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Large Deviation Methods for Stochastic Reachability

Manuela L. Bujorianu, Hong Wang

Abstract— In this paper, we propose to find upper/lower
bounds for different measures that characterize the reachability
problem defined in the context of stochastic hybrid systems,
using the theory of large deviations. For stochastic hybrid
processes, criteria for large deviation results are given using
properties of their infinitesimal generators.. This represents
just the first step towards applying large deviation methods for
stochastic hybrid systems for treating new topics like robust
control, metastability, performance analysis.

Keywords: stochastic hybrid systems, reachability, large
deviations, Markov processes.

I. INTRODUCTION

Stochastic hybrid systems (SHS) are a class of non-linear
stochastic continuous time/space hybrid dynamical systems.
For these systems different models have been developed
by many researchers in the field of hybrid systems. These
models can be used to analyse and design complex em-
bedded systems that operate in the presence of variability
and uncertainty, and incorporate complex (hybrid/stochastic)
dynamics, randomness, multiple modes of operations. Un-
der some natural assumptions on their parameters, their
behaviour can be described by stochastic processes having
good properties. The verification problem for such systems
consists in reachability analysis. The aim of reachability
analysis is to determine the probability that the system will
reach a set of desirable/unsafe states, and the difficulty
of this problem comes from the interaction between dis-
crete/continuous dynamics and the active boundaries.

In the literature, for deterministic hybrid systems there
exist different methods to deal with the reachability problem.
The most used methods are based on optimal control (Hamil-
ton Jacobi equations) such that the computational issues are
solved using dynamic programming. As well, reachability
problem for hybrid systems can be thought of as an exit
problem from a given domain. This also involves solving
a standard Hamilton-Jacobi-Bellman equation over this set
and possibly pieces of its boundary with rather complicated
boundary conditions (see the discussions from [17] and the
references therein).

In the SHS framework, it has been proved that aiming to
tackle stochastic reachability as an optimal control problem
could be a very challenging and difficult task. The main
explanation for this difficulty can be found in the structure of
the stochastic processes that describe the behaviour of SHS.
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These processes are Markovian processes with piecewise
continuous paths. Their discontinuities are describe by some
spontaneous jumps (in a Poisson style) and forced jumps
dictated by some guards. In mathematics these forced jumps
are called predictable jumps. Their presence leads to some
discontinuities of the transition probabilities of the Markov
processes considered in this context. The main problem
comes from the fact that the dynamic programming theory
for the Markov processes (that describe the behaviour of
SHS) with predictable jumps is not fully understood and
developed. In most cases, dynamic programming methods
are applied locally to these processes where they behave
nicely like some diffusion processes or, more general, Feller-
Markov processes [16].

For SHS, the stochastic reachability problem means to
compute the probability of the set of those traces that start
with a given probability distribution and hit in a finite/infinite
horizon time a target set. In many papers, the standard
methodology to approach this problem is to approximate
the stochastic process that corresponds to the given hybrid
system by simpler processes (like Markov chains) and then
to derive convergence results for the reach set probabilities.
Also, from a computer science perspective, Markov chain
approximations are desirable for probabilistic model check-
ing. Due to the complexity of such models, the Markov chain
approximations suffer from state space explosion (see [16]
and discussions therein). Then, at this point we are won-
dering what kind of approximations suit better to stochastic
hybrid processes. Stochastic hybrid processes are jump type
Markov processes. From the control theory and stochastic
analysis perspectives, it seems that such processes are better
studied using diffusion approximations [13]. Then the scope
of approximations in this case is to “smooth” the process.
For diffusion processes, very rich and powerful stochastic
analysis tools are available. A natural research idea that
comes from this debate is to develop “smooth” approxi-
mations for stochastic hybrid processes that can conduct to
useful numerical methods for the computation of the reach
set probabilities. But what is the meaning of “smooth” in
this context? Intuitively, considering the discussions from
the previous paragraph regarding the behaviour of SHS,
“smooth” means that the forced transitions are removed.
It is important to point out here that the first step in this
direction has been done in [1]. It is not the aim of this work
to extend [1], or to provide alternative methods for these
smooth approximations. The main problem is to find the
appropriate characterizations of the stochastic reachability,
which, in an approximation scheme chosen “carefully” could
be used straightforward to obtain convergence results.



In this paper, we characterize stochastic reachability using
expectations of the hitting times for the target sets. The main
idea is that the reachability problem can be treated as an exit
problem. In the first case, it can be proved that the reach
set probability is exactly the expectation of the probabilistic
event that the first hitting time of the target set (or the
exit time from the complement of this set) is less than the
horizon time. The quantities involved can be characterised
as solutions for some appropriate Hamilton Jacobi equations
[10].
In the mathematical literature, the problem of computing
the escape rate and of the probability distribution of the
escape points on the boundary of a given domain is referred
to as Kolmogorov’s exit problem. The first result on this
problem seems to be the “Large Deviation Theory (LDT)”
result of Wentzell and Freidlin [11]. Large deviation is a
part of probability theory that provides asymptotic estimates
for probabilities of rare events. Roughly speaking, LDT
concerns itself with the exponential decay of the probability
measures of certain kinds of extreme or tail events, as the
number of observations grows arbitrarily large. A unifying
framework for the LDT has been developed by S.R.S.
Varadhan [20]. A rather general singular perturbation method
for the calculation of both the escape rate and the escape
distribution was introduced in [19]. The method of [19] was
based on the construction of uniform asymptotic expansions
of the solutions of the mean first passage time equation and
of the stationary Fokker-Planck equation. For jump Markov
processes an asymptotic method has been developed in [15].
There exists a very rich literature [9] regarding the asymp-
totic estimations for exit time probabilities associated with
different classes of Markov processes. This provides us
techniques, ideas and methodologies that can help in dealing
with the exit problems for SHS. Moreover, many of these
classes of Markov processes can be considered particular
stochastic hybrid processes (Markov processes with Levy
generators, dynamical systems driven by some Markov jump
processes, jump-diffusions). The main goal in these paper is
to consider asymptotic expansions of certain expectations of
the Markov processes under study and to find upper/lower
bounds or exact analytical solutions of quantities of interest
(mean exit times, quasistationary distributions, Feynman-Kac
functionals). The techniques are based on results from LDT.
Then, in the framework of SHS, a natural idea is to consider
a family of scaled processes with respect to some ε > 0
(asymptotic approximations) for a stochastic hybrid process
satisfying the hypotheses of LDT and to derive results for
reach set probabilities.

II. PRELIMINARIES

A. Markov Processes

Let us consider M = (xt, Px) a Markov process with
the state space X . A Markov process retains no memory of
where it has been in the past. Standard definitions can be
find in any textbook [7]. We adjoin an extra point ∆ (the
cemetery) to X as an isolated point, X∆ = X ∪ {∆}. The
existence of ∆ is assumed in order to have a probabilistic

interpretation of Px(xt ∈ X) < 1, i.e. at some ‘termination
time’ ζ(ω) when the process M escapes to and is trapped at
∆.
X is equipped with Borel σ-algebra B(X) or shortly B.

Consider the set B(X) of bounded real measurable functions
defined on X , which is a Banach space with the sup-norm
||ϕ|| = supx∈X |ϕ(x)|, ϕ ∈ B(X). Suppose we have given
a σ-finite measure µ on (X,B).

The semigroup of operators P = (Pt) is given by

Ptf(x) = Exf(xt) =
∫
f(y)pt(x, dy), t ≥ 0 (1)

where Ex is the expectation with respect to Px and pt(x,A),

x ∈ X , A ∈ B represent the transition probabilities, i.e.
pt(x,A) = Px(xt ∈ A). The semigroup property of (Pt)
can be derived from the Chapman-Kolmogorov equations
satisfied by the transition probabilities. The infinitesimal
generator of M , denoted by L, is the derivative of Pt at
t = 0. Let D(L) ⊂ Bb(X) be the set of functions f for
which the following limit exists (denoted by Lf )

lim
t↘0

1
t
(Ptf − f) (2)

In most cases, the operator semigroup can be itself charac-
terized by its infinitesimal generator. When D(L) is large
enough, the infinitesimal generator captures the law of the
whole dynamics of a Markov process and provides a tool to
study the Markov process.

The operator resolvent V = (Vα)α≥0 associated with P
is the Laplace transform of the semigroup.

A quadratic form E can be associated to the generator
of a Markov process in a natural way. Let L2(X,µ) be the
space of square integrable µ-measurable extended real valued
functions on X , w.r.t. the natural inner product < f, g >µ=∫
f(x)g(x)dµ(x).

Quadratic form E :

E(f, g) = − < Lf, g >µ, f ∈ D(L), g ∈ L2(X,µ) (3)

(3) defines a closed form. This leads to another way of
parameterizing Markov processes. Instead of writing down a
generator one starts with a quadratic form. As in the case of
a generator it is typically not easy to fully characterize the
domain of the quadratic form. For this reason one starts by
defining a quadratic form on a smaller space and showing
that it can be extended to a closed form in subset of L2(µ).
When the Markov process can be initialized to be stationary,
the measure µ is typically this stationary distribution (see
[7], p.111). More generally, µ does not have to be a finite
measure.

A coercive closed form is a quadratic form (E , D(E)) with
D(E) dense in L2(X,µ), which satisfies the:

(i) closeness axiom, i.e. its symmetric part is positive
definite and closed in L2(X,µ), (ii) continuity axiom.
E is called Dirichlet form if, in addition, it satisfies the

third axiom:
(iii) contraction condition, i.e. ∀u ∈ D(E), u∗ = u+∧1 ∈

D(E) and E(u± u∗, u∓ u∗) ≥ 0.



For a the general theory of closed forms associated with
Markov processes see [18]. Let (L, D(L)) be the generator

of a coercive form (E , D(E)) on L2(X,µ), i.e. the unique
closed linear operator on L2(X,µ) such that 1 − L is
onto, D(L) ⊂ D(E) and E(u, v) =< −Lu, v > for all
u ∈ D(L) and v ∈ D(E). Let (Tt)t>0 be the strongly
continuous contraction semigroup on L2(X,µ) generated
by L and (Gα)α>0 the corresponding strongly continuous
contraction semigroup (which exist according to the Hille-
Yosida theorem). A right process M with the state space X
is associated with a Dirichlet form (E , D(E)) on L2(X,µ)
if the semigroup (Pt) of the process M is a µ-version1 of
the form semigroup (Tt).

III. STOCHASTIC HYBRID SYSTEMS

We adopt the General Stochastic Hybrid System model
presented in [4]. This subsection describes the model and
establishes the notation.

Let Q be a set of discrete states. For each q ∈ Q, we
consider the Euclidean space Rd(q) with dimension d(q) and
we define an invariant as an open subset Xq of Rd(q). The
hybrid state space is the set X(Q, d,X ) =

⋃
i∈Q{i} × Xi

and x = (i, zi) ∈ X(Q, d,X ) is the hybrid state. The
closure of the hybrid state space will be X = X ∪ ∂X,
where ∂X =

⋃
i∈Q{i} × ∂Xi. It is known that X can be

endowed with a metric ρ whose restriction to any component
Xi is equivalent to the usual component metric [7]. Then
(X,B(X)) is a Borel space (homeomorphic to a Borel subset
of a complete separable metric space), where B(X) is the
Borel σ-algebra of X . Let B(X) be the Banach space of
bounded positive measurable functions on X with the norm
given by the supremum.

A (General) Stochastic Hybrid System (SHS) is a collec-
tion

H = ((Q, d,X ), (b, σ), µ0, (λ,R))

where
• (Q, d,X ) describes the hybrid state space: Q is a count-
able/finite set of discrete states (modes); d : Q → N is a
map giving the dimensions of the continuous state spaces;
X : Q→ Rd(.) maps each q ∈ Q into an open subset Xq of
Rd(q);
• (b, σ) provides the coefficients of the diffusion part (con-
tinuous dynamics in modes): b : X(Q, d,X ) → Rd(.) is a
vector field; σ : X(Q, d,X ) → Rd(·)×m is a X(·)-valued
matrix, m ∈ N,
• µ0 is the initial probability measure defined on (X,B(X));
• (λ,R) gives the jumping mechanism: λ : X(Q, d,X ) →
R+ is a transition rate function; R : X × B(X) → [0, 1] is
a stochastic kernel that provides the post-jump location.

The realization of an SHS is built as a Markov string [4]
obtained by the concatenation of the paths of some diffusion
processes (zit), i ∈ Q together with a jumping mechanism
given by a family of stopping times (Si).

1I.e., for all f ∈ L2(X,µ) the function Ptf is a µ-version (differs on a
set of µ-measure zero) of Ttf for all t > 0.

A stochastic process xt = (q(t), z(t)) is called an SHS
realization if there exists a sequence of stopping times T0 =
0 < T1 < T2 ≤ . . . such that for each k ∈ N,
• x0 = (q0, z

q0
0 ) is a Q×X-valued random variable chosen

according to the probability distribution µ0;
• For t ∈ [Tk, Tk+1), qt = qTk

is constant and z(t) is a
solution of the stochastic differential equation (SDE):

dz(t) = b(qTk
, z(t))dt+ σ(qTk

, z(t))dWt (4)

where Wt is a the m-dimensional standard Wiener process;
• Tk+1 = Tk + Sik where Sik is chosen according to the
survivor function F .
• The post jump location x(Tk+1) is sampled according to
the probability distribution R

(
(qTk

, z(T−k+1)), ·
)
.

The realization of any SHS, H , under standard assump-
tions (about the diffusion coefficients, non-Zeno executions,
transition measure, etc, see [4] for a detailed presentation) is
a strong Markov process. Let M = (Ω,F ,Ft, xt, Px) be the
strong Markov process associated to H . The sample paths
of M are right continuous with left limit, i.e. cadlags.

Given a function f ∈ C1(Rn,R) and a vector field
b : Rn → Rn, we use Lbf to denote the Lie derivative
of f along b given by Lbf(x) =

∑n
i=1

∂f
∂xi

(x)fi(x). Given
a function f ∈ C2(Rn,R), we use Hf to denote the Hamilto-
nian operator applied to f , i.e. Hf (x) = (hij(x))i,j=1...n ∈
Rn×n, where hij(x) = ∂2f

∂xi∂xj
(x). AT denotes the transpose

matrix of a matrix A = (aij)i,j=1...n ∈ Rn×m and Tr(A)
denotes its trace. The infinitesimal generator of an SHS is
an integro-differential operator. The extended generator of an
SHS has the following expression:

Lf(x) = Lcontf(x) + λ(x)
∫
X

(f(y)− f(x))R(x, dy) (5)

where Lcontf(x) has the standard form of the diffusion
infinitesimal operator:

Lcontf(x) = Lbf(x) +
1
2
Tr(σ(x)σ(x)THf (x)). (6)

What makes this generator different from the generator of a
Feller Markov process (like a diffusion process) is its domain
that contains at least the set of second order differentiable
functions that satisfy the boundary condition, as follows:
f(x) =

∫
X f(y)R(x, dy), x ∈ ∂X. In the presence of forced

jumps, the generator of an SHS is an operator that is difficult
to deal with, since its domain does not even contain the set
of all compactly supported C∞ functions.

IV. STOCHASTIC REACHABILITY

A. Definitions

Let us consider M = (Ω,F ,Ft, xt, Px) being a (strong
right) Markov process, the realization of an SHS H . We
address the following stochastic reachability problem. Given
a target set, the objective of the reachability problem is to
compute the probability that the system trajectories from an
arbitrary initial state will reach the target set. Formally, given
a set A ∈ B(X) and a time horizon T > 0, let us define:
ReachT (A) = {ω ∈ Ω | ∃t ∈ [0, T ] : xt(ω) ∈ A}



Reach∞(A) = {ω ∈ Ω | ∃t ≥ 0 : xt(ω) ∈ A}.
These two sets are the sets of trajectories of M , which
reach the set A (the flow that enters A) in the interval of
time [0, T ] or [0,∞). The reachability problem consists of
determining the probabilities of such sets. The probabilities
of reach events are

P (TA < T ) or P (TA < ζ) (7)

where ζ is the life time of M and TA is the first hitting time
of A

TA = inf{t > 0|xt ∈ A} (8)

and P is a probability on the measurable space (Ω,F) of
the elementary events associated to M . P can be chosen to
be Px (if we want to consider the trajectories that start in
x) or Pµ0

((if we want to consider the trajectories with an
initial condition chosen according to an initial probability
distribution µ0).

Denote by PA the hitting operator associated to the
underlying Markov process (xt), i.e.

PAv = Ex{v ◦ xTA
|TA < ζ} (9)

and TA is given by (8).
Proposition 1: [5] For any x ∈ X and Borel set A ∈

B(X), we have Px[Reach∞(A)] = PA1(x) = Px[TA < ζ].

B. Exit Problem

Note that the first hitting time of A is equal with the first
exit time from the complementary set of A, E = Ac = X\A.
Then, the stochastic reachability problem can be formulated
as an exit problem for the right Markov processes that
appear as realizations of SHS. These processes may be
viewed as piecewise continuous jump diffusions, where the
jumps are allowed to be spontaneous, or forced (predictable).
For continuous pure diffusions processes, it is sufficient to
consider the time when the process hits the boundary of E
or A. However, when the stochastic processes also includes
jumps, then it is possible that the process overshoots the
boundary and ends up in the exterior of the domain E (i.e.
in the interior of A).

An important quantity that can be computed without
explicitly constructing the transition probability density func-
tion is the mean first passage time of the process from a
specified domain. The mean first passage time is a measure
of the stochastic time scale for the process to be in a specified
domain. The mean first passage time is a solution of a
boundary value problem involving the backward Kolmogorov
operator (the adjoint of the operator in the forward equation).
If the process is a continuous diffusion with the infinitesimal
generator L and the target set A is a closed set, it is known
that if the PDE (Dirichlet problem)

∂u
∂t = Lu on E × (0, T ]
u = 0 on E × {0}
u = 1∂E on ∂E × (0, T ]

has a bounded solution, then

u(x, t) = Px{TA ≤ t, xTA
∈ ∂E}, 0 ≤ t ≤ T. (10)

Let us consider an SHS H =
((Q, d,X ), (b, σ), µ0, (λ,R)) defined as in the Section
III, with a finite number of modes (cardQ < ℵ0). We can
suppose that H has only forced jumps, no spontaneous
jumps. This can be achieved introducing an extra variable
that “simulates” the spontaneous jumps [7].
Suppose that the target set A is closed and let E be its
complement. Denote Eq = Xq ∩E, q ∈ Q. Then {∂Eq|q ∈
Q} represents a partition of the boundary ∂E. Suppose that
suppµ0 ⊂ E (µ0 is the initial probability measure). The first
quantities we need to compute are:
uq(t) = Px(TA < t, xTA

∈ ∂Eq}, q ∈ Q, 0 ≤ t ≤ T.
Then, for each q ∈ Q, uq is solutions of the Dirichlet
problem associated to the diffusion process associated to the
mode q (see the previous paragraph).

C. Occupation time distribution

For a sample path ω, we define the occupation time
distribution up to the time t > 0 as follows:

Lt(ω,B) =
1
t

∫ t

0

1B(xs(ω))ds, B ∈ B(X). (11)

If the process is conservative, then Lt(ω, ·) is a probability
measure on (X,B).

Remark 1: One way to deal with stochastic reachability
for a target set A, is to find how the expectation of the
empirical measure defined by (11) corresponding to the
complementary set E of A differs from the distribution of
E.

V. LARGE DEVIATION METHODS FOR SHS

The area of large deviations is a set of asymptotic results
on rare event probabilities and a set of methods to derive
such results. In this section, we formally define the concept
of “smooth” approximations for SHS. Based on the theory of
large deviations, we give some convergence results for reach
set probabilities.

A. Definitions

Large deviations theory is concerned with asymptotic es-
timates of rare event probabilities associated with stochastic
processes. Let us consider Aε an event associated with
some stochastic process xεt with exponentially small prob-
ability,.i.e.

− lim
ε→0

ε logP (Aε) = V 0 (12)

When P (Aε) satisfies (12), then Aε is said to have a
large deviations property and V 0 is the large deviation
rate. In a similar way, one could seek a large devia-
tion property for the expectations EΦε(xε) expressed by
− limε→0 ε logEΦε(xε) = V 0.

Large deviation results are closely linked with modifica-
tions of the probability measure P , under which the event Aε

is rare. This event is no longer rare under a new probability
P ε that is a change of P . Usually, the Radon-Nikodym
derivative dP/dP ε has an exponential form. When ε is small,
it is necessary to find the contribution to the exponent. If xt is



a continuous time Markov process, then suitable change from
P to P ε is typically the result of a change of its generator.

At this stage, it is convenient to introduce the Varadhan
unifying framework for LDT. The idea is to characterise the
limiting behaviour of a family (Pε) of probability measures
as ε↘ 0 in terms of a rate function. Let (X, d) be a complete
separable metric space, and B denotes its Borel σ-algebra.

A function I : X → [0,∞] is called rate function if I is
not identic with ∞ and if the level set {x ∈ X|I(x) ≤ c} is
compact in X for each c <∞. In particular, a rate function
is lower semicontinuous (l.s.c.), i.e. I−1([0, c]) is closed in
X for all c <∞.

Let {Pε : ε > 0} be a family of probability measures on
(X,B). The family {Pε} is said to satisfy the large deviation
principle (LDP) with rate function I if
(i) I is a rate function,
(ii) for every closed set F ⊆ X ,
lim supε→0 ε logPε(F ) ≤ − infy∈F I(y),
(iii) for every open set G ⊆ X ,
lim infε→0 ε logPε(G) ≥ − infy∈G I(y).

LDP constitutes an important mechanism that can be
employed for proving approximation results for different
quantities of interest (mean exit times, quasistationary distri-
butions, Feynman-Kac functionals) associated to a stochastic
process.

B. LDT for SHS

In order to prove that the realization of an SHS satisfies
the LDP, one must establish an upper bound for closed
sets, and a lower bound for open sets. The purpose of
this subsection is to establish the upper large deviation
bound for SHS realizations that belong to a general class
of Markov processes taking values in the Skorohod space
D([0, T ], X) (the space of cadlag functions in X). We follow
the methodology proposed in [8].

Let H be an SHS defined as in Section III. The following
assumptions will be in force:

Assumption 1: For each x ∈ X , the measure R(x, ·) has
compact support.

For ε > 0, we define an operator Lε on twice continuously
differentiable functions by the formula:
Lεf(x) =

∑n
i=1 bi(x) ∂f∂xi

+ ε
2Tr(σ(x)σ(x)THf (x)) +

1
ελ(x)

∫
X

(f(x+ εy)− f(x))R(x, dy)
Assumption 2: For T > 0, there exists a Markov process

{xε(t)|0 ≤ t ≤ T} corresponding to the infinitesimal Lε (in
the sense that the martingale problem is well posed for this
operator) with right continuous with left limits paths,

For general Markov processes, the LDP has been proven
to hold only partially (with some upper bounds).

Some notations are needed, as follows. For x, α ∈ Rn,
define

H(x, α) :=< b(x), α > + 1
2 < σ(x)σ(x)Tα, α >

+λ(x)
∫
X

exp(< α, y > −1)R(x, dy)
and the upper semicontinuous regularization of H(·, α)
as h(x, α) = limδ↘0 sup|y−x|≤δH(y, α). Consider the
Legendre-Frenchel transform: l(x, β) = supα∈Rn [α · β −

h(x, α)], β ∈ Rn. In terms, of this, we define the functional
Ix(φ) =

∫ T
0
l(φ(s),

.

φ (s))ds, when φ is absolutely continu-
ous and φ(0) = x. In all other cases, we set Ix(φ) = +∞.

Theorem 2: For T > 0 and ε > 0, we suppose that the
Assumptions 1, 2 are in force. Let K a compact subset of
X . Then the following conclusions hold:
(i) Define Φx(L) = {φ ∈ D([0, T ], X) : Ix(φ) ≤ L}. Then
for all L <∞, the set ∪x∈KΦx(L) is compact.
(ii) For each closed set F in D([0, T ], X) we have
lim sup ε logPx(xεt ∈ F} ≤ − infφ∈F Ix(φ) uniformly in
x ∈ K.

VI. LARGE DEVIATION METHODS FOR STOCHASTIC
REACHABILITY

A. LDT for reach set probabilities

Let us consider M = (xt, Px) be the strong Markov
process associated to an SHS H defined on the hybrid state
space X . X can be embedded in an Euclidean space Rn. Let
T > 0 an horizon time and A a target set such that E = Ac

is unbounded. Let ε > 0 denote a small parameter. For M ,
we consider a family of scaled processes (xεt) generated by
(xt): (xεt|t ∈ [0, T ]) := (εxt/ε)|t ∈ [0, T ]). The process (xt)
will be assumed to satisfy the following conditions:

(H1) Sample path large deviations. For every T > 0,
the family of rescaled processes (xεt|t ∈ [0, T ]) satisfy
sample path large deviation principle in the Skorohod space
D([0, T ], X) with a good rate function I[0,T ]. Define for any
x = (q, z), x′ = (q′, z′), IT (x, x′) as the infimum of the
rate I[0,T ](φ) over all φ ∈ D([0, T ], X) with φ(0) = x and
φ(T ) = x′.

(H2) Asymptotically finite range. The function

ϕ̂(α) := sup
x∈E

sup
t∈[0,1]

Ex[exp(α(Z(t)− x))]

is finite everywhere on Rn.
Let R denote the set of all possible limits limε→0 εxε
with xε ∈ E. For given x, x′ ∈ R we let I(x, x′) :=
infT>0 IT (x, x′).

Î(x, x′) :=
{

I(x, x′) if x 6= x′

0 if x = x′

Theorem 3: Suppose that the conditions (H1) and (H2)
are satisfied and let IT (x0, x0) > 0. Then the following
assertions hold:
(i) for any x ∈ R and any open set G ⊂ X:
lim infε→0 ε lnuε(x, T ) ≥ − infx′∈G I(x, x′);
(ii) for any x ∈ R and any compact set K ⊂
X: lim supε→0 ε lnuε(x, T ) ≤ − infx′∈K I(x, x′), where
uε(x, t) is the reach set probability function given by (10)
for the process (xε).

B. Sanov theorem for the occupation time distribution

Let us consider a different class of large deviations prob-
lems, which belong to the type introduced by Donsker and
Varadhan. Let xt be a stochastic process, considered for
0 ≤ t ≤ T where T is finite but large. The role of small
parameters ε is now taken by T−1. In this case, methods



to construct good rates for the large deviation principle use
mainly the infinitesimal generator of the process (see [12]
and the references therein).

In this subsection, we use good rate functions for strong
Markov processes written in terms of their Dirichlet forms
associated (see [22] and the references therein). The ex-
pression of the Dirichlet form associated to a realization of
an SHS can be easily derived using the expression of the
generator 5. Moreover, this Dirichlet form can be expressed
also using Beurling-Denny formula [18], which illustrates
clearly the continuous part and the jumping part of the
process.

The symmetrized Dirichlet form corresponding to E de-
fined by (3) is given by Eσ(f, g) := 1/2[< −Lf, g >µ
+ < −Lg, f >µ],∀f, g ∈ D2(L), where D2(L) :=
D(L)∩L2(X,µ). Let us define JE(r) := inf{Eσ(f, f)|f ∈
D2(L),

∫
f2dµ = 1;

∫
E
f2dµ = r}, for every r ∈ R

(convention: inf ∅ := +∞). Clearly, JE is a convex function.
Consider IE the lower semi-continuous (l.s.c.) regularization
of JE .

Theorem 4: For any initial measure ν such that ν � µ
and its Radon Nikodym derivative ρ = dν

dµ ∈ L
2(X,µ), we

have for all t > 0, all r > 0

Pν(Lt(ω,E) > µ(E) + r) ≤
≤ ||ρ||L2 exp(−t · IE(µ(E) + r)),

Pν(Lt(ω,E) < µ(E)− r) ≤
≤ ||ρ||L2 exp(−t · IE(µ(E)− r))

Remark 2: In the context of stochastic reachability, the
above theorem states that the occupation time distribution of
the complement of the target set lies in a certain vicinity
of its mean, whose bounds are related through JE with the
equilibrium potential of this set.

C. Asymptotic expansions

In the previous subsections, we have given the general
framework for asymptotic approximations of stochastic hy-
brid processes and the convergence result for the reach set
probabilities. Examples and particular cases of SHS have
been already studied in the literature: for Markov Jump
Processes see [15]; for one-dimensional Piecewise Determin-
istic Markov Processes see [14]; for Markov processes with
Levy generators see [9]; for diffusions with jumps see [21].
Examples from these papers illustrate the effectiveness of
this method.

VII. CONCLUSIONS

In this paper, we have developed large deviation methods
to approach the reachability problem for SHS. The starting
point was to present the stochastic reachability problem
as an exit problem for Markov processes with piecewise
diffusion behavior and forced jumps. Moreover, the problem
of reachability can be treated using not only hitting time
probabilities, but also other measures like the distribution of
the occupation time of a specific set, or the Green operator
associated to the corresponding Markov process. A corner
stone of this approach is to identify the right hypotheses

such that the large deviation methods developed in the
literature can be applied to SHS. The relevance of large
deviation methods for stochastic reachability should not be
judged in the context of simulation approaches for stochastic
reachability. Rare event simulation methods (like importance
sampling, importance splitting) SHS are treated by differ-
ent other papers as [3]. We have provided large deviation
methods for different measures (exit probabilities, occupation
time distributions) associated to the stochastic reachability
problem. These methods employ good function rates that
can be computed in terms of the infinitesimal generator of a
stochastic hybrid process and offer lower/upper bounds for
the quantities that characterize the reachability problem.
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