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Abstract Assume-guarantee reasoning enables a “divide-and-conquer” approach to the ver-
ification of large systems that checks system components separately while using assump-
tions about each component’s environment. Developing appropriate assumptions used to be
a difficult and manual process. Over the past five years, we have developed a framework for
performing assume-guarantee verification of systems in an incremental and fully automated
fashion. The framework uses an off-the-shelf learning algorithm to compute the assump-
tions. The assumptions are initially approximate and become more precise by means of
counterexamples obtained by model checking components separately. The framework sup-
ports different assume-guarantee rules, both symmetric and asymmetric. Moreover, we have
recently introduced alphabet refinement, which extends the assumption learning process to
also infer assumption alphabets. This refinement technique starts with assumption alpha-
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bets that are a subset of the minimal interface between a component and its environment,
and adds actions to it as necessary until a given property is shown to hold or to be violated in
the system. We have applied the learning framework to a number of case studies that show
that compositional verification by learning assumptions can be significantly more scalable
than non-compositional verification.

Keywords Assume-guarantee reasoning · Model checking · Labeled transition systems ·
Learning · Proof rules · Compositional verification · Safety properties

1 Introduction

Model checking is an effective technique for finding subtle errors in concurrent systems.
Given a finite model of a system and a required property of that system, model checking
determines automatically whether the property is satisfied by the system. The cost of model
checking techniques may be exponential in the size of the system being verified, a problem
known as state explosion [12]. This can make model checking intractable for systems of
realistic size.

Compositional verification techniques address the state-explosion problem by using a
“divide-and-conquer” approach: properties of the system are decomposed into properties of
its components and each component is then checked separately. In checking components in-
dividually, it is often necessary to incorporate some knowledge of the context in which each
component is expected to operate correctly. Assume-guarantee reasoning [22, 28] addresses
this issue by using assumptions that capture the expectations that a component makes about
its environment. Assumptions have traditionally been developed manually, which has lim-
ited the practical impact of assume-guarantee reasoning.

To address this problem, we have proposed a framework [13] that fully automates
assume-guarantee model checking of safety properties for finite labeled transition systems.
At the heart of this framework lies an off-the-shelf learning algorithm, namely L* [4], that is
used to compute the assumptions. In one instantiation of this framework, a safety property
P is verified on a system consisting of components M1 and M2 by learning an assumption
under which M1 satisfies P . This assumption is then discharged by showing it is satisfied by
M2. In [6] we extended the learning framework to support a set of novel symmetric assume-
guarantee rules that are sound and complete. In all cases, this learning-based framework is
guaranteed to terminate, either stating that the property holds for the system, or returning a
counterexample if the property is violated.

Compositional techniques have been shown particularly effective for well-structured sys-
tems that have small interfaces between components [8, 18]. Interfaces consist of all com-
munication points through which components may influence each other’s behavior. In our
initial presentations of the framework [6, 13] the alphabets of the assumption automata in-
cluded all the actions in the component interface. In a case study presented in [27], however,
we observed that a smaller alphabet can be sufficient to prove a property. This smaller al-
phabet was determined through manual inspection and with it, assume-guarantee reasoning
achieves orders of magnitude improvement over monolithic, i.e., non-compositional, model
checking [27].

Motivated by the successful use of a smaller assumption alphabet in learning, we in-
vestigated in [17] whether the process of discovering a smaller alphabet that is sufficient for
checking the desired properties can be automated. Smaller alphabets mean smaller interfaces
among components, which may lead to smaller assumptions, and hence to smaller verifica-
tion problems. We developed an alphabet refinement technique that extends the learning
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framework so that it starts with a small subset of the interface alphabet and adds actions to
it as necessary until a required property is either shown to hold or shown to be violated by
the system. Actions to be added are discovered by analysis of the counterexamples obtained
from model checking the components.

The learning framework and the alphabet refinement have been implemented within the
LTSA model checking tool [24] and they have been effective in verifying realistic concurrent
systems, such as the ones developed in NASA projects. This paper presents and expands the
material presented in [13] (original learning framework for automated assume-guarantee
reasoning with an asymmetric rule), [6] (learning for symmetric rules), and [17] (alphabet
refinement for the original framework). In addition, we describe here a new extension that
uses a circular rule, alphabet refinement for symmetric and circular rules, and present new
experimental data.

The rest of the paper is organized as follows. Section 2 provides background on labeled
transition systems, finite-state machines, assume-guarantee reasoning, and the L* algorithm.
Section 3 follows with a presentation of the learning framework that automates assume-
guarantee reasoning for asymmetric and circular rules. Section 4 presents the extension
of the framework with symmetric rules, followed by Sect. 5 which presents the algorithm
for interface alphabet refinement. Section 6 provides an experimental evaluation of the de-
scribed techniques. Section 7 surveys related work and Sect. 8 concludes the paper.

2 Preliminaries

In this section we give background information for our work: we introduce labeled tran-
sition systems and finite-state machines, together with their associated operators, and also
present how properties are expressed and checked in this context. We also introduce assume-
guarantee reasoning and the notion of the weakest assumption. Moreover we provide a
detailed description of the learning algorithm that we use to automate assume-guarantee
reasoning. The reader may wish to skip this section on the first reading.

2.1 Labeled transition systems (LTSs)

Let Act be the universal set of observable actions and let τ denote a local action unob-
servable to a component’s environment. We use π to denote a special error state, which
models the fact that a safety violation has occurred in the associated transition system. We
require that the error state have no outgoing transitions. Formally, an LTS M is a four-tuple
〈Q,αM,δ, q0〉 where:

• Q is a finite non-empty set of states
• αM ⊆ Act is a set of observable actions called the alphabet of M

• δ ⊆ Q × (αM ∪ {τ }) × Q is a transition relation
• q0 ∈ Q is the initial state

We use � to denote the LTS 〈{π},Act,∅,π〉. An LTS M = 〈Q,αM,δ, q0〉 is non-
deterministic if it contains τ -transitions or if there exists (q, a, q ′), (q, a, q ′′) ∈ δ such that
q ′ 	= q ′′. Otherwise, M is deterministic.

As an example, consider a simple communication channel that consists of two compo-
nents whose LTSs are shown in Fig. 1. Note that the initial state of all LTSs in this paper is
state 0. The Input LTS receives an input when the action input occurs, and then sends it to
the Output LTS with action send. After being sent some data, Output produces some output
using the action output and acknowledges that it has finished, by using the action ack. At
this point, both LTSs return to their initial states so the process can be repeated.
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Fig. 1 Example LTSs

2.1.1 Traces

A trace t of an LTS M is a finite sequence of observable actions that label the transitions
that M can perform starting at its initial state (ignoring the τ -transitions). For example,
〈input〉 and 〈input, send〉 are both traces of the Input LTS in Fig. 1. We sometimes abuse
this notation and denote by t both a trace and its trace LTS. For a trace t of length n, its
trace LTS consists of n+ 1 states, where there is a transition between states m and m+ 1 on
the mth action in the trace t . The set of all traces of an LTS M is the language of M and is
denoted L(M). We denote as errTr(M) the set of traces that lead to π , which are called the
error traces of M .

For � ⊆ Act , we use t�� to denote the trace obtained by removing from t all occurrences
of actions a /∈ �. Similarly, M�� is defined to be an LTS over alphabet � which is obtained
from M by renaming to τ all the transitions labeled with actions that are not in �. Let t , t ′ be
two traces. Let �, �′ be the sets of actions occurring in t , t ′, respectively. By the symmetric
difference of t and t ′ we mean the symmetric difference of the sets � and �′.

2.1.2 Parallel composition

Let M = 〈Q,αM,δ, q0〉 and M ′ = 〈Q′, αM ′, δ′, q ′
0〉. We say that M transits into M ′ with

action a, denoted M
a−→ M ′, if and only if (q0, a, q ′

0) ∈ δ and either Q = Q′, αM = αM ′,
and δ = δ′ for q ′

0 	= π , or, in the special case where q ′
0 = π , M ′ = �.

The parallel composition operator ‖ is a commutative and associative operator that com-
bines the behavior of two components by synchronizing the actions common to their alpha-
bets and interleaving the remaining actions. For example, in the parallel composition of the
Input and Output components from Fig. 1, actions send and ack will each be synchronized
while input and output will be interleaved.

Formally, let M1 = 〈Q1, αM1, δ
1, q1

0 〉 and M2 = 〈Q2, αM2, δ
2, q2

0 〉 be two LTSs. If M1 =
� or M2 = �, then M1 ‖ M2 = �. Otherwise, M1 ‖ M2 is an LTS M = 〈Q,αM,δ, q0〉,
where Q = Q1 × Q2, q0 = (q1

0 , q2
0 ), αM = αM1 ∪ αM2, and δ is defined as follows, where

a is either an observable action or τ :

M1
a−→ M ′

1, a /∈ αM2

M1 ‖ M2
a−→ M ′

1 ‖ M2

,
M2

a−→ M ′
2, a /∈ αM1

M1 ‖ M2
a−→ M1 ‖ M ′

2

,

M1
a−→ M ′

1,M2
a−→ M ′

2, a 	= τ

M1 ‖ M2
a−→ M ′

1 ‖ M ′
2

.

2.1.3 Properties

We call a deterministic LTS that contains no π states a safety LTS. A safety property is
specified as a safety LTS P , whose language L(P ) defines the set of acceptable behaviors
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Fig. 2 Order property

over αP . For an LTS M and a safety LTS P such that αP ⊆ αM , we say that M satisfies P ,
denoted M |= P , if and only if ∀t ∈ L(M) : (t�αP ) ∈ L(P ).

When checking a property P , an error LTS denoted Perr is created, which traps possible
violations with the π state. Formally, the error LTS of a property P = 〈Q,αP, δ, q0〉 is
Perr = 〈Q ∪ {π}, αPerr, δ

′, q0〉, where αPerr = αP and

δ′ = δ ∪ {(q, a,π) | q ∈ Q,a ∈ αP, and �q ′ ∈ Q : (q, a, q ′) ∈ δ}.

Note that the error LTS is complete, meaning each state other than the error state has outgo-
ing transitions for every action in its alphabet. Also note that the error traces of Perr define
the language of P ’s complement (see Sect. 2.2.3 below).

For example, the Order property shown in Fig. 2 captures a desired behavior of the
communication channel shown in Fig. 1. The property comprises states 0 and 1, and the
transitions denoted by solid arrows. It expresses the fact that inputs and outputs come in
matched pairs, with the input always preceding the output. The dashed arrows illustrate the
transitions to the error state that are added to the property to obtain its error LTS, Ordererr .

To detect violations of a property P by a component M , the parallel composition M ‖ Perr

is computed. It has been proved that M violates P if and only if the π state is reachable in
M ‖ Perr [8]. For example, state π is not reachable in Input ‖ Output ‖ Ordererr , so we
conclude that Input ‖ Output |= Order.

2.2 LTSs and finite-state machines

As described in Sect. 4, some of the assume-guarantee rules require the use of the “com-
plement” of an LTS. LTSs are not closed under complementation, so we need to define
here a more general class of finite-state machines (FSMs) and associated operators for our
framework.

An FSM M is a five-tuple 〈Q,αM,δ, q0,F 〉 where Q, αM , δ, and q0 are defined as for
LTSs, and F ⊆ Q is a set of accepting states.

For an FSM M and a trace t , we use δ̂(q, t) to denote the set of states that M can
reach after reading t starting at state q . A trace t is said to be accepted by an FSM M =
〈Q,αM,δ, q0,F 〉 if δ̂(q0, t) ∩ F 	= ∅. The language accepted by M , denoted L(M) is the
set {t | δ̂(q0, t) ∩ F 	= ∅}.

For an FSM M = 〈Q,αM,δ, q0,F 〉, we use LTS(M) to denote the LTS 〈Q,αM,δ, q0〉
defined by its first four fields. Note that this transformation does not preserve the language
of the FSM, i.e., in some cases L(M) 	= L(LTS(M)). On the other hand, an LTS is in fact
a special instance of an FSM, since it can be viewed as an FSM for which all states are ac-
cepting. From now on, whenever we apply operators between FSMs and LTSs, it is implied
that each LTS is treated as its corresponding FSM.

We call an FSM M deterministic if and only if LTS(M) is deterministic.



180 Form Methods Syst Des (2008) 32: 175–205

2.2.1 Parallel composition of FSMs

Let M1 = 〈Q1, αM1, δ
1, q1

0 ,F 1〉 and M2 = 〈Q2, αM2, δ
2, q2

0 ,F 2〉 be two FSMs. Then
M1 ‖ M2 is an FSM M = 〈Q,αM,δ, q0,F 〉, where:

• 〈Q,αM,δ, q0〉 = LTS(M1) ‖ LTS(M2), and
• F = {(s1, s2) ∈ Q1 × Q2 | s1 ∈ F 1 and s2 ∈ F 2}.

Note 1

L(M1 ‖ M2) = {t | t�αM1 ∈ L(M1) ∧ t�αM2 ∈ L(M2) ∧ t ∈ (αM1 ∪ αM2)
∗}.

2.2.2 Properties

For FSMs M and P where αP ⊆ αM , M |= P if and only if

∀t ∈ L(M) : t�αP ∈ L(P ).

2.2.3 Complementation

The complement of an FSM (or an LTS) M , denoted coM , is an FSM that accepts the com-
plement of M’s language. It is constructed by first making M deterministic, subsequently
completing it with respect to αM , and finally turning all accepting states into non-accepting
ones, and vice-versa. An automaton is complete with respect to some alphabet if every state
has an outgoing transition for each action in the alphabet. Completion typically introduces
a non-accepting state and appropriate transitions to that state.

2.3 Assume-guarantee reasoning

2.3.1 Assume-guarantee triples

In the assume-guarantee paradigm a formula is a triple 〈A〉M〈P 〉, where M is a component,
P is a property, and A is an assumption about M’s environment. The formula is true if
whenever M is part of a system satisfying A, then the system must also guarantee P [19,
28], i.e., ∀E, E ‖ M |= A implies E ‖ M |= P . For LTS M and safety LTSs A and P ,
checking 〈A〉M〈P 〉 reduces to checking if state π is reachable in A ‖ M ‖ Perr . Note that
when αP ⊆ αA ∪ αM , this is equivalent to A ‖ M |= P . Also note that we assume that M

contains no π states.

Theorem 1 〈A〉M〈P 〉 is true if and only if π is unreachable in A ‖ M ‖ Perr .

Proof

• “⇒”: Assume 〈A〉M〈P 〉 is true. We show that π is unreachable in A ‖ M ‖ Perr by con-
tradiction. Assume π is reachable in A ‖ M ‖ Perr by a trace t . As a result, t�αA ∈ L(A),
t�αM ∈ L(M), and t�αP ∈ errTr(Perr) (see Note 1).

Let E be the trace LTS for the trace t�αA, with its alphabet augmented so that E ‖
M |= A and E ‖ M |= P are well defined, i.e., αA ⊆ (αM ∪ αE) and αP ⊆ (αM ∪ αE).
By construction, L(E) consists of t�αA and all of its prefixes. Since t�αA ∈ L(A), we
can conclude that E |= A. As a result, E ‖ M |= A.
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From our hypothesis that 〈A〉M〈P 〉 is true, it follows that E ‖ M |= A implies E ‖
M |= P . However, t�αE ∈ L(E), t�αM ∈ L(M), and t�αP ∈ errTr(Perr). Moreover t ’s
actions belong to αE ∪ αM ∪ αP . Therefore π is reachable in E ‖ M ‖ Perr on trace t .
As a result, we can conclude that E ‖ M 	|= P , which is a contradiction. Thus, π is not
reachable in A ‖ M ‖ Perr , as desired.

• “⇐”: Assume π is unreachable in A ‖ M ‖ Perr . We show that 〈A〉M〈P 〉 by contradiction.
Assume 〈A〉M〈P 〉 is not true, i.e., assume ∃E such that E ‖ M |= A but E ‖ M 	|= P .
(Again, we assume that αE is such that |= is well defined in the previous sentence.)

Since E ‖ M 	|= P then π is reachable in E ‖ M ‖ Perr by some trace t . As a result,
t�αE ∈ L(E), t�αM ∈ L(M), and t�αP ∈ errTr(Perr). Since E ‖ M |= A and αA ⊆
αE ∪ αM , it follows that t�αA ∈ L(A). As a result, π is reachable in A ‖ M ‖ Perr by
t�(αA ∪ αM ∪ αP ), which is a contradiction. Thus, 〈A〉M〈P 〉 is true, as desired. �

2.3.2 Weakest assumption

A central notion of our work is that of the weakest assumption [18], defined formally here.

Definition 2 (Weakest Assumption for �) Let M1 be an LTS for a component, P be a safety
LTS for a property required of M1, and � be the interface of the component to the environ-
ment. The weakest assumption Aw,� of M1 for � and for property P is a deterministic LTS
such that: (1) αAw,� = �, and (2) for any component M2, 〈true〉M1 ‖ (M2��)〈P 〉 if and
only if 〈true〉M2〈Aw,�〉.

The notion of a weakest assumption depends on the interface between the component and
its environment. Accordingly, in the second condition above, projecting M2 onto � forces
M2 to communicate with M1 only through actions in �. In [18] we showed that weakest
assumptions exist for components expressed as LTSs and properties expressed as safety
LTSs. Additionally, we provided an algorithm for computing weakest assumptions.

The definition above refers to any environment component M2 that interacts with com-
ponent M1 via an alphabet �. When M2 is given, there is a natural notion of the complete
interface between M1 and its environment M2, when property P is checked.

Definition 3 (Interface Alphabet) Let M1 and M2 be component LTSs, and P be a safety
LTS. The interface alphabet �I of M1 is defined as: �I = (αM1 ∪ αP ) ∩ αM2.

Definition 4 (Weakest Assumption) Given M1, M2, and P as above, the weakest assump-
tion Aw is defined as Aw,�I

.

Note that from the above definitions, it follows that 〈true〉M1 ‖ M2〈P 〉 if and only if
〈true〉M2〈Aw〉. The following lemma will be used later in the paper.

Lemma 5 Given M1, P , and � as above, then 〈Aw,�〉M1〈P 〉 holds.

Proof Aw,��� = Aw,� . If in Definition 2 we substitute Aw,� for M2, we obtain that:
〈true〉M1 ‖ Aw,�〈P 〉 if and only if 〈true〉Aw,�〈Aw,�〉. But the latter holds trivially, so we
conclude that 〈true〉M1 ‖ Aw,�〈P 〉, which is equivalent to 〈Aw,�〉M1〈P 〉, always holds. �
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(1) Let S = E = {λ}
loop {

(2) Update T using queries
while (S,E,T ) is not closed {

(3) Add sa to S to make S closed where s ∈ S and a ∈ �

(4) Update T using queries
}

(5) Construct candidate DFSM C from (S,E,T )

(6) Make the conjecture C

(7) if C is correct return C

else
(8) Add e ∈ �∗ that witnesses the counterexample to E

}

Fig. 3 The L* algorithm

2.4 The L* learning algorithm

The learning algorithm L* was developed by Angluin [4] and later improved by Rivest and
Schapire [29]. L* learns an unknown regular language U over alphabet � and produces a
deterministic finite-state machine (DFSM) that accepts it. L* interacts with a Minimally Ad-
equate Teacher, henceforth referred to as the Teacher, that answers two types of questions.
The first type is a membership query, in which L* asks whether a string s ∈ �∗ is in U . The
second type is a conjecture, in which L* asks whether a conjectured DFSM C is such that
L(C) = U . If L(C) 	= U the Teacher returns a counterexample, which is a string s in the
symmetric difference of L(C) and U .

At the implementation level, L* creates a table where it incrementally records whether
strings in �∗ belong to U . It does this by making membership queries to the Teacher. At
various stages L* decides to make a conjecture. It constructs a candidate automaton C based
on the information contained in the table and asks the Teacher whether the conjecture is
correct. If it is, the algorithm terminates. Otherwise, L* uses the counterexample returned
by the Teacher to extend the table with strings that witness differences between L(C) and U .

2.4.1 Details of L*

In the following more detailed presentation of the algorithm, line numbers refer to L*’s
illustration in Fig. 3. L* builds the observation table (S,E,T ) where S and E are a set
of prefixes and suffixes, respectively, both over �∗. In addition, T is a function mapping
(S ∪ S · �) · E to {true, false}, where the operator “·” is defined as follows. Given two sets
of sequences of actions P and Q, P ·Q = {pq | p ∈ P and q ∈ Q}, where pq represents the
concatenation of the sequences p and q . Initially, L* sets S and E to {λ} (line 1), where λ

represents the empty string. Subsequently, it updates the function T by making membership
queries so that it has a mapping for every string in (S ∪ S · �) · E (line 2). It then checks
whether the observation table is closed, i.e., whether

∀s ∈ S,∀a ∈ �,∃s ′ ∈ S,∀e ∈ E : T (sae) = T (s ′e).
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If (S,E,T ) is not closed, then sa is added to S where s ∈ S and a ∈ � are the elements
for which there is no s ′ ∈ S (line 3). Once sa has been added to S, T needs to be updated
(line 4). Lines 3 and 4 are repeated until (S,E,T ) is closed.

Once the observation table is closed, a candidate DFSM C = 〈Q,αC, δ, q0,F 〉 is con-
structed (line 5), with states Q = S, initial state q0 = λ, and alphabet αC = �, where � is
the alphabet of the unknown language U . The set F consists of the states s ∈ S such that
T (s) = true. The transition relation δ is defined as δ(s, a) = s ′ where ∀e ∈ E : T (sae) =
T (s ′e). Such an s ′ is guaranteed to exist when (S,E,T ) is closed. The DFSM C is pre-
sented as a conjecture to the Teacher (line 6). If the conjecture is correct, i.e., if L(C) = U ,
L* returns C as correct (line 7), otherwise it receives a counterexample c ∈ �∗ from the
Teacher.

The counterexample c is analyzed using a process described below to find a suffix e of c

that witnesses a difference between L(C) and U (line 8). Suffix e must be such that adding
it to E will cause the next conjectured automaton to reflect this difference. Once e has been
added to E, L* iterates the entire process by looping around to line 2.

As stated previously, on line 8 L* must analyze the counterexample c to find a suffix e

of c that witnesses a difference between L(C) and U . This is done by finding the earliest
point in c at which the conjectured automaton and the automaton that would recognize the
language U diverge in behavior. This point found by determining where ζi 	= ζi+1, where ζi

is computed as follows:

(1) Let p be the sequence of actions made up of the first i actions in c. Let r be the sequence
made up of the actions after the first i actions in c. Thus, c = pr .

(2) Run C on p. This moves C into some state q . By construction, this state q corresponds
to a row s ∈ S of the observation table.

(3) Perform a query on the actions sequence sr .
(4) Return the result of the membership query as ζi .

By using binary search, the point where ζi 	= ζi+1 can be found in O(log |c|) queries, where
|c| is the length of c.

2.4.2 Characteristics of L*

L* is guaranteed to terminate with a minimal automaton M for the unknown language U .
Moreover, for each closed observation table (S,E,T ), the candidate DFSM C that L* con-
structs is smallest, in the sense that any other DFSM consistent1 with the function T has at
least as many states as C. This characteristic of L* makes it particularly attractive for our
framework. The conjectures made by L* strictly increase in size; each conjecture is smaller
than the next one, and all incorrect conjectures are smaller than M . Therefore, if M has n

states, L* makes at most (n − 1) incorrect conjectures. The number of membership queries
made by L* is O(kn2 + n logm), where k is the size of the alphabet of U , n is the number
of states in the minimal DFSM for U , and m is the length of the longest counterexample
returned when a conjecture is made.

3 Learning for assume-guarantee reasoning

In this section we introduce a simple, asymmetric assume-guarantee rule and we describe a
framework which uses L* to learn assumptions that automate reasoning about two compo-

1A DFSM C is consistent with function T if, for every t in (S ∪S ·�) ·E, t ∈ L(C) if and only if T (t) = true.
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nents based on this rule. We also discuss how the framework has been extended to reason
about n components and to use circular rules.

3.1 Assume-guarantee rule ASYM

Our framework incorporates a number of symmetric and asymmetric rules for assume-
guarantee reasoning. The simplest assume-guarantee proof is for checking a property P

on a system with two components M1 and M2 and is as follows [19]:

Rule ASYM

1 : 〈A〉M1〈P 〉
2 : 〈true〉M2〈A〉

〈true〉M1 ‖ M2〈P 〉
In this rule, A denotes an assumption about the environment in which M1 is placed.

Soundness of the rule follows from 〈true〉M2〈A〉 implies 〈true〉M1 ‖ M2〈A〉 and from the de-
finition of assume-guarantee triples. Completeness holds trivially, by substituting M2 for A.

Note that the rule is not symmetric in its use of the two components, and does not support
circularity. Despite its simplicity, our experience with applying compositional verification
to several applications has shown it to be most useful in the context of checking safety
properties.

For the use of rule ASYM to be justified, the assumption must be more abstract than M2,
but still reflect M2’s behavior. Additionally, an appropriate assumption for the rule needs
to be strong enough for M1 to satisfy P in premise 1. Developing such an assumption is
difficult to do manually. In the following, we describe a framework that uses L* to learn
assumptions automatically.

3.2 Learning framework for rule ASYM

To learn assumptions, L* needs to be supplied with a Teacher capable of answering queries
and conjectures. We use the LTSA model checker to answer both of these questions. The
learning framework for rule ASYM is shown in Fig. 4. The alphabet of the learned assump-
tion is � = �I . As a result, the sequence of automata conjectured by L* converges to the
weakest assumption Aw .

3.2.1 The Teacher

To explain how the teacher answers queries and conjectures we use the following lemma.

Lemma 6 Let t ∈ �∗. Then t ∈ L(Aw) if and only if 〈t〉M1〈P 〉 holds. In the assume-
guarantee triple, we treat t as its corresponding trace LTS with the alphabet set to �.

Proof By Theorem 1, 〈t〉M1〈P 〉 holds if and only if π is unreachable in t ‖ M1 ‖ Perr , which
is equivalent to checking 〈true〉M1 ‖ t〈P 〉. By Definition 2, this is the same as checking
〈true〉t〈Aw〉, which is equivalent to checking t ∈ L(Aw). �

Answering queries Recall that L* makes a query by asking whether a trace t is in the
language being learned, which is L(Aw). The Teacher must return true if t is in L(Aw) and
false otherwise. To answer a query, the Teacher uses LTSA to check 〈t〉M1〈P 〉 (here t is
treated as a trace LTS and its alphabet is �). From Lemma 6 it follows if this check is false,
then t /∈ L(Aw) and false is returned to L*. Otherwise, t ∈ L(Aw) and true is returned to L*.
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Fig. 4 Learning framework for rule ASYM

Answering conjectures A conjecture consists of an FSM that L* believes will recognize
the language being learned. The Teacher must return true if the conjecture is correct. Oth-
erwise, the Teacher must return false and a counterexample that witnesses an error in the
conjectured FSM, i.e., a trace in the symmetric difference of the language being learned and
that of the conjectured automaton. In our framework, the conjectured FSM is an assumption
that is being used to complete an assume-guarantee proof. We treat the conjectured FSM as
an LTS, as described in Sect. 2.2, which we denote as the LTS A. To answer the conjecture,
the Teacher uses two oracles:

• Oracle 1 guides L* towards a conjecture that makes premise 1 of rule ASYM true. It
checks 〈A〉M1〈P 〉 and if the result is false, then a counterexample t is produced. Since
the 〈A〉M1〈P 〉 is false, we know that t�� ∈ L(A). But, since π is reachable in t�� ‖ M1 ‖
Perr , by Lemma 6 we know that t�� /∈ L(Aw). Thus, t�� witnesses a difference between
A and Aw so it is returned to L* to answer the conjecture. If the triple is true, then the
Teacher moves on to Oracle 2.

• Oracle 2 is invoked to check premise 2 of rule ASYM, i.e., to discharge A on M2 by
verifying that 〈true〉M2〈A〉 is true. This triple is checked and if it is true, then the as-
sumption makes both premises true and thus, the assume-guarantee rule guarantees that
〈true〉M1 ‖ M2〈P 〉 is true. The Teacher then returns true and the computed assumption A.
Note that A is not necessarily Aw , it can be stronger than Aw , i.e., L(A) ⊆ L(Aw), but the
computed assumption is sufficient to prove that the property holds. If the triple is not true,
then a counterexample t is produced. In this case further analysis is needed to determine
if either P is indeed violated by M1 ‖ M2 or if A is not precise enough, in which case A

needs to be modified.

Counterexample analysis The counterexample t from Oracle 2 must be analyzed to de-
termine if it is a real counterexample, i.e., if it causes M1 ‖ M2 to violate P . To do this,
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Table 1 Mapping T1
E1

T1 λ

S1 λ true

output false

ack true

output false

S1 · � send true

output, ack false

output, output false

output, send false

the Teacher performs a query on t��, in other words it uses LTSA to check 〈t��〉M1〈P 〉
(here again t�� is treated as a trace LTS and its alphabet is �). If this triple is true, then by
Lemma 6 we know that t�� ∈ L(Aw). Since this trace caused 〈true〉M2〈A〉 to be false, we
also know that t�� /∈ L(A), thus t�� witnesses a difference between A and Aw . Therefore,
t�� is returned to L* to answer its conjecture.

If the triple 〈t��〉M1〈P 〉 is false, then the model checker returns a (new) counterexample
c that witnesses the violation of P on M1 in the context of t��. With � = �I , c is guaran-
teed to be a real error trace in M1 ‖ M2 ‖ Perr (we will see in Sect. 5 that when � is only a
subset of �I , this is no longer the case). Thus, 〈true〉M1 ‖ M2〈P 〉 is false and c is returned
to the user as a counterexample.

Remarks A characteristic of L* that makes it particularly attractive for our framework is
its monotonicity. This means that the intermediate candidate assumptions that are generated
increase in size; each assumption is smaller than the next one. We should note, however, that
there is no monotonicity at the semantic level. If Ai is the i th assumption conjectured by L*,
then |Ai | < |Ai+1|, but it is not necessarily the case that L(Ai) ⊂ L(Ai+1).

3.2.2 Example

Given components Input and Output shown in Fig. 1 and the property Order shown in
Fig. 2, we will check 〈true〉Input ‖ Output〈Order〉 using rule ASYM. To do this, we set
M1 = Input, M2 = Output, and P = Order. The alphabet of the interface for this example is
� = ((αInput ∪ αOrder) ∩ αOutput) = {send,output, ack}.

As described, at each iteration L* updates its observation table and produces a can-
didate assumption whenever the table becomes closed. The first closed table obtained is
shown in Table 1 and its associated assumption, A1, is shown in Fig. 5. The Teacher an-
swers conjecture A1 by first invoking Oracle 1, which checks 〈A1〉Input〈Order〉. Oracle 1
returns false, with counterexample t = 〈input, send, ack, input〉, which describes a trace in
A1 ‖ Input ‖ Ordererr that leads to state π .

The Teacher therefore returns counterexample t�� = 〈send, ack〉 to L*, which uses
queries to again update its observation table until it is closed. From this table, shown in
Table 2, the assumption A2, shown in Fig. 6, is constructed and conjectured to the Teacher.
This time, Oracle 1 reports that 〈A2〉Input〈Order〉 is true, meaning the assumption is not too
weak. The Teacher then calls Oracle 2 to determine if 〈true〉Output〈A2〉. This is also true,
so the framework reports that 〈true〉Input ‖ Output〈Order〉 is true.
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Table 2 Mapping T2
E2

T2 λ ack

λ true true

S2 output false false

send true false

ack true true

output false false

send true false

output, ack false false

S2 · � output, output false false

output, send false false

send, ack false false

send, output true true

send, send true true

Fig. 5 A1

Fig. 6 A2

Fig. 7 A3

This example did not involve weakening of the assumptions produced by L*, since the
assumption A2 was sufficient for the compositional proof. This will not always be the case.
Consider Output′, shown in Fig. 9, which allows multiple send actions to occur before pro-
ducing output. If Output were replaced by Output′, then the verification process would be
identical to the previous case, until Oracle 2 is invoked by the Teacher for conjecture A2. Or-
acle 2 returns that 〈true〉Output′〈A2〉 is false, with counterexample 〈send, send, output〉. The
Teacher analyzes this counterexample and determines that in the context of this trace, Input
does not violate Order. This trace (projected onto �) is returned to L*, which will weaken
the conjectured assumption. The process involves two more iterations, during which as-
sumptions A3 (Fig. 7) and A4 (Fig. 8), are produced. Using A4, which is the weakest assump-



188 Form Methods Syst Des (2008) 32: 175–205

Fig. 8 A4

Fig. 9 LTS for Output′

tion Aw , both Oracles report true, so it can be concluded that 〈true〉Input ‖ Output′〈Order〉
also holds.

3.2.3 Correctness and termination

Theorem 7 Given components M1 and M2, and property P , the algorithm implemented
by our framework for rule ASYM terminates and correctly reports on whether 〈true〉M1 ‖
M2〈P 〉 holds.

Proof To prove the theorem, we first argue the correctness, and then the termination of our
algorithm.

Correctness: The Teacher in our framework uses the two premises of the assume-
guarantee rule to answer conjectures. It only reports that 〈true〉M1 ‖ M2〈P 〉 is true when
both premises are true, and therefore correctness is guaranteed by the compositional rule.
Our framework reports an error when it detects a trace t of M2 which, when simulated on
M1, violates the property, which implies that M1 ‖ M2 violates P .

Termination: At any iteration, after an assumption is conjectured, our algorithm reports
on whether 〈true〉M1 ‖ M2〈P 〉 is true and terminates, or continues by providing a coun-
terexample to L*. By correctness of L*, we are guaranteed that if it keeps receiving coun-
terexamples to conjectures, it will eventually, at some iteration i, produce Aw . During this
iteration, Oracle 1 will return true by definition of Aw . The Teacher will therefore apply
Oracle 2, which will return either true and terminate, or will return a counterexample. This
counterexample represents a trace of M2 that is not contained in L(Aw). Since, as discussed
before, Aw is both necessary and sufficient, analysis of the counterexample will report that
this is a real counterexample, and the algorithm will terminate. �

3.3 Generalization to n components

We presented our approach so far to the case of two components. Assume now that a sys-
tem consists of n ≥ 2 components. To check if system M1 ‖ M2 ‖ · · · ‖ Mn satisfies P , we
decompose it into: M1 and M ′

2 = M2 ‖ M3 ‖ · · · ‖ Mn and the learning framework is applied
recursively to check the second premise of the assume-guarantee rule.

At each recursive invocation for Mj and M ′
j = Mj+1 ‖ Mj+2 ‖ · · · ‖ Mn, we solve the

following problem: find assumption Aj such that the following are both true:
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• 〈Aj 〉Mj 〈Aj−1〉 and
• 〈true〉Mj+1 ‖ Mj+2 ‖ · · · ‖ Mn〈Aj 〉.
Here Aj−1 is the assumption for Mj−1 and plays the role of the property for the current
recursive call. Correctness and termination for this extension follows by induction on n

from Theorem 7.

3.4 Extension with a circular rule

Our framework can accommodate a variety of assume-guarantee rules that are sound. Com-
pleteness of rules is required to guarantee termination. We investigate here another rule,
that is similar to ASYM but it involves some form of circular reasoning. This rule appeared
originally in [19] (for reasoning about two components). The rule can be extended easily to
reasoning about n ≥ 2 components.

Rule CIRC-N

1 : 〈A1〉M1〈P 〉
2 : 〈A2〉M2〈A1〉
...

n : 〈An〉Mn〈An−1〉
n + 1 : 〈true〉M1〈An〉

〈true〉M1 ‖ M2 ‖ · · · ‖ Mn〈P 〉
Soundness and completeness of this rule follow from [19]. Note that this rule is similar to

the rule ASYM applied recursively for n + 1 components, where the first and the last com-
ponent coincide (hence the term “circular”). Learning based assume-guarantee reasoning
proceeds as described in Sect. 3.3.

4 Learning with symmetric rules

Although sound and complete, the rules presented in the previous section are not always
satisfactory since they are not symmetric in the use of the components. In [6] we proposed a
set of symmetric rules that are sound and complete and we also described their automation
using learning. They are symmetric in the sense that they are based on establishing and
discharging assumptions for each component at the same time.

4.1 Symmetric assume-guarantee rules

Here we present one of the rules that we found particularly effective in practice. The rule
may be used for reasoning about a system composed of n ≥ 2 components: M1 ‖ M2 ‖ · · · ‖
Mn.

Rule SYM-N

1 : 〈A1〉M1〈P 〉
2 : 〈A2〉M2〈P 〉
...

n : 〈An〉Mn〈P 〉
n + 1 : L(coA1 ‖ coA2 ‖ · · · ‖ coAn) ⊆ L(P )

〈true〉M1 ‖ M2 ‖ · · · ‖ Mn〈P 〉
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We require αP ⊆ αM1 ∪ αM2 ∪ · · · ∪ αMn and that for i ∈ {1,2, . . . n}
αAi ⊆ (αM1 ∩ αM2 ∩ · · · ∩ αMn) ∪ αP.

Informally, each Ai is a postulated environment assumption for the component Mi to achieve
to satisfy property P . Recall that coAi is the complement of Ai .

Theorem 8 Rule SYM-N is sound and complete.

Proof To establish soundness, we show that the premises together with the negated conclu-
sion lead to a contradiction. Consider a trace t for which the conclusion fails, i.e., t is a trace
of M1 ‖ M2 ‖ · · · ‖ Mn that violates property P , in other words t is not accepted by P . By the
definition of parallel composition, t�αM1 is accepted by M1. Hence, by premise 1, the trace
t�αA1 can not be accepted by A1, i.e., t�αA1 is accepted by coA1. Similarly, by premise
i = 2 . . . n, the trace t�αAi is accepted by coAi . By the definition of parallel composition
and the fact that an FSM and its complement have the same alphabet, t�(αA1 ∪A2 ∪· · ·∪An)

is accepted by coA1 ‖ coA2 ‖ · · · ‖ coAn and it violates P . But premise n + 1 states that the
common traces in the complements of the assumptions belong to the language of P . Hence
we have a contradiction.

Our argument for the completeness of Rule SYM-N relies on weakest assumptions. To
establish completeness, we assume the conclusion of the rule and show that we can con-
struct assumptions that will satisfy the premises of the rule. We construct the weakest as-
sumptions Aw1, Aw2, . . .Awn for M1, M2, . . .Mn, respectively, to achieve P and substi-
tute them for A1, A2, . . .An. Premises 1 through n are satisfied. It remains to show that
premise n + 1 holds. Again we proceed by contradiction. Suppose there is a trace t in
L(coAw1 ‖ coAw2 ‖ · · · ‖ coAwn) that violates P ; more precisely t�αP ∈ L(coP ). By de-
finition of parallel composition, t is accepted by all coAw1, coAw2, . . . coAwn. Furthermore,
there will exist t1 ∈ L(M1 ‖ coP ) such that t1�αt = t , where αt is the alphabet of the as-
sumptions. Similarly for i = 2 . . . n, ti ∈ L(Mi ‖ coP ). t1, t2, . . . tn can be combined into
trace t ′ of M1 ‖ M2 ‖ · · · ‖ Mn such that t ′�αt = t . This contradicts the assumed conclusion
that M1 ‖ M2 ‖ · · · ‖ Mn satisfies P , since t violates P . Therefore, there can not be such a
common trace t , and premise n + 1 holds. �

4.2 Learning framework for rule SYM-N

The framework for rule SYM-N is illustrated in Fig. 10. To obtain appropriate assumptions,
the framework applies the compositional rule in an iterative fashion. At each iteration L*
is used to generate appropriate assumptions for each component, based on querying the
system and on the results of the previous iteration. Each assumption is then checked to
establish the premises of Rule SYM-N. We use separate instances of L* to iteratively learn
Aw1, Aw2, . . .Awn.

4.2.1 The Teacher

As before, we use model checking to implement the Teacher needed by L*. The conjectures
returned by L* are the intermediate assumptions A1,A2, . . . ,An. The Teacher implements
n + 1 oracles, one for each premise in the SYM-N rule:

• Oracles 1,2, . . . n guide the corresponding L* instances towards conjectures that make
the corresponding premise of rule SYM-N true. Once this is accomplished,
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Fig. 10 Learning framework for rule SYM-N

• Oracle n + 1 is invoked to check the last premise of the rule, i.e.,

L(coA1 ‖ coA2 ‖ · · · ‖ coAn) ⊆ L(P ).

If this is true, rule SYM-N guarantees that M1 ‖ M2 ‖ · · · ‖ Mn satisfies P .

If the result of Oracle n + 1 is false (with counterexample trace t ), by counterexample
analysis we identify either that P is indeed violated in M1 ‖ M2 ‖ · · · ‖ Mn or that some
of the candidate assumptions need to be modified. If (some of the) assumptions need to be
refined in the next iteration, then behaviors must be added to those assumptions. The result
will be that at least the behavior that the counterexample represents will be allowed by those
assumptions during the next iteration. The new assumptions may of course be too abstract,
and therefore the entire process must be repeated.

Counterexample analysis Counterexample t is analyzed in a way similar to the analysis
for rule ASYM, i.e., we analyze t to determine whether it indeed corresponds to a violation
in M1 ‖ M2 ‖ · · · ‖ Mn. This is checked by simulating t on Mi ‖ coP , for all i = 1 . . . n. The
following cases arise:

• If t is a violating trace of all components M1,M2, . . .Mn, then M1 ‖ M2 ‖ · · · ‖ Mn indeed
violates P , which is reported to the user.

• If t is not a violating trace of at least one component Mi , then we use t to weaken the
corresponding assumption(s).

4.2.2 Correctness and termination

Theorem 9 Given components M1,M2, . . .Mn and property P , the algorithm implemented
by our framework for rule SYM-N terminates and correctly reports on whether P holds on
M1 ‖ M2 ‖ · · · ‖ Mn.

Proof Correctness: The Teacher returns true only if the premises of rule SYM-N hold, and
therefore correctness is guaranteed by the soundness of the rule. The Teacher reports a coun-
terexample only when it finds a trace that is violating in all components, which implies that
M1 ‖ M2 ‖ · · · ‖ Mn also violates P .

Termination: At any iteration, the Teacher reports on whether or not P holds on M1 ‖
M2 ‖ · · · ‖ Mn and terminates, or continues by providing a counterexample to L*. By the
correctness of L*, we are guaranteed that if it keeps receiving counterexamples, it eventually
produces Aw1,Aw2, . . .Awn, respectively.
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Fig. 11 Example LTS for a
client

Fig. 12 Mutual exclusion
property

During this last iteration, premises 1 through n will hold by definition of the weakest
assumptions. The Teacher therefore checks premise n + 1, which either returns true and
terminates, or returns a counterexample. Since the weakest assumptions are used, by the
completeness of the rule, we know that the counterexample analysis reveals a real error, and
hence the process terminates. �

5 Learning with alphabet refinement

In this section, we present a technique that extends the learning based assume-guarantee
reasoning framework with alphabet refinement. We first illustrate the benefits of smaller
interface alphabets for assume-guarantee reasoning through a simple client-server example
from [27]. Then, we explain the effect of smaller interface alphabets on learning assump-
tions. We then describe the alphabet refinement algorithm, give its properties, and discuss
how it extends to reasoning about n components as well as to circular and symmetric rules.

5.1 Example

Consider a system consisting of a server component and two identical client components
that communicate through shared actions. Each client sends requests for reservations to use
a common resource, waits for the server to grant the reservation, uses the resource, and then
cancels the reservation. For example, the LTS of a client is shown in Fig. 11, where i = 1,2.
The server, shown in Fig. 13 can grant or deny a request, ensuring that the resource is used
only by one client at a time. We are interested in checking the mutual exclusion property
illustrated in Fig. 12, that captures a desired behavior of the client-server application.

To check the property compositionally, assume that we decompose the system as: M1 =
Client1 ‖ Client2 and M2 = Server. The complete alphabet of the interface between M1 ‖
P and M2 (see Fig. 14) is: �I = {client1.cancel, client1.grant, client1.deny, client1.request,
client2.cancel, client2.grant, client2.deny, client2.request}.

Using this alphabet and the learning framework in Sect. 3, an assumption with eight
states is learned, shown in Fig. 16. However, a (much) smaller assumption is suffi-
cient for proving the mutual exclusion property. With the assumption alphabet � =
{client1.cancel, client1.grant, client2.cancel, client2.grant}, which is a strict subset of �I

(and, in fact, the alphabet of the property), a three-state assumption is learned, shown in
Fig. 15. This smaller assumption enables more efficient verification than the eight state
assumption obtained with the complete alphabet. In the following section, we present an ex-
tension of the learning framework that infers automatically smaller interface alphabets (and
the corresponding assumptions).
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Fig. 13 Example LTS for a
server

Fig. 14 Complete interface for
the client-server example

Fig. 15 Assumption learned
with an alphabet smaller than the
complete interface alphabet

5.2 Learning based assume-guarantee reasoning and small interface alphabets

Before describing the alphabet refinement algorithm, let us first consider the effect of smaller
interface alphabets on our learning framework. Let M1 and M2 be components, P be a
property, �I be the interface alphabet, and � be an alphabet such that � ⊂ �I . Suppose
that we use the learning framework of Sect. 3 but we now set this smaller � to be the
alphabet that the framework uses when learning the assumption. From the correctness of the
assume-guarantee rule, if the framework reports true, 〈true〉M1 ‖ M2〈P 〉. When it reports
false, it is because it finds a trace t in M2 that falsifies 〈t��〉M1〈P 〉. This, however, does not
necessarily mean that M1 ‖ M2 violates P . Real violations are discovered by our original
framework only when the alphabet is �I , and are traces t ′ of M2 that falsify 〈t ′��I 〉M1〈P 〉.
In the assume-guarantee triples, t�� and t ′��I are trace LTSs with alphabets � and �I ,
respectively.

Consider again the client-server example. Assume � = {client1.cancel, client1.grant,
client2.grant}, which is a strict subset of �I . Learning with � produces trace: t =
〈client2.request, client2.grant, client2.cancel, client1.request, client1.grant〉. Projected to �,
this becomes t�� = 〈client2.grant, client1.grant〉. In the context of t��, M1 violates the
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Fig. 16 Assumption obtained with the complete interface alphabet

property since Client1 ‖ Client2 ‖ Perr contains the following behavior.

(0,0,0)
client1.request−→ (1,0,0)

client2.request−→ (1,1,0)
client2.grant−→ (1,2,2)

client1.grant−→ (2,2,π)

Learning therefore reports false. This behavior is not feasible, however, in the context
of t��I = 〈client2.request, client2.grant, client2.cancel, client1.request, client1.grant〉. This
trace requires a client2.cancel action to occur before the client1.grant action. Thus, in the
context of �I the above violating behavior would be infeasible. We conclude that when ap-
plying the learning framework with alphabets smaller than �I , if true is reported then the
property holds in the system, but violations reported may be spurious.

5.3 Algorithm for alphabet refinement

Alphabet refinement extends the learning framework to deal with alphabets that are smaller
than �I while avoiding spurious counterexamples. The steps of the algorithm are as follows
(see Fig. 17):

(1) Initialize � such that � ⊆ �I .
(2) Use the classic learning framework for �. If the framework returns true, then report true

and STOP. If the framework returns false with counterexamples c and t , go to the next
step.

(3) Perform extended counterexample analysis with c and t . If c is a real counterexample,
then report false and STOP. If c is spurious, then refine �, which consists of adding
actions to � from �I . Go to step 2.

When spurious counterexamples are detected, the Refiner extends the alphabet with actions
from the alphabet of the weakest assumption and the learning of assumptions is restarted.
In the worst case, �I is reached and, as proven in our previous work, learning then only
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Fig. 17 Learning with alphabet
refinement

Fig. 18 Extended
counterexample analysis

reports real counterexamples. The highlighted steps in the above high-level algorithm are
further specified next.

Alphabet initialization The correctness of our algorithm is insensitive to the initial alpha-
bet. We set the initial alphabet to those actions in the alphabet of the property that are also
in �I , i.e., αP ∩ �I . The intuition is that these interface actions are likely to be significant
in proving the property, since they are involved in its definition. A good initial guess of
the alphabet may achieve big savings in terms of time since it results in fewer refinement
iterations.

Extended counterexample analysis An additional counterexample analysis is appended to
the original learning framework as illustrated in Fig. 17. The steps of this analysis are out-
lined in Fig. 18. The extension takes as inputs both the counterexample t returned by Or-
acle 2, and the counterexample c that is returned by the original counterexample analysis.
We modified the “classic” learning framework (Fig. 4) to return both c and t to be used in
alphabet refinement (as explained below). As discussed, c is obtained because 〈t��〉M1〈P 〉
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does not hold. The next step is to check whether in fact t uncovers a real violation in the
system. As illustrated by the client-server example, the results of checking M1 ‖ Perr in the
context of t projected to different alphabets may be different. The correct (non-spurious)
results are obtained by projecting t on the alphabet �I of the weakest assumption. Coun-
terexample analysis therefore calls LTSA to check 〈t��I 〉M1〈P 〉. If LTSA finds an error,
the resulting counterexample c is real. If error is not reached, then the counterexample is
spurious and the alphabet � needs to be refined. Refinement proceeds as described next.

Alphabet refinement When spurious counterexamples are detected, we need to augment
the current alphabet � so that these counterexamples are eventually eliminated. A coun-
terexample c is spurious if in the context of t��I it would not be obtained. Our refinement
heuristics are therefore based on comparing c and t��I to discover actions in �I to be added
to the learning alphabet (for this reason c is also projected on �I in the refinement process).
We have currently implemented the following heuristics:

AllDiff: adds all the actions in the symmetric difference of t��I and c��I . A potential
problem of this heuristic is that it may add too many actions too soon. If it happens to add
useful actions, however, it may terminate after a small number of iterations.

Forward: scans the traces t��I and c��I in parallel from beginning to end looking for the
first index i where they disagree; if such an i is found, both actions t��I (i), c��I(i) are
added to the alphabet. By adding fewer actions during each iteration, the algorithm may
end up with a smaller alphabet. But, it may take more iterations before it does not produce
a spurious result.

Backward: is similar to Forward, but scans from the end of the traces to the beginning.

5.3.1 Correctness and termination

For correctness and termination of learning with alphabet refinement, we first show progress
of refinement, meaning that at each refinement stage, new actions are discovered to be added
to �.

Proposition 10 (Progress of alphabet refinement) Let �I = (αM1 ∪ αP ) ∩ αM2 be the
alphabet of the weakest assumption and let � ⊂ �I be that of the assumption at the current
alphabet refinement stage. Let t be a trace of M2 ‖ Aerr such that t�� leads to error on M1 ‖
Perr by an error trace c, but t��I does not lead to error on M1 ‖ Perr . Then t��I 	= c��I

and there exists an action in their symmetric difference that is not in �.

Proof We prove by contradiction that t��I 	= c��I . Suppose t��I = c��I . We know that c

is an error trace on M1 ‖ Perr . Since actions of c that are not in �I are internal to M1 ‖ Perr ,
then c��I also leads to error on M1 ‖ Perr . But then t��I leads to error on M1 ‖ Perr , which
is a contradiction.

We now show that there exists an action in the symmetric difference between t��I

and c��I that is not in � (this action will be added to � by alphabet refinement). Trace
t��I is t��, with some interleaved actions from �I \ �. Similarly, c��I is t�� with
some interleaved actions from �I \ �, since c is obtained by composing the trace LTS
t�� with M1 ‖ Perr . Thus t�� = c��. We again proceed by contradiction. If all the ac-
tions in the symmetric difference between t��I and c��I were in �, we would have
t��I = t�� = c�� = c��I , which contradicts t��I 	= c��I . �
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Correctness follows from the assume-guarantee rule and the extended counterexample
analysis. Termination follows from termination of the original framework, from the progress
property and also from the finiteness of �I . Moreover, from the progress property it follows
that the refinement algorithm for two components has at most |�I | iterations.

Theorem 11 Given components M1 and M2, and property P , L* with alphabet refinement
terminates and returns true if M1 ‖ M2 satisfies P and false otherwise.

Proof Correctness: When the teacher returns true, then correctness is guaranteed by the
assume-guarantee compositional rule. If the teacher returns false, the extended counterex-
ample analysis reports an error for a trace t of M2, such that t��I in the context of M1

violates the property (the same test is used in the algorithm from [13]) hence M1 ‖ M2 vio-
lates the property.

Termination: From the correctness of L*, we know that at each refinement stage (with
alphabet �), if L* keeps receiving counterexamples, it is guaranteed to generate Aw,� . At
that point, Oracle 1 will return true (from Lemma 5). Therefore, Oracle 2 will be applied,
which will return either true, and terminate, or a counterexample t . This counterexample is
a trace that is not in L(Aw,�). It is either a real counterexample (in which case the algorithm
terminates) or it is a trace t such that t�� leads to error on M1 ‖ Perr by an error trace c, but
t��I does not lead to error on M1 ‖ Perr . Then from Proposition 10, we know that t��I 	=
c��I and there exists an action in their symmetric difference that is not in �. The Refiner
will add this action (and possibly more actions, depending on the refinement strategy) to �

and the learning algorithm is repeated for this new alphabet. Since �I is finite, in the worst
case, � grows into �I , for which termination and correctness follow from Theorem 7. �

We also note a property of weakest assumptions, which states that by adding actions to
an alphabet �, the corresponding weakest assumption becomes weaker (i.e., contains more
behaviors) than the previous one.

Proposition 12 Assume components M1 and M2, property P and the corresponding inter-
face alphabet �I . Let �,�′ be sets of actions such that: � ⊂ �′ ⊂ �I . Then: L(Aw,�) ⊆
L(Aw,�′) ⊆ L(Aw,�I

).

Proof Since � ⊆ �′, we know that Aw,���′ = Aw,� . By substituting, in Definition 2,
Aw,� for M2, we obtain that: 〈Aw,�〉M1〈P 〉 if and only if 〈true〉Aw,�〈Aw,�′ 〉. From
Lemma 5 we know that 〈Aw,�〉M1〈P 〉. Therefore, 〈true〉Aw,�〈Aw,�′ 〉 holds, which implies
that L(Aw,�) ⊆ L(Aw,�′). Similarly, L(Aw,�′) ⊆ L(Aw,�I

). �

With alphabet refinement, our framework adds actions to the alphabet, which translates
into adding more behaviors to the weakest assumption that L* tries to learn. This means that
at each refinement stage i, when the learning framework is started with a new alphabet �i

such that �i−1 ⊂ �i , it will try to learn a weaker assumption Aw,�i
than Aw,�i−1 , which was

its goal in the previous stage. Moreover, all these assumptions are under-approximations of
the weakest assumption Aw,�I

that is necessary and sufficient to prove the desired property.
Note that at each refinement stage the learning framework might stop before computing
the corresponding weakest assumption. The above property allows reuse of learning results
across refinement stages (see Sect. 8).
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5.4 Generalization to n components

Alphabet refinement can also be used when reasoning about more than two components
using rule ASYM. Recall from Sect. 3 that to check if system M1 ‖ M2 ‖ · · · ‖ Mn satisfies P

we decompose it into: M1 and M ′
2 = M2 ‖ M3 ‖ · · · ‖ Mn and the learning algorithm (without

refinement) is invoked recursively for checking the second premise of the assume-guarantee
rule.

Learning with alphabet refinement follows this recursion. At each recursive invocation
for Mj and M ′

j = Mj+1 ‖ Mj+2 ‖ · · · ‖ Mn, we solve the following problem: find assumption
Aj and alphabet �Aj

such that the rule premises hold, i.e.

Oracle 1: 〈Aj 〉Mj 〈Aj−1〉 and
Oracle 2: 〈true〉Mj+1 ‖ Mj+2 ‖ · · · ‖ Mn〈Aj 〉.
Here Aj−1 is the assumption for Mj−1 and plays the role of the property for the current
recursive call. Thus, the alphabet of the weakest assumption for this recursive invocation is
�

j

I = (αMj ∪αAj−1)∩(αMj+1 ∪αMj+2 ∪· · ·∪αMn). If Oracle 2 returns a counterexample,
then the counterexample analysis and alphabet refinement proceed exactly as in the two-
component case. Note that at a new recursive call for Mj with a new Aj−1, the alphabet of
the weakest assumption is recomputed.

Correctness and termination of this extension follow from Theorem 11 (and from finite-
ness of n). The proof proceeds by induction on n.

5.5 Extension to circular and symmetric rules

Alphabet refinement also applies to the rules CIRC-N and SYM-N. As mentioned, CIRC-N

is a special case of the recursive application of rule ASYM for n + 1 components, where the
first and last component coincide. Therefore alphabet refinement applies to CIRC-N as we
described here.

For rule SYM-N, the counterexample analysis for the error trace t obtained from checking
premise n + 1 is extended for each component Mi , for i = 1 . . . n. The extension works
similarly to that for ASYM discussed earlier in this section. The error trace t is simulated on
each Mi ‖ coP with the current assumption alphabet.

• If t is violating for some i, then we check whether t , with the entire alphabet of the
weakest assumption for i is still violating. If it is, then t is a real error trace for Mi . If it is
not, the alphabet of the current assumption for i is refined with actions from the alphabet
of the corresponding weakest assumption.

• If t is a real error trace for all i, then it is reported as a real violation of the property on
the entire system.

If alphabet refinement takes place for some i, the learning of the assumption for this i is
restarted with the refined alphabet, and premise n + 1 is re-checked with the new learned
assumption for i.

6 Experiments

We implemented learning with rules ASYM, SYM-N, CIRC-N, with and without alphabet
refinement in LTSA and evaluated the implementations for checking safety properties of
various concurrent systems that we briefly describe below. The goal of the evaluation was
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to assess the performance of learning, the effect of alphabet refinement on learning, to com-
pare the effect of the different rules, and to also compare the scalability of compositional
verification by learning to that of non-compositional verification.

Models and properties We used the following LTSA models. Gas Station [20] models a
self-serve gas station consisting of k customers, two pumps, and an operator. For k = 3,4,5,
we checked that the operator correctly gives change to a customer for the pump that he/she
used. Chiron [5, 23] models a graphical user interface consisting of k artists, a wrap-
per, a manager, a client initialization module, a dispatcher, and two event dispatchers. For
k = 2 . . .5, we checked two properties: the dispatcher notifies artists of an event before re-
ceiving a next event, and the dispatcher only notifies artists of an event after it receives that
event. MER [27] models the flight software component for JPL’s Mars Exploration Rovers. It
contains k users competing for resources managed by an arbiter. For k = 2 . . .6, we checked
that communication and driving cannot happen at the same time as they share common
resources. Rover Executive [13] models a subsystem of the Ames K9 Rover. The models
consists of a main ‘Executive’ and an ‘ExecCondChecker’ component responsible for mon-
itoring state conditions. We checked that for a specific shared variable, if the Executive reads
its value, then the ExecCondChecker should not read it before the Executive clears it.

Gas Station and Chiron were analyzed before, in [14], using learning-based assume-
guarantee reasoning (with ASYM and no alphabet refinement). Four properties of Gas Sta-
tion and nine properties of Chiron were checked to study how various 2-way model decom-
positions (i.e., grouping the modules of each analyzed system into two “super-components”)
affect the performance of learning. For most of these properties, learning performs better
than non-compositional verification and produces small (one-state) assumptions. For some
other properties, learning does not perform that well, and produces much larger assump-
tions. To stress-test our implementation, we selected some of the latter, more challenging
properties for our studies here.

Results We performed several sets of experiments. All experiments were performed on a
Dell PC with a 2.8 GHz Intel Pentium 4 CPU and 1.0 GB RAM, running Linux Fedora Core
4 and using Sun’s Java SDK version 1.5. The results are shown in Tables 3, 4, 5, and 6.
In the tables, |A| is the maximum assumption size reached during learning, ‘Mem.’ is the
maximum memory used by LTSA to check assume-guarantee triples, measured in MB, and
‘Time’ is the total CPU running time, measured in seconds. Column ‘Monolithic’ reports the
memory and run-time of non-compositional model checking. We set a limit of 30 minutes
for each run. The sign ‘–’ indicates that the limit of 1 GB of memory or the time limit has
been exceeded. For these cases, the data is reported as it was when the limit was reached.

In Table 3, we show the performance of learning with the ASYM rule, without alphabet
refinement, and with different alphabet refinement heuristics, for two-way decompositions
of the systems we studied. For Gas Station and Chiron we used decompositions generalized
from the best two-way decompositions at size 2, as described in [14]. For Gas Station, the
operator and the first pump are one component, and the rest of the modules are the other.
For Chiron, the event dispatchers are one component, and the rest of the modules are the
other. For MER, half of the users are in one component, and the other half with the arbiter
in the other. For the Rover we used the two components described in [13]. As these results
indicate that ‘bwd’ heuristic is slightly better than the others, we used this heuristic for
alphabet refinement in the rest of the experiments.

Table 4 shows the performance of the recursive implementation of learning with
rule ASYM, with and without alphabet refinement, as well as that of monolithic (non-
compositional) verification, for increasing number of components. For these experiments
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Table 4 Comparison of recursive learning for ASYM rule with and without alphabet refinement, and mono-
lithic verification

Case k ASYM ASYM + ref Monolithic

|A| Mem. Time |A| Mem. Time Mem. Time

Gas Station 3 473 109.97 – 25 2.41 13.29 1.41 0.034

4 287 203.05 – 25 3.42 22.50 2.29 0.13

5 268 283.18 – 25 5.34 46.90 6.33 0.78

Chiron, 2 352 343.62 – 4 0.93 2.38 0.88 0.041

Property 1 3 182 114.57 – 4 1.18 2.77 1.53 0.062

4 182 116.66 – 4 2.13 3.53 2.75 0.147

5 182 115.07 – 4 7.82 6.56 13.39 1.202

Chiron, 2 190 107.45 – 11 1.68 40.11 1.21 0.035

Property 2 3 245 68.15 – 114 28 – 1.63 0.072

4 245 70.26 – 103 23.81 – 2.89 0.173

5 245 76.10 – 76 32.03 – 15.70 1.53

MER 2 40 8.65 21.90 6 1.23 1.60 1.04 0.024

3 501 240.06 – 8 3.54 4.76 4.05 0.111

4 273 101.59 – 10 9.61 13.68 14.29 1.46

5 200 78.10 – 12 19.03 35.23 14.24 27.73

6 162 84.95 – 14 47.09 91.82 – 600

Table 5 Comparison of learning for SYM-N rule with and without alphabet refinement

Case k SYM-N SYM-N + ref

|A| Mem. Time |A| Mem. Time

Gas Station 3 7 1.34 – 83 31.94 874.39

4 7 2.05 – 139 38.98 –

5 7 2.77 – 157 52.10 –

Chiron, 2 19 2.21 – 21 4.56 52.14

Property 1 3 19 2.65 – 21 4.99 65.50

4 19 4.70 – 21 6.74 70.40

5 19 17.65 – 21 28.38 249.3

Chiron, 2 7 1.16 – 8 0.93 6.35

Property 2 3 7 1.36 – 16 1.43 9.40

4 7 2.29 – 32 3.51 16.00

5 7 8.20 – 64 20.90 57.94

MER 2 40 6.56 9.00 6 1.69 1.64

3 64 11.90 25.95 8 3.12 4.03

4 88 1.82 83.18 10 9.61 9.72

5 112 27.87 239.05 12 19.03 22.74

6 136 47.01 608.44 14 47.01 47.90
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Table 6 Comparison of learning for CIRC-N rule with and without alphabet refinement

Case k CIRC-N CIRC-N + ref

|A| Mem. Time |A| Mem. Time

Gas Station 3 205 108.96 – 25 2.43 15.10

4 205 107.00 – 25 3.66 25.90

5 199 105.89 – 25 5.77 58.74

Chiron, 2 259 78.03 – 4 0.96 2.71

Property 1 3 253 77.26 – 4 1.20 3.11

4 253 77.90 – 4 2.21 3.88

5 253 81.43 – 4 7.77 7.14

Chiron, 2 67 100.91 – 327 44.17 –

Property 2 3 245 75.76 – 114 26.61 –

4 245 77.93 – 103 23.93 –

5 245 81.33 – 76 32.07 –

MER 2 148 597.30 – 6 1.89 1.51

3 281 292.01 – 8 3.53 4.00

4 239 237.22 – 10 9.60 10.64

5 221 115.37 – 12 19.03 27.56

6 200 88.00 – 14 47.09 79.17

we used an additional heuristic to compute the ordering of the modules in the sequence
M1, . . .Mn for the recursive learning, to minimize the sizes of the interface alphabets
�1

I , . . .�
n
I . We generated offline all possible orders with their associated interface alpha-

bets and then chose the order that minimizes the sum
∑n

j=1 |�j

I |. Automatic generation of
orderings was not always possible because of the combinatorial explosion. In some cases
with large parameter n, we lifted the results obtained for small values of the parameter on
the same model to the model with the larger parameter.

We also compared learning with and without alphabet refinement for rules SYM-N and
CIRC-N under the same conditions as in the previous experiments. The results are in Tables 5
and 6.

Discussion The results overall show that rule ASYM is more effective than the other rules
and that alphabet refinement improves learning significantly.

Tables 5 and 6 indicate that generally rules SYM-N and CIRC-N do not improve the
performance of learning or the effect of alphabet refinement, but they can sometimes handle
cases which were challenging for ASYM, as is the case of SYM-N for Chiron, property 2.
Thus there is some benefit in using all of these rules.

Table 3 shows that alphabet refinement improved the assumption size in all cases, and in a
few, up to almost two orders of magnitude (see Gas Station with k = 3,4, Chiron, Property 2,
with k = 5, MER with k = 3). It improved memory consumption in 10 out of 15 cases, and
also improved running time, as for Gas Station and for MER with k = 3,4 learning without
refinement did not finish within the time limit, whereas with refinement it did. The benefit
of alphabet refinement is even more obvious in Table 4 where ‘No refinement’ exceeded the
time limit in all but one case, whereas refinement completed in almost all cases, producing
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smaller assumptions, and using less memory in all the cases, up to two orders of magnitude
less in a few.

Table 4 indicates that learning with refinement scales better than without refinement for
increasing number of components. As k increases, the memory and time consumption for
‘Refinement’ grows slower than that of ‘Monolithic’. For Gas Station, Chiron (Property 1),
and MER, for small values of k, ‘Refinement’ consumes more memory than ‘Monolithic’,
but as k increases the gap is narrowing, and for the largest k ‘Refinement’ becomes better
than ‘Monolithic’. This leads to cases such as MER with k = 6 where, for a large enough
parameter value, ‘Monolithic’ runs out of memory, whereas ‘Refinement’ succeeds.

7 Related work

Several frameworks have been proposed to support assume-guarantee reasoning [10, 19,
22, 28]. For example, the Calvin tool [16] uses assume-guarantee reasoning for the analysis
of Java programs, while Mocha [1] supports modular verification of components with re-
quirements specified based in the Alternating-time Temporal Logic. The practical impact of
these approaches has been limited because they require non-trivial human input in defining
appropriate assumptions.

Our previous work [13, 18] proposed to use L* to automate assume-guarantee reason-
ing. Since then, several other frameworks that use L* for learning assumptions have been
developed; [3] presents a symbolic BDD implementation using NuSMV [9]. This symbolic
version was extended in [26] with algorithms that decompose models using hypergraph par-
titioning, to optimize the performance of learning on resulting decompositions. Different
decompositions are also studied in [14] where the best two-way decompositions are com-
puted for model-checking with the FLAVERS [15] and LTSA tools. L* has also been used
in [2] to synthesize interfaces for Java classes, and in [30] to check component compatibility
after component updates.

Our approach for alphabet refinement is similar in spirit to counterexample-guided ab-
straction refinement (CEGAR) [11]. CEGAR computes and analyzes abstractions of pro-
grams (usually using a set of abstraction predicates) and refines them based on spurious
counter-examples. However, there are some important differences between CEGAR and our
algorithm. Alphabet refinement works on actions rather than predicates, it is applied compo-
sitionally in an assume-guarantee style and it computes under-approximations (of assump-
tions) rather than behavioral over-approximations (as it happens in CEGAR). In the future,
we plan to investigate more the relationship between CEGAR and our algorithm. The work
of [21] proposes a CEGAR approach to interface synthesis for C libraries. This work does
not use learning, nor does it address the use of the resulting interfaces in assume-guarantee
verification.

A similar idea to our alphabet refinement for L* in the context of assume-guarantee
verification has been developed independently in [7]. In that work, L* is started with an
empty alphabet, and, similar to our approach, the assumption alphabet is refined when a
spurious counterexample is obtained. At each refinement stage, a new minimal alphabet is
computed that eliminates all spurious counterexamples seen so far. The computation of such
a minimal alphabet is shown to be NP-hard. In contrast, we use much cheaper heuristics,
but do not guarantee that the computed alphabet is minimal. The approach presented in [31]
improves upon assume-guarantee learning for systems that communicate based on shared
memory, by using SAT based model checking and alphabet clustering.

The theoretical results in [25] show that circular assume-guarantee rules can not be both
sound and complete. These results do not apply to rules such as ours that involve additional
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assumptions which appear only in the premises and not in the conclusions of the rules. Note
that completeness is not required by our framework (however incompleteness may lead to
inconclusive results).

8 Conclusions and future work

We have introduced a framework that uses a learning algorithm to synthesize assumptions
that automate assume-guarantee reasoning for finite-state machines and safety properties.
The framework incorporates symmetric, asymmetric and circular assume-guarantee rules
and uses alphabet refinement to compute small assumption alphabets that are sufficient for
verification. The framework has been applied to a variety of systems where it showed its
effectiveness.

In future work we plan to look beyond checking safety properties and to address further
algorithmic optimizations, e.g., reuse of query results and learning tables across alphabet
refinement stages. Moreover, we plan to explore techniques alternative to learning for com-
puting assumptions, e.g., we are investigating abstraction refinement techniques for comput-
ing assumptions incrementally as abstractions of environments. Finally we plan to perform
more experiments to further evaluate our framework.
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