
From Runtime Verification to Evolvable Systems

Barringer, Howard and Gabbay, Dov and Rydeheard,
David

2007

MIMS EPrint: 2010.59

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

From Runtime Verification to Evolvable Systems

Howard Barringer1, Dov Gabbay2, and David Rydeheard1

1 School of Computer Science, University of Manchester,
Oxford Road, Manchester, M13 9PL, UK

{howard.barringer,david.rydeheard}@manchester.ac.uk
2 Department of Computer Science, Kings College London,

The Strand, London, WC2R 2LS, UK
dov.gabbay@kcl.ac.uk

Abstract. We consider evolvable computational systems built as hier-
archies of evolvable components, where an evolvable component is an
encapsulation of a supervisory component and its supervisee. Here, we
extend our prior work on a revision-based logical modelling framework
for such systems to incorporate programs within each component. We
describe mechanisms for combining programs, possibly in different lan-
guages, from separate components and outline an operational semantics
for programmed evolvable systems. We show how supervisory compo-
nents extend run-time verifiers/monitors with capabilities for diagnosis
and change. We illustrate the logical modelling using an example of an
automated bank teller machine.

1 Introduction

We are interested in developing theories and tools to support the construction
and running of safe, robust and controllable systems that have the capability
to evolve or adapt their structure and behaviour dynamically according to both
internal and external stimuli. Many computational systems have this capabil-
ity. Examples include: supervisory control systems for, say, reactive planning,
modelling evolving business processes, systems for adaptive querying, respon-
sive memory management, dynamic network routing, autonomous software re-
pair, data structure repair, and adaptive hybrid systems.

Runtime verification techniques show considerable promise (and some return)
for establishing the correctness of systems at runtime by monitoring system
behaviour against a behavioural specification. This is particularly useful for sys-
tems that are too large for static verification techniques. Typically, in runtime
monitoring and verification, when conformance fails, an error is reported and
the system halted, possibly with some diagnostic data returned. This is fine for
runtime verification applied during system simulation. However, for real-time on-
line systems, fault diagnosis and system recovery is required, which in general
will mean modification of the running system. When such additional capabili-
ties are in place, the overall dynamically-monitored system becomes an evolvable
system. The notion of evolvability which we explore here shares some features
with Aspect-Oriented Programming [5].

O. Sokolsky and S. Tasiran (Eds.): RV 2007, LNCS 4839, pp. 97–110, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

98 H. Barringer, D. Gabbay, and D. Rydeheard

In [1,3,4], we introduced evolution at a level of abstraction that allows us to
describe systems that are constructed as a hierarchical assembly of evolvable
(software and/or hardware) components. We model (and implement) evolv-
able components as a pairing of a supervisor and its supervisee component,
where the supervisor dynamically monitors its supervisee as a runtime verifier,
and possibly changes the supervisee so that its behaviour accords with that
required by the supervisor. This approach is a generalisation of the software

run−time monitoring,

evolutionary

change

encapsulated

as a component

monitoring

events

diagnosis and change

Supervisee

Supervisor

Fig. 1. An Evolvable Component Pairing

architecture principles that
have been developed over a
number of years, largely in
the context of business pro-
cess modelling [7]. Figure 1
depicts the pairing of a su-
pervisor component with its
supervisee as a new (evolv-
able) component. Figure 2
depicts a small hierarchical
assembly of components. It
shows both the horizontal
composition of communi-
cating components, namely
EC1, C2 and EC3 yielding the component C, and the vertical composition of
supervisors and their associated supervisees, namely E1 and C1 as EC1, E3 and
C3 as EC3, and E and C as EC. Thus instead of one overall runtime verifier
for a system, verification and evolution is localised to, and embedded within,
components in a system hierarchy. This improves the manageability of runtime
verification and system evolution for large systems and also enables us to use
evolutionary behaviour as part of system design.

We provide a logical account of these evolvable systems in which the super-
visor theory is described as a meta-level theory to the object-level supervisee

EC

EC3

C3

E3

C2

C1

E1

EC1

C

E

Fig. 2. An Example Hierarchical Assembly

From Runtime Verification to Evolvable Systems 99

theory. In other words, the supervisor theory has access to the logical structure
of the theory of the supervisee, including its predicates, formulas, state, axioms,
logical revision actions, and its subcomponent theories. This technically equips
the supervisor with sufficient capability both to observe supervisee behaviour
and to describe evolutionary object-level supervisee changes. Thus, not only can
supervisor states record observations of its own state of computation, but they
can also record observations about the object-level supervisee system. Actions
at the meta-level update the state of the supervisor and, as a consequence of be-
ing meta to the supervisee, may also induce a transformation of the object-level
supervisee system. This provides a logical account of how systems may evolve
their structure during computation.

In this paper, we outline how the logical modelling can be extended to com-
ponents which contain programs of actions. All components may be active with
programs running in concert, but we may also model passive service-provider
systems in this approach. Components within one system may use different pro-
gramming languages: this is common in practice, for example using a separate
verification language, but seldom do such combinations come equipped with a
logical account of the combined systems. We present a structural operational
semantics for the various ways that component programs may be combined, in-
cluding, in particular, the vertical supervisor-supervisee combination of evolvable
components. This provides not only a foundation for static proof analysis of an
evolvable component hierarchy but also a natural setting for dynamic, reasoned
and programmed, control of a system’s evolution as a generalization of standard
runtime verification.

2 Upgrading ATMs

To illustrate our modelling approach to evolvable systems, we visit the world of
banking and automated teller machines (ATMs). We focus, in particular, on how
runtime monitoring programs for supervisors and basic supervisee component
programs are semantically integrated. The Bank of New Island’s old form of
ATM, although comprising distinct hardware components, such as magnetic strip
readers, note counters, keypads, displays, etc., had its local software built in an
unstructured, monolithic fashion. Only limited security checks were programmed
and certainly not easily changed (indeed the whole ATM network would need to
be shutdown for at least a day to perform even minor upgrades). The design of
the new system is such that each individual ATM will monitor, adapt and evolve
its behaviour, in particular its security checking, to fit best with the bank’s and
their customers’ desires and expectations. The individual software components
used in the ATM will themselves also be evolvable and the network of ATMs
will naturally support dynamic co-evolution.

The old banking system is modelled as a component assembly comprising
a banking centre which holds the records and a number of automated teller

100 H. Barringer, D. Gabbay, and D. Rydeheard

ATM
n

1
ATM

3..
ATM

ATM
2..

BankingSystem

Bank

Records

Dispenser

Keypad

Reader
Card

Display

ATM

Note

Fig. 3. The banking system component structure

machines (ATMs). Figure 3
shows an ATM linked to
a central bank component;
the ATM component has
four communicating sub-
components. In [1], we out-
lined specifications for the
overall structure of the
banking system, its ATMs,
together with simplified
card-reader and note-
dispenser components. Only basic actions were specified. In particular, we did
not present a formalisation of the programs controlling the actions of the card
reader and note dispenser. Here, we introduce programs over the specified ac-
tions of a component and incorporate these within the component. Given the
differing roles of the supervisor and supervisee, different programming languages
for these components may be appropriate. We first consider just the card-reader
component and describe the control of its actions via a (very basic) guarded
command style program. We then consider a supervisor component for the card
reader, whose role is to monitor the patterns of acceptances and rejections
of cards and, should the behaviour fall outside acceptable norms, modify, i.e.
upgrade, the card reader’s security level and associated card checking mecha-
nisms. The temporal nature of the supervisory program can readily be captured
via a combination of declarative temporal logic runtime monitors with imper-
ative guarded command programs for the diagnosis and possible evolutionary
change.

The card-reader component for security level 0, CardReader0, is simplified to
holding the account number and PIN for the card currently in the card reader
and any cards that have not been returned to the customer. The cardIn action,
defined when no card is present, makes the account number and PIN of the
card a state observation. The action getUserP in() is a shared action with the
keyboard component (not specified here) and yields the user supplied PIN value.
Validation of the current card is performed by the checkP in action; each call
increments the number of attempts to verify the card’s PIN and then, if the user
supplied PIN is the same as the PIN of the current card, cardAccepted is added
to the current state. The cardOut action simply removes the observation from
the state. The swallowCard action removes the currentCard observation and
adds the fact that the card is swallowed as well as its rejection.

The card reader’s control program loops endlessly. It first reads the account
number and PIN from the input card, gets a user supplied PIN and attempts to
validate it. If validation succeeds in less than three attempts, the card is returned
(we are not concerned with other account actions that may then have followed).
If validation does not succeed within three attempts, the card is swallowed and
the reader becomes ready to accept another card.

From Runtime Verification to Evolvable Systems 101

CardReader0

Observation Predicates

currentCard : Account × Pin
attempts : 0..3
cardAccepted, cardRejected
swallowedCard : Account × Pin

Constraints

unique
dfn
=

∀a1, a2 : Account, p1, p2 : Pin ·
((currentCard(a1, p1) ∧ currentCard(a2, p2))

⇒ (a1 = a2 ∧ p1 = p2)) ∧
¬(cardAccepted ∧ cardRejected) ∧
∀a : Account, p1, p2 : Pin ·

((swallowedCard(a, p1) ∧ swallowedCard(a, p2)) ⇒ (p1 = p2))
Actions

cardIn(acc : Account, pin : Pin)
pre {¬∃a : Account, p : Pin · currentCard(a, p)}
add {currentCard(acc, pin), attempts(0)}
del {cardAccepted, cardRejected, attempts(n) | n ∈ 1..3}

cardOut()
pre {currentCard(acc, pin)}
add {}
del {currentCard(acc, pin)}

getUserP in(userP in : Pin)
pre {}
add {}
del {}

checkP in(userP in : Pin)
pre {attempts(n), n < 3, currentCard(acc, pin)}
add {attempts(n + 1)} ∪ {cardAccepted | pin = userP in}
del {attempts(n)}

swallowCard()
pre {currentCard(acc, pin), ¬cardAccepted}
add {swallowedCard(acc, pin), cardRejected}
del {currentCard(acc, pin)}

Program

[cardIn(?acc, ?pin);
[¬(cardAccepted ∨ cardRejected) →

getUserP in(?userP in);
checkP in(userP in);
[¬cardAccepted ∧ attempts(3) → swallowCard()
[]cardAccepted → cardOut()
]

]∗

]∗

The new banking system is to be dynamically upgradable. The card reader is
therefore reconstructed as an evolvable component by pairing it with a

102 H. Barringer, D. Gabbay, and D. Rydeheard

supervisory component and encapsulating the pair as a single component. A
specification for the structure and actions of the supervisor component is given
below. There are a number of different types of temporal criteria that may
be dynamically monitored. For example, the system may monitor the ratio of
rejected to accepted cards over a rolling 24-hour period, or on a daily basis, or
over a fixed number of night-time hours, etc. The supervisor thus contains a
predicate criterion pairing a criterion type and value – the latter may represent
time-series data in order to compute rolling ratios, etc.

CardReaderSupervisor meta to cid : CardReaderlevel

Types

CriterionType
dfn
= {rejectsPerHour, usersPerHour, . . .}

CriterionV alue
dfn
= . . .

Functions

updateCriterion : CriterionType × CriterionV alue × Int × T ime
→ CriterionV alue

Observation Predicates

clock : T ime
criterion : CriterionType × CriterionV alue
securityUpgrade :Int × stateTransformer ×

componentTransformer × schemaTransformer

holds : formula × ConfigName
current : ConfigName

Constraints . . .

Actions

observeAccept(X : 2CriterionType)
pre {current(c), clock(t),

∧
ct∈X criterion(ct, cvct)}

add {holds(cid.cardAccepted, s(c)), current(s(c)),∧
ct∈X criterion(ct, updateCriterion(ct, cvct, 1, t))}

del {current(c),
∧

ct∈X criterion(ct, cvct)}

observeReject(X : 2CriterionType)
pre {current(c), clock(t),

∧
ct∈X criterion(ct, cvct)}

add {holds(cid.cardRejected, s(c)), current(s(c)),∧
ct∈X criterion(ct, updateCriterion(ct, cvct, 0, t))}

del {current(c),
∧

ct∈X criterion(ct, cvct)}

upgradeSecurityChecking()
pre {current(c), securityUpgrade(level, st, ct, cs),

component(thisComp as [cid
→ 〈CardReaderlevel, , , 〉])}
add {current(s(c)), component(ct(thisComp))

evolve(st, ct(thisComp), cs(CardReaderlevel), s(c))}
del {current(c), component(thisComp)}

From Runtime Verification to Evolvable Systems 103

Before presenting the supervisor’s monitoring program, a few words of explana-
tion on the above actions are necessary. The basic monitoring actions update
the criterion predicate according for the associated criteria types. The evo-
lutionary action upgradeSecurityChecking() specifies the potentially complex
operation of updating the card reader’s security checking procedures. To keep
things simple, we suppose that the card reader supervisor has pre-programmed
transformations that it can apply to the card reader. Recall that the card reader
component performed very basic checking. A higher level vetting may include,
for example, a check with the bank on the card’s recent transaction history to
determine whether its current use is out of the norm, and then, if so, to pro-
ceed through further security checks, e.g. via questions agreed previously with
the customer. It may also be possible to invoke other forms of unique customer
identification, e.g. finger prints, iris prints, etc., depending upon hardware capa-
bility and information stored on chip. The upgradeSecurityChecking() action
schema abstracts the update via three transformations that are stored in the
supervisor’s state. The predicate securityUpgrade(level, st, ct, cs) records the
fact that st, ct and cs are, respectively, state, component instance and compo-
nent schema transformers which yield a card reader at security level level. These
transformers are applied in the appropriate way to the observation state, compo-
nent instance map and schema map of the object-level configuration for the card
reader component by the addition of a suitably instantiated evolve predicate in
the supervisor’s observation state.

From past analyses of card use, the bank finds that it is acceptable for (i)
the hourly average of retries on PINs not to exceed one during daytime unless
there’s been very high usage over the past 24 hour period, and (ii) the hourly
average of retries to be no more than 2 during the wee night hours, again unless
the usage has been exceptionally low over the past 24 hours. The Bank of New
Island governors believe that patterns of behaviour falling outside these norms
warrant a higher level of security checking. We can capture this monitoring via
a supervisor program in which temporal formulas, for example Eagle formulas
[2], are used to define the acceptable norms. The program construct

monitor using 〈Actions〉 where 〈Bindings〉
behaviour 〈Formula〉
[on success 〈Program〉]
[on failure 〈Program〉]

describes a runtime monitor that checks conformance of the supervisor’s state
against the given formula whenever any of the specified actions are executed. As
soon as the observed temporal behaviour matches the specified logical formula,
the (optional) success continuation program is executed. On the other hand, as
soon as the run-time behaviour can be determined not to match the specified be-
haviour, the (optional) failure continuation program is executed. As an example,
we give a simple card reader monitoring program:

104 H. Barringer, D. Gabbay, and D. Rydeheard

Program

[monitor using observeAccept, observeReject where

a
dfn= ιx st criterion(rejectsPerHour, x)

u
dfn= ιy st criterion(usersPerHour, y)

t
dfn
= ιz st clock(z)

daytime(t)
dfn
= 3 ≤ hour(t) ∧ hour(t) < 22

behaviour

always((daytime(t) ⇒ a ≤ 1 ∨ overpastday(t, u > 20)) ∧
(¬daytime(t) ⇒ a ≤ 2 ∨ overpastday(t, u < 2)))

on success [status(stop) → stop

[] status(abort) → resetCardReader()]
on failure upgradeSecurityChecking()

]∗

The card reader supervisor observes the accepts and rejects of the card reader
via observeAccept() and observeReject() actions. The bindings define the av-
erage number of rejects per hour and of users per hour given by the criterion
predicate, and also the time given by the clock predicate. The temporal formula
characterises the desired behaviour. Because it is an always formula, it can eval-
uate to true only when the program of the card reader terminates. For normal
termination with status stop, the monitoring program also stops. For abnormal
termination with status abort, the supervisor resets the card reader (we do not
define this here). On the other hand, should the sequence of observations lead to
criterion values that do not satisfy the temporal formula, then the failure con-
tinuation program, the upgradeSecurityChecking() action of the card reader
supervisor, is executed to upgrade the card reader to a higher security level. As
the monitor construct is embedded within a loop, once the upgrade is complete,
monitoring will be resumed.

3 A Logical Framework

We now give an overview of a revision-based logical framework which provides
an interpretation for descriptions of evolvable component systems, such as that
of the ATM above. A full description of this framework may be found in [1].

3.1 States, Configurations and Revision Actions

States of systems are expressed in terms of sets of formulas which are ground,
i.e. no free variables, and atomic, i.e. consisting only of applications of predicates
to terms. Such formulas are ‘observations’ of a system’s computational state.
For example, the set {currentCard(5435123456789012, 1234), attempts(3)} is a
possible state of the card reader described above.

Computations are expressed in terms of actions which ‘revise’ states. For
states which are sets of formulas, these revisions take on a particularly simple
form, namely the addition of new formulas, possibly with the deletion of some

From Runtime Verification to Evolvable Systems 105

existing formulas. For example, the swallowCard action of the card reader re-
vises the above state to become the state:

{swallowedCard(5435123456789012, 1234), cardRejected, attempts(3)}.

When a state Δ is updated by an action α to become state Δ′, we write Δ
α−→ Δ′.

A configuration corresponds to the full logical structure of a component hi-
erarchy. A configuration Γ = 〈Δ, Θ, Σ, Π, χ〉 consists of a tree-structured state
Δ, i.e. a set of ground atomic formulas allocated to each node of the hierarchy,
a component instance hierarchy Θ and a schema hierarchy Σ. Access to ele-
ments of these hierarchies are provided by well-formed paths. Full details of this
structure are found in [1]. New to this account are the remaining elements of
the configuration, consisting of a program structure Π and a program status χ.
The form of these is described in the next section. The definition of revision by
actions may be extended to tree-structured states, using paths to identify the
location of a revision.

3.2 Meta-view Relations

In the description of an evolvable card reader consisting of an object-level com-
ponent, CardReader0, and a meta-level component, CardReaderSupervisor,
the states of the two components must be in accord, in that what is asserted to
hold at the meta-level of the object-level system, must indeed hold. Moreover,
the supervisor state may assert the existence of constraints, actions and pro-
grams at the object-level, which therefore must exist. Further, when an evolve
predicate is present in the meta-level state, the required change of object-level
structure must occur. These requirements are expressed as ‘meta-view’ relations.

Definition 1 (State meta-view). Let WM and W be the typed first-order
theories for meta-level and object-level systems respectively. We say that ΔM

(from a configuration ΓM of WM) is a state meta-view of a configuration Γ =
〈Δ, Θ, Σ, Π, χ〉 of theory W if, for any valid non-empty path of basic (i.e. non-
evolvable) component identifiers p in ΔM

– for all object-level formulas ϕ and any configuration name c, if
p.{current(c), holds(ϕ, c)} ⊆ ↓ΔM, then ↓Δ |=W ϕ;

– for all component instance maps θ, if p.component(θ) ∈↓ΔM, then θ ⊆ Θ;
– for all schema definition maps σ, if p.schema(σ) ∈↓ΔM, then σ ⊆ Σ;
– for all program structures π, if p.program(π) ∈↓ΔM, then π = Π.

We also say that Γ M is a meta-configuration for Γ .

Here, ↓Δ is the flattened form of the tree-structured state Δ. When this rela-
tionship is extended to all levels of a component hierarchy in a configuration, we
say that the configuration is state meta-consistent.

106 H. Barringer, D. Gabbay, and D. Rydeheard

Definition 2 (Transition meta-view). Given meta-level configurations, ΓM=
〈ΔM, ΘM, ΣM, ΠM, χM〉 and ΓM′ = 〈ΔM′, ΘM′, ΣM′, ΠM′, χM′〉 of component theory
WM , and, at object-level, Γ = 〈Δ, Θ, Σ, Π, χ〉 and Γ ′ = 〈Δ′, Θ′, Σ′, Π ′, χ′〉 of
component theory W , such that ΔM, ΔM′ are, respectively, state meta-views of Γ ,
Γ ′, we say that the pair 〈ΔM, ΔM′〉 is a transition meta-view of 〈Γ, Γ ′〉, if whenever
for any valid non-empty path of basic (i.e. non-evolvable) component identifiers p

in ΔM,
p.{evolve(δ, θ, σ, π, c), current(c)} ⊆ ↓ΔM′

and Δ′ = δ(Δ) is consistent in theory W ′, where W ′ is the component theory
W with component instance map Θ updated to Θ′ = Θ † θ, component schema
definitions Σ updated to Σ′ = Σ † σ, and program structure updated Π updated
to Π ′ = π(Π), then Γ ′ = 〈Δ′, Θ′, Σ′, Π ′,run〉.

Furthermore, we say that the configuration pair 〈ΓM, ΓM′〉 is a transition meta-
configuration pair for 〈Γ, Γ ′〉 and write tmcp(ΓM, ΓM′, Γ, Γ ′).

4 Including Programs in Component Theories

4.1 Evolvable Component Structures

We now consider how to incorporate programs into a hierarchy of evolvable
components. There are several issues which need to be addressed when each
individual component has a program associated with it:

– In an assembly of components, how do we determine the overall computation
from that of the individual programs?

– In cases where programs may terminate normally or abort their computa-
tion abnormally, how does this behaviour in a component affect the overall
computational behaviour of the system?

– How are the monitoring, diagnostic and evolutionary aspects of a supervisor
expressed in terms of a program?

To formalise answers to these, we (1) introduce combinators for programs corre-
sponding to way we assemble components, (2) present an operational semantics
of these combinators, (3) include explicitly the notion of the ‘status’ of a program
in the semantics, so that the effect of the status of individual programs on the
overall computation can be expressed, and (4) introduce a specific monitoring
language for supervisors.

For evolvable systems, there are two ways that components may be combined.
The ‘horizontal’ combination of components allows components to communicate
via synchronised joint actions. The corresponding combination of programs is

Π with Π1, Π2

denoting the main program Π of a component instance C with sub-component
programs Π1 and Π2 of sub-component instances C1 and C2 of C.

From Runtime Verification to Evolvable Systems 107

The ‘vertical’ combination of components is that of the supervisor/supervisee
pairing used to model evolvable components. We write

ΠM meta to ΠO

for the combination of a supervisor’s program ΠM (at a meta-level) with that
of the program ΠO of its supervisee (at an object-level).

To make the semantics specific and to correspond to the example above of au-
tomated bank teller machines, we introduce two simple programming languages.
The first is a language of guarded commands, built from basic actions α, and
standard constructs:

Π ::= α | stop | Π1; Π2 | [[]igi → Πi] | Π∗

The second language is that of supervisory control for meta-level components.
We reuse the language of guarded commands, extending it with a monitoring
construct:

monitor(A, ϕ, Π1, Π2)

This is abstract syntax for the monitoring programs that we introduced in the
banking example above. The set A is that of supervisor actions at which the
monitoring events take place, ϕ is the monitoring formula (in the above example
we use a temporal logic to express monitoring formulas, but other logics may
be used instead), Π1 is the program that runs in the case when the monitoring
succeeds i.e. the formula becomes satisfied, and Π2 is the program that runs
when the monitoring fails i.e the formula becomes falsified.

4.2 An Operational Semantics

We provide an SOS-style [6] transition semantics. The semantics of a program
structure Π is a labelled relation between configurations which we write as

Γ
α−→ Γ ′,

where α is the current action undertaken to transform configuration Γ to Γ ′.
For a component configuration Γ = 〈Δ, Θ, Σ, Π, χ〉, we write Γ [Π ′, χ′] for the
configuration 〈Δ, Θ, Σ, Π ′, χ′〉. Much of the semantics follows standard guarded-
command language semantics [6]. We concentrate here on monitoring programs
and the combinators corresponding to component assembly.

The first rule states that the semantic relation α−→ is indeed an extension
of the revision relation and we introduce the run program status. Thus, for a
program which consists of a single action α with precondition pre-α1:

↓Δ |= pre-α Δ
α−→ Δ′

〈Δ, Θ, Σ, α,run〉 α−→ 〈Δ′, Θ, Σ,null,run〉
1 For the case of an action for which the precondition is not satisfied, the resulting

program status is not run but is abort, with suitable rules for the abort status.

108 H. Barringer, D. Gabbay, and D. Rydeheard

The semantics of monitoring programs of the form monitor(A, ϕ, Π1, Π2) re-
quire us to ‘unfold’ the monitoring formula ϕ as the computation proceeds. The
exact form of this depends upon the logic used to express monitoring formulas,
in particular, temporal operators unfold as future obligations become satisfied.
Techniques for this are well-known (see e.g [2]). We thus assume a relation of
the form Γ, ϕ

α−→ Γ ′, ϕ′ where ϕ′ is the unfolding of ϕ after the action α in the
context of the two configurations Γ and Γ ′. The rules for monitoring are:

α ∈ A, Γ, ϕ
α−→ Γ ′, ϕ′, ϕ /∈ {�, ⊥}

Γ [monitor(A, ϕ, Π1, Π2),run] α−→ Γ ′[monitor(A, ϕ′, Π1, Π2),run]

α ∈ A, Γ, ϕ
α−→ Γ ′, �

Γ [monitor(A, ϕ, Π1, Π2),run] α−→ Γ ′[Π1,run]

α ∈ A, Γ, ϕ
α−→ Γ ′, ⊥

Γ [monitor(A, ϕ, Π1, Π2),run] α−→ Γ ′[Π2,run]

The first rule is the case when monitoring continues with a revised formula,
the second and third rules are the cases when monitoring succeeds and the for-
mula is satisfied, and the case when monitoring fails and the formula is falsified.
There are also rules for the case where the object-level system terminates, either
normally or with failure.

We now turn to evolvable components, i.e. the supervisor/supervisee pairing
of a a meta-level to an object-level system. The actions of such a combination
are of three forms:

〈αobserve, α〉, a paired action consisting of a meta-level observation action
αobserve executed in synchrony with an object-level component action α;
〈αquery , 〉, a meta-level query action2 αquery executed in isolation of the
object-level component, but leaving the object-level system unchanged;
〈αevolve, 〉, a meta-level evolution action αevolve with no explicit object-level
action, but inducing an object-level system change.

The semantics of paired actions is:

↑MΓ [ΠM ,run] αM−→↑MΓ ′[Π ′
M , χ′

M] ↑O Γ [ΠO,run] αO−→↑O Γ ′[Π ′
O, χ′

O]
where tmcp(↑MΓ, ↑MΓ ′, ↑O Γ, ↑O Γ ′)

Γ [ΠM meta to ΠO,run]
〈αM ,αO〉−→ Γ ′[Π ′

M meta to Π ′
O, χ′

M]

Here, for a configuration Γ of a supervisor/supervisee pairing, ↑MΓ is the con-
figuration of the supervisor (at the meta-level) and ↑O Γ is the configuration
of the supervisee (at the object-level). This rule says: if the supervisor program
makes an αM transition, and the supervisee program makes an αO transition,
then the combination program may make a 〈αM , αO〉 transition, provided that

2 The query action is typically used when the supervisee program has terminated and
the supervisor needs to query the reason for termination.

From Runtime Verification to Evolvable Systems 109

the configurations of the supervisor before and after the transition, and those
of the supervisee, are related as a transition meta-configuration pair (see Defi-
nition 2), i.e. the action of the supervisor tracks that of the supervisee so that
the required relationship holds. The program status of the final system is that
of the supervisor after its action, giving the supervisor overall control of the
computation. The rule for query actions is similar, except that there is no αO

action and therefore the configuration of the supervisee remains unchanged.
The evolution action is a key to the whole account. Here an action is under-

taken by the supervisor which induces a change in the supervisee, without an
explicit supervisee action. The semantics of this is expressed in the following
rule.

↑MΓ [ΠM ,run] αM−→↑MΓ ′[Π ′
M , χ′

M]
Π ′

O = Π(↑O Γ ′), where tmcp(↑MΓ, ↑MΓ ′, ↑O Γ, ↑O Γ ′)

Γ [ΠM meta to ΠO,run]
〈αM ,〉−→ Γ ′[Π ′

M meta to Π ′
O, χ′

M]

Again, the crucial condition linking the configuration of the supervisee before
and after the supervisor’s evolution action is the transition meta-view relation.

We now look briefly at the semantics of the horizontal composition of com-
ponents. For a configuration Γ consisting of a component with configuration
↑0 Γ which has two immediate subcomponents with configurations ↑1 Γ and ↑2 Γ
several actions are possible. We consider here only one case, the action of a com-
ponent which consists of a ‘communication’ between its two subcomponents. In
this case, the action α of the component is defined to be the joint action α1||α2
of the two subcomponents, with semantics:

↑0 Γ [Π,run] α−→↑0 Γ ′[Π ′, χ′
0] ↑1 Γ [Π1,run] α1−→↑1 Γ ′[Π ′

1, χ
′
1]

↑2 Γ [Π2,run] α2−→↑2 Γ ′[Π ′
2, χ

′
2] χ′ = (χ′

1 = abort?χ′
1 : χ′

2)
Γ [Π with Π1, Π2, run] α−→ Γ ′[Π ′

with Π ′
1, Π

′
2, χ′]

As an example of the semantics, consider the specification of an evolvable
bank card reader in Section 2. The CardReaderSupervisor has a monitoring
program which, when the monitoring fails because the pattern of activities falls
outside its requirements, invokes the upgradeSecurityChecking action. To in-
terpret this, the evolution action rule applies. This says that, if the supervisor’s
status is run, then the result of the upgradeSecurityChecking action is a su-
pervisor/supervisee configuration Γ ′ whose object-level configuration ↑O Γ ′ is
related to the meta-level as a transition meta-configuration pair (Definition 2).
This relation says that the object-level card reader is that provided by the evolve-
formula added to the state by the upgradeSecurityChecking action, i.e. a new
card reader with an upgraded security vetting system. The rule says that the
program for the supervisor is the continuation after the evolution step and the
program of the card reader is that supplied with the new card reader.

We have thus demonstrated how programmed monitoring and evolutionary
change may be described in terms of a revision-based logic and a transition-based
operational semantics.

110 H. Barringer, D. Gabbay, and D. Rydeheard

5 Conclusions

One starting point for this work lies in the relationship between supervisory
control systems and runtime monitoring and verification. To explore this link,
we have shown how programs may be incorporated into a logical account of
evolvable component systems, using a transition-based operational semantics
to capture the interaction of programs amongst components, in particular for
components which have supervisory monitoring and control. We are currently
developing a corresponding trace-based denotational semantics.

As a revision-based logic, the framework may be implemented to provide a
logical abstract machine. The implementation requires automated reasoning tools
to establish the validity of action application and of meta-view relations. Such
a machine can be used to prototype evolvable systems, or, when run alongside
an actual evolvable system, it can provide a mechanism for runtime verification.
This work thus provides not only a foundation for static proof analysis but
also a natural setting for dynamic, reasoned and programmed, control of system
evolution as a generalization of standard runtime verification.

References

1. Barringer, H., Gabbay, D., Rydeheard, D.: Logical modelling of evolvable compo-
nent systems: Part (I) A logical framework. Submitted for publication (2007), See
http://www.cs.manchester.ac.uk/evolve

2. Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Program monitoring with LTL in
Eagle. In: Proceedings of PADTAD 2004, Parallel and Distributed Systems: Testing
and Debugging, Santa Fe, New Mexico, USA (2004)

3. Barringer, H., Rydeheard, D., Gabbay, D.: A logical framework for monitoring
and evolving software components. In: TASE 2007. Proceeding of the First Joint
IEEE/IFIP Symposium on Theoretical Aspects of Computer Science, Shanghai,
China, June 2007, IEEE Computer Society Press, Los Alamitos (2007)

4. Barringer, H., Rydeheard, D., Warboys, B., Gabbay, D.: A revision-based logi-
cal framework for evolvable software. In: SE 2007. Proceeding of IASTED Multi-
Conference: Software Engineering, Innsbruck, Austria, pp. 78–83 (2007)

5. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M.,
Irwin, J.: Aspect-oriented programming. In: Aksit, M., Matsuoka, S. (eds.) ECOOP
1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

6. Plotkin, G.D.: A structural approach to operational semantics. Technical Report,
DAIMI FN-19, University of Aarhus (1981)

7. Warboys, B.C., Snowdon, R.A., Greenwood, R.M., Seet, W., Robertson, I., Morri-
son, R., Balasubramaniam, D., Kirby, G., Mickan, K.: An active architecture ap-
proach to cots integration. IEEE Software - Special Issue on Incorporating COTS
into the Development Process 22(4), 20–27 (2005)

http://www.cs.manchester.ac.uk/evolve

