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Abstract

Multigrid methods are known to be efficient preconditioners and solvers for linear systems obtained from

discretizing second-order, scalar elliptic problems. Singular perturbations involving these problems (such

as the convection-diffusion equation) introduce new properties into the discrete problem, and this typically

leads to the deterioration in the effectiveness of multigrid methods using standard point smoothers when

close to the perturbation limit. In this paper we propose a new smoothing strategy, based on incomplete

factorisation of truncated matrices arizing in the multigrid hierarchy. The truncation procedure is based

on the heuristics used to determine strong connections in the classical (Ruge-Stüben) algebraic multigrid

method. We report results of tests of the new smoother both for geometric and for algebraic multigrid on

benchmark problems in two and three spatial dimensions.

Keywords: convection-diffusion, preconditioning, ILU, multigrid, Krylov methods.

1 Convection-diffusion problems

This paper is about fast solvers for the convection-diffusion equation. This is a fundamental model for a

number of important physical processes and phenomena in fluid mechanics and electronics. It can arise either

as a stand-alone (scalar) problem, or as a part of more complex systems of partial differential equations (such

as the Navier-Stokes equations, the Boussinesq equations, or the drift-diffusion equations in semiconductor

modelling). The basic problem is: given a convection field ~w : R
d 7→ R

d so that ∇ · ~w = 0 (the “wind”) and a

diffusion parameter ε > 0, we want to find the scalar function u(~x) that satisfies

−ε∇2u + ~w · ∇u = 0 in Ω ⊂ R
d, (1.1)

∗This research was supported by the EPSRC grant no. EP/C534875/1.
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subject to a suitable set of boundary conditions (BCs). The most general form of the BC is given by

β1u + β2
∂u

∂n
= g on ∂Ω, (1.2)

where ∂u
∂n

denotes the normal derivative (the flux) through the domain boundary ∂Ω. In this paper we restrict

attention to the case when β2 = 0 (i.e. u = g on ∂Ω). The equation (1.1) is usually non-dimensionalised with

respect to the characteristic domain length scale L and the magnitude of the wind W (~w = W ~w∗, ‖~w∗‖ = 1)

to give the equivalent problem

−∇2u + Pe ~w∗ · ∇u = 0 in Ω⋆, u = g on ∂Ω⋆. (1.3)

Here, Ω⋆ is a reference domain (with coordinates scaled by L) and Pe = WL
ε

> 0 is a non-dimensionalised

scalar parameter known as the Peclet number. The Peclet number determines the relative contributions of

convection and diffusion in (1.3), see e.g. [7, p. 115]. The convection-dominated case when Pe ≫ 1 is of

primary interest here.

To assure numerical stability when approximating the problem (1.3), the discretization Th of Ω needs

to be refined (or stretched) in the parts of the domain where rapid changes in the solution occur, see [7,

Ch. 3], or [9, pp. 203–206]. If solution features are not resolved (for example on the successively coarser

grids generated using multigrid) then some form of stabilisation must be applied to the discrete problem.

We will adopt such a strategy in a finite element method (FEM) setting in this work. To this end, we

define the solution space H1
E(Ω) =

{

u |u ∈ H1(Ω), u = g on ∂Ω
}

, and construct finite element approximation

spaces H1
0 (Ω) ⊃ Sh

0 = span{φi}n
i=1 and H1

E(Ω) ⊃ Sh
E = span{φj}n+n∂

j=1 . Our stabilized discretization of the

dimensional version of (1.3) can then be stated as follows: find uh ∈ Sh
E such that

ε

∫

Ω

∇uh · ∇vh dΩ +

∫

Ω

(~w · ∇uh)vh dΩ +
∑

K∈Th

δK

∫

K

(~w · ∇uh)(~w · ∇vh) dK

= ε
∑

K∈Th

δK

∫

K

(∇2uh)(~w · ∇vh) dK ∀vh ∈ Sh
0 . (1.4)

The function uh satisfying (1.4) will be referred to as the SUPG FEM solution in the sequel. Note that in

the case of bilinear/trilinear (Q1) approximation on rectangles/bricks the consistency term on the right-hand

side of (1.4) is identically zero. To implement (1.4) we also have to specify the local stabilisation parameters

δK . Herein we follow the construction1 given in [7, p. 132] so that

δK =







hk

2|~wk|

(

1 − 1

Pek

h

)

if Pek
h > 1

0 if Pek
h ≤ 1 .

(1.5)

Here, |~wk| is the ℓ2 norm of the wind at the element centroid, hk is a measure of the element length in the

direction of the wind, and Pek
h := |~wk|hk/(2ε) is the element Peclet number.

In the case of Q1 approximation the linear algebra system corresponding to (1.4) has the following

structure,

(εA + C + S) x̄ = f̄ . (1.6)

In the above, A is the standard Galerkin diffusion matrix aij = (∇φj ,∇φi) and is symmetric and positive

definite; C is the convection matrix cij = (~w ·∇φj , φi), and is skew-symmetric (under the condition ∇· ~w = 0);

S is the streamline-diffusion matrix sij =
∑

K∈Th
δk(~w · ∇φj , ~w · ∇φi)K and is symmetric semi-definite. The

overall coefficient matrix Φ = εA + C + S is not symmetric and is not guaranteed to be diagonally dominant

for large values of Pe ∼ 1/ε.

1This specification has been extensively tested and is embodied in our IFISS software package [22].
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2 Multigrid solvers and multigrid preconditioners

Our aim is to study efficient iterative solver strategies for linear algebra systems of the form (1.6). Throughout

this paper we use the term robust if an iterative solver exhibits consistent performance (measured in terms of

the numbers of iterations), irrespectively of the discretisation parameter h, and independent of the value of

Pe and structure of ~w. An iterative solver is regarded as being black-box if its performance does not depend

on any iteration parameters, or if one can provide a priori parameter values that make the solver robust for a

wide class of problems. An iterative solver is said to be optimal if its execution time and storage requirements

scale linearly (O(n)) with respect to the problem size.

Single grid iterative methods, such as fixed-point iteration, see [21, Ch. 4], are not robust in general,

even when combined with incomplete factorisation—such methods are not able to reduce consistently and

rapidly the entire discrete Fourier spectrum of the solution error, see [3, pp. 13–26]. Robustness typically

requires a multilevel approach, where a nested sequence of progressively finer grids, discrete representations

of the continuous problem on these grids, and the means of communication between these grids are needed to

construct an effective preconditioning/solution scheme. To fix our nomenclature: any such multilevel iterative

scheme that involves full coarsening, direct discretisation of the continuous problem at coarse levels, point

smoother, and full weighting interpolation is called a standard geometric multigrid (GMG) method. Finding

a robust optimal solver for discrete diffusion problems (Pe = 0) is a completely straightforward exercise—the

Conjugate Gradient method with a single V-cycle of GMG as preconditioner is a simple and effective strategy.

Standard multigrid methods are not robust when applied to discretized convection-diffusion problems,

especially for large values of Pe and/or when ~w has a complicated structure (see [7, p. 194]). To address this

issue, two enhancements to standard GMG have been proposed in the literature: modifying the interpolation

procedure [4],[8],[19],[31], and/or modifying the relaxation procedure [1],[17],[4],[8],[10],[14],[16],[19],[27]. In

the latter case effort needs to be be put into reordering the unknowns to take account of the direction of the

wind. For example, in [5] the authors study the effect of different nodal orderings on the performance of Gauss-

Seidel smoothing when applied to a one-dimensional convection-diffusion problem. The results demonstrate a

clear advantage of downwind ordering. Further modifications of standard smoothing techniques for convection-

dominated cases include block Gauss-Seidel methods [16], line Gauss-Seidel smoothing [19], and black-box

downwind reordering of the unknowns [10]. The strategy of downwind nodal ordering is extended in [1] to

cover GMG preconditioning of convection problems discretised with adaptive grids. Further extensions of this

concept can be found in [17]. In [10] a block Gauss-Seidel smoother is considered. To allow easier blocking

of the coefficient matrix, truncation of the convection part of the matrix Φ is introduced (the truncation

procedure is based on the magnitude of the elements, but no specific algorithm or criterion is presented).

In [27] a block Gauss-Seidel solver with blocks ordered in a cross-wind direction is studied for a specific

discretisation of the convection-diffusion problem. In [31] the efficiency study of ordered and line Gauss-Seidel

smoothers for GMG preconditioning of two model problems from [7] is presented.

As noted above, unstabilized FEM may produce oscillatory solutions of convection-dominated problems

on coarse grids even when all the features of the exact solution are properly resolved on the finest grid. This is

a key issue for any GMG preconditioning strategy as the defect equations on the coarse grids do not produce

desired corrections to the solution. This issue can be addressed by the use of a (stable) operator-dependent

interpolation, [32], or by following [19], and using the stabilised approximation method (1.4)–(1.5) when

discretising coarse level operators. Numerical results in [19] show that if this strategy is combined with a

two-directional line Gauss-Seidel smoother then a robust GMG preconditioning strategy is obtained.

This is the motivation for this paper. The objective is to build on the GMG method in [19] and to try

to construct an equally robust algebraic multigrid (AMG) preconditioning strategy. In AMG only a linear

system coefficient matrix is required as an input, and its coarse representations are then constructed in an

automatic coarsening procedure, based on certain heuristic principles. For a more complete discussion see [25,

App. A]. We will restrict attention to so-called “classical AMG” with Ruge-Stüben coarsening in this work.

The challenge that must be faced is that robust smoother strategies for convection-dominated problems are

very difficult to implement within an AMG setting. Robust smoothers developed for convection-dominated

problems usually require explicit knowledge of geometric information. Even when such information is available,
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it is a non-trivial task to implement line/block smoothers efficiently (e.g. in cases when unstructured or

adaptive grids are used). In addition the use of black-box algorithms to compute downwind ordering (such

as Tarjan’s algorithm [24]) may be prohibitively expensive, especially in three dimensions [20]. Incomplete

factorisations (with or without fill-in, see [21, p. 288]) are the obvious alternative to line smoothing. The appeal

of using an ILU0 smoothing for MG preconditioning comes from its effectiveness as a solver/preconditioner

in highly convective cases, see [29], [30], and [26, p. 216]. Our computational experience confirms that ILU0

smoothing is very robust for convection dominated problems. Standard two-grid Fourier analysis in [11]

provides theoretical justification for this assertion. The results in Section 4 also suggest however, that there

may be a simpler, more cost-effective alternative to ILU0 smoothing. The new approach is presented in the

next section.

3 A truncated incomplete factorisation smoothing strategy

The finite difference stencils in [7, pp. 152–154]) highlight the h-dependence of the matrix C and the h-

independence of A in the system (1.6). Thus, the relative contribution of C inside Φ increases when h

increases (i.e. on coarser grids). This implies a loss of the diagonal dominance in Φ as h → ∞ which makes

standard point smoothers progressively more ineffective on coarser grids. This intuition also suggests, however,

that a computationally cheap smoother can be sufficient at fine levels, and a robust (and computationally

more expensive) smoother is needed only at a few coarsest levels. In practice it not going to be possible to

determine the cut-off level in the grid hierarchy when a switch will be beneficial. Thus, instead, we propose

to use a variable smoother which adapts itself to the local strength and characteristics of the convective

field, utilising the matrix stencils at each grid node. The variability is obtained by a static analysis of the

matrix elements at each grid level before the assembly and the application of the smoother. This analysis

gives the information about the “relevant” off-diagonal entries in each matrix row, thus capturing additional

local information about the convective field that may be missed by the standard point smoothers. In our

implementation we adopt a truncation criterion based on the heuristic from classical AMG that quantifies the

strength of dependence. Specifically, our modification consists in keeping a priori the diagonal entry in each

row together with all off-diagonal entries that satisfy the simple dropping test:

|φij | > α max
k

|φik| α ∈ [0, 1]. (3.7)

The level of truncation is thus controlled by the parameter α. The smoother is then defined by applying

the ILU0 method to the truncated matrices at all MG levels. If we also introduce a damping parameter

γ ∈ (0, 1] we can completely characterise our method using the notation tILU0(γ, α). In the two extreme

cases our approach reduces to a damped ILU0 method (for α = 0) and damped Jacobi method (for α = 1).

The method is thus a trade-off between a computationally cheap, but ineffective (for dominant convection)

Jacobi smoother, and a robust, but computationally expensive ILU0 smoother. The new smoother adapts to

the properties of the matrix stencils of Φ, typically truncating the majority of the off-diagonal entries at the

finest levels, whilst keeping progressively more off-diagonal elements at coarse levels (where the application

of the ILU0 method is not prohibitively expensive). The proportion of the off-diagonal elements kept at

a particular level also depends on the structure and the strength of the convection field—more entries are

retained when Pe is increased.

The standard analytical procedure for estimating the contraction factors of different components of the

algebraic error when an iterative solver is applied is discrete Fourier analysis, see [28, Ch. 7]. If a general

splitting Φ = M − N is introduced, then the errors in two successive iterations of x̄[k+1] = x̄[k] + M−1r̄[k]

satisfy ē[k+1] = Eē[k], where E = I − M−1N . The eigenvalue problem Eȳ(θ) = λ(θ)ȳ(θ) associated with the

iteration matrix has the eigenvectors ϕj1,j2 = ei(j1θ1+j2θ2) (i =
√
−1), and θ1, θ2 are the points in the discrete

Fourier space Θ(θ) = [−π, π]2. The eigenvalues λ(θ) can be shown (see [28, p. 113], or [23, p. 14]) to satisfy

λ(θ) =

∑

j N(j)ei(j1θ1+j2θ2)

∑

j M(j)ei(j1θ1+j2θ2)
, θ ∈ Θ, (3.8)
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where j = (j1, j2) and θ = (θ1, θ2). The discrete Fourier space is subdivided into two subspaces: that of

smooth eigenfunctions ΘS(θ) = Θ(θ) ∩
(

−π
2 , π

2

)2
and oscillatory eigenfunctions ΘR(θ) = Θ(θ) \ ΘS(θ).

Fourier analysis is possible in cases when the coefficient matrix stencils are constant. In the case of a

convection-diffusion problem this requirement is fulfilled only in the case of a constant, uni-directional wind.

The results presented here are obtained for the problem with Ω = [−1, 1]2, ~w = (−1, 0), with BCs u = 0 on

∂Ω. The Q1 SUPG FEM discretisation on a uniform Cartesian grid with lexicographical node ordering in

the negative x direction results in a constant 9-point stencil, see [7, p. 154]). The eigenvalues (3.8) for the

tILU(γ, α) method are obtained exactly as in the ILU0 case [28, p. 142], but with a static truncation that

modifies the stencils of M . If Nt = (LU)t − Φt and all statically truncated elements are N∗
t = Φ − Φt, then

we have that N = Nt + N∗
t and the eigenvalues (3.8) are given by

λ(θ) =
N

Nt + (Ft + Gt + d)
, (3.9)

where Ft and Gt are the strictly upper and the strictly lower triangular parts of Φt, respectively, and d is

the diagonal entry. The eigenvalues λ(θ) may be determined analytically in the pure diffusion case, but for

nonzero convection we use a numerical procedure to compute λ(θ). To this end, the Fourier space is covered

by a grid of equidistant points spaced by hθ and (3.9) is computed at each of the points. We report the results

for hθ = 2π
128 , although we performed the computations for several grid sizes to check the convergence. In

Table 3.1 we summarise the values σ = |λ(θ)| for different smoothers obtained for various values of Pe = 2/ε.

Table 3.1: The maximum of the moduli σ = max |λ(θ)| of the eigenvalues of the iteration matrix E for different

smoothers applied to a constant wind convection-diffusion matrix of size n = 3969.

Pe Gauss-Seidel ILU0 tILU0(1, 0.25) Jacobi

0 0.4203 0.1466 0.5 0.5

1000 0.5459 0.3822 0.5811 1.7510

4000 0.8455 0.9739 0.8811 1.9336

The smoothing factors in Table 3.1 are reported with no damping (γ = 1) and are in perfect agreement

with previous results in [7, p. 100], [28, p. 124 & p. 143], and [23, p. 45]. Note the strong dependence of σ on

the Peclet number for a fixed problem size for all smoother strategies. For Pe = 0 the results for Jacobi and

tILU0(1, 0.25) smoother are identical indicating that tILU0(1, 0.25) method reduces to Jacobi in this case.

The values of σ for Gauss-Seidel and tILU0 methods are comparable. It is also interesting to note that the

tILU0 method has a smaller contraction rate than ILU0 for Pe=4000. In Fig. 3.1 we plot the discrete Fourier

spectrum for four different smoothers for Pe=4000 and n = 3969. A visual comparison of the tILU0 plot (c)

with the corresponding plots for Jacobi and ILU0 reveals the hybrid nature of the tILU0 method.

4 Numerical experiments

In this section we present numerical results showing the performance and scalability of MG preconditioned

GMRES with the new tILU0 smoother. We report the GMRES iteration counts using right preconditioning

and a residual reduction of 10−6. The computations are performed using the oomph-lib software package [12],

running on a dual core Intel Xeon CPU 3.60GHz processor architecture equipped with 2 Gb of RAM. We

tested both AMG and GMG, different types of grids (uniform and stretched), different node orderings and

we also varied the structure of the convection field. A comparison of tILU0 and other standard smoothing

techniques (Jacobi, Gauss-Seidel, ILU0) is our primary goal. In the experiments reported we use damped

ILU0, tILU0, and Jacobi smoothing (all with γ = 0.67) and we compare with the standard (undamped)

Gauss-Seidel smoother (γ = 1). These specific choices of γ were identified as being the “best choice” by

extensive testing on a wide range of problems. Full details can be found in [20].
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Figure 3.1: Plots of the eigenvalues λ(θ) (3.9) of the matrix E with N = 3969, Pe=4000 discretised by Q1 SUPG

FEM. The Fourier space [−π, π]2 is discretised by a uniformly spaced grid of points with hθ = 2π

128
. (a) ILU0 smoother;

(b) Jacobi smoother; (c) tILU0(1,0.25) smoother; (d) Gauss-Seidel smoother.

Example 4.1: Double glazing problem [7, p. 119]. This is a well-known benchmark problem that

involves a difficult case of a recirculating wind. It is also a physically relevant problem since it models

enclosed flow scenarios. The convection-diffusion problem (1.1) is posed over the domain Ω = [−1, 1]2,

subject to Dirichlet BCs u(x = 1, y ∈ [−1, 1]) = 1 (hot wall) and u = 0 elsewhere on ∂Ω. The convection

field is given by ~w = (2y(1 − x2),−2x(1 − y2)), thus the Peclet number is given by Pe = 4/ε. The problem

is discretised using Q1 SUPG FEM on a uniform Cartesian product grid. We first study how different nodal

orderings affect the performance of a GMG preconditioner. In this context we study two different ordering

strategies: first, a natural tree-based ordering, which arises when a fine mesh is created by successive uniform

or adaptive refinement of an initial coarse mesh (see [12]), and second, a four–directional lexicographical

ordering (following [7, p. 190]). The convergence results are summarised in Table 4.2 as a function of the

discrete problem size n and the Peclet number. From Table 4.2 (part a) we see that in the case of the

natural ordering, GMG preconditioning with all four smoothers is robust with respect to the discrete problem

size. Note however, that a larger value of Pe leads to a higher iteration count in every case. Looking at

the finest grid column, the tILU0(0.67, 0.25) smoother gives the shortest computation time, but this is only

marginally faster than the ILU0(0.67) and Gauss-Seidel smoother results. The tILU0(0.67, 0.25) and Gauss-

Seidel methods both give comparable convergence when a multi-directional lexicographical nodal ordering
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is used in the case of the smaller value of Pe. Note however, that the Gauss-Seidel smoother deteriorates

significantly for Pe = 8000. The tILU0(0.67, 0.25) is the clear winner in this case, and seems to be the best

preconditioning strategy overall.

Table 4.2: The iteration count and, in brackets, the total execution time (in seconds) for the GMRES method right-

preconditioned by GMG with different smoothers as a function of the problem size n and Peclet number Pe for different

nodal orderings. Example 4.1 is discretised by Q1 SUPG FEM on a sequence of uniform, Cartesian product grids. *

denotes lack of convergence within 200 iterations.

a) Natural (tree-based) ordering, V(2,2) cycle

n 3969 16129 65025 261121 1046529

Pe=2000

ILU0(0.67) 8 (0.46) 8 (1.86) 7 ( 7.52) 7 (30.80) 7 (126.90)

tILU0(0.67, 0.25) 15 (0.47) 15 (1.89) 13 ( 7.37) 12 (29.51) 11 (115.97)

Jacobi(0.67) 67 (0.86) 62 (3.35) 52 (12.62) 48 (50.75) 45 (200.97)

Gauss-Seidel 16 (0.45) 14 (1.86) 13 ( 7.09) 12 (28.78) 12 (117.71)

Pe=8000

ILU0(0.67) 15 (0.55) 15 (2.28) 13 ( 8.97) 12 ( 35.61) 12 (144.93)

tILU0(0.67, 0.25) 36 (0.67) 33 (2.47) 31 ( 9.54) 28 ( 37.86) 26 (138.32)

Jacobi(0.67) 161 (1.99) 154 (7.37) 151 (25.66) 137 (101.23) 129 (381.28)

Gauss-Seidel 39 (0.61) 36 (2.41) 35 ( 9.46) 29 (36.16) 27 (146.25)

b) 4-directional lexicographical ordering, V(4,4) cycle

n 3969 16129 65025 261121 1046529

Pe=2000

ILU0(0.67) 6 (0.57) 5 (2.41) 5 (10.15) 5 (42.70) 5 (178.06)

tILU0(0.67, 0.25) 9 (0.51) 9 (2.17) 8 ( 8.53) 8 (35.17) 7 (138.57)

Jacobi(0.67) 107 (1.09) 99 (4.05) 92 (15.60) 85 (61.65) 79 (241.01)

Gauss-Seidel 11 (0.46) 9 (1.91) 9 ( 8.05) 8 (33.13) 7 (129.87)

Pe=8000

ILU0(0.67) 10 (0.69) 16 (3.89) 22 (20.73) 22 (87.65) 22 (365.50)

tILU0(0.67, 0.25) 22 (0.75) 20 (3.01) 17 (11.78) 16 (48.69) 16 (200.60)

Jacobi(0.67) * * * * *

Gauss-Seidel 31 (0.64) 41 (3.16) 67 (18.81) 74 (86.81) 69 (319.29)

Next we study the performance of the GMG preconditioner with different smoothers for the case of

stretched grids. The solution of Example 4.1 exhibits steep boundary layers near the walls y = −1 and x = 1.

Accurate resolution of these layers requires us to concentrate the grid points close to the boundaries. To

achieve this, a grid stretching procedure from oomph-lib was applied to an initial uniform grid. The iteration

counts obtained with the different smoothers are summarised in Table 4.3. From Table 4.3 we see that both

ILU0(0.67) and tILU0(0.67, 0.25) smoother lead to a GMG preconditioner that performs robustly with respect

to the grid size n and exhibits moderate dependence on Pe (as O(
√

Pe)). It is worth noting that the GMG

preconditioner with the Gauss-Seidel smoother is not robust in the highly convective case.

Next we examine the performance of the AMG preconditioner. We use BoomerAMG [13] from the Hypre

library with standard two-pass Ruge-Stüben coarsening. In this case we study only the default nodal ordering.

In AMG regular coarsening patterns can only be expected for discrete Poisson equation obtained from regular,

tensor-product grids. In the convection cases, the properties of the coarse level matrices can be considerably

different than those of the original matrix, because classical AMG performs a variant of semi-coarsening in

characteristic directions, see [2]. This produces comparably more coarse levels than when full coarsening is

applied to the same problem. Another interesting feature of classical AMG coarsening is that it generates
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Table 4.3: The iteration count and, in brackets, the execution time (in seconds) for the GMRES method right-

preconditioned by GMG with different smoothers as a function of n and Pe. The preconditioner is a V(2,2) cycle

with default (tree-based) ordering. Example 4.1 is discretised by Q1 SUPG FEM on a sequence of stretched Cartesian

product grids (stretching parameter a = 0.9).

n 2209 9025 36481 146689

hmin 0.005729 0.002474 0.001139 0.000545

hmax 0.077604 0.039193 0.019694 0.009871

Pe=2000

ILU0(0.67) 8 (0.26) 7 (1.02) 6 (4.11) 6 (16.68)

tILU0(0.67, 0.25) 9 (0.24) 8 (0.95) 8 (3.85) 7 (15.45)

Jacobi(0.67) 33 (0.34) 31 (1.32) 28 (5.17) 25 (20.55)

Gauss-Seidel 12 (0.24) 11 (0.94) 10 (3.82) 11 (15.70)

Pe=8000

ILU0(0.67) 13 (0.29) 13 (1.21) 12 (4.89) 11 (19.40)

tILU0(0.67, 0.25) 17 (0.28) 16 (1.08) 15 (4.42) 13 (17.24)

Jacobi(0.67) 71 (0.54) 77 (2.25) 74 (8.45) 66 (32.77)

Gauss-Seidel 24 (0.28) 43 (1.42) 71 (7.90) 102 (44.86)

Table 4.4: The iteration count and, in brackets, the total execution time (in seconds) for the GMRES method right-

preconditioned by AMG with different smoothers as a function of n and Pe. The preconditioner is a V(2,2) cycle with

default (tree-based) nodal ordering. Example 4.1 is discretised by Q1 SUPG FEM on a sequence of uniform, Cartesian

product grids. * denotes lack of convergence within 150 iterations.

n 3969 16129 65025 261121 1046529

Pe=8000

ILU0(0.67) 10 (0.14) 10 (0.60) 9 (2.56) 7 (10.11) 6 (40.04)

tILU0(0.5, 0.5) 15 (0.12) 13 (0.48) 12 (1.99) 10 ( 8.02) 9 (32.88)

Jacobi(0.67) 20 (0.12) 16 (0.46) 13 (1.81) 10 ( 6.68) 10 (27.19)

Gauss-Seidel 17 (0.10) 16 (0.47) 14 (1.86) 10 ( 6.97) 10 (28.65)

Pe=40000

ILU0(0.67) 17 (0.18) 20 (0.92) 43 (7.80) * *

tILU0(0.67, 0.5) 27 (0.17) 32 (0.88) 29 (3.68) 25 (14.98) 22 (60.22)

Jacobi(0.67) 41 (0.21) 48 (1.15) 41 (5.00) 33 (18.44) 28 (69.52)

Gauss-Seidel 36 (0.19) 51 (1.18) 70 (8.12) * *

coarse level matrices with larger stencils than the original matrix. By inspection it can be verified that a

substantial proportion of the off-diagonal elements in coarse level matrices are small in magnitude. This

makes them suitable for truncation by (3.7). Extensive testing reveals that tILU0 smoother preserves its

robustness (and consistently produces the shortest execution times) for α = 0.5 and we adopt this value of

the truncation parameter in all the AMG tests reported below.

Table 4.4 summarises the convergence characteristics of GMRES right-preconditioned by a V(2,2) cycle

of AMG as a function of the problem size and the Peclet number. From Table 4.4 we see that for Pe=8000

all smoothers lead to an AMG preconditioner that is robust with respect to the grid size. The picture looks

very different when Pe in increased to 40000 however. Whereas the ILU0(0.67) and Gauss-Seidel smoothers

lose effectiveness, the damped Jacobi and tILU0(0.67, 0.5) smoothers are perfectly robust with respect to grid

refinement.

Example 4.2: Generalised double glazing problem [18]. Next, we consider a three-dimensional

problem where (1.1) is posed over the domain Ω = [0, 1]3 subject to BCs u(x = 1, y ∈ [0, 1], z ∈ [0, 1]) = 1
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(hot wall) and u = 0 elsewhere on ∂Ω. The convection field is given by ~w = (2x(1 − x)(2y − 1)z,−(2x −
1)y(1− y),−(2x− 1)(2y− 1)z(1− z)). An arrow plot of ~w is presented in Fig. 4.2. The Peclet number in this

case is given by Pe = 1/(2ε).

Figure 4.2: The structure of the convective field ~w for Example 4.2.

Here we report the convergence results for Q1 SUPG FEM discretisation of the problem on uniform grids

(adaptively refined grid results can be found in [20]). Convergence results for two different nodal orderings

are reported in Table 4.5. From Table 4.5, part a) we can conclude that all smoothers lead to an optimal

preconditioner with respect to n. Good performance with respect to Pe is obtained when ILU0(0.67) or

tILU0(0.67, 0.25) smoother is used. In contrast, when damped Jacobi is used as a smoother in the highly

convective case, the preconditioned GMRES solver fails to converge within 200 iterations.

Next we examine the performance of AMG preconditioner. We consider only the case of natural nodal

ordering. The main difficulty with the classical (two-pass) Ruge-Stüben coarsening is that it generates

coarse-level operators with considerably larger stencils than that of the coefficient matrix (this is especially

pronounced in three dimensions, see [2]). This makes the ILU0 and Gauss-Seidel smoothers expensive. The

convergence of the GMRES solver right-preconditioned by a V(2,2) cycle of AMG is reported in Table 4.6.

Once again we see the tILU0(0.67, 0.5) smoother is the best strategy in terms of overall computational cost.

To conclude this section, we would like to quantify the savings in computational effort arising from the

truncation heuristic (3.7). A suitable measure for the truncation of matrices in the MG hierarchy is the

truncation ratio defined by

η =

L
∑

ℓ=1

nnz(Ãℓ)

L
∑

ℓ=1

nnz(Aℓ)

, (4.10)

where Ãℓ, ℓ = 1, . . . , L are the truncated matrices at all levels.

In Table 4.7 we present the truncation statistics for a two-dimensional problem for two different values of

Pe and four different values of α. The reported values are the numbers of retained non-zero elements in the

entire grid hierarchy and, in brackets, the percentage of retained elements. Note that for α = 0 we have the

ILU0 method and for α = 1 the Jacobi method (thus, for a 9-point stencil η ∼ 1
9 , i.e. 11%). The truncation

statistics for the case of AMG coarsening are reported for a three-dimensional example in Table 4.8. Note that

the stencil size of the original matrix is 27, so η ∼ 3.7% in Jacobi’s case when full coarsening is used. This

value can be much smaller in the case of AMG coarsening, due to semi-coarsening and much larger stencils in

9



Table 4.5: The iteration count and, in brackets, the total execution time (in seconds) for the GMRES method right-

preconditioned by GMG with different smoothers as a function of n and Pe for different nodal orderings. Example

4.2 is discretised by Q1 SUPG FEM on a sequence of uniform, Cartesian product grids. * denotes lack of convergence

within 200 iterations.

a) Natural (tree-based) ordering, V(2,2) cycle

n 1331 12167 103823 857375

Pe=250

ILU0(0.67) 5 (0.48) 5 (4.04) 5 (32.87) 5 (268.55)

tILU0(0.67, 0.25) 8 (0.45) 8 (3.50) 8 (27.77) 8 (222.99)

Jacobi(0.67) 13 (0.48) 14 (3.87) 12 (29.98) 12 (238.94)

Gauss-Seidel 6 (0.44) 6 (3.45) 6 (27.33) 6 (220.46)

Pe=1000

ILU0(0.67) 7 (0.52) 7 (4.31) 7 (35.51) 7 (290.24)

tILU0(0.67, 0.25) 11 (0.46) 11 (3.62) 11 (28.63) 11 (230.34)

Jacobi(0.67) 45 (0.64) * * *

Gauss-Seidel 10 (0.48) 11 (3.63) 10 (28.60) 10 (230.52)

b) 6-directional lexicographical ordering, V(6,6) cycle

n 1331 12167 103823 857375

Pe=250

ILU0(0.67) 3 (0.67) 3 (6.10) 3 (53.07) 3 (464.59)

tILU0(0.67, 0.25) 4 (0.47) 5 (3.86) 5 (31.35) 5 (252.14)

Jacobi(0.67) 21 (0.49) 22 (3.84) 19 (29.92) 18 (236.27)

Gauss-Seidel 3 (0.46) 4 (3.87) 4 (31.43) 4 (254.25)

Pe=1000

ILU0(0.67) 4 (0.74) 4 (6.77) 4 (59.32) 4 (512.05)

tILU0(0.67, 0.25) 6 (0.51) 6 (4.01) 6 (33.21) 6 (272.91)

Jacobi(0.67) 78 (0.69) * * *

Gauss-Seidel 6 (0.48) 6 (3.96) 6 (32.38) 6 (264.04)

Table 4.6: The iteration count and, in brackets, the total execution time (in seconds) for the GMRES method right-

preconditioned by AMG with different smoothers as a function of n and Pe. The preconditioner is a V(2,2) cycle

with default (tree-based) nodal ordering. Example 4.2.1 is discretised by Q1 SUPG FEM on a sequence of uniform,

Cartesian product grids.

n 1331 12167 103823 857375

Pe=1000

ILU0(0.67) 4 (0.17) 4 (4.24) 5 (65.23) 5 (839.94)

tILU0(0.67, 0.5) 6 (0.09) 7 (1.60) 7 (25.28) 7 (360.94)

Jacobi(0.67) 7 (0.07) 8 (1.56) 7 (22.38) 8 (343.19)

Gauss-Seidel 6 (0.07) 6 (1.35) 7 (23.17) 7 (329.43)

Pe=5000

ILU0(0.67) 6 (0.16) 7(3.75) 7 (80.21) 7 (1550.34)

tILU0(0.67, 0.5) 8 (0.09) 9 (1.53) 9 (21.13) 9 ( 284.68)

Jacobi(0.67) 10 (0.08) 13 (1.73) 13 (24.88) 14 ( 353.83)

Gauss-Seidel 8 (0.07) 10 (1.47) 12 (23.78) 13 ( 368.41)
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Table 4.7: Truncation statistics for Example 4.1 as a function of Pe and the truncation parameter α. The discrete

convection-diffusion operators with n = 261121 is obtained from Q1 SUPG FEM discretisation on a uniform grid. The

results are presented in the format η[%].

Pe α = 0 α = 0.25 α = 0.5 α = 1

2000 3115281 (100) 727545 (23) 440533 (14) 347489 (11)

8000 3115281 (100) 951577 (31) 619169 (20) 347489 (11)

Table 4.8: Truncation statistics for Example 4.2 as a function of Pe and the truncation parameter α. The discrete

convection-diffusion operators with n = 857375 is obtained from Q1 SUPG FEM discretisation on a uniform grid. The

results are presented in the format η[%].

Pe α = 0 α = 0.25 α = 0.5 α = 1

250 100 0.26 0.26 0.26

5000 100 1.00 0.55 0.45

the coarse-level operators. We observe that the tILU0(∗, 0.5) smoother has a computational cost that is very

close to that of the Jacobi smoother.

5 Concluding remarks

A new smoothing methodology for multigrid preconditioning of discrete convection-diffusion problems is

shown herein to be a robust alternative to existing techniques—especially when implemented within an AMG

framework. The asymptotic behaviour with respect to grid size and Peclet number essentially mirrors that of

ILU0 smoothing, but the computational cost is significantly reduced. The new smoother also has favourable

parallelisation properties, similar to those of the simplest Jacobi smoother. Future work will study its efficiency

in the context of “black-box” preconditioning of unsteady Navier-Stokes [15] and Boussinesq [6] flow problems.
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