix Computations: Stability and Efficiency of
Algorithms. PhD thesis, University of Manchester, Manchester, England, 2005.
204 pp.

[24] Gareth I. Hargreaves and Nicholas J. Higham. Efficient algorithms for the matrix
cosine and sine. Numer. Algorithms, 40(4):383–400, 2005.

[25] Nicholas J. Higham. The Matrix Computation Toolbox. http://www.ma.man.

ac.uk/~higham/mctoolbox.

[26] Nicholas J. Higham. The Matrix Function Toolbox. http://www.ma.man.ac.

uk/~higham/mftoolbox.

112

[27] Nicholas J. Higham. Exploiting fast matrix multiplication within the level 3
BLAS. ACM Trans. Math. Software, 16(4):352–368, 1990.

[28] Nicholas J. Higham. Stability of a method for multiplying complex matrices with
three real matrix multiplications. SIAM J. Matrix Anal. Appl., 13(3):681–687,
1992.

[29] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. Second
edition, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA,
2002. xxx+680 pp. ISBN 0-89871-521-0.

[30] Nicholas J. Higham. The scaling and squaring method for the matrix exponential
revisited. SIAM J. Matrix Anal. Appl., 26(4):1179–1193, 2005.

[31] Nicholas J. Higham. Functions of Matrices: Theory and Computation. Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2008. xx+425
pp. ISBN 978-0-898716-46-7.

[32] Nicholas J. Higham. The scaling and squaring method for the matrix exponential
revisited. SIAM Rev., 51(4):747–764, 2009.

[33] Nicholas J. Higham and Awad H. Al-Mohy. Computing matrix functions. Acta
Numerica, 19:159–208, 2010.

[34] Nicholas J. Higham and Françoise Tisseur. A block algorithm for matrix 1-norm
estimation, with an application to 1-norm pseudospectra. SIAM J. Matrix Anal.
Appl., 21(4):1185–1201, 2000.

[35] Marlis Hochbruck and Alexander Ostermann. Exponential integrators. Acta
Numerica, 19:209–286, 2010.

[36] Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University
Press, 1985. xiii+561 pp. ISBN 0-521-30586-1.

[37] Roger A. Horn and Charles R. Johnson. Topics in Matrix Analysis. Cambridge
University Press, 1991. viii+607 pp. ISBN 0-521-30587-X.

[38] Giles Jewitt and J. Roderick McCrorie. Computing estimates of continuous time
macroeconometric models on the basis of discrete data. Computational Statistics
& Data Analysis, 49:397–416, 2005.

[39] Peter Sturdza Joaquim R. R. A. Martins and Juan J. Alonso. The complex-step
derivative approximation. ACM Trans. Math. Software, 29(3):245–262, 2003.

[40] George A. Baker Jr. and Peter Graves-Morris. Padé Approximants, volume 59 of
Encyclopedia of Mathematics and Its Applications. Second edition, Cambridge
University Press, 1996. xiv+746 pp.

[41] C. T. Kelley. Solving Nonlinear Equations with Newton’s Method. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, 2003. xiii+104 pp.
ISBN 0-89871-546-6.

113

[42] Charles S. Kenney and Alan J. Laub. Condition estimates for matrix functions.
SIAM J. Matrix Anal. Appl., 10(2):191–209, 1989.

[43] Charles S. Kenney and Alan J. Laub. Polar decomposition and matrix sign
function condition estimates. SIAM J. Sci. Statist. Comput., 12(3):488–504,
1991.

[44] Charles S. Kenney and Alan J. Laub. A Schur–Fréchet algorithm for computing
the logarithm and exponential of a matrix. SIAM J. Matrix Anal. Appl., 19(3):
640–663, 1998.

[45] Souji Koikari. An error analysis of the modified scaling and squaring method.
Computers Math. Applic., 53:1293–1305, 2007.

[46] Souji Koikari. Algorithm 894: On a block Schur–Parlett algorithm for ϕ-
functions based on the sep-inverse estimate. ACM Trans. Math. Software, 36
(2):Article 12, 2009.

[47] K. L. Lai and J. L. Crassidis. Extensions of the first and second complex-step
derivative approximations. J. Comput. Appl. Math., 219:276–293, 2008.

[48] J. N. Lyness. Numerical algorithms based on the theory of complex variable. In
Proceedings of the 1967 22nd National Conference, ACM, New York, NY, USA,
1967, pages 125–133.

[49] J. N. Lyness and C. B. Moler. Numerical differentiation of analytic functions.
SIAM J. Numer. Anal., 4(2):202–210, 1967.

[50] Joaquim R. R. A. Martins, Peter Sturdza, and Juan J. Alonso. The connection
between the complex-step derivative approximation and algorithmic differentia-
tion, 2001. AIAA paper AIAA-2001-0921.

[51] Roy Mathias. Evaluating the Frechet derivative of the matrix exponential. Nu-
mer. Math., 63:213–226, 1992.

[52] Roy Mathias. A chain rule for matrix functions and applications. SIAM J.
Matrix Anal. Appl., 17(3):610–620, 1996.

[53] Borislav V. Minchev and Will M. Wright. A review of exponential integrators
for first order semi-linear problems. Preprint 2/2005, Norwegian University of
Science and Technology, Trondheim, Norway.

[54] Cleve B. Moler and Charles F. Van Loan. Nineteen dubious ways to compute the
exponential of a matrix, twenty-five years later. SIAM Rev., 45(1):3–49, 2003.

[55] L. Morai and A. F. Pacheco. Algebraic approach to the radioactive decay equa-
tions. Am. J. Phys., 71(7):684–686, 2003.

[56] Igor Najfeld and Timothy F. Havel. Derivatives of the matrix exponential and
their computation. Advances in Applied Mathematics, 16:321–375, 1995.

[57] Jitse Niesen. http://www.amsta.leeds.ac.uk/~jitse/software.html, re-
trieved on February 17, 2010.

114

[58] Jitse Niesen and Will M. Wright. A Krylov subspace algorithm for evalu-
ating the ϕ-functions appearing in exponential integrators. Technical report
arxiv:0907.4631, 2009. 20 pp.

[59] Michael L. Overton. Numerical Computing with IEEE Floating Point Arithmetic.
Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2001.
xiv+104 pp. ISBN 0-89871-571-7.

[60] Michael S. Paterson and Larry J. Stockmeyer. On the number of nonscalar
multiplications necessary to evaluate polynomials. SIAM J. Comput., 2(1):60–
66, 1973.

[61] Y. Saad. Analysis of some Krylov subspace approximations to the matrix expo-
nential operator. SIAM J. Numer. Anal., 29(1):209–228, 1992.

[62] L. F. Shampine. Accurate numerical derivatives in MATLAB. ACM Trans.
Math. Software, 33(4), 2007. Article 26, 17 pages.

[63] Roger B. Sidje. Expokit: A software package for computing matrix exponentials.
ACM Trans. Math. Software, 24(1):130–156, 1998.

[64] B̊ard Skaflestad and Will M. Wright. The scaling and modified squaring method
for matrix functions related to the exponential. Appl. Numer. Math., 59:783–799,
2009.

[65] The Control and Systems Library SLICOT. http://www.slicot.org/.

[66] William Squire and George Trapp. Using complex variables to estimate deriva-
tives of real functions. SIAM Rev., 40(1):110–112, 1998.

[67] Ji-guang Sun. Perturbation analysis of the matrix sign function. Linear Algebra
Appl., 250:177–206, 1997.

[68] Lloyd N. Trefethen, J. A. C. Weideman, and Thomas Schmelzer. Talbot quadra-
tures and rational approximations. BIT, 46(3):653–670, 2006.

[69] Charles F. Van Loan. The sensitivity of the matrix exponential. SIAM J. Numer.
Anal., 14(6):971–981, 1977.

[70] Charles F. Van Loan. Computing integrals involving the matrix exponential.
IEEE Trans. Automat. Control, AC-23(3):395–404, 1978.

[71] David S. Watkins. A case where balancing is harmful. Electron. Trans. Numer.
Anal., 23:1–4, 2006.

[72] Daniel E. Whitney. More about similarities between Runge–Kutta and matrix
exponential methods for evauating transient response. Proc. IEEE, 57:2053–
2054, 1969.

[73] Thomas G. Wright. Eigtool. http://www.comlab.ox.ac.uk/pseudospectra/

eigtool/.

[74] Ding Yuan and Warnick Kernan. Explicit solutions for exit-only radioactive
decay chains. J. Appl. Phys., 101:094907 1–12, 2007.

115

