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Abstract: The stochastic hybrid systems constitute well established classes of realistic
models of hybrid discrete/continuous dynamics subject to random perturbations, autonomous
uncontrollable transitions, nondeterminism or uncertainty. Stochastic reachability analysis is a
key factor in the verification and deployment of stochastic hybrid systems. The encouraging
recent progress prompts us to refine the problem to cover more realistic situations. We
extend the so called constrained reachability problem from the probabilistic discrete case to
stochastic hybrid systems. Then we define mathematically this problem, and we obtain the
reach probabilities as solutions of a boundary value problem. The last problem is well studied
and numerical, even symbolic solutions exist. This characterization is useful in stochastic control,
in probabilistic path planning and for nano-systems.

Keywords: stochastic hybrid systems, reachability, stochastic model checking, holistic
modeling, interdisciplinary verification, aerospace and nano-engineering.

1. INTRODUCTION

Hybrid systems form a class of systems whose behaviors
are characterized by a non-trivial interaction between dis-
crete and continuous dynamics. These systems accurately
model technical systems from automotive industry, aero-
nautics, air traffic control, robotics, and nanotechnology.
Hybrid models are also used frequently in system biology
and medicine, where their features make controllability
and verification more difficult, mostly because of uncer-
tainty, complex continuous dynamics, partial information,
and of the so-called spontaneous transitions. In the case of
open systems, the environment influence produces random
evolutions increasing the complexity of verification and
control problems. To address these issues, randomized
models have been considered and their class is usually
denoted as stochastic hybrid systems. Mathematically, a
stochastic hybrid system can be seen as an interleaving
between a finite or countable family of diffusion processes
(or, sometimes, deterministic dynamical systems only) and
a Markov chain. Modeling and analysis of these systems
have been proved to be a very difficult task, especially from
fundamental mathematical point of view. The stochastic
analysis apparatus, employed to study their probabilistic
properties is complex and rather difficult to manage. This
study involves the ability to combine tools available for
diffusion processes and jump processes, in order to char-
acterize the executions of these systems. The switching
mechanism (governed by a Markov chain in most cases)
between the continuous dynamics of the modes, together
with the interaction between paths and boundaries, make
the studying of the stochastic processes that arise in this
way very difficult and challenging.

Reachability analysis is at the heart of any verification
problem for stochastic systems that discrete or contin-
uous or hybrid discrete/continuous. The standard form
of reachability analysis asks to compute/approximate the
probability of all system paths that start from a given
initial state and visit a target state set. In the discrete case,
this problem is known as probabilistic model checking and
there exist relatively efficient algorithms for solving it. For
continuous and hybrid stochastic systems, the problem is
more difficult and it is only partially solved. Theoretical so-
lutions are based on martingale theory (see Bujorianu et al.
[2003] and Bujorianu et al. [2007]), Bayesian statistics
(as in Bujorianu [2005]), and optimal control (Bujorianu
et al. [2008]). Numerical solutions are mainly based on
interactive particle systems ( Blom et al. [2007]), Monte
Carlo simulations (Krystul et al. [2005]), Markov chain
approximations (Prandini et al. [2006]), and dynamic pro-
gramming (Koutsoukos et al. [2008]).

For practical reasons, the reachability analysis has got
variants by inserting further conditions (constraints). The
constraints can be formulated with respect to time or
states see Baier et al. [2007]. For example, one can ask
to estimate the probability to reach a target state set
in a finite horizon time (time-constrained reachability).
Relative to the states, a variant of reachability analysis
may ask to evaluate the probability to reach a target
set of states by avoiding a given state set (interpreted
as dangerous situations). This problem is important in
planning and stochastic control. From a practical site,
this sort of problems arise from robotics, air traffic con-
trol, or military applications. In this paper, we formulate
and investigate state-constrained reachability problem for



stochastic hybrid systems. We prove that the problem is
solvable. Moreover, for systems that are sufficiently “regu-
lar” (they can be approximated by diffusions), the problem
can be solved symbolically or numerically.

The paper structure is as follows. In the next section,
we present a model of stochastic hybrid systems and
its properties. In Section 3, we present the standard
stochastic reachability problem, followed by the state-
constrained reachability problem. Then in Section 4, we
give some characterizations of the state-constrained reach-
ability probabilities. The paper ends with some final re-
marks.

2. THE COMPUTATIONAL MODEL

We adopt the general stochastic hybrid system model
presented in Bujorianu et al. [2004] and Bujorianu et al.
[2006]. In this subsection the model is described and the
notation is established.

Let Q be a set of discrete states. For each q ∈ Q, we
consider the Euclidean space Rd(q) with dimension d(q)
and we define an invariant as an open subset Xq of Rd(q).
The hybrid state space is the set

X(Q, d,X ) =
⋃
i∈Q
{i} ×Xi

and

x = (i, zi) ∈ X(Q, d,X )

is the hybrid state. The closure of the hybrid state space
will be X = X ∪ ∂X, where ∂X =

⋃
i∈Q{i} × ∂Xi.

It is known that X can be endowed with a metric ρ
whose restriction to any component Xi is equivalent to the
natural Euclidean metric of this component Davis [1993].
Then (X,B(X)) is a Borel space (homeomorphic to a Borel
subset of a complete separable metric space), where B(X)
is the Borel σ-algebra of X. Let B(X) be the Banach space
of bounded positive measurable functions on X with the
norm given by the supremum.
Definition 1. A (general) stochastic hybrid system (SHS)
is a collection

H = ((Q, d,X ), b, σ, Init, λ,R)

where

• Q is a countable set of discrete states (modes);

• d : Q → N is a map giving the dimensions of the
continuous state spaces;

• X : Q→ Rd(.) maps each q ∈ Q into an open subset Xq

of Rd(q);

• b : X(Q, d,X )→ Rd(.) is a vector field;

• σ : X(Q, d,X ) → Rd(·)×m is a X(·)-valued matrix,
m ∈ N,

• Init : B(X)→ [0, 1] is an initial probability measure on
(X,B(X));

• λ : X(Q, d,X )→ R+ is a transition rate function;

• R : X × B(X)→ [0, 1] is a transition measure.

A stochastic hybrid process, describing the evolution of a
SHS, is built as a Markov string H - see Bujorianu et al.
[2006] - which is obtained by the concatenation of some
diffusion processes (zit), i ∈ Q together with a jumping
mechanism given by a family of stopping times (Si). Let
ωi be a diffusion trajectory, which starts in (i, zi) ∈ X.
Let t∗(ωi) be the first hitting time of ∂Xi of the process
(xit). Define the function

F (t, ωi) = I(t<t∗(ωi)) exp(−
t∫

0

λ(i, zis(ωi)))ds.

This function will be the survivor function for the stopping
time Si associated to the diffusions (zit).
Definition 2. (SH process). A stochastic process

xt = (q(t), z(t))

is called a stochastic hybrid (SH) process if there exists a
sequence of stopping times

T0 = 0 < T1 < T2 ≤ . . .

such that for each k ∈ N,

• x0 = (q0, z
q0
0 ) is a Q × X-valued random variable

extracted according to the probability measure Init;

• For t ∈ [Tk, Tk+1), qt = qTk
is constant and z(t) is a

solution of the stochastic differential equation (SDE):
dz(t) = b(qTk

, z(t))dt+ σ(qTk
, z(t))dWt

where Wt is the m-dimensional standard Wiener process;

• Tk+1 = Tk + Sik where Sik is chosen according with the
survivor function (2).

• The probability distribution of x(Tk+1) is governed by
the law R

(
(qTk

, z(T−k+1)), ·
)
.

It can be shown that any SH process corresponding to an
SHS H, under standard assumptions (about the diffusion
coefficients, non-Zeno executions, transition measure, etc,
see Bujorianu et al. [2006] for a detailed presentation) is a
strong Markov process (see the definition, for example, in
Ethier et al. [1986] or in Grimmett et al. [1982]). Let

M = (Ω,F ,Ft, xt, Px)

be the Markov process associated to H, where (Ω,F),
{xt} is a collection of X-valued random variables, {Ft}
is the natural filtration of the process (the ‘history’ of
the process). The meaning of the elements of M can be
found in any source treating continuous-parameter Markov
processes (for e.g. Blumenthal et al. [1968] or Ethier et al.
[1986] or Davis [1993]). We adjoin an extra point ∆ (the
cemetery) to X as an isolated point,

X∆ = X ∪ {∆}.

The existence of ∆ is assumed in order to have a proba-
bilistic interpretation of

Px(xt ∈ X) < 1,

i.e. ∆ is the state where the process lies when it ‘dies’.
Then, the ‘termination time’ ζ(ω) is the random time when
the process M escapes to and is trapped at ∆.



The semigroup of operators associated to M , denoted by
P = (Pt)t>0

maps B(X) into itself, and it is given as
Ptf(x) = Exf(xt),∀x ∈ X,

where Ex is the expectation w.r.t. Px.

Recall that a nonnegative function f ∈ B(X) is called
α-excessive (α ≥ 0) (see Blumenthal et al. [1968]) if

(i) e−αtPtf ≤ f for all t ≥ 0, and

(ii) e−αtPtf ↗ f as t↘ 0.

If α = 0, a 0-excessive function is simply called excessive
function. Let us denote the cone of excessive functions
by EM . In the theory of Markov processes, the excessive
functions play the role of the superharmonic functions
from the theory of partial differential equations (for e.g.
a function f ≥ 0 is superharmonic w.r.t. the Laplace
operator if ∆f ≤ 0). Note, that the definition of excessive
function can be given in terms of the operator resolvent U ,
which is the Laplace transform of P.

The operator resolvent U = (Vr)r≥0 associated with P is

Vrf(x) =

∞∫
0

e−rtPtf(x)dt,

for all f ∈ B(X), x ∈ X.
The infinitesimal generator L is the derivative of Pt at
t = 0. Let D(L) ⊂ Bb(X) be the set of functions f for
which the following limit exists (denoted by Lf)

lim
t↘0

1
t
(Ptf − f)

The following result, proved in Bujorianu et al. [2006],
is essential for the mathematical study of reachability
properties.
Proposition 1. Under the standard assumptions the stochas-
tic hybrid process M defined above is a Borel right process
with the cadlag property.

Recall that a Borel right process is defined by the following
properties:

(i) its sample paths t → xt are right-continuous almost
sure.

(ii) X is a separable metric space homeomorphic to a Borel
subset of some compact metric space, equipped with Borel
σ-algebra B(X) or shortly B (i.e. X is a Lusin state space).

(iii) The operator semigroup of M , given by (2), maps
B(X) into itself.

(iv) If f is an α-excessive function for P, then the sample
path t → f(xt(ω)) is a.s. right continuous (this property
is equivalent with the fact M is a strong Markov process).

The sample paths of M are right continuous with left limit,
i.e. are cadlags - see Bujorianu et al. [2006]. Moreover, the
cadlag property added to the fact that the state space is
a Lusin space, which insures a ‘tightness’ property of this
right process, that it is concentrated on compacts.

The infinitesimal generator of an SHS is an integro-
differential operator. In Bujorianu et al. [2004], it has been
proved, that the extended generator of an SHS has the
following expression:

Lf(x) = Lcontf(x) + λ(x)
∫
X

(f(y)− f(x))R(x, dy) (1)

where Lcontf(x) has the standard form of the diffusion
infinitesimal operator. What makes this generator different
from the generator of a Feller Markov process (see Ethier
et al. [1986]) is its domain that contains at least the set
of second order differentiable functions that satisfy the
boundary condition, as follows:

f(x) =
∫
X

f(y)R(x, dy), x ∈ ∂X.

In the presence of forced jumps, the generator of an SHS is
an operator that is difficult to deal with, since its domain
does not even contain the set of all compactly supported
C∞ functions.

3. STOCHASTIC MODEL CHECKING

3.1 Stochastic Reachability

Let us consider an SH process M = (Ω,F ,Ft, xt, Px)
which is strong right Markov. The verification problem
consists of the following stochastic reachability problem.
Given a target set, the objective of the reachability prob-
lem is to compute the probability that the system trajec-
tories from an arbitrary initial state will reach the target
set.

Formally, given a set A ∈ B(X) and a time horizon T > 0,
let us define :

ReachT (A) = {ω ∈ Ω | ∃t ∈ [0, T ] : xt(ω) ∈ A} (2)

Reach∞(A) = {ω ∈ Ω | ∃t ≥ 0 : xt(ω) ∈ A}. (3)
These two sets are the sets of trajectories of M , which
reach the set A (the flow that enters A) in the interval
of time [0, T ] or [0,∞). The reachability problem consists
of determining the probabilities of such sets. Since the
process M is Borel right process and has the cadlag
property, the reachability problem is well-defined, i.e.
ReachT (A), Reach∞(A) are indeed measurable sets - see
Bujorianu et al. [2003]. Then the probabilities of reach
events are

P (TA < T ) or P (TA < ζ)

where ζ is the life time of M and TA is the first hitting
time of A :

TA = inf{t > 0|xt ∈ A}

and P is a probability on the measurable space (Ω,F) of
the elementary events associated to M . P can be chosen
to be Px (if we want to consider the trajectories that start
in x) or Pµ (if we want to consider the trajectories that
start in with an initial condition given by the distribution
µ). Recall that

Pµ(A) =
∫
Px(A)dµ,A ∈ F .



Remark 1. The probability P (TA < T ), which is the
probability of (2) can be thought of as a time-constrained
reachability probability.

Denote by PA the hitting operator associated to the
underlying Markov process (xt), i.e.

PAv = Ex{v ◦ xTA
|TA < ζ}

and TA is given by (3.1).

The following fundamental result of stochastic model
checking was proved in Bujorianu et al. [2007].
Proposition 2. For any x ∈ X and Borel set A ∈ B(X),
we have

ϕA(x) = Px[Reach∞(A)] = PA1(x).

In the next subsection, we will introduce the state con-
strained reachability probability.

3.2 State-Constrained Reachability

State-constrained reachability analysis denotes a reacha-
bility problem with additional conditions (constraints) on
the system trajectories. Let us consider A,B two measur-
able sets of the state space X with disjoint closures, i.e.
A,B ∈ B(X) and A∩B = ∅. We consider two fundamental
situations. Suppose that the system paths start from a
given initial state x and we are interested in a target state
set, let say B. These trajectories can hit a state set A or
not. Therefore, we may define two new concepts:

• Obstacle avoidance reachability. In this interpreta-
tion B is a safe set, whilst A is not. The goal is
to compute the probability pA

c

B (x) of all trajectories
that start from a given initial state x and hit the set
B without hitting the state set A (as illustrated in
Fig.1).

• Waypoint reachability. In this interpretation we are
intrested to compute the probability pAB(x) of all tra-
jectories that hit B only after hitting A (as illustrated
in Fig.2).

The connection between the two types of stochastic reach-
ability is given by the formula

pA
c

B (x) + pAB(x) = ϕB(x)

where ϕB is the reachability function for the target set
B given by formula (2). Therefore, the computability of
the two types of reachability is equivalent. For technical
reasons, it is more convenient to work with the waypoint
reachability, which will be called from now on just simply
state-constrained reachability.

Fig. 1. Obstacle avoidance reachability

Now we consider the executions (paths) of the stochastic
hybrid process that start in x = (q, z) ∈ X. When we

Fig. 2. Waypoint reachability

investigate the state-constrained reachability, we ask the
probability that these trajectories visit A before visiting
eventually B. Mathematically, this is the probability of

{ω|xt(ω) /∈ B, t ≤ TA}.

Moreover, using the first hitting time TB of B, we are
interested to compute

p(x) = Px[TA < TB ]

4. A QUALITATIVE STUDY OF STOCHASTIC
MODEL CHECKING

It is known that the theory of Markov processes is in-
timately connected with the mathematical physics - see
Blumenthal et al. [1968]. In potential theory, the physical
interpretation of the state-constrained reachability proba-
bility considered in this paper is related to the condenser
problem - see Blieder et al. [2004] and Chung et al. [1977].
This is described as follows: suppose we are given two
disjoint compact conductors A,B in the Euclidean space
R3 of positive capacity Ohtsuka [1975]. A positive electric
unit charge placed on A and a negative unit charge on
B, both allowed to distribute freely on the respective sets,
will find a state of equilibrium, which is characterized on
the one hand by minimal energy, and on the other hand
by constant potential on A and on B (possibly taking out
exceptional sets of zero capacity).

Then we have the following characterization.

Proposition 3. The state-constrained reachability proba-
bility p has the following properties:

(i) 0 ≤ p ≤ 1 a.e. on X,

(ii) p = 0 a.e. on B, and p = 1 on A,

(iii) p is the potential of a signed measure ν such that the
support of ν+ is contained in A and the support of ν− is
contained in B.

We can write, in a more compact manner

p(x) =

{
Px[TA < TB ] if x /∈ A ∪B
1 if x ∈ A
0 if x ∈ B

An inclusion-exclusion argument leads to the following
formula

p(x) = Px(TA < TB)
= PA1(x)− PBPA1(x) + PAPBPA1(x)− ...

Proposition 4. Let pn = (PAPB)nϕA, where ϕA is given
by (2). Then

p =
∞∑
n=0

(pn − PBpn).



Proof. Each pn is an excessive function, bounded by 1,
and PBpn ≤ pn. Therefore,

pn − PBpn ∈ [0, 1].

Let us set T0 := 0 and T1, T2, T3, ... are the times of the
successive visits to A, then to B, then back to A, and so
on. Formally, these times are defined as:

T1 : = TA

T2 : = TA + TB ◦ θTA

...

T2n+1 : = T2n + TA ◦ θT2n

T2n+2 : = T2n+1 + TB ◦ θT2n+1

An induction argument shows that
PT2n

= (PAPB)n, n ∈ N.

Then, it can be easily checked that
Px[TA < TB , T2n+1 ≤ L ≤ T2n+2] = pn(x)− PBpn(x)

where L is the last exit time from A, i.e.
L = LA = sup{t > 0|xt ∈ A}.

L is a.e. finite because usually we suppose that our process
is transient, in the sense that if it enters a set then it must
leave it also.
Theorem 5. State-constrained reachability probability p
solves the following boundary value problem:

Lp(x) = 0 x ∈ X\(A ∪B)
p(x) = 1 x ∈ A
p(x) = 0 x ∈ B.

where L is the infinitesimal generator of the stochastic
hybrid process given by (1).

This is the main theorem about the characterization of
the state-constrained reachability. The theorem can be
proved for Borel right processes that are SH processes.
Stochastic hybrid processes have a continuous dynamics
given by some diffusion processes, and a discrete dynamics
described by a Markov chain. Therefore, the proof is
a consequence of the following two lemmas, which are
instantiations of the theorem for Brownian motion and
Markov chains. We have not found the proofs in any
monograph of stochastic processes - for example Grimmett
et al. [1982], therefore we sketch these proofs in the
following.
Lemma 6. Let us consider a (discrete time, discrete state)
Markov chain (Xt) with the state space Γ and the one-
step transition function p1(x, y) Given two disjoint sets
A,B ⊂ Γ. Then the state-constrained reachability proba-
bility p (x) is the solution of the boundary value problem

(1− p1)p(x) = 0 x ∈ Γ\(A ∪B)
p(x) = 1 x ∈ A
p(x) = 0 x ∈ B.

Remark 2. For a discrete discrete space Markov chain, it
is known that its infinitesimal generator is given by

L = 1− p1

Proof. If x /∈ A ∪ B, we make the elementary remark
that the first step away leads either to B, and the event

{TA < TB} fails to happen, or to A, in which case the event
happens, or to another point y /∈ A∪B, in which case the
event happens with probability Py[TA < TB ]. Therefore,
we obtain

Px[TA < TB ] =
∑
y∈A

p1(x, y) +
∑

y/∈A∪B

Py[TA < TB ].

Then for x /∈ A ∪B, we obtain

p(x) =
∑
y∈Γ

p1(x, y)p(y).

That ends the proof.
Lemma 7. Let us consider W the standard d-dimensional
Wiener process. Let A,B be two disjoint capacitable sets

(see Sion [1963] for full definition) of non-zero capacity
such that A ∪ B is closed. The reachability probability
p(x) satisfies the Laplace problem

∇2p(x) = 0

on X − (A ∪B) with the boundary condition

p(x) =
{

1 if x ∈ A
0 if x ∈ B

Proof. . Let x ∈ X−(A∪B) and H a ball of radius h and
surface S in X − (A∪B) centred in x. Define the random
variable T = inf{t|xt(ω) ∈ S}. This has the property that
Px[T <∞] = 1. Let Hi = {|W (i)−W (i−1)| ≤ 2h}. Then
Px(A1) < 1 and lim

n→∞
Px[T > n] = 0. This results from

the inequality Px[T > n] ≤ Px(A1 ∩ ... ∩An) = Px(A1)n.

We have

p(x) =
∫
y∈S

Px[TA < TB |W (T ) = y]f(y)dS.

where f(y) = 1/|S| is the density function. This means
that

p(x) =
∫
y∈S

p(y)/|S|dS.

5. CONCLUSIONS

In this paper, the stochastic reachability problem for
stochastic hybrid systems has been specialized by intro-
ducing constraints relative to the state space. We have
proved that the state-constrained stochastic reachability
is solvable

The natural next step will be to derive numerical approx-
imation algorithms and to study their complexity. In a
future work, we intend to apply our approach to problems
in the areas of control engineering and path planning.

An immediate problem in control engineering can be
defined as follows. Suppose that the probability of reaching
a target set by avoiding a dangerous state set, for a given
control strategy, is quite small. That means a new control
strategy needs to be defined in order to maximize this
probability, i.e. smarter method has to be found to avoid
danger by obtaining the objective.



An application at hand is for autonomous aerial vehicles
(UAVs) in a combat situation. The interpretation of the
state-constrained reachability is quite obvious. Once a
hostile area (perhaps an artillery unit) is discovered, the
flying robot has to estimate if the current planned tra-
jectory and its possible perturbations will visit the target
area by avoiding the hostile one. When this estimation
is pessimistic (with small probability), then an avoidance
strategy should be applied.

This work is part of a more general programme called
Hilbertean Formal Methods (we refer the reader to the
manifesto paper Bujorianu [2007] and the most recent
development Bujorianu [2009]). The Hilbertean formal
methods combine the formal approach from software en-
gineering with methods from continuous mathematics to
investigate qualitative properties of hybrid, embedded or
control systems. It models uniformly the deterministic
and the stochastic systems, and the verification methods
rely on the stochastic model checking, as developed in
this paper. There are good reasons for scaling the model
checking of stochastic hybrid systems to complex systems
like the cyber-physical systems. The cyber-physical systems
are defined as networks of functional units that involve a
tight interaction of physics and computation. The inter-
action can take the form of control, activity coordination,
resource management, and so on.
The connection between hybrid system reachability and
mathematical physics gets an ad litteram interpretation
in nano-technology. The future nano-systems (we refer the
reader to the comprehensive monograph Hornyak et al.
[2008]) will be self-assembled (and thus subjects to many
defects), deployed in very harsh environments and their
behavior will be random and error prone. The nano-robots
deployed in critical situations (like drugs carriers or viruses
killers) will need to be safety verified, and most of the clas-
sical verification methods are not applicable in a context
of a high uncertainty and fault tolerance.
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