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The implementation of quadratic velocity, linear pressure finite element approximation
methods for the steady-state incompressible (Navier–)Stokes equations is addressed in this
work. Three types of a posteriori error indicator are introduced and are shown to give
global error estimates that are equivalent to the true discretisation error. Computational
results suggest that the solution of local Poisson problems provides a cost-effective error
estimation strategy, both from the perspective of accurate estimation of the global error
and for the purpose of selecting elements for refinement within a contemporary self-
adaptive refinement algorithm.

© 2010 Published by Elsevier B.V. on behalf of IMACS.

1. Introduction

During the last two decades there has been a rapid development in practical a posteriori error estimation techniques for
elliptic PDEs. This explosion in interest has been driven by the underlying need to increase the reliability and efficiency of
finite element software for solving such problems. The books by Ainsworth and Oden [3] and Verfürth [18] give a general
overview. In the specific case of the Stokes and Navier–Stokes equations governing the steady flow of a viscous incompress-
ible fluid, the work of Bank and Welfert [4] and of Verfürth [17] laid the basic foundation for the mathematical analysis
of practical methods. The “local Poisson problem” error estimation methodology that we adopt herein was introduced by
Ainsworth and Oden in [2] and is strongly featured in the book of Elman et al. [10, Section 5.4.2].

The pioneering a posteriori error estimation techniques for incompressible flow were built around stable P 1–P 1 (lin-
ear velocity, continuous linear pressure) mixed approximation, using either bubble terms (i.e. the mini-element, see e.g.
[5, p. 153]), or a macroelement definition of the pressure (see e.g. [5, p. 152]) to guarantee stability. The aim of this
paper is to provide simple and effective error estimation techniques for higher order stable mixed approximations: in par-
ticular Q 2–P −1 (biquadratic velocity, discontinuous linear pressure, see [10, p. 234]), and the Crouzeix-Raviart P 2∗–P −1
approximation (superquadratic velocity, discontinuous linear pressure, see [10, p. 248]). Although we restrict attention to
two-dimensional approximation throughout, the extension of our approach to three-dimensional Q 2–P−1 or P 2∗–P −1 ap-
proximation using bricks or tetrahedra is completely straightforward. The paper builds on our earlier work [14] where we
considered error estimation and adaptivity in the case of unstable P 1–P 0 (linear velocity, constant pressure) approximation
in two dimensions. Finally, although our focus here is on the simplest case of Stokes flow, our methodology can be readily
extended to the Navier–Stokes equations. See [10, Section 7.4.2] for further details.

An outline of the paper is as follows. In the next section we review the notion of mixed approximation of the Stokes
equations. We present a theoretical analysis of three a posteriori error estimation strategies for Q 2–P−1 mixed approxi-
mation in Section 3. Specifically, three alternative error estimators are shown to be equivalent to the discretisation error.
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Some numerical results are presented in Section 4. Here the efficiency and reliability of the Poisson problem estimator is
compared with the popular Z–Z error indicator originally introduced by Zienkiewicz and Zhu [19]. Some conclusions are
given in Section 5.

2. Mathematical setting

We will consider the simplest possible model of viscous incompressible flow in an idealized, bounded, connected domain
in R

2:

−∇2�u + ∇p = 0 in Ω, (1)

∇ · �u = 0 in Ω, (2)

�u = �w on ∂ΩD , (3)
∂ �u
∂n

− �np = 0 on ∂ΩN . (4)

We also assume that Ω has a polygonal boundary ∂Ω = ∂ΩD ∪ ∂ΩN , ∂ΩD ∩ ∂ΩN = ∅, so that �n is the usual outward-
pointing normal. The vector field �u is the velocity of the flow and the scalar variable p represents the pressure. Our
mathematical model is very simple: the velocity is given on inflow and fixed parts of the boundary ∂ΩD , and there is
a zero flux condition that applies on ∂ΩN typically representing an outflow. The boundary data �w is assumed to be in
the space H1/2(∂ΩD)2 := {�v|�v = �u|∂ΩD , �u ∈ H1(Ω)2}. For convenience, the boundary data �w will also be assumed to be a
polynomial with order at most two—this will ensure that there is no error incurred in approximating the boundary condition
on ∂ΩD .

In the following we use the function space notation: H 1
E := {�u ∈ H1(Ω)2 | �u = �w on ∂ΩD} and H 1

E0
:= {�u ∈ H1(Ω)2 |

�u = �0 on ∂ΩD}. Moreover, when
∫
ΩN

ds > 0, the pressure space is defined by P := L2(Ω), whereas when
∫
ΩN

ds = 0, the

pressure space is P := L2
0(Ω) (all the functions have mean zero). The latter case is also referred to as an enclosed flow

problem.
The weak formulation of (1)–(4) is: find �u ∈ H 1

E and p ∈ P such that∫
Ω

∇�u : ∇�v −
∫
Ω

p∇ · �v = 0 ∀�v ∈ H 1
E0

, (5)

∫
Ω

q∇ · �u = 0 ∀q ∈ P . (6)

As is well known, see Girault and Raviart’s book [11, pp. 59–61], a sufficient condition for the existence and uniqueness of
a solution satisfying (5)–(6) is the continuous inf-sup condition that is stated below.

Definition 2.1. Continuous inf-sup condition: there exists a positive constant γ dependent on the shape of the domain Ω

such that,

inf
0 
=q∈P

sup
�0 
=�v∈H 1

E0

|(q,∇ · �v)|
|�v|1‖q‖0

� γ . (7)

In the sequel, this continuous inf-sup condition will be assumed to be satisfied. To the authors’ knowledge, establishing
this continuous inf-sup condition for an arbitrary domain Ω with a natural outflow condition (4) is an open problem. For
enclosed flow problems there are some theoretical results for special domain types. For example, Chizhonkov and Olshan-
skii [6] prove that, for a channel domain, the continuous inf-sup constant γ decreases in proportion to the length of channel.
Herein, we assume that the domain Ω is fixed, so the degeneration of the continuous inf-sup constant is not an issue.

An immediate consequence of the stability bound (7) is the “B-stability bound” given below. For a proof see [10,
Lemma 5.2].

Proposition 2.2. B-stability: working with the “big” bilinear form B : (H 1, P ) × (H 1, P ) → R so that

B
(
(�u, p); (�v,q)

) = (∇�u,∇�v) − (p,∇ · �v) − (q,∇ · �u), (8)

then, for all ( �w, s) ∈ H 1
E0

× P , we have that

sup
(�v,q)∈H 1

E0
×P

B(( �w, s); (�v,q))

|�v|1,Ω + ‖q‖0,Ω

� γD
(| �w|1,Ω + ‖s‖0,Ω

)
, (9)

where γD depends only on the shape of the domain Ω .
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Fig. 1. Q 2–P −1 element (• velocity node; ◦ pressure;
↑→ pressure derivative).

2.1. Finite element approximation

Mixed finite element approximation of (5)–(6) is obtained by taking finite-dimensional subspaces Xh
E to approximate H 1

E ,
Xh

0 to approximate H 1
E0

and Mh to approximate P . Thus, the Galerkin formulation is: find �uh ∈ Xh
E and ph ∈ Mh such that,∫

Ω

∇�uh : ∇�vh −
∫
Ω

ph∇ · �vh = 0 ∀�vh ∈ Xh
0, (10)

∫
Ω

qh∇ · �uh = 0 ∀qh ∈ Mh. (11)

Note that the approximation velocity space Xh
E is obtained from the test space Xh

0 :

Xh
E =

(
�u | �u =

nu∑
j=1

a j �φ j +
nu+n∂∑
j=nu+1

a j �φ j

)
, (12)

with coefficients a j ∈ R and associated basis functions { �φ j}nu
j=1 that span Xh

0 . The additional coefficients a j : j = nu +
1, . . . ,nu + n∂ are associated with the Lagrange interpolation of the boundary data �w on ∂ΩD . Collecting the coefficients
{a j}nu

j=1 into a vector u and associating a vector p ∈ R
np with the coefficients in the expansion of ph leads to a characteristic

system of algebraic equations:[
A BT

B 0

][
u

p

]
=

[
f

g

]
. (13)

The finite-dimensional spaces Xh
0 and Mh are related to the partitioning Th of Ω . In this work, we will focus on the

simplest case of regular rectangular meshes—which implies that the aspect ratio of each rectangle in the mesh is bounded—
and we concentrate on the Q 2–P−1 approximation that has the degrees of freedom shown in Fig. 1. This velocity–pressure
combination is regarded by practitioners as being one of the most cost-effective approaches in two dimensions.

One necessary condition for the mixed approximation is that the associated “saddle-point” system (13) is solvable. Anal-
ogously to the continuous situation, a sufficient condition for the unique solvability of (13) is a (discrete-) inf-sup condition.

Definition 2.3. Discrete inf-sup condition: there exists a positive constant γ∗ (called the inf-sup constant) independent of h,
such that

min
0 
=qh∈Mh

max
�0
=�vh∈Xh

0

|(qh,∇ · �vh)|
|�vh|1‖qh‖0

� γh � γ∗ > 0. (14)

As discussed in [10, Section 5.5], for any given grid, γh is just the square root of the smallest nonzero eigenvalue λ of
the following generalized eigenvalue problem,

B A−1 BT x = λQ x, (15)

where the matrices B , A are those given in (13), and Q is the Grammian matrix associated with the basis functions
spanning the pressure approximation space Mh . The stability of Q 2–P−1 approximation was first established by Stenberg
in [16]. In the case of enclosed flow, ∂ΩN = ∅, computational results presented in [10, Table 5.6] suggest that the inf-sup
constant associated with Q 2–P−1 approximation on uniform square grids satisfies γ∗ > 1/5.

We let (�u, p) denote the solution of (5)–(6) and let (�uh, ph) denote the solution of (10)–(11) with Q 2–P−1 approxima-
tion on a rectangular subdivision Th . Our aim is to estimate the velocity and the pressure errors

�e = �u − �uh, ε = p − ph, (16)

by post-processing the computed solution (�uh, ph). To make progress towards this aim, some notation is needed. For any
T ∈ Th , ωT is the set of rectangles sharing at least one edge with element T , while ω̃T is the set of rectangles sharing at
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least one vertex with T . Also, for an element edge E , ωE denotes the union of rectangles sharing E , while ω̃E is the set
of rectangles sharing at least one vertex with E . Next, ∂T is the set of the four edges of T . Moreover, εh,Ω is the set of
element edges inside of Ω , εh,D is the set of element edges on the boundary ∂ΩD and εh,N is the set of element edges on
the boundary ∂ΩN . We also follow established convention and let C and c denote generic constants which are independent
of the mesh size, the domain Ω , and the solution (�u, p). Such constants could depend on the aspect ratio of the elements
in Th .

If an error estimator η is to be useful then an important factor is the requirement that it should be cheap to compute—as
a rule of thumb, the computational work should scale linearly as the number of elements is increased—yet there should be
guaranteed accuracy in the sense that the estimated global error should give an upper bound on the exact error, so that

|�e|1,Ω + ‖ε‖0,Ω � CΩη. (17)

Here the generic constant CΩ is independent of the mesh size and the exact solution but may depend on the domain
and the element aspect ratio. If, in addition to satisfying (17), the associated local (element-) error estimator ηT (with

η =
√∑

T ∈Th
η2

T ) provides a lower bound for the exact local error

ηT � CΩ

( ∑
T ′∈ωT

{|�e|21,T ′ + ‖ε‖2
0,T ′

})1/2

, (18)

then the estimator ηT is likely to be effective if it is used to drive an adaptive refinement process. In the next section we
will introduce three alternative estimators and show that each satisfies the requirements (17) and (18).

3. Analysis of estimators

We begin this section by summarising some standard results that will prove to be useful. First, so-called bubble functions
on the reference element T̃ = (0,1) × (0,1) are defined as follows:

bT̃ = 24x(1 − x)y(1 − y),

bẼ1,T̃ = 22x(1 − x)(1 − y),

bẼ2,T̃ = 22 y(1 − y)x,

bẼ3,T̄ = 22x(1 − x)y,

bẼ4,T̄ = 22 y(1 − y)(1 − x).

Here bT̃ is the reference element bubble function, and bẼi ,T̃ , i = 1:4 are reference edge bubble functions. For any T ∈ Th , the
element bubble function is bT = bT̃ ◦ F T and the element edge bubble function is bEi ,T = bẼi ,T̃ ◦ F T , where F T is the affine

map from T̃ to T . For an interior edge E ∈ εh,Ω and E = T1 ∩ T2, bE is defined as follows,

bE =

⎧⎪⎨
⎪⎩

bE,T1 in T1,

bE,T2 in T2,

0 in Ω \ (T1 ∪ T2).

(19)

For a boundary edge E ∈ εh,D ∪ εh,N , bE = bE,T , where T is the rectangle such that E ∈ ∂T . With these bubble functions,
Creusé et al. [8, Lemma 4.1] established the following lemma.

Lemma 3.1. Inverse inequalities: let T be an arbitrary rectangle in Th and E ∈ ∂T . For any �v T ∈ P k0(T ) and �v E ∈ P k1 (E), the following
inequalities hold,

ck‖�vT ‖0,T �
∥∥�vT b1/2

T

∥∥
0,T � Ck‖�vT ‖0,T , (20)

|�vT bT |1,T � Ckh−1
T ‖�vT ‖0,T , (21)

ck‖�v E‖0,E �
∥∥�v Eb1/2

E

∥∥
0,E � Ck‖�v E‖0,E , (22)

‖�v EbE‖0,T � Ckh1/2
E ‖�v E‖0,E , (23)

|�v EbE |1,T � Ckh−1/2
E ‖�v E‖0,E , (24)

where ck and Ck are two constants which only depend on the element aspect ratio and the polynomial degrees k0 and k1 .
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Here, k0 and k1 are fixed and ck and Ck can be associated with generic constants c and C . In addition, �v E which is only
defined on the edge E also denotes its natural extension to the element T .

Second, we recall some quasi-interpolation estimates in the following lemma.

Lemma 3.2. Clément interpolation estimate: given �v ∈ H 1 , let �vh ∈ Xh be the quasi-interpolant of �v defined by averaging as in [7].
For any T ∈ Th,

‖�v − �vh‖0,T � ChT |�v|1,ω̃T , (25)

and for all E ∈ ∂T

‖�v − �vh‖0,E � Ch1/2
E |�v|1,ω̃E . (26)

We are now ready to introduce our three alternative error estimators.

3.1. A residual error estimator

The material in this section is well known and can be found in several places, e.g. in Creusé et al. [8], or [10, Section
5.4.2]. The element contribution ηR,T of the residual error estimator ηR is given by

η2
R,T := h2

T ‖�RT ‖2
0,T + ‖RT ‖2

0,T +
∑

E∈∂T

hE‖�R E‖2
0,E , (27)

and the components in (27) are given by

�RT := {∇2�uh − ∇ph
}∣∣

T , (28)

RT := {∇ · �uh}|T , (29)

�R E :=

⎧⎪⎪⎨
⎪⎪⎩

1
2 �∇�uh − phI� E E ∈ εh,Ω,

−(
∂ �uh

∂�nE,T
− ph�nE,T ) E ∈ εh,N ,

0 E ∈ εh,D ,

(30)

with the key contribution coming from the stress jump associated with an edge E adjoining elements T and S:

�∇�uh − ph�I� := (
(∇�uh − ph�I)|T − (∇�uh − ph�I)|S

)�nE,T .

The global residual error estimator is given by ηR :=
√∑

T ∈Th
η2

R,T .

Theorem 3.3. For any mixed finite element approximation (not necessarily inf-sup stable) defined on rectangular grids Th, the residual
estimator ηR satisfies:

|�e|1,Ω + ‖ε‖0,Ω � CΩηR ,

ηR,T � C

( ∑
T ′∈ωT

{|�e|21,T ′ + ‖ε‖2
0,T ′

})1/2

.

Note that the constant C in the local lower bound is independent of the domain.

Proof. We include this for completeness. To establish the upper bound we let [�v,q] ∈ H 1
E0

× P and �vh ∈ Xh be the Clément
interpolant of �v , then

B
([�e, ε]; [�v,q]) = B

([�e, ε]; [�v − �vh,q])
= −(∇�uh,∇(�v − �vh)

) + (
ph,∇ · (�v − �vh)

) + (q,∇ · uh)

=
∑
T ∈Th

{(∇2�uh − ∇ph, �v − �vh
)

T −
∑

E∈∂T

〈�R E , �v − �vh〉E + (q,∇ · �uh)T

}
,

where 〈�R E , �v − �vh〉E = ∫
E

�R E · (�v − �vh). Thus,



ARTICLE IN PRESS APNUM:2386

Please cite this article in press as: Q. Liao, D. Silvester, A simple yet effective a posteriori estimator for classical mixed approximation of Stokes
equations, Applied Numerical Mathematics (2010), doi:10.1016/j.apnum.2010.05.003

JID:APNUM AID:2386 /FLA [m3G; v 1.41; Prn:19/05/2010; 15:57] P.6 (1-15)

6 Q. Liao, D. Silvester / Applied Numerical Mathematics ••• (••••) •••–•••

∣∣B([�e, ε]; [�v,q])∣∣ �
∑
T ∈Th

{∥∥∇2�uh − ∇ph
∥∥

0,T ‖�v − �vh‖0,T +
∑

E∈∂T

‖�R E‖0,E‖�v − �vh‖0,E + ‖q‖0,T ‖∇ · �uh‖0,T

}

� C

{( ∑
T ∈Th

h2
T

∥∥∇2�uh − ∇ph
∥∥2

0,T

)1/2( ∑
T ∈Th

1

h2
T

‖�v − �vh‖2
0,T

)1/2

+
( ∑

T ∈Th

∑
E∈∂T

hE‖�R E‖2
0,T

)1/2( ∑
T ∈Th

∑
E∈∂T

1

hE
‖�v − �vh‖2

0,E

)1/2

+
( ∑

T ∈Th

‖q‖2
0,T

)1/2( ∑
T ∈Th

‖∇ · �uh‖2
0,T

)1/2
}

.

Using Lemma 3.2 then gives

∣∣B([�e, ε]; [�v,q])∣∣ � C

( ∑
T ∈Th

{|�v|21,T + ‖q‖0,T
})1/2( ∑

T ∈Th

{
h2

T ‖�RT ‖0,T +
∑

E∈∂T

hE‖�R E‖2
0,E + ‖RT ‖2

0,T

})1/2

.

Finally, noting that �e = �u − �uh ∈ H 1
E0

and using (9) gives

|�e|1,Ω + ‖ε‖0,Ω � CΩ

( ∑
T ∈Th

{
h2

T ‖�RT ‖0,T +
∑

E∈∂T

hE‖�R E‖2
0,E + ‖RT ‖2

0,T

})1/2

.

This establishes the upper bound.
Turning to the local lower bound. First, for the element interior residual part, we set �w T := �RT bT . Since �w T = 0 on ∂T ,

it can be extended to the whole of Ω by setting �w T = 0 in Ω \ T to give an extended function that is in H 1
E0

. Then,

(∇�u − pI,∇ �wT )T = (∇�u − pI,∇ �wT )Ω = 0. (31)

With (31),

(�RT , �wT )T = (∇2�uh − ∇ph, �wT
)

T

= −(∇�uh − phI,∇ �wT )T + 〈
(∇�uh − phI) · �n, �wT

〉
∂T

= −(∇�uh − phI,∇ �wT )T

= −(∇�uh − phI,∇ �wT )T + (∇�u − pI,∇ �wT )T

= (∇�e − εI,∇ �wT )T

�
(|�e|1,T + ‖ε‖0,T

)| �wT |1,T

�
(|�e|21,T + ‖ε‖2

0,T

)1/2
h−1

T ‖�RT ‖0,T , (32)

where in (32), 〈(∇�uh − phI)�n, �w E 〉∂T = ∫
∂T (∇�uh − phI)�n · �w E . In addition, from the inverse inequality (20), (�RT , �w T )T =

‖�RT b1/2
T ‖2

0,T � c‖�RT ‖2
0,T , thus

h2
T ‖�RT ‖2

0,T � C
(|�e|21,T + ‖ε‖2

0,T

)
. (33)

Next comes the divergence part,

‖RT ‖0,T = ‖∇ · �uh‖0,T = ∥∥∇ · (�u − �uh)
∥∥

0,T �
√

2|�u − �uh|1,T = √
2|�e|1,T . (34)

Finally, we need to estimate the jump term. For an edge E ∈ ∂T ∩ εh,Ω we set �w E = �R EbE so that

2〈�R E , �w E 〉E =
∑

i=1:2

〈
(∇�uh − phI)�n, �w E

〉
∂T = (∇�uh − phI,∇ �w E )ωE +

∑
i=1:2

(∇2�uh − ∇ph, �w E
)

Ti
.

Using the same argument as for (31), the following equality holds,

(∇�u − pI,∇ �w E )ωE = 0, (35)

and then, using inverse inequalities gives
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2〈�R E , �w E 〉E = −(∇�e − εI,∇ �w E )ωE +
∑

i=1:2

(∇2�uh − ∇ph, �w E
)

Ti

�
(|�e|1,ωE + ‖ε‖0,ωE

)| �w E |1,ωE +
∑

i=1:2
‖�RTi ‖0,Ti ‖ �w E‖0,ωE

� C

((|�e|1,ωE + ‖ε‖0,ωE

)
h−1/2

E ‖�R E‖0,E +
∑

i=1:2
‖�RTi ‖0,Ti h

1/2
E ‖�R E‖E

)

� C

((|�e|21,ωE
+ ‖ε‖2

0,ωE

)1/2
h−1/2

E ‖�R E‖0,E +
∑

i=1:2
‖�RTi ‖0,Ti h

1/2
E ‖�R E‖E

)
.

Using (33) gives

2〈�R E , �w E 〉E � C
(|�e|21,ωE

+ ‖ε‖2
0,ωE

)1/2
h−1/2

E ‖�R E‖0,E . (36)

Using (22) gives 〈�R E , �w E 〉E = ‖�R Eb1/2
E ‖2

0,E � c‖�R E‖2
0,E , and thus using (36) gives

hE‖�R E‖2
0,E � C

(|�e|21,ωE
+ ‖ε‖2

0,ωE

)
. (37)

We also need to show that (37) holds for boundary edges. First, for the Dirichlet boundary edges, the flux jump is set to be
zero, thus (37) trivially holds. Second, for an edge En ∈ ∂T ∩ εh,N , we again set �w = �R EnbEn ,

〈�R En, �w En〉En = 〈
(∇�uh − phI)�n, �w En

〉
∂T = (∇�uh − phI,∇ �w En)T + (∇2�uh − ∇ph, �w En

)
T .

Thus, as for (35), we have that

(∇�u − pI,∇ �w En)T = 0.

Then, using the inverse inequalities and following the argument above gives

hEn‖�R En‖2
0,En � C

(|�e|21,T + ‖ε‖2
0,T

)
. (38)

Finally, combining (33), (34), (37) and (38) establishes the local lower bound. �
Remark 3.4. Theorem 3.3 also holds for stable (and unstable) mixed approximations defined on a triangular subdivision.
The proof is essentially identical to the rectangular case. Specifically, the upper bound can be established directly using the
Clément interpolation for triangular meshes. In order to show the local lower bound, we just need to repeat the process for
rectangular meshes using a cubic element bubble function defined by taking the value one at the centroid of the triangle
and zero on the three edges, together with an edge bubble function defined by a quadratic polynomial which takes value
one at the midpoint of one edge and is zero on the other two edges.

3.2. A local Stokes problem error estimator

Here our focus is on the Q 2–P −1 approximation method. Specifically, a suitable correction space QT needs to be intro-
duced at this point. For an interior rectangle (i.e. if all four edges are in εh,Ω ∪ εh,N ), QT is the ( Q 3(T ))2 space excluding
the basis functions associated with the four vertices, and for an element with some edges in εh,D , QT is the ( Q 3(T ))2

space excluding the basis functions associated with the four vertices and all the other nodes on the boundary ∂ΩD . For a
rectangle containing edges in εh,D , it is assumed that at most two neighboring edges are in εh,D . If the rectangle T has only
one edge in εh,D , we call it an edge element, whereas if it has two neighboring edges in εh,D , we call it a corner element.
Fig. 2 illustrates the types of correction spaces that can arise.

The local Stokes problem estimator ηS =
√∑

T ∈Th
η2

S,T is then defined as follows,

η2
S,T = |�eS,T |21,T + ‖εS,T ‖2

0,T , (39)

where (�eS,T , εS,T ) ∈ QT × Q 2(T ) satisfies

(∇�eS,T ,∇�v)T − (εS,T ,∇ · �v)T = (�RT , �v)T −
∑

E∈∂T

〈�R E , �v〉E ∀�v ∈ QT , (40)

(∇ · �eS,T ,q) = (RT ,q)T ∀q ∈ Q 2(T ). (41)

Note that (40)–(41) represents a Stokes problem posed on an element T with a Neumann (zero flux) boundary condition.
Although the velocity solution for a Stokes problem is not uniquely defined when a zero flux condition applies everywhere
on the boundary, the special choice of correction space QT guarantees that the system (40)–(41) always has a unique
solution.
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Fig. 2. The correction space QT for an interior element (left), for an edge element (middle) and for a corner element (right).

We want to establish that the Stokes estimator ηS,T is equivalent to the residual estimator ηR,T . The following local
inf-sup stability estimate will be crucial in achieving this goal.

Lemma 3.5. Local inf-sup stability: for Q 2–P −1 approximation on any rectangle T ∈ Th, there exists a positive constant γL indepen-
dent of h, such that

min
0 
=qh∈ Q 2(T )

max
�0 
=�vh∈QT

|(qh,∇ · �vh)|
|�vh|1‖qh‖0

� γL . (42)

Proof. Our proof is a generalization of the approach of Verfürth [17, Lemma 4.1]. First, for the reference element T̃ , the
local inf-sup stability associated with the three types of QT can be established by direct computation of the minimum
eigenvalue in (15). Next, for an arbitrary element T , we let F T denote the affine map from T̃ to T and denote the Jacobian
determinant of F T by | J | = hT ,xhT ,y , where hT ,x and hT ,y are the element sizes in x and y directions respectively. Thus,
for any q ∈ Q 2(T ), we define q� := | J |1/2q ◦ F T ∈ Q 2(T̃ ). Then, there exists a �u� = (ux,�, u y,�)

T ∈ QT̃ with |�u�|1,T̃ = ‖q�‖0,T̃ ,
such that

(∇ · �u�,q�)T̃ � γ̃ ‖q�‖2
0,T̃

(43)

where γ̃ is the local inf-sup constant for the reference element T̃ . If we further define

�uT :=
( | J |1/2 1

hT ,y
ux,� ◦ F −1

T

| J |1/2 1
hT ,x

u y,� ◦ F −1
T

)
, (44)

then, using (s, t) to denote the local coordinates for the reference element we get

|�uT |21,T =
∫
T

(
∂ux,T

∂x

)2

+
(

∂u y,T

∂ y

)2

=
∫
T̃

((
| J |1/2 1

hT ,y

∂ux,�

∂s

1

hT ,x

)2

+
(

| J |1/2 1

hT ,x

∂u y,�

∂t

1

hT ,y

)2
)

| J |

= |�u�|21,T̃
= ‖q�‖2

0,T̃
=

∫
T̃

q2
� =

∫
T

(| J |1/2qT
)2| J |−1 = ‖qT ‖2

0,T .

So we see that

|�uT |1,T = ‖qT ‖0,T . (45)

Next,

(∇ · �uT ,qT )T =
∫
T

∂ux,T

∂x
qT + ∂u y,T

∂ y
qT

=
∫
T̃

(
| J |1/2 1

hT ,y

∂ux,�

∂s

1

hT ,x
| J |−1/2q� + | J |1/2 1

hT ,x

∂u y,�

∂t

1

hT ,y
| J |−1/2q�

)
| J |

=
∫
T̃

(
∂ux,�

∂s
q� + ∂u y,�

∂t
q�

)
= (∇ · �u�,q�)T̃

� γ̃ ‖q�‖2
0,T̃

= γ̃ ‖qT ‖2
0,T . (46)
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This establishes the stability bound (42) with an inf-sup constant γL = γ̃ . �
Mirroring the discussion of the stability of the continuous problem in Section 2 leads us to the following result.

Lemma 3.6. Local B-stability: if the mixed approximation is locally inf-sup stable, then, for all ( �w, s) ∈ QT × Q 2(T ), we have that

max
(�v,q)∈QT × Q 2(T )

B(( �w, s); (�v,q))

|�v|1,T + ‖q‖0,T
� γB

(| �w|1,T + ‖s‖0,T
)
, (47)

where γB is a positive constant that only depends on the inf-sup constant γL in (42).

Proof. See Elman et al. [10, Lemma 5.2]. �
The robustness of the Stokes error estimator is established next.

Theorem 3.7. For Q 2–P−1 approximation on a rectangle T ∈ Th, the estimator ηS,T is equivalent to the residual estimator: cηS,T �
ηR,T � CηS,T .

Proof. The proof is a generalization of [14, Theorem 3.5]. The details are sketched out below. First, we need to use (47):

ηS,T =
√

|�eS,T |21,T + ‖εS,T ‖2
0,T

� |�eS,T |1,T + ‖εS,T ‖0,T

� 1

γB
max

(�v,q)∈QT × Q 2(T )

B((�eS,T , εS,T ); (�v,q))

|�v|1,T + ‖q‖0,T

= 1

γB
max

(�v,q)∈QT × Q 2(T )

(�RT , �v)T − ∑
E∈∂T 〈�R E , �v〉E − (q,∇ · �uh)T

|�v|1,T + ‖q‖0,T

� 1

γB
max

(�v,q)∈QT × Q 2(T )

‖�RT ‖0,T ‖�v‖0,T + ∑
E∈∂T ‖�R E‖0,E‖�v‖0,E + ‖q‖0,T ‖∇ · �uh‖0,T

|�v|1,T + ‖q‖0,T
. (48)

Now, since �v is zero at the four vertices of T , a scaling argument and the usual trace theorem, see e.g. [10, Lemma 1.5],
shows that �v satisfies

‖�v‖0,E � Ch1/2
E |�v|1,T , (49)

‖�v‖0,T � ChT |�v|1,T . (50)

Combining these two inequalities with (48) immediately gives the lower bound in the equivalence relation. For the upper
bound, we first let �w T = �RT bT (bT is an element interior bubble function). From (40),

(�RT , �wT )T = (∇�eS,T ,∇ �wT )T − (εS,T ,∇ · �wT )T

� |�eS,T |1,T | �wT |1,T + ‖εS,T ‖0,T ‖∇ · �wT ‖0,T

�
√

2| �wT |1,T
(|�eS,T |1,T + ‖εS,T ‖0,T

)
� C

1

hT
‖�RT ‖0,T

(|�eS,T |21,T + ‖εS,T ‖2
0,T

)1/2
. (51)

In addition, from the inverse inequalities, ‖�RT ‖2
0,T � C(�RT , �w T )T , and using (51),

h2
T ‖�RT ‖2

0,T � C
(|�eS,T |21,T + ‖εS,T ‖2

0,T

)
. (52)

Next, we let �w E = �R EbE (bE is an edge bubble function). Then, from (40) and using (52), (23), together with the estimate
| �w E |1,T � Ch−1

T ‖ �w E‖0,T , we get

〈�R E , �w E 〉E = −(∇�eS,T ,∇ �w E )T + (εS,T ,∇ · �w E)T + (�RT , �w E )T

� |�eS,T |1,T | �w E |1,T + ‖εS,T ‖0,T ‖∇ · �w E‖0,T + ‖�RT ‖0,T ‖ �w E‖0,T

� C | �w E |1,T
(|�eS,T |1,T + ‖εS,T ‖0,T

) + Ch−1
T

(|�eS,T |1,T + ‖εS,T ‖0,T
)‖ �w E‖0,T

� Ch−1
T ‖ �w E‖0,T

(|�eS,T |1,T + ‖εS,T ‖0,T
)

� Ch−1/2
E ‖�R E‖0,E

(|�eS,T |1,T + ‖εS,T ‖0,T
)
. (53)
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Then, using ‖�R E‖2
0,E � C〈�R E , �w E 〉E and (53),

hE‖�R E‖2
0,E � C

(|�eS,T |21,T + ‖εS,T ‖2
0,T

)
. (54)

Finally, from (41), since ∇ · �uh|T ∈ Q 2(T ) we have that

(∇ · �eS,T ,∇ · �uh)T = (∇ · �uh,∇ · �uh)T ,

‖RT ‖0,T = ‖∇ · �uh‖0,T � ‖∇ · �eS,T ‖0,T �
√

2|�eS,T |1,T . (55)

Combining (52), (54) and (55), establishes the upper bound in the equivalence relation. �
Remark 3.8. The fact that ∇ · �uh|T ∈ Q 2(T ) is crucial for the last step above. If we wanted to extend this error estimation
approach to other mixed approximations then we would simply need to ensure that the pressure correction space is big
enough to contain the divergence of the original velocity space. The only difficulty with this is that we also have to ensure
that the velocity correction space is big enough to ensure that the local inf-sup stability condition (42) is not compromised.
Thus, if we wanted to develop a Stokes error estimator for the P 2∗–P−1 mixed approximation, then the first thing to do
is to choose a pressure augmentation space that is big enough to contain the divergence of P 2∗ functions. The standard
quadratic polynomial space P 2 would work. We must then choose a velocity augmentation space that is big enough to
ensure that the combination of augmented spaces is locally stable. This suggests using a reduced P 3 space for velocities
(that is, with the vertex basis functions removed).

The Stokes estimator leads to large dimensional local problems. For example, the dimension of the local Stokes problem
that must be solved to estimate the error in the interior element in Fig. 2 is 33 × 33. Our next approach is much simpler
and, as we will see in Section 4, effective in estimating the error in practice.

3.3. A local Poisson problem estimator

The local Poisson problem estimator ηP =
√∑

T ∈Th
η2

P ,T can be derived from the locally stable Stokes estimator (40)–(41)

as follows:

η2
P ,T = |�eP ,T |21,T + ‖εP ,T ‖2

0,T , (56)

where (�eP ,T , εP ,T ) ∈ QT × Q 2(T ) satisfies

(∇�eP ,T ,∇�v)T = (�RT , �v)T −
∑

E∈∂T

〈�R E , �v〉E ∀�v ∈ QT , (57)

(εP ,T ,q) = (RT ,q)T ∀q ∈ Q 2(T ). (58)

This is much more appealing from a computational perspective. First, (57) decouples into a pair of local Poisson problems,
each one of dimension 12 × 12 in the case of the interior element in Fig. 2. Second, since by construction R T = ∇ · �uh ∈
Q 2(T ), the solution of (58) is immediate: εP ,T = ∇ · �uh . The theoretical justification for computing the Poisson estimator
instead of the Stokes estimator is the following equivalence result.

Theorem 3.9. Given that the spaces defining the Stokes estimator are locally B-stable, the estimator ηP ,T is equivalent to the Stokes
estimator: cηS,T � ηP ,T � CηS,T .

Proof. The proof is a straightforward extension of [14, Thm. 3.6]. We include it here for completeness. Combining (40), (41),
(57), (58), for any T ∈ Th and [�v,q] ∈ QT × Q 2(T ) we get

(∇�eP ,T ,∇�v)T − (εP ,T ,q)T = (�RT , �v)T −
∑

E∈∂T

〈�R E , �v〉E − (∇ · �uh,q)T

= (∇�eS,T ,∇�v)T − (εS,T ,∇ · �v)T − (∇ · �eS,T ,q)T

= B
(
(�eS,T , εS,T ); (�v,q)

)
. (59)

Then, using the local B-stability (47) gives

|�eS,T |1,T + ‖εS,T ‖0,T � 1

γB
max

(�v,q)∈QT × Q 2(T )

B((�eS,T , εS,T ); (�v,q))

|�v|1,T + ‖q‖0,T

= 1

γB
max

(�v,q)∈QT × Q 2(T )

(∇�eP ,T ,∇�v)T − (εP ,T ,q)T

|�v|1,T + ‖q‖0,T
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� 1

γB
max

(�v,q)∈QT × Q 2(T )

|�eP ,T |1,T |�v|1,T + ‖εP ,T ‖0,T ‖q‖0,T

|�v|1,T + ‖q‖0,T

� 1

γB

(|�eP ,T |1,T + ‖εP ,T ‖0,T
)
. (60)

This establishes the lower bound in the equivalence relation. In order to show the upper bound, we take �v ∈ QT , and then
using (40) and (57) we get

(∇�eP ,T ,∇�v)T = (�RT , �v)T −
∑

E∈∂T

〈�R E , �v〉E

= (∇�eS,T ,∇�v)T − (εS,T ,∇ · �v)T . (61)

Using (41) and (58) means that, for any q ∈ Q 2(T ),

(εP ,T ,q)T = (RT ,q)T = (∇ · �eS,T ,q). (62)

Using (61) gives

|�eP ,T |1,T = max
�v∈QT

(∇�eP ,T ,∇�v)T

|�v|1,T
= max

�v∈QT

(∇�eS,T ,∇�v)T − (εS,T ,∇ · �v)T

|�v|1,T

� max
�v∈QT

|�eS,T |1,T |�v|1,T + ‖εS,T ‖0,T ‖∇ · �v‖0,T

|�v|1,T
� |�eS,T |1,T + √

2‖εS,T ‖0,T , (63)

and, using (62),

‖εP ,T ‖0,T = max
q∈ Q 2(T )

(εP ,T ,q)T

‖q‖0,T
= max

q∈ Q 2(T )

(∇ · �eS,T ,q)T

‖q‖0,T

� max
q∈ Q 2(T )

‖∇ · �eS,T ‖0,T ‖q‖0,T

‖q‖0,T
= ‖∇ · �eS,T ‖ �

√
2|�eS,T |1,T . (64)

Finally, combining (63) with (64) gives the required upper bound. �
Remark 3.10. If we wanted to extend this error estimation approach to other mixed approximations then we simply need to
ensure that the pressure correction space is big enough to contain the divergence of the original velocity space. The upshot
of this is that the Poisson estimator is independent of the pressure approximation—we would also solve (57)–(58) if we
wanted to estimate the error in a solution computed with Q 2– Q 1 or Q 2–P 0 approximation!

4. Computational experiments

In this section two test problems are solved in order to compare the effectivity of three error estimation strategies:
a modified residual estimator η̃R , and the Poisson estimator ηP as implemented in the IFISS Matlab toolbox [15]; and a
local recovery Z–Z estimator ηZ as implemented in the Oomph-lib package [12]. The modified residual error estimator was
introduced by Paul Houston et al. [13], and is defined as follows:

η̃2
R,T :=

(
hT

2

)2

‖�RT ‖2
0,T + ‖RT ‖2

0,T +
∑

E∈∂T

hE

2
‖�R E‖2

0,E , (65)

and η̃R :=
√∑

T ∈Th
η̃2

R,T . We focus on this modified residual estimator η̃R because our computational experience shows that

η̃R is much more accurate than the standard residual estimator ηR . The Z–Z estimator is a popular error estimation strategy:
it is also considered by practitioners to be one the best in terms of its simplicity and reliability, especially when used as a
refinement indicator in a self-adaptive refinement setting.

4.1. Test problem 1: A smooth solution

Our first test problem is hard-wired into the IFISS package [9, problem S4], and the solution is a quartic polynomial:

�u =
(

20xy3

5x4 − 5y4

)
, p = 60x2 y − 20y3. (66)

We solve the problem as an enclosed flow (that is ∂ΩN = ∅) with the boundary data �w given by interpolating the exact
flow solution at the nodes. We could account for the resulting “variational crime” by using the methodology introduced
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Table 1
Comparison of error estimator effectivity.

h e e
η̃R

e
ηP

e
ηZ

1
4 1.0278e+00 5.1508e−01 1.0909e+00 3.7098e+00
1
8 2.5569e−01 4.9210e−01 1.0189e+00 3.2837e+00
1

16 6.3825e−02 4.8148e−01 9.8762e−01 3.0741e+00
1

32 1.5950e−02 4.7638e−01 9.7317e−01 2.9737e+00

Fig. 3. The exact error and estimated errors for test problem 1 with h = 1
16 .

by Ainsworth and Kelly [1], but have not done so in the results reported below.1 The flow problem is solved on a square
domain (−1,1) × (−1,1) using a nested sequence of uniformly refined square grids. The coarsest grid is 8 × 8 and is
associated with a mesh parameter of h = 1/4. To interpret the results that are presented some notation will be needed:

e =
√

|�u − �uh|21 + ‖p − ph‖2
0, (67)

eT =
√

|�u − �uh|21,T + ‖p − ph‖2
0,T , (68)

while eωT is defined analogously to eT . Looking first at Table 1, we see that the global error e is decreasing like O (h2) as
expected. It is also evident that the Poisson problem estimator ηP provides the most accurate estimate of the global error:

e
ηP

is close to one, whereas η̃R is about twice of the exact error and ηZ is about three times smaller than the exact error.
Turning to Fig. 3 we see that all three error estimators seem to be able to correctly indicate the structure of the error,
although the vertical scale may not be very accurate. As might be anticipated from the results in Table 1, the only estimator
that is quantitatively close to the exact error is ηP ,T .

1 This means that the error estimation is inaccurate for elements next to the boundary. These effects are evident in the estimated error plots in Fig. 3.
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Table 2
Comparison of effectivity indices.

h e maxT ∈Th
eT

eωT
maxT ∈Th

η̃R,T
eωT

maxT ∈Th

ηP ,T
eωT

maxT ∈Th

ηZ ,T
eωT

1
4 1.0278e+00 6.3048e−01 1.1261e+00 5.2173e−01 1.9083e−01
1
8 2.5569e−01 6.0283e−01 1.1401e+00 5.2674e−01 2.2408e−01
1

16 6.3825e−02 5.8974e−01 1.1327e+00 5.2173e−01 2.3030e−01
1

32 1.5950e−02 5.8346e−01 1.1261e+00 5.1777e−01 2.3134e−01

Fig. 4. The local effectivities of the exact error and the error estimators for test problem 1 with h = 1
16 .

It is instructive to look at the local error estimates in more detail. In general, if an error estimator is to be efficient then

the constant on the right-hand side of (18) should be bounded. An estimate of this constant (e.g. maxT ∈Th

η̃R,T
eωT

for η̃R ) is

provided in Table 2, where we also estimate this constant for the exact error (maxT ∈Th
eT

eωT
) and refer to it as the “exact

value”. From the table, although maxT ∈Th

η̃R,T
eωT

, maxT ∈Th

ηP ,T
eωT

and maxT ∈Th

ηZ ,T
eωT

all appear to be bounded, only maxT ∈Th

ηP ,T
eωT

is close to the “exact value”.
Ideally, the local effectivity indices (i.e. η̃R,T

eωT
for η̃R ) will be bounded above and below across the whole domain, so

that elements with large errors can be singled out for local mesh refinement. This is assessed in Fig. 4. Looking at the
distribution of these indices it is clear that ηP ,T and η̃R,T are closely aligned with the exact error but the Z–Z estimator is
not. In particular the Z–Z estimator has relatively large local effectivity indices in the “wrong place”, which could lead to
the labelling of elements with small error for adaptive refinement.
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Fig. 5. The Q 2–P 1 solution to test problem 2 with h = 1
16 .

Fig. 6. Estimated distribution of errors for test problem 2 with h = 1
16 .
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4.2. Test problem 2: Channel flow over a backward step

The second example is also hard-wired into the IFISS package [9, problem S2]. The flow domain is (−1,5) × (−1,1) \
(−1,0] × (−1,0]. A zero velocity condition applied at the top and bottom of the channel and fully developed parabolic
velocity profile is specified at the inflow boundary (x = −1). A natural boundary condition applies at the outflow (x = 5).
Unlike the first problem, which has a perfectly smooth solution, this problem has a singularity at the re-entrant corner. We
solve it using Q 2–P 1 approximation with a uniform square mesh (with h = 1

16 ). The computed solution is shown in Fig. 5
and the profiles of the estimated error using our three estimators are shown in Fig. 6. All three have essentially the same
structure—the estimated errors are dominated by the results in the elements close to the singularity. Their magnitudes are
different however: the residual estimator is the largest, the Z–Z estimator is the smallest, and the local Poisson estimator is
in the middle. This is consistent with the results obtained for the first test problem.

5. Conclusion

Our main conclusion is that the solution of local Poisson problems provides a cheap and effective way of estimating
the local discretisation error when solving practical flow problems. Our numerical results make it clear that a global upper
bound and a local lower bound on the approximation error do not automatically lead to an effective error estimator in an
adaptive refinement setting. Although there is a theoretical guarantee that elements with large errors will be flagged by
such an estimator, there is no guarantee that elements that are flagged as having a small discretization error actually have
a small error in reality.
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