
Rule Systems for Run-time Monitoring: from
EAGLE to RULER

Barringer, Howard and Rydeheard, David and Havelund,
Klaus

2010

MIMS EPrint: 2010.55

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

[16:20 19/5/2010 exn076.tex] LogCom: Journal of Logic and Computation Page: 675 675–706

Rule Systems for Run-time Monitoring:
from EAGLE to RULER
HOWARD BARRINGER and DAVID RYDEHEARD, School of Computer
Science, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
E-mail: howard.barringer@manchester.ac.uk; david.rydeheard@manchester.ac.uk

KLAUS HAVELUND*, NASA’s Jet Propulsion Laboratory, California Institute
of Technology, Pasadena, CA 91109, USA.
E-mail: klaus.havelund@jpl.nasa.gov

Abstract
In Barringer et al. (2004, Vol. 2937, LNCS), EAGLE was introduced as a general purpose rule-based temporal logic for specifying
run-time monitors. A novel interpretative trace-checking scheme via stepwise transformation of an EAGLE monitoring formula
was defined and implemented. However, even though EAGLE presents an elegant formalism for the expression of complex
trace properties, EAGLE’s interpretation scheme is complex and appears difficult to implement efficiently. In this article, we
introduce RULER, a primitive conditional rule-based system, which has a simple and easily implemented algorithm for effective
run-time checking, and into which one can compile a wide range of temporal logics and other specification formalisms used
for run-time verification. As a formal demonstration, we provide a translation scheme for linear-time propositional temporal
logic with a proof of translation correctness. We then introduce a parameterized version of RULER, in which rule names may
have rule-expression or data parameters, which then coincides with the same expressivity as EAGLE with data arguments.
RULER with just rule-expression parameters extend the expressiveness of RULER strictly beyond the class of context-free
languages. For the language classes expressible in propositional RULER , the addition of rule-expression and data parameters
enables more compact translations. Finally, we outline a few simple syntactic extensions of ‘core’ RULER that can lead to
further conciseness of specification but still enabling easy and efficient implementation.

Keywords: Run-time verification, rule systems, temporal logic, grammars.

1 Introduction

In earlier work, the rule-based temporal logic EAGLE [5] was developed as a generalization of the
plethora of logics which have been used for the specification of behavioural system properties and
which can be dynamically checked either on-line throughout an execution of the system or off-line
over an execution trace of the system. We showed that EAGLE supported future and past time logics,
interval logics, extended regular expressions, state machines, logics for real-time and data constraints
and temporal-based logics for stochastic behaviour.

The EAGLE logic is a restricted first-order, fixed-point, linear-time temporal logic with chop
(concatenation) over finite traces.As such, the logic is highly expressive and, not surprisingly, EAGLE’s
satisfiability (validity) problem is undecidable; checking satisfiability in a given model, however, is
decidable and that is what is required for run-time verification. The syntax and semantics of EAGLE are
succinct. There are four primitive temporal operators:©—next,

⊙
—previously, ·—concatenation

and ;—chop (overlapping concatenation, or sequential composition). Temporal equations can be

*The work of this author was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space Administration.

Vol. 20 No. 3, © The Author, 2008. Published by Oxford University Press. All rights reserved.
For Permissions, please email: journals.permissions@oxfordjournals.org
Published online 21 November 2008 doi:10.1093/logcom/exn076

 at U
niversity of M

anchester on June 11, 2010
http://logcom

.oxfordjournals.org
D

ow
nloaded from

http://logcom.oxfordjournals.org

[16:20 19/5/2010 exn076.tex] LogCom: Journal of Logic and Computation Page: 676 675–706

676 Rule Systems for Run-time Monitoring: from EAGLE to RULER

used to define schema for temporal formulas, where the temporal predicates may be parameterized
by data as well as by Eagle formulas. The usual Boolean logical connectives exist. For example, the
linear-time �,♦, U and S (always, sometime, until and since) temporal operators can be introduced
through the following equational definitions.

max Always(Form F)=F∧©Always(F)
min Sometime(Form F)=F∨©Sometime(F)
min Until(Form F1,Form F2)=F2∨(F1∧©Until(F1,F2))
min Since(Form F1,Form F2)=F2∨(F1∧⊙

Since(F1,F2))

The qualifiers max and min indicate the positive and, respectively, negative interpretation that is to
be given to the associated temporal predicate at trace boundaries—corresponding to maximal and
minimal solutions to the equations. Thus ©Always(p) is defined to be true in the last state of a
given trace, whereas©Until(p,q) is false in the last state. The formula Always(p) will therefore
hold on a finite sequence from, say index i, if and only if p holds in every state from index i up to
and including the final state. If the formula Until(p,q) holds at index i then q must be true at some
state with index j≥ i and p true on all states from i up to but not including j.1

Even without data parametrization, the primitive concatenation temporal operators together with
the recursively defined temporal predicates take the logic into the world of context-free expressivity
thus enabling simple grammatical-like specification of parenthesis, call-return or login–logout
matching. Assume call and return are propositions denoting procedure call and return events. The
temporal formula Match(call,return) where

min Match(Form C,Form R)=
(C ·Match(C,R)·R ·Match(C,R))∨Empty()

with Empty() true just on the empty sequence captures the behaviour that every call has a matching
return—a call may be followed by a (possibly empty) sequence of matched calls and returns, followed
a return, followed by another (possibly empty) sequence of calls and returns. Parametrization of
temporal predicates by data values allows us to define real-time and stochastic logical operators. To
address real-time, for example, we assume that EAGLE is monitoring time-stamped states, where the
state contains a variable clock holding the associated real time. Then it becomes straightforward to
define real-time qualified temporal operators such as happens before real time u.

min HappensBefore(Form F,double u)=
clock<u∧(F∨(¬F∧©HappensBefore(F,u)))

It should be clear how more complex real-time, and even probabilistic, temporal operators can be
recursively defined.

We continue to believe that EAGLE presents a natural rule/equation-based language for defining,
even programming, monitors for complex temporal behavioural patterns. EAGLE is, however,
expressively rich and in general this comes with a potentially high computational cost, practically
speaking. So one might ask whether EAGLE presents the most appropriate set of primitive temporal
operators for run-time monitoring. The non-deterministic concatenation operator, as used above
in the matching parentheses example, requires considerable care in use. In order to achieve the

1Arguments for using other interpretations over finite traces have been put forward. However, we have found that this
simple interpretation has been adequate for our monitoring purposes.

 at U
niversity of M

anchester on June 11, 2010
http://logcom

.oxfordjournals.org
D

ow
nloaded from

http://logcom.oxfordjournals.org

[16:20 19/5/2010 exn076.tex] LogCom: Journal of Logic and Computation Page: 677 675–706

Rule Systems for Run-time Monitoring: from EAGLE to RULER 677

expected temporal behaviour pattern, the formulas passed to Match should specify single state
sequences. If that is not the case, the concatenation operator may choose an arbitrary cut point, and
therefore skip unmatched Cs or Rs in order to give a positive result. Later work [2] developed such
arguments further and proposed a variety of deterministic versions of temporal concatenation and
chop for run-time monitoring, using different forms of cut, e.g. left and right minimal, left and right
maximal, etc.

With respect to the computational effectiveness of algorithms for EAGLE trace-checking, in Ref. [5]
we showed how trace-checking of full EAGLE can be undertaken on a state-by-state basis without
recording the full history, even though the logic has the same temporal expressiveness over the past
as over the future; basically, our published trace-check algorithm maintains sufficient knowledge
about the past in the evolving monitor formulas. Furthermore, we have shown that for restricted
subsets, we can achieve close to optimal complexity bounds for monitoring; one such fragment
for which we computed complexity results was the LTL (past and future) fragment of Eagle [6].
However, whilst the trace-checking algorithm for EAGLE, as presented in Ref. [5] and elsewhere,
is theoretically elegant, it remains a challenge, following three different attempts, to obtain a good
practically efficient implementation. This is not to say the task is impossible, more that we have
failed to do so yet.

What was clear to us at the time was that there were some practically useful and efficiently
executable subsets of Eagle. Despite the pleasing features of Eagle, we still believe we should
continue to search for a powerful and simpler ‘core’ logic, one that is easy and efficient to evaluate
for monitoring purposes. To that end, we present in the remainder of this article a lower level rule-
based system, RULER. In Section 2, we introduce RULER and a simple evaluation algorithm by
example. Section 3 then provides a formal semantic treatment and in the following two sections,
we give a formal translation of finite state automata over finite words in propositional RULER,
in Section 4, and a translation scheme for compiling propositional temporal logic (with past and
future operators) into RULER, in Section 5. Although not presented, translations from other trace
descriptions into propositional RULER, e.g. regular expressions, can easily be given. In Section 6,
we consider an extension to basic RULER allowing rule names to be parameterized by both rule and
data expression. We present, using just rule-expression parameters, examples of context-free and
context-sensitive languages and outline the formal translation of any context-free grammar into rule-
expression parameterized RULER. More efficient evaluation can be achieved via encoding with data as
well as rules and to that extent we show how context-free temporal logics such as the CaRet temporal
logic of nested procedure calls and returns can be compiled into RULER. The article concludes in
Section 7 with a brief reflection and indication of further work.

2 RULER by example

A RULER monitoring system, or rule system, comprises a set of rule names, a set of observation
names, a collection of named rules, a set of possible initial states (the initial frontier) and a set of
terminally excluded rule names. A rule is formed from a condition part (antecedent) and a body
part (consequent). The rule’s condition may be a conjunctive set of literals, whereas the body is a
disjunctive set of literals, a literal being a positive or negative occurrence of a rule name or of an
observation name. The idea is that rules can be made active or inactive. For each active rule, if
the condition part evaluates to true for the current state (formed from the current observations and
previous obligations of the rule system), then the body of the rule defines what rules are active and
what observations must hold in the next state. As a simple example, consider the rule named r below

 at U
niversity of M

anchester on June 11, 2010
http://logcom

.oxfordjournals.org
D

ow
nloaded from

http://logcom.oxfordjournals.org

[16:20 19/5/2010 exn076.tex] LogCom: Journal of Logic and Computation Page: 678 675–706

678 Rule Systems for Run-time Monitoring: from EAGLE to RULER

in the context of some observation named a.

r : −→◦ a,r

The rule r has a vacuous condition and its body is a conjunctive set containing observation a and
rule name r. If r is activated at some point in monitoring, r’s body asserts that the observation a
must hold in next monitoring state and the rule r must be active again, thus effectively asserting that
observation a must hold in all subsequent monitoring states. Consequently, if at some future state a
fails to hold then there will be a conflict between the obligations placed by the rule system and the
actual stream of observations. In this simple case, the rule system will fail at that particular point.

The body part of a rule may be disjunctive, as in the rule r′ below.

r′ : −→◦ a,r′ |b
Assume that both a and b are observation names. If the rule r′ is active in some monitoring step, then
the next monitoring step must satisfy one of the possible choices, i.e. that observation a occurs and
r′ is made active again, or that observation b must occur. If neither a nor b hold in that subsequent
step, then again there is a conflict between the obligations of the rule system and the stream of actual
observations.

Figure 1 outlines a basic algorithm for monitoring a trace of observation states against a set of
named rules defined by a rule system. Essentially, the algorithm explores in a breadth-first fashion
all the traces allowed by the rule system against the given trace of sets of observations. In a single
monitoring step, the algorithm computes a new frontier (a set of sets of observation obligations and
rule activations) according to the given input observations and the current frontier of states. An initial
frontier is defined by the rule system. The step computation is repeated until either the monitoring
input is exhausted or a conflict between the constraints of the rule system and the input has been
determined. A breadth-first exploration of traces allowed by the rule system is undertaken in order to
avoid backtracking when a conflict between input observations and rule system obligations occurs.

We refer to a set of rule name literals and observation literals as a rule activation state and hence a
frontier is a set of rule activation states. Line 1 of the algorithm in Figure 1 creates an initial frontier
using the set of initial rule activation states defined by the rule system. Lines 3–8 programme a single
evaluation step of the rule system. In line 4, the current set of observations (obtained in line 3) is
unioned with each of the rule activation states of the frontier. All inconsistent sets are deleted from
the frontier and then, in line 5, a monitoring exception is raised if the frontier has become empty
indicating failure of the rule system. Lines 6–8 then build the next frontier. For each consistent
resultant state, say s, in the frontier (from the action at line 4), a set of possible successor states is

Figure 1. The basic monitoring algorithm

 at U
niversity of M

anchester on June 11, 2010
http://logcom

.oxfordjournals.org
D

ow
nloaded from

http://logcom.oxfordjournals.org

[16:20 19/5/2010 exn076.tex] LogCom: Journal of Logic and Computation Page: 679 675–706

Rule Systems for Run-time Monitoring: from EAGLE to RULER 679

created using the consequents of each applicable rule of s (line 7). The union of the collection of
sets of possible successor states, line 8, then forms the next frontier of rule activation states. The
evaluation algorithm re-applies this basic step until either the input is exhausted or a monitoring
exception has been raised. For normal termination, line 10, the final frontier is then checked for an
acceptable final state, i.e. one not containing a forbidden rule name.

We demonstrate this algorithm in Example 1 where we consider a set of rules that captures both
past-time conditions and future-time obligations. We will assume that we wish to monitor some
temporal behaviour of a system in terms of two properties, a and b. Thus, we arrange for the system
to be instrumented to produce a sequence of observation states and that the letters a and b denote
particular propositions over an observation state. In effect, we will treat an observation trace as a
sequence of consistent sets of literals.

Example 1
We wish to monitor the constraint that whenever property a occurs both now and in the immediate
previous state then b must occur as a later observed property. We can characterize this by the
linear-time temporal logic formula �((a∧⊙

a)⇒+�b) where +� is the strict ‘eventually in the future’
temporal operator, or using the EAGLE temporal predicates defined in Section 1 by the monitoring
formula Always((a∧⊙

a)⇒©Sometime(b)). In RULER the following set of rules characterizes
the required temporal behaviour

r0 : −→◦ r0,r1,r3 r1 : a−→◦ r2 r2 :
r3 : a,r2−→◦ b |¬b,r4 r4 : −→◦ b |¬b,r4

assuming that the monitoring algorithm starts with an initial set of rule activation sets as {{r0,r1,r3}}.2
Rule r0 acts as a generator rule; it ensures persistent activity of itself together with r1 and r3, i.e. the
three rules are always to be active. The empty rule r2 is used to represent the temporal constraint⊙

a (hence it is initially inactive). The rule r1 is then a generator for r2 and can be viewed as the
temporal rule ‘if we have a now then next we have previously a’. Rule r4 captures the obligation +�b,
either b holds in the next observation state or ¬b holds together with a continued obligation to +�b.

In Table 1 below, we show 8 cycles of the evaluation algorithm on a series of observations for the
above rule set. Step 0 corresponds to the initial step of the algorithm (for which we assume no input)
in which the frontier of possible rule activation states is initialized to the initial frontier of the rule
system (entry in column headed Rule activations); the column headed Resultant states then holds the
frontier with the observation set added across it (with inconsistent sets removed). The frontier for
step 1 (in column 3) is computed as follows. There is just one state in the resultant frontier of step
0. It has rules r0, r1 and r3 active. Rule r0 unconditionally requires r0, r1 and r3 to be present in the
next step. The condition of rule r1 does not hold (a is not present in the resultant state), therefore
there are no obligations from this rule. Similarly, r2 does not generate any obligations for the next
step. Hence the frontier for step 1 remains as given. For step 1, we have input observations of a and
b. These observations are consistent with the obligated rule activation frontier for step 1 and hence
can be added to each state in the frontier yielding the set in column 4. This resultant state set is used
to generate the obligations for the next step. This time since a is in the state, the rule r1 will now give
rise to rule r2 in the rule activations for step 2 alongside r0, r1 and r3 unconditionally generated by
rule r0, as before. Moving forward to step 4 where we can see that both a and

⊙
a are now true—in

the resultant state, both a and r2 are present—and hence rule r3 generates two possibilities for step 5.

2The absence of r2 from this set gives ¬r2 a positive interpretation; this is not the case, however, for observation literals
a and b where absence is taken as meaning ‘undetermined’.

 at U
niversity of M

anchester on June 11, 2010
http://logcom

.oxfordjournals.org
D

ow
nloaded from

http://logcom.oxfordjournals.org

[16:20 19/5/2010 exn076.tex] LogCom: Journal of Logic and ComputationPage: 680 675–706

680 Rule Systems for Run-time Monitoring: from EAGLE to RULER

Table 1. Steps of a rule system evaluation

Step Obs. Rule activations Resultant states

0 {} {{r0,r1,r3}} {{r0,r1,r3}}
1 {a,b} {{r0,r1,r3}} {{a,b,r0,r1,r3}}
2 {¬a,b} {{r0,r1,r2,r3}} {{¬a,b,r0,r1,r2,r3}}
3 {a,b} {{r0,r1,r3}} {{a,b,r0,r1,r3}}
4 {a,b} {{r0,r1,r2,r3}} {{a,b,r0,r1,r2,r3}}
5 {¬a,¬b} {{b,r0,r1,r2,r3},{¬b,r0,r1,r2,r3,r4}} {{¬a,¬b,r0,r1,r2,r3,r4}}
6 {a,¬b} {{b,r0,r1,r3},{¬b,r0,r1,r3,r4}} {{a,¬b,r0,r1,r3,r4}}
7 {¬a,b} {{b,r0,r1,r2,r3},{¬b,r0,r1,r2,r3,r4}} {{¬a,b,r0,r1,r2,r3}}
8 {¬a,¬b} {{r0,r1,r3}} {{¬a,¬b,r0,r1,r3}}

At step 5, the choice with b holding true conflicts with the observation in step 5 and therefore is
eliminated from the resultant states (entry in column 4). Rule r4 is thus active and remains activated
until step 7 when b is observed to hold thus conflicting with the requirement of ¬b together with r4.
But how do we determine whether any generated temporal existential obligations, such as +�b, have
indeed been satisfied? The rule system structure records, via the forbidden rule name set, those
rule names that correspond to such obligations and then, at the end of monitoring, the monitoring
algorithm checks whether the final set of merged observation and rule activation states contains states
without those recorded rules active. If there are no such states, then the given (finite) observation
trace fails to satisfy the rule set. If there is at least one of the possible final states not containing
such recorded rule names, the observation trace satisfies the rule set. The approach is similar to that
of the minimal and maximal rule interpretations used in EAGLE. For the above example, rule name
r4 is specified as a (terminally) forbidden rule name. The final set of merged observation and rule
activation states (resultant states, step 8 in the table) has just one possible state that does not contain
the forbidden rule r4. Hence the given sequence of observations satisfies the given rule set.

The rule set in fact contained an optimization; the choices appearing in rules r3 and r4 were made
deterministic, either b or¬b∧ The determinization thus reduced the number of possible successor
states that are generated at any one time. For example, if the rules r3 and r4 had been defined as

r3 : a,r2−→◦ b |r4 r4 : −→◦ b |r4

the rule activations for step 7 would be {{b,r0,r1,r2,r3},{r0,r1,r2,r3,r4}}, yielding merged states
{{¬a,b,r0,r1,r2,r3},{¬a,b,r0,r1,r2,r3,r4}}. Then, step 8 would have had {{r0,r1,r3},{b,r0,r1,r3},
{r0,r1,r3,r4}} for rule activations and {{¬a,¬b,r0,r1,r3}, {¬a,¬b,r0,r1,r3,r4}} for its merged
states, one of which does not contain the noted forbidden rule r4 and so the observation trace,
as is to be expected, satisfies the rule set.

Example 2
A common class of notations for specifying behaviour is variants of state machines. In the following
we illustrate how state machines, as presented in RMOR [15], can be translated to RULER.3 Suppose
that we want to express the following property as a state machine: ‘every a must be followed by b
without any c in between’. We assume that a, b and c are distinct events and that they exclude each
other. We assume furthermore that an execution is terminated with a special event ε. This property

3In Section 4, we provide a general translation of finite state automata over finite words into RULER.

 at U
niversity of M

anchester on June 11, 2010
http://logcom

.oxfordjournals.org
D

ow
nloaded from

http://logcom.oxfordjournals.org

[16:20 19/5/2010 exn076.tex] LogCom: Journal of Logic and Computation Page: 681 675–706

Rule Systems for Run-time Monitoring: from EAGLE to RULER 681

can be stated as follows in the RMOR state machine notation and used for specifying and monitoring
the behaviour of C programs.

monitor M {
state S0 {

when a -> S1;
}

live state S1 {
when b -> S0;
when c -> error;

}
}

We will here ignore the issue of defining when the events a, b and c are generated. The state machine
consists of two states S0, the initial state, and S1. Each state defines a block containing the transitions
that leave the state.A live state is a non-final state; monitoring cannot terminate in a live state. In RMOR

a state is by default final. A special error state indicates the occurrence of an error, corresponding to
entering a non-final state forever. The semantics is that if no transition is enabled in a given moment,
we stay in the current state. The following set of rules characterizes the required temporal behaviour
in RULER:

S0 :
S1 :

r1 : S0,a−→◦ S1
r2 : S0,¬a−→◦ S0
r3 : S1,b−→◦ S0
r4 : S1,c−→◦ rfail
r5 : S1,¬b,¬c−→◦ S1

g : −→◦ g,r1,r2,r3,r4,r5
rfail : −→◦ rfail

We here assume that the monitoring algorithm starts with the following initial set of rule activation
sets: {{S0,g,r1,r2,r3,r4,r5}}, and that the forbidden rule names are {S1,rfail}. That is, a trace fails
to match the rule set if either S1 (in case b never occurred after an a) or rfail (in case a c occurred
between an a and a b) occurs in the final state. The rules S0 and S1 are memory rules, tracking what
state the machine is in at any point in time. Rules r1 and r2 represent the transitions leaving state
S0, whereas rules r3, r4 and r5 represent the transitions leaving state S1. Rules r2 and r5 handle the
situation where no exiting transition is enabled, and we stay in the current state. This rule set will
accept the trace ababε, but will reject abaε as well as abacbε.

2.1 Inhibiting rule activation

The informal semantics we have used above has rules being activated in the next step if they appear
positively in some applied consequent of some currently applicable rule. In particular, rules that are

 at U
niversity of M

anchester on June 11, 2010
http://logcom

.oxfordjournals.org
D

ow
nloaded from

http://logcom.oxfordjournals.org

[16:20 19/5/2010 exn076.tex] LogCom: Journal of Logic and Computation Page: 682 675–706

682 Rule Systems for Run-time Monitoring: from EAGLE to RULER

not mentioned in a consequent of some rule cannot be activated by that rule; however, some other
rule may indeed activate them. Consider, for example, the contrived (sub)set of rules below.

r0 : −→◦ r2|r3 r1 : −→◦ r3|r4

Assume at some stage that r0 and r1 are activated in the same step. Rule r0 therefore generates
the partial successor states {r2} and {r3}. Rule r1 will then extend these states to yield the possible
(partial) states {r2,r3}, {r2,r4}, {r3} and {r3,r4}. Suppose it was desired that rules r2 and r3 were
mutually exclusive. One way would be to modify the rules as below.

r0 : −→◦ r2,¬r3|¬r2,r3 r1 : −→◦ r3|r4

Assuming again both r0 and r1 active, the possible successor activation sets are now {r2,¬r3,r4},
{¬r2,r3} and {¬r2,r3,r4}—since the potential rule activation set {r2,¬r3,r3} is inconsistent. The
negation of a rule should be interpreted as a forced ‘non-activation’ of the rule.

In the examples above, we indicated how various temporal properties could be translated into
collections of low-level single-shot (or step) rules. In a certain sense, rule names can be viewed as
propositions denoting temporal subformulas. However, it is important to emphasize that a negated
rule name does not correspond to the negation of a subformula that the rule name represents. More
strictly, one should view a positive occurrence of a rule name as meaning that the rule will be applied
and in doing so will generate possible traces that satisfy the associated subformula. A negative
occurrence of a rule name (in the rule activation state) simply means that the rule is NOT applied
and hence any constraints imposed by the rule (on the acceptance of traces) will have no effect.

In summary, we can use rules to activate other rules (positive appearance of a rule in a consequent),
to not inhibit activation (no mention of a rule in a consequent) and to inhibit activation (negative
appearance of a rule in a consequent).

3 Propositional RULER trace semantics

We now present a formalization of propositional rule systems and an evaluation semantics over traces
of observations.

Preliminary definitions: Let X denote a set of atoms. We then use X− to denote the set of negated
atoms of X , i.e. X−={¬x |x∈X}, and let X± denote the set of literals of X, i.e. X∪X−. We use the
term X-literal to refer to a member of X±. A set of X-literals L is said to be consistent if and only if
for any x∈X it is not the case that both x∈L and¬x∈L. Let L−X denote the negative closure of L with
respect to the atoms X , i.e. the set L∪{¬l|l /∈L,l∈X}. Given LS1 and LS2 as sets of consistent sets
of literals, the product LS1×LS2 is the set {ls1∪ls2 | ls1∈LS1,ls2∈LS2, and ls1∪ls2 is consistent}.
Definition 3
Given disjoint sets of rule names R and observations O, a rule ρ is a pair 〈C,B〉where C, the condition
part, is a conjunctive set of (R∪O)-literals, and B, the body part, is a disjunctive set of conjunctive
sets of (R∪O)-literals. For a given rule ρ, we write C(ρ) and B(ρ) for ρ’s condition and body part,
respectively. A named rule is then an association r :ρ where r∈R is a rule name and ρ is a rule.

For example, the previous informal presentation of the rule

r3 : a,r2−→◦ b |¬b,r4

 at U
niversity of M

anchester on June 11, 2010
http://logcom

.oxfordjournals.org
D

ow
nloaded from

http://logcom.oxfordjournals.org

[16:20 19/5/2010 exn076.tex] LogCom: Journal of Logic and Computation Page: 683 675–706

Rule Systems for Run-time Monitoring: from EAGLE to RULER 683

is represented as the labelled structure

r3 : 〈{a,r2},{{b},{¬b,r4}}〉

where r3 is the rule name, the condition body is the set {a,r2} and the body part is the set of sets
{{b},{¬b,r4}} representing the two possible choices {b} or {¬b,r4}.
Definition 4
A rule system RS is a tuple 〈R,O,P,I,F〉 where R and O are, respectively, disjoint sets of rule names
and observations, and P is a set of disjointly R-named rules over R and O, I⊆2O±∪R is a set of
consistent subsets of observation literals and rule names, and F⊆R is a set of terminally excluded
rule names (rule names that may not appear in the very final monitoring state).

The I component of a rule system defines an initial frontier of possible starting states, i.e. set of
required observation literals and rule activations. An initial frontier of {{a,r1},{¬b,r3}} thus has two
possible starting states, one where observation a must be initially true and the rule name r1 initially
active, and one where observation b must not hold initially but rule r2 is initially active.

Definition 5
A configuration γ for a rule system RS is a pair 〈A,�〉 where A is a consistent set of R-literals, called
the activity set, and� is a consistent set of O-literals, called the observation state. We also write A(γ)
to denote the activity set of a configuration γ , similarly �(γ) for the observation state.

Of interest now is the interpretation of a set of literals in a configuration. The presence of a
positively signed rule name r in the activity set means that the rule ρ associated with r is active. On
the other hand, the presence of a negatively signed rule name r, or the absence of r, in the activity set
means that the rule ρ associated with r is not active. For observation atoms, however, undefinedness
of an O-literal o, i.e. the absence of o from the observation state of the configuration, means that the
observation literal o may be either true or false.

Definition 6
Let RS=〈R,O,P,I,F〉 be a rule system. A consistent set of literals L from RS holds in a configuration
γ for RS, denoted by γ |=L, if and only if (i) the set of rule name literals mentioned in L is contained in
the negative closure of A(γ), i.e. (L−O±)⊆A(γ)−R , and (ii) observation literals within L are contained
in the configuration’s set of observations (L−R±)⊆�(γ).

Thus, as an example, assume a configuration γ=〈{r0,r1},{a,¬b}〉 and consistent sets of literals
L1={r0,¬r2,a} and L2={r1,a,¬c}.Assuming that the rule alphabet is {r0,r1,r2} and the observation
alphabet is {a,b,c}, then we have that γ |=L1 and γ �|=L2. L2 does not hold in the configuration γ
because the observation component is quiet on, i.e. does not mention, the observation c. We can
neither conclude its truth nor its falsity.

We can now define a single step relation over configurations for a given named rule. This relation
can then be used to define a single step relation for a rule system.

Definition 7
An r :ρ-step relation

r:ρ−→ between configurations is such that γ
r:ρ−→γ ′ if and only if (i) r∈A(γ), (ii)

γ |=C(ρ), and (iii) there is a θ∈B(ρ) such that A(γ ′)∪�(γ ′)=θ.

 at U
niversity of M

anchester on June 11, 2010
http://logcom

.oxfordjournals.org
D

ow
nloaded from

http://logcom.oxfordjournals.org

[16:20 19/5/2010 exn076.tex] LogCom: Journal of Logic and Computation Page: 684 675–706

684 Rule Systems for Run-time Monitoring: from EAGLE to RULER

As an example, consider a named rule r :ρ where the rule ρ is the pair 〈{a},{{b},{c,r}}〉 where a, b
and c are observation names. Below, we list some possible single steps using this rule.

〈{r},{a,b}〉 r:ρ−→ 〈{r},{c}〉
〈{r},{a,c}〉 r:ρ−→ 〈{r},{c}〉
〈{r},{a,c}〉 r:ρ−→ 〈{},{b}〉

Definition 8
For any set of rule names N⊆R, we say �′ is an N-indexed set of outcome configurations if for each

r∈N with r :ρ∈P, γ
r:ρ−→�′r .

Consider two named rules ra : 〈{a},{{c},{a,ra}}〉 and rb : 〈{b},{{a},{b,rb}}〉. The following are
possible {ra,rb}-indexed sets of outcome configurations from the configuration 〈{ra,rb},{a,b}〉.

{〈{ra},{a}〉ra ,〈{rb},{b}〉rb}
{〈{},{c}〉ra ,〈{rb},{b}〉rb}
{〈{ra},{a}〉ra ,〈{},{a}〉rb}
{〈{},{c}〉ra ,〈{},{a}〉rb}

Definition 9
A single step relation between configurations, γ−→γ ′, holds if and only if γ ′ is a consistent union of
an (A(γ)∩R)-indexed set of outcome configurations from γ . Note, we assume that an empty union
set is treated as being an inconsistent union.

Thus, continuing with the above example, we have

〈{ra,rb},{a,b}〉−→〈{ra,rb},{a,b}〉
〈{ra,rb},{a,b}〉−→〈{rb},{b,c}〉
〈{ra,rb},{a,b}〉−→〈{ra},{a}〉
〈{ra,rb},{a,b}〉−→〈{},{a,c}〉

The single step relation for the rule system can now be used to define the notion of an accepting run of
a rule system over a given observation trace. This requires matching observation obligations against
actual observations. Note that our semantics requires that if the negation of an observation name is
obligated then that negative observation literal must be present in the actual set of observations.

Definition 10
A set of observation literals X is said to match an obligatory set of literals Y if and only if X∪Y is
consistent and Y⊆X .

Finally, we can define the language accepted by a rule system.

Definition 11 (Language acceptance)
An accepting run of a rule system RS=〈R,O,P,I,F〉 on an observation trace τ=o1o2 ...on is a
sequence of configurations γ1γ2 ...γn such that (i) ∃s∈ I ·s= (A(γ1)∪�(γ1)), (ii) for all i∈1..n−1,
the set of actual observations, oi, matches the set of obligated observations,�(γi), and 〈A(γi),�(γi)∪
oi〉−→γi+1, and (iii) A(γn)∩F={}. Hence, the language accepted by a rule system RS, L(RS), is
the set of all finite observation traces τ accepted by RS. Furthermore, we say a rule system RS is
violated by an observation trace τ if RS has no accepting run on τ, alternatively, τ /∈L(RS).

 at U
niversity of M

anchester on June 11, 2010
http://logcom

.oxfordjournals.org
D

ow
nloaded from

http://logcom.oxfordjournals.org

[16:20 19/5/2010 exn076.tex] LogCom: Journal of Logic and Computation Page: 685 675–706

Rule Systems for Run-time Monitoring: from EAGLE to RULER 685

Consider a rule system

〈{r},{a,b},{r :〈{},{{a,r},{b}}〉},{{r}},{r}〉.

As there is just one rule, the single step relation −→ is by definition the relation
r:ρ−→ where ρ=

〈{},{{a,r},{b}}〉, which, in turn, is

{〈〈{r},X〉,〈{r},{a}〉〉,〈〈{r},X〉,〈{},{b}〉〉 |X ⊆{a,b}}

The three state observation trace {}{a}{b} has an accepting run, the sequence of configurations

〈{r},{}〉〈{r},{a}〉〈{},{b}〉.

Clearly condition (i) is satisfied. Similarly condition (ii) is satisfied, the input extended configurations
are serially related by the single step relation. Finally, the final configuration does not contain a
forbidden rule, i.e. {} does not contain r.

Remark 12
In Section 2, we outlined the basic steps of a monitoring algorithm for propositional RULER systems.
It should be clear that the steps of the informally presented algorithm closely reflect the semantic
constructions we have given above. For example, the ‘code’ at lines 4 and 5 of the algorithm checks
for each input state (set of observations) that there is a suitable match with the current obligations
of the rule system (embodied in the frontier)—the match condition of part (ii) in the language
acceptance definition. Then lines 6–8 of the ‘code’compute the successor frontier in accordance with
the definition of the single step relation−→ between configurations. Indeed, if a sufficiently detailed
description of the algorithm were presented, it would not be difficult to establish that the algorithm
accepts an observation trace τ for a rule system RS if and only if τ∈L(RS).

4 Finite state automata as rule systems

In this brief section, we show how non-deterministic finite state automata (NFA), accepting finite
words, can be encoded as rule systems.

We define an NFA as a quintuple comprising a finite set of states S, a finite alphabet �, a set of
labelled transition rules T⊆S×�×S, an initial state S0 and a set of final states F⊆S. A non-empty
finite word w is accepted by NFA if and only if there is a sequence of states si∈S, for i∈0..|w|, such
that s0=S0 and s|w| ∈F and for all i∈0..|w|−1, (si,wi,si+1)∈T . The empty word is accepted if and
only if S0∈F.

The components of a rule system RS(NFA)=〈R,O,P,I,F〉 that accepts the same language as NFA
are defined as below.

R={rs |s∈S}
O=�
P={rs : 〈{},{{̂σ,rt} | (s,σ,t)∈T}〉 |s∈S}
I={{̂σ,rt} | (S0,σ,t)∈T}∪{rS0 | (S0,σ,t) �∈T∨S0∈F(NFA)}
F={rs |s∈S∧s �∈F(NFA)}

Each state gives rise to a unique rule name. Similarly, the observation names are defined as the
automaton’s alphabet. All the transitions from a given state form a single rule whose consequent

 at U
niversity of M

anchester on June 11, 2010
http://logcom

.oxfordjournals.org
D

ow
nloaded from

http://logcom.oxfordjournals.org

[16:20 19/5/2010 exn076.tex] LogCom: Journal of Logic and Computation Page: 686 675–706

686 Rule Systems for Run-time Monitoring: from EAGLE to RULER

contains the distinguishing disjuncts. We use the notation σ̂0 to denoted the (conjunctive) list of
RULER observation names σ0,¬σ1,¬σ2,...,¬σ|�|−1 for σi∈� and σi �=σj when i �= j. The initial
frontier is built using the disjuncts of the consequent of the rule corresponding to the initial state
of the automaton and using the rule name associated with the initial state of the automaton if the
automaton accepts the empty word. The forbidden rules are those rule names corresponding to state
names that are not final.

Example 13
Consider the finite automaton given by

S={s0,s1}
�={a,b}
T={(s0,a,s1),(s1,c,s1),(s1,b,s0)}
S0=s0
F={s0}

A corresponding rule system is defined by

R={rs0,rs1}
O={a,b}
P={rs0 : 〈{},{{̂a,rs1}}〉,rs1 : 〈{},{{̂c,rs1}, {̂b,rs0}}〉}
I={{rs0}, {̂a,rs1}}
F={rs1}

It is straightforward to establish the following theorem.

Theorem 14
A word w is accepted by a finite word automaton NFA if and only if the trace of observations formed
by w is accepted by the rule system RS(NFA).

5 Propositional linear temporal logic as a rule system

We now proceed to show how propositional linear-time temporal logic formulas for monitoring over
finite traces can be encoded in RULER. We give an almost direct syntactic transformation, rather
than, for example, translating the temporal formula to some form of finite state automaton, which
is then encoded in RULER. There are two steps in our translation. The first step is to translate an
arbitrary propositional linear-time temporal formula into a collection of universal implications of the
form non-strict past formula implies pure future formula, a minor variation of the rule forms used
in the executable temporal logic METATEM [4], together with an initial assignment of proposition
values. The proof that this is possible is based on the ‘Separation Result’ of Gabbay, originally 1981
but elaborated in Ref. [12], that shows that any mixed past, present and future linear-time temporal
formula can be translated into a semantically equivalent Boolean combination of formulas, each of
which depends purely on the past, present or future. We take the translation into the collection of

 at U
niversity of M

anchester on June 11, 2010
http://logcom

.oxfordjournals.org
D

ow
nloaded from

http://logcom.oxfordjournals.org

[16:20 19/5/2010 exn076.tex] LogCom: Journal of Logic and Computation Page: 687 675–706

Rule Systems for Run-time Monitoring: from EAGLE to RULER 687

universal implications as given.4 The second part of the translation, and the part we expand on here,
is to show how such separated temporal implications can be represented in RULER.5

To provide some informal intuition on the difficulty of a direct translation from mixed past and
future temporal formulas, consider the formula XS−Y . In order to determine the truth, or otherwise,
of this ‘since’ formula at some point, say i, in a trace, one requires evaluation of the subformulas X
and Y at points prior to i. If the subformulas X and Y are present or pure past formulas then there is a
straightforward translation into RULER that can be used to determine the truth of the ‘since’ formula.
On the other hand, suppose the subformula X is an ‘until’ formula and hence, as such, it may require
evaluation beyond, i.e. in the future of, point i. In RULER, this can be handled for a pure future-time
formula by using rules that generate obligations on the future part of the trace, but, for the nested
case, how are such obligations to be used to provide a truth value for the ‘since’ formula? Effectively,
this would require encoding a complicated mechanism within the direct translation to separate the
computation of future obligations from that of past facts. If, however, the original temporal formula
has been separated into the ‘past implies future’ form, we can use the simple translation schemes for
the pure past and pure future formulas coupled with a simple scheme for the implicative combination.

5.1 The pure future part

The pure future linear-time temporal formulas are built from propositions, the Boolean connectives
‘and’, ‘or’, and negation (∧, ∨ and ¬, respectively) and strict ‘until’ and ‘unless’ operators (U+
and W+). All other standard future-time operators are definable from this set. We use the following
standard semantics over finite traces of states. Let τ=s1,...,si,...,sn where each state si denotes the
subset of propositions that hold true at time i. We write τ,i |=φ to represent the truth of the temporal
formula φ at time i in the trace τ. An inductive definition of |= is given in Figure 2.

We assume, without loss of generality, that temporal formulas are in negation normal form
(NNF6), i.e. negation operators pushed inwards to propositional literals and cancellations applied. Let
WFF+(Obs) denote the set of well-formed strict future-time formulas over proposition alphabet Obs
in NNF and WFF(Obs) denote the set of well-formed future-time formulas over proposition alphabet
Obs in NNF (which may include the present, i.e. propositions under no future-time operator). For
convenience, we omit the observation alphabet Obs when either it is clear from the context or
unimportant.

Figure 3 presents a translation
−→
T :WFF→RuleSystem defined inductively over the structure of the

temporal formulas. Let φ and ψ denote arbitrary members of WFF. The base cases of the translation
are straightforward. The propositional constant true gives rise to the rule system 〈{r.g},{},{r.g :
−→◦ {{r.g}}},{{r.g}},{}〉 where the initial frontier of states contains just a singleton set with the
rule r.g thus placing no constraints on the observation state. The rule r.g is used to keep the
rule system active as any length of observation trace should be accepted by the system. On the
other hand, false translates to a system with an empty set of initial states, denoting vacuity —
there are no observation traces that satisfy false. For a proposition p, we have

−→
T (p)=〈{r.g},{p},

4The complexity of the separation translation is exponential in the nesting depth of alternating pairs of until and since
temporal operators. However, as we have argued with METATEM [4], the separated temporal implicative rule form is a natural
form in which to present temporal specifications.

5Fisher’s Separated Normal Form (SNF) representation for temporal logic [10] is close to RULER rule forms and an
alternative translation to a rule system could be given via SNF. However, we believe our direct translation has interest in its
own right and might lead to an easier SNF translation.

6Some authors refer to this as positive normal form.

 at U
niversity of M

anchester on June 11, 2010
http://logcom

.oxfordjournals.org
D

ow
nloaded from

http://logcom.oxfordjournals.org

[16:20 19/5/2010 exn076.tex] LogCom: Journal of Logic and Computation Page: 688 675–706

688 Rule Systems for Run-time Monitoring: from EAGLE to RULER

Figure 2. Future linear-time temporal logic semantics

Figure 3. Translation of future linear-time temporal formulas

{r.g :−→◦ {{r.g}}},{{p,r.g}},{}〉, indicating a rule system with an observation atom p with an initial
frontier containing the set {p,r.g}. The rule r.g is included as any observation trace that has p present
initially is acceptable, therefore the rule system must keep active until the end of the observation trace.
Negated atoms translate in a similar way, apart from the initial frontier containing the set comprising
the negated atom and the rule r.g. The logical conjunction (disjunction) of formulasφ andψ translate to
a product (union) operation that can be defined for rule systems, as defined in Figure 3. This leaves the
most interesting part of the translation, namely an ‘until’ formula φU+ψ. Recall that the semantics
of the strict ‘until’ operator gives the temporal equivalence φU+ψ⇔©(ψ∨(φ∧(φU+ψ))). This
recursive definition is then directly encoded using rules. For ease of understanding, we have
subscripted the rule names by the sub-formulas they represent. As the ‘until’ operator has a strong
interpretation, requiring its second argument to be satisfied, the associated rule name for an ‘until’

 at U
niversity of M

anchester on June 11, 2010
http://logcom

.oxfordjournals.org
D

ow
nloaded from

http://logcom.oxfordjournals.org

[16:20 19/5/2010 exn076.tex] LogCom: Journal of Logic and Computation Page: 689 675–706

Rule Systems for Run-time Monitoring: from EAGLE to RULER 689

formula must be included in the F set of the rule system. As might be expected, the translation of
an ‘unless’ formula differs from the ‘until’ translation just in the non-inclusion of the rule for the
‘unless’ formula in the F set.

Example 15
Assume a, b, c and d are atomic propositions. The translation of aU+b yields a rule system with rule
names R={r.g,raU+b}, observation names O={a,b}, rules P as

r.g : −→◦ r.g
raU+b : −→◦ b,r.g | a,r.g,raU+b

initial frontier I={{raU+b}} and forbidden rules F={raU+b}. Similarly, the translation of a∧
(cW+d) yields a rule system with R={r.g,rcW+d}, O={a,c,d}, rules P as

r.g : −→◦ r.g
rcW+d : −→◦ d,r.g | c,r.g,rcW+d

initial frontier I={{a,r.g,rcW+d}} and an empty forbidden rule set F.
Thus the translation of (aU+b)U+(a∧(cW+d)) yields the rule system

〈{r.g,r0,r1,r2},{a,b,c,d},

⎧⎪⎪⎨
⎪⎪⎩

r.g : −→◦ r.g
r0 : −→◦ b,r.g | a,r.g,r0
r1 : −→◦ d,r.g | c,r.g,r1
r2 : −→◦ a,r.g,r1 | r0,r2

⎫⎪⎪⎬
⎪⎪⎭,{{r2}},{r0,r2}〉

where
r0=raU+b, r1=rcW+d , r2=r(aU+b)U+(a∧(cW+d))

The correctness of the translation defined in Figure 3 is given in the following result.

Theorem 16
For any NNF formula φ∈WFF(Obs) and finite observation trace τ over observation propositions
Obs, the suffix of τ from index i, denoted by τ(i), is in the language L(

−→
T (φ)) if and only τ,i |=φ.

Proof. We proceed by induction over the structure of the formula φ.

(i) φ is true. The generated rule system has just one rule of the form

r.g : −→◦ r.g

with an initial frontier I of {{r.g}} and an empty forbidden rule set F. This rule has an empty
condition part, and hence always generates obligations when the rule is active. Furthermore,
the rule’s obligation set places no constraint on observations, it only ensures that the rule is
active again for subsequent application. As there are also no constraints on rule names active
in any final configuration, any finite observation trace will be accepted by the rule system.
This corresponds to all possible linear observation sequences that are models for the temporal
formula true. The desired result follows since true is independent of the past.

(ii) φ is false. The generated rule system has no rules and an empty initial frontier. There are thus
no initial observations that can be matched with the initial frontier, hence the language of the
rule system is empty, corresponding to the empty set of models for the temporal formula false.

 at U
niversity of M

anchester on June 11, 2010
http://logcom

.oxfordjournals.org
D

ow
nloaded from

http://logcom.oxfordjournals.org

[16:20 19/5/2010 exn076.tex] LogCom: Journal of Logic and Computation Page: 690 675–706

690 Rule Systems for Run-time Monitoring: from EAGLE to RULER

(iii) φ is a proposition p. The generated rule system differs from that generated for the formula true
in that the initial frontier I also contains the observation proposition p, hence requiring it to be
present in the initial state of all observation traces accepted by the rule system. The single rule
of the system places no further constraints on the observations. Hence the language accepted
by the rule system corresponds to the set of traces τ over Obs such that τ,0 |=p, and thus, as p
is independent of the past, τ(i)∈L(

−→
T (p)) if and only if τ,i |=p.

(iv) φ is ¬q for proposition q. The argument here is similar to (iii) apart from the requirement that
q cannot be present initially.

(v) φ is X∧Y for X,Y ∈WFF(Obs). Wlog, we assume that the rule name alphabets of
−→
T (X) and−→

T (Y) are disjoint. Consider a trace τ such that τ,i |=X∧Y . Thus by the temporal logic semantics
we have that τ,i |=X and τ,i |=Y . Using the induction hypotheses for the sub-formulas X and Y ,
there are thus accepting runs σX and σY over τ(i) of rule systems

−→
T (X) and

−→
T (Y), respectively.

Let σXY denote the pointwise union of the two accepting runs (respecting the activation and
observation set structure). We argue that σXY will be an accepting run of the rule system−→
T (X∧Y): (a) the initial set I(

−→
T (X∧Y)) comprises all the union pairings of the elements of

I(
−→
T (X)) and I(

−→
T (Y)), hence, by construction, at least one of the unions will ‘hold’ initially

on σXY ; and (b) as the rule name sets of each translation are disjoint, the run can be viewed as
the parallel run of rule systems for X and for Y .

For the other direction, we consider a trace τ such that τ,i �|=X∧Y . Assume wlog. that τ,i �|=X.
Thus, by the induction hypothesis, there is no accepting run σX of

−→
T (X). By the construction

of
−→
T (X∧Y) there cannot be an accepting run, for if there were we could project out the run

on the rule names of X and thereby construct an accepting run of
−→
T (X).

(vi) φ is X∨Y for X,Y ∈WFF(Obs). This is similar to (v).

(vii) φ is XU+Y for X,Y ∈WFF(Obs). We establish τ(i)∈L(
−→
T (XU+Y)) for any i∈1..|τ| by a

downward induction on i under the overall hypotheses τ(i)∈L(
−→
T (X)) and τ(i)∈L(

−→
T (Y)) for

any i∈1..|τ|.
Base case: This is when i=|τ|. By the temporal logic semantics, τ,|τ| �|=XU+Y—there is no

future. There is, however, no accepting run of
−→
T (XU+Y) of length 1 because {rXU+Y }

must be in I and also a subset of F. Hence τ(|τ|)∈L(
−→
T (XU+Y)) iff τ,|τ| |=XU+Y .

Inductive step: We assume τ(j)∈L(
−→
T (XU+Y)) iff τ,j |=XU+Y for j, 1< j≤|τ] and show

τ(j−1)∈L(
−→
T (XU+Y)) iff τ,j−1 |=XU+Y . By the overall induction hypothesis for X and

Y and the downward induction hypothesis for XU+Y , we claim that τ(j)∈L(
−→
T (Y∨(X∧

XU+Y))) iff τ,j |=Y∨(X∧XU+Y). First observe that there is an accepting run of
−→
T (Y∨

(X∧XU+Y)) on τ(j) if there is an accepting run of
−→
T (Y) on τ(j) or there is an accepting run

on τ(j) for both
−→
T (X) and

−→
T (XU+Y); this follows from the fact that the set of sets of initial

conditions I(
−→
T (Y∨(X∧XU+Y))) is the same as I(

−→
T (Y))∪(I(

−→
T (X))×I(

−→
T (XU+Y))).

By the hypotheses, we thus have τ,j |=Y or both τ,j |=X and τ,j |=XU+Y , and therefore
τ,j |=Y∨(X∧XU+Y), which means, by the temporal semantics of U+ that τ,j−1 |=XU+Y .
Furthermore, if we have an accepting run of

−→
T (Y∨(X∧XU+Y)) on τ(j) then the rule system−→

T (XU+Y) will have an accepting run on τ(j−1); the rule rXU+Y obligates I(
−→
T (Y))∪

 at U
niversity of M

anchester on June 11, 2010
http://logcom

.oxfordjournals.org
D

ow
nloaded from

http://logcom.oxfordjournals.org

[16:20 19/5/2010 exn076.tex] LogCom: Journal of Logic and Computation Page: 691 675–706

Rule Systems for Run-time Monitoring: from EAGLE to RULER 691

(I(
−→
T (X))×{{rXU+Y }}) on the next step, and as I(

−→
T (XU+Y))={{rXU+Y }}, we will have

an accepting run on τ(j−1).
Second, there is no accepting run of

−→
T (Y∨(X∧XU+Y)) on τ(j) if there is no accepting run

on τ(j) for
−→
T (Y) and for at least one of

−→
T (X) and

−→
T (XU+Y). Hence, by the hypotheses

we have τ,j �|=Y∨(X∧XU+Y) and therefore, by the semantics of U+, we have τ,j−1 �|=
XU+Y . But if there is no accepting run of

−→
T (Y∨(X∧XU+Y)) on τ(j) then there is no

accepting run of
−→
T (XU+Y) on τ(j−1), for if this were not the case we would have an

accepting run of
−→
T (Y∨(X∧XU+Y)) on τ(j), which is not the case.

Hence the desired result.

(viii) φ is XW+Y for X,Y ∈WFF(Obs). This case is argued in a similar way to the case for U+ apart
from the fact that the base case has the formula XW+Y true on the final observation state with
the rule rXW+Y not forbidden from the final sets of activated rules. �

Past-time temporal queries: The pure past-time fragment of linear-time temporal logic is constructed
in a mirror fashion to the pure future part, i.e. from propositions, the Boolean connectives (∧, ∨ and
¬), and just the temporal operators S− (the strict since, false at the beginning of time) and its weak
version Z− (true at the beginning of time). We define the semantics of the S− and Z− temporal
operators.

τ,i |=φS−ψ iff there exists k st 1≤k< i and τ,k |=ψ and
for all j where k< j< i we have τ,j |=φ

τ,i |=φZ−ψ iff there exists 1≤k< i st τ,k |=ψ and
for all j where k< j< i we have τ,j |=φ

or for all j where 1≤ j< i we have τ,j |=φ
Without loss of generality, we assume that past-time temporal formulas are in negation normal form.
Let us first informally consider the translation of pure past-time temporal queries. The temporal
equivalence φS−ψ⇔⊙

(ψ∨(φ∧(φS−ψ))) should serve as a reminder of the semantics that needs
to be captured by the translation. The basic idea for handling the past is an old one, namely, we use
the translation rules to calculate the value of the temporal query as we proceed in time (rather than
evaluating the query over the history). Let us consider a simple example. We will use the presence of
the rule name rpS−q in the rule activation state to denote that the pure past temporal formula pS−q
holds at that moment in the evaluation. We then use a rule, named rp:pS−q?, to calculate whether
rpS−q should be made active because p held in the previous moment (similarly for the other possible
way for pS−q to hold). These query rules must be universally active in order to determine truth
values for the next moment. Thus we use a rule, named say rg.pS−q?, to act as a generator for the set
of rules that determine the truth of pS−q based on the previous values of its subformulas.

rq.pS−q? :q−→◦ rpS−q
rp.pS−q? :p,rpS−q−→◦ rpS−q
rg.pS−q? : −→◦ rg.pS−q?,rp.pS−q?,rq.pS−q?

Naturally, the above translation scheme must be generalized to take into account that the subformulas
of ψS−φ may be Boolean combinations of pure past-time temporal formulas (represented by rule
names) and/or literals. Let WFF− denote the set of pure past temporal formulas and WFF−0 the set
of present and pure past-time temporal formulas. We thus define a translation

←−
T that will translate a

 at U
niversity of M

anchester on June 11, 2010
http://logcom

.oxfordjournals.org
D

ow
nloaded from

http://logcom.oxfordjournals.org

[16:20 19/5/2010 exn076.tex] LogCom: Journal of Logic and Computation Page: 692 675–706

692 Rule Systems for Run-time Monitoring: from EAGLE to RULER

past-time temporal formula (from WFF−0) into an extension of a rule system 〈R,O,P,I,S,Q〉where
the fields R, O, P and I are as defined in a rule system, S denotes a set of initial starting values7for
the rules representing ‘since’ (‘zince’) formulas and Q is a set of rule names denoting the past-time
queries calculated by the rule system. For example, a formula φS−ψ must be false initially and
so we include the negated rule name ¬rφS−ψ in the set S, on the other hand, a formula φZ−ψ is
evaluated as true at the beginning of time and therefore we include the associated rule name rφZ−ψ
in the set S. For a Boolean combination of past-time formulas, such as pS−q∧ (rZ−s∨pS−r), the
set Q will be {{rpS−q,rrZ−s},{rpS−q,rpS−r}}.

Figure 4 gives the translation for the present and pure past-time temporal formulas. Note that the
key difference between the translation of the S− and Z− temporal connectives is in the definition
of the S component. The correctness of this translation is given by the following theorem.

Theorem 17
For any NNF formula φ∈WFF−0, observation trace τ and i∈1..|τ|, τ,i |=φ if and only there is an
accepting run γ on observation trace τ[1..i] via the rules of

←−
T (φ) and for some s∈Q(

←−
T (φ)) we have

s⊆A(γi)∪�(γi).

Proof. The proof proceeds by induction over the structure of the formulaφ∈WFF−0. The interesting
subcases are for the temporal operators, each requiring a further induction proof over the index i. We
consider just the case for φ=XS−Y . The argument for XZ−Y is similar.

Base case: This is when i=1. Note that τ,1 �|=XS−Y as there is no past. Q(
←−
T (XS−Y))={{rXS−Y }}.

However, the rule rXS−Y can not exist in any resultant state of the frontier at index 1 since it
is required by the S initial frontier set that ¬rXS−Y is present. Similarly for the converse. Thus
there is no accepting run of

←−
T (XS−Y) on τ[1..1].

Inductive Step: Here we assume the result at index i< |τ| and show it holds for i+1. We make use,
of course, of the result holding for the sub-formulas X and Y at any index i (the hypothesis of
the outer-level structural induction proof). We also assume, wlog, that the rule names of the
systems for the translations of X and Y are disjoint. The definition given in Figure 4 gives three
forms of rules for the translation of XS−Y over and above the rules obtained for X and Y .
The first rule, the generator, ensures that the second and third forms of rules are always active.
Let us consider the ‘if’ direction of the theorem. We have τ,i |=XS−Y . By the semantics of the
temporal operator S−, τ,i+1 |=XS−Y if and only if (i) τ,i |=Y or (ii) τ,i |=X and τ,i |=XS−Y .
For subcase (i), the structural inductive hypothesis gives that there is an accepting run of

←−
T (X)

on τ[1..i]where for some x∈Q(
←−
T (X)) we have x⊆A(γi)∪�(γi)∪τi. Hence by the second rule

form we will have that rXS−Y will be present in A(γi+1)∪�(γi+1). Alternatively, for subcase

(ii), the hypotheses will mean that for some x∈Q(
←−
T (X)) we have both x and rXS−Y present in

x⊆A(γi)∪�(γi)∪τi. The third rule thus ensures that rXS−Y is present in A(γi+1)∪�(γi+1).
Thus we conclude that there will be an accepting run on τ[1..i+1]. The converse follows similar
argumentation. �

Separated temporal implicative forms: We now bring together the above two translations
−→
T and

←−
T

to define a translation T for the METATEM-like rule form φpast⇒©ψfuture which is of universal nature,

7We distinguish this set S from I as I may also contain initial values of observation propositions. S, in a sense, is the
past-time counterpart to the forbidden set F in a rule system proper.

 at U
niversity of M

anchester on June 11, 2010
http://logcom

.oxfordjournals.org
D

ow
nloaded from

http://logcom.oxfordjournals.org

[16:20 19/5/2010 exn076.tex] LogCom: Journal of Logic and Computation Page: 693 675–706

Rule Systems for Run-time Monitoring: from EAGLE to RULER 693

Figure 4. Translation of present and past-time temporal query formulas

i.e. globally holds. A translation scheme is given in Figure 5. The translation of the present- and/or
past-time formula φ will yield a set of sets of rule names that represent the query. Presence of one of
the sets of rule instances at some stage during the evaluation denotes the truth of the φ at that point.
The translation of the future-time formula ψ will provide a set of sets of rule instances/observations
(the initial frontier) such that a successful run starting with that initial frontier over an observation
trace will mean the observation trace will satisfy the formula. Thus, the translation for the separated
implicative rule needs to create a set of rules such that each element of Q(

←−
T (φ)) is combined as an

antecedent with the initial frontier I(
−→
T (ψ)) as consequent. Each such constructed RULER rule then

needs to be made global.

 at U
niversity of M

anchester on June 11, 2010
http://logcom

.oxfordjournals.org
D

ow
nloaded from

http://logcom.oxfordjournals.org

[16:20 19/5/2010 exn076.tex] LogCom: Journal of Logic and Computation Page: 694 675–706

694 Rule Systems for Run-time Monitoring: from EAGLE to RULER

Figure 5. Translation of global temporally separated implicative rules

Example 18
Let a, b, c, p and q denote propositions. We give the RULER translation of the universal separated
temporal implication

c∧(bS−a) ⇒©(♦p∧♦q).

Recall that♦p will be translated as p∨+�p, i.e. p∨trueU+p, similarly for♦q. Using the following
abbreviations

r0=rg.bS−a? r1=rbS−a?b r2=rbS−a?a r3=rbS−a
r4=rtrueU+p r5=rtrueU+q r6=rg.c∧(bS−a)⇒©((p∨trueU+p)∧(q∨trueU+q))
r7=rc∧(bS−a)⇒©((p∨trueU+p)∧(q∨trueU+q))

the translation yields the rule system with rules

r0 : −→◦ r0,r1,r2 r1 :b,r3−→◦ r3 r2 :a−→◦ r3
r3 : r4 : −→◦ p |r4 r5 : −→◦ q |r5
r6 : −→◦ r6,r7 r7 :c,r3−→◦ p,q |p,r5 |r4,q |r4,r5

and an initial rule activation set {{¬r3,r0,r1,r2,r6,r7}} and the forbidden rule set {r4,r5}.
Theorem 19
For any (finite) observation trace τ, present- or past-time formula φ∈WFF−0 and future time formula
ψ∈WFF we have τ,0 |=�(φ⇒©ψ) if and only if there is an accepting run of T (φ,ψ) for the
observation trace τ.

Proof. From the definition of the temporal operator �, we need to establish that for all i∈1..|τ|
τ,i |=φ⇒©ψ if and only if there is an accepting run of T (φ,ψ) for the observation trace τ.

if: we assume that for any i if τ,i |=φ then τ,i+1 |=ψ. We show that there is an accepting run
of T (φ,ψ) on τ. Wlog, we assume that

←−
T (φ) and

−→
T (ψ) have distinct rule names. Given

τ,i |=φ, by Theorem 17 we have that there is an accepting run γ over τ[1..i] for which some
set x∈Q(

←−
T (φ)) is a subset of one of the resultant states at index i. The translation T (φ,ψ)

generates a rule rx⇒ψ :x−→◦ I(
−→
T (ψ)) for each x∈Q(

←−
T (φ)) which is made global, i.e. active

for every step. The rule system frontier at i+1 thus features I(
−→
T (ψ)). But by Theorem 16,

τ,i+1 |=ψ if and only there is an accepting run of
−→
T (ψ) on τ(i+1). As T (φ,ψ) contains all the

rules of
−→
T (ψ) and I(

−→
T (ψ)) features in the frontier at step i+1, we thus have that there’ll be

an accepting run of T (φ,ψ) over τ.

 at U
niversity of M

anchester on June 11, 2010
http://logcom

.oxfordjournals.org
D

ow
nloaded from

http://logcom.oxfordjournals.org

[16:20 19/5/2010 exn076.tex] LogCom: Journal of Logic and Computation Page: 695 675–706

Rule Systems for Run-time Monitoring: from EAGLE to RULER 695

only if: for this case, we show that under the assumption that for some i we have τ,i |=φ and
τ,i+1 �|=ψ then there is not an accepting run of T (φ,ψ) over τ. By Theorems 17 and 16
we have, respectively, there is an accepting run of

←−
T (φ) on τ[1..i] but not an accepting run

of
−→
T (ψ) on τ(i+1). The rule system for T (φ,ψ) thus has a run over τ[1..i] for which some

set x∈Q(
←−
T (φ)) is a subset of one of the resultant states at index i. The globally active rule

rx⇒ψ :x−→◦ I(
−→
T (ψ)) for each x∈Q(

←−
T (φ)) thus embeds I(

−→
T (ψ)) across the frontier at i+1.

Now given that there is no accepting run of
−→
T (ψ) on τ(i+1) and the rules of

−→
T (ψ) are a part

of T (φ,ψ), there will be no accepting run over τ. �

Finally, in order to obtain a translation for an arbitrary linear-time temporal logic formula, one
needs to translate the given formula to the above separated implicative temporal rule forms together
with any initial constraints. The translation is detailed but can be generated from the algorithm for
separation outlined in Ref. [12]. As was argued with METATEM, however, it is often more natural to
write temporal properties directly in this particular separated implicative form.

6 Parameterized RULER

The power and flexibility of rule-based systems arises, in part, through rule parametrization.
We therefore consider, in this section, a version of RULER in which (i) rule names can be parameterized
by both rule expressions and by data, (ii) observations may be represented by predicates applied
to ground terms and (iii) Boolean combinations of relations over arithmetic terms are allowed in
antecedents and consequents of the rule bodies.

6.1 RULER with rule-expression arguments

We first consider an extension of RULER to include rule definitions parameterized by rule expressions.
The propositional RULER system corresponds to regular languages, which are a subclass of
propositional EAGLE. This first, seemingly small, extension increases the formal expressivity of
RULER to beyond context-free languages, as we show through the combination of the general result
of Section 6.2 and the specific case of Example 21.

We introduce arguments to rule definitions in an obvious way. In the rule definition below, ρ is a
formal argument to rule r. A formal rule argument may then stand in a rule literal in the condition or
body part of the rule, or appear as an actual argument to a rule.

r(ρ) :a−→◦ b,ρ |c,r(ρ)

Let us now consider the use of rule r in the monitoring algorithm. Consider a frontier comprising
one rule activation state, in turn comprising two different activations of rule r, namely

{{r(r0),r(r(r0))}}

together with an observation state {a}. The rule activation r(r0) binds the formal argument ρ of the
rule definition r to the rule expression r0. Hence, application of the instantiated rule schema will
contribute the obligations

{{b,r0},{c,r(r0)}}

 at U
niversity of M

anchester on June 11, 2010
http://logcom

.oxfordjournals.org
D

ow
nloaded from

http://logcom.oxfordjournals.org

[16:20 19/5/2010 exn076.tex] LogCom: Journal of Logic and Computation Page: 696 675–706

696 Rule Systems for Run-time Monitoring: from EAGLE to RULER

to the next frontier. The rule activation r(r(r0)), on the other hand, creates a different binding for ρ,
i.e. to r(r0) and hence will contribute obligations

{{b,r(r0)},{c,r(r(r0))}}

to the frontier. These are the only two rule activations, hence, the next frontier is the (consistent)
product of the two generated obligation frontiers, i.e.

{{b,r0,r(r0)},{b,r0,c,r(r(r0))},{c,r(r0),b},{c,r(r0),r(r(r0))}}.

The monitoring, or evaluation, algorithm for this rule-expression parameterized version of RULER
follows the basic high-level steps of the algorithm informally presented in Section 2. The key
differences, from an implementation point of view, are that (i) rule activations are now rule term
structures rather than just rule names and that (ii) bindings of formal rule argument names to actual
rule term structures must be created and used to apply rule schema in the construction of the successor
frontier.

We give further demonstration of the monitoring process using two small examples that show how
RULER, when parameterized by just rule-expressions, can define context-free and context-sensitive
languages.

Example 20
Let us consider the classic context-free language {anbn|n≥1}. We encode it in RULER as a rule system
accepting the language {{a,¬b}n{¬a,b}n |n≥1} where a and b are observation propositions. We use
the rule schema

rb(ρ) : −→◦ b,¬a,ρ rab(ρ) : −→◦ b,¬a,ρ |a,¬b,rab(rb(ρ))
rend : −→◦ rfail rfail : −→◦ rfail

together with its initial rule activation set as {{a,rab(rend)}} and its final forbidden rule set as
{rb,rab,rfail} (meaning that no occurrence of rule rb, rab, nor rfail, may appear as an obligation
in a final rule activation state). Below in Table 2 we spell out the evaluation over an input trace
corresponding to three as followed by three bs (we assume only one of a or b may be true at any one
time).
Let us look at the situations in step 2 and step 3. The resultant state in step 2 activates rule rab with
argument rb(rb(rend)) denoting that if b occurs next in step 3 then two further bs will be required to

Table 2. Example evaluation on aaabbb

Step Obs. Rule activations Resultant states

0 {a,¬b} {{a,rab(rend)}} {{a,¬b,rab(rend)}}
1 {a,¬b}

{ {b,¬a,rend},{a,¬b,rab(rb(rend))}
}

{{a,¬b,rab(rb(rend))}}

2 {a,¬b}
{ {b,¬a,rb(rend)},
{a,¬b,rab(rb(rb(rend)))}

}
{{a,¬b,rab(rb(rb(rend)))}}

3 {¬a,b}
{ {b,¬a,rb(rb(rend))},
{a,¬b,rab(rb(rb(rb(rend))))}

}
{{¬a,b,rb(rb(rend))}}

4 {¬a,b} {{b,¬a,rb(rend)}} {{¬a,b,rb(rend)}}
5 {¬a,b} {{b,¬a,rend}} {{¬a,b,rend}}

 at U
niversity of M

anchester on June 11, 2010
http://logcom

.oxfordjournals.org
D

ow
nloaded from

http://logcom.oxfordjournals.org

[16:20 19/5/2010 exn076.tex] LogCom: Journal of Logic and Computation Page: 697 675–706

Rule Systems for Run-time Monitoring: from EAGLE to RULER 697

Table 3. Evaluation trace on aaabbbab

Step Obs. Rule activations Resultant states

5 {¬a,b} {{b,¬a,rend}} {{¬a,b,rend}}
6 {a,¬b} {{rfail}} {{a,¬b,rfail}}
7 {¬a,b} {{rfail}} {{¬,b,rfail}}

Table 4. Evaluation trace on aaabba

Step Obs. Rule activations Resultant states

4 {¬a,b} {{b,¬a,rb(rend)}} {{¬a,b,rb(rend)}}
5 {a,¬b} {{b,¬a,rend}} {}

match the as that have been seen so far. Expansion of the particular rule call gives two possible rule
activation sets in step 3, the second of which is now inconsistent with the given observations {¬a,b}.
Hence the resultant state with just rule rb active [with argument rb(rend)]. By step 5, the evaluation
of the rule system over the trace is successful—the final (resultant) state has no forbidden rules.

Suppose, now, the input had not terminated and continued with two more observations states. The
evaluation would proceed from step 5 as in Table 3. The ‘illegal’ input (appearing in steps 6 and
7) is consumed, however, the rule rfail is activated through rend in the merged state of step 5 and
maintained active until the input is completed. The evaluation then fails since the rule rfail is one of
the forbidden rules. Terminating earlier than expected results in either rab or rb present in the final
(merged) state, which are also forbidden rules. Alternatively, if the input has too few bs and then
continues with as, the frontier of merged states becomes vacuous which then causes the rule system
to stop and fail to accept the input, as shown in the alternative continuation from step 4 in Table 4.
In fact, all accepted observation traces will match against a trace of n≥1 occurrences of a followed
by n occurrences of b. Essentially, barring the first a, the rule rab represents the non-terminal S of
the context-free grammar with production rule S=ab |aSb in which rab’s actual argument represents
the continuation string for concatenation to the string of a’s generated.

Note, however, that the space requirements for each successive evaluation grows linearly while
as are being observed; this is, of course, a heavy penalty for monitoring, but it is the cost for using
just rule-expression parameters. Example 24 gives a constant space rule system encoding.

Example 21
Here we encode the context-sensitive language {anbncn |n≥1}. Let us first extend the previous
example to accept traces of the form

{a,¬b,¬c}n{¬a,b,¬c}n{¬a,¬b,c}m, for n,m≥1.

We use the rule set
rab(ρ) : −→◦ b,¬a,¬c,ρ |a,¬b,¬c,rab(rb(ρ))
rb(ρ) : −→◦ b,¬a,¬c,ρ
rc : −→◦ c,¬a,¬b,rend |c,¬a,¬b,rc
rend : −→◦ rfail
rfail : −→◦ rfail

 at U
niversity of M

anchester on June 11, 2010
http://logcom

.oxfordjournals.org
D

ow
nloaded from

http://logcom.oxfordjournals.org

[16:20 19/5/2010 exn076.tex] LogCom: Journal of Logic and Computation Page: 698 675–706

698 Rule Systems for Run-time Monitoring: from EAGLE to RULER

together with an initial activation set defined as {{a,rab(rc)}} and the final forbidden rule activation
set defined as {rab,rb,rc,rfail}. This system will clearly accept traces of the form anbn (represented by
the rab rule) followed by one or more c’s (determined by the rc argument to the initial rule activation
rab). In a similar way, we can encode the language ambncn for n,m≥1. Use the rules

ra(ρ) : −→◦ b,¬a,¬c,ρ |a,¬b,¬c,ra(ρ)
rbc(ρ) : −→◦ c,¬a,¬b,ρ |b,¬a,¬c,rbc(rc1(ρ))
rc1(ρ) : −→◦ c,¬a,¬b,ρ

rend : −→◦ rfail
rfail : −→◦ rfail

with an initial frontier set {{a,ra(rbc(rend)}} and forbidden rule activation set {ra,rbc,rc1,rfail}.
Now we can encode the intersection of the rule systems accepting languages, anbncm and ambncn

(n,m≥1), to yield a rule system accepting the context-sensitive language anbncn 8 (n≥1). This is
given as the union of the above rule sets and product of the initial frontier sets and union of the
forbidden rule activation set.

So, the product rule system has an initial activation set {{a,rab(rc),ra(rbc(rend))}} and final
forbidden rule activation set {rab,rb,rc, ra,rbc,rc1,rfail}.

6.2 Context-free grammars in RULER

Example 20 suggests a general result.

Theorem 22
The class of context-free languages is a strict subset of those accepted by rule-parameterized RULER.

We outline the proof of this result by defining a translation of context-free grammars into RULER
systems. The example encoding of the language defined by anbncn, in Example 21, then establishes
the strict inclusion.

We start by noting that any context-free grammar can be transformed into Greibach Normal Form
[14], whose production rules are either

• of the form N→TN1N2 ...Nn (n≥0), for a terminal symbol T and non-terminal symbols N
with the starting symbol S not appearing on the right-hand side, or

• S→λ, for starting symbol S and empty word λ.

Thus, consider a grammar G in Greibach Normal Form over terminal alphabet �. First, we convert
production rules of the form N→TN1N2 ...Nn (n≥0) into parameterized right recursive rules as
follows:

1. convert rules of the form N→T , where T is a terminal symbol and N is not the start non-terminal
S, into parameterized rule N(x)→Tx;

2. convert rules of the form N→TN1N2 ...Nn (n>0), where N is not the start non-terminal S, into

N(x)→TN1(...(Nn(x))...);

8represented, of course, as the set of traces {a,¬b,¬c}n{¬a,b,¬c}n{¬a,¬b,c}n.

 at U
niversity of M

anchester on June 11, 2010
http://logcom

.oxfordjournals.org
D

ow
nloaded from

http://logcom.oxfordjournals.org

[16:20 19/5/2010 exn076.tex] LogCom: Journal of Logic and Computation Page: 699 675–706

Rule Systems for Run-time Monitoring: from EAGLE to RULER 699

3. convert rules of the form S→T , where T is a terminal symbol, into the rule S→TE where E
is a special non-terminal introduced for an empty production;

4. convert rules of the form S→TN1N2 ...Nn (n>0), for start non-terminal symbol S, into rules
of the form

S→TN1(...(Nn(E))...).

We then generate a RULER rule rN for each non-terminal symbol N . Consider the set of parameterized
production rules for an arbitrary non-start non-terminal symbol N . We generate one RULER rule for
the whole set, which is of the form

rN (x) : −→◦ ... | T̂i,rNi
1
(...(rNi

ni
(x))...) | ...

where each of the disjuncts corresponds to the right-hand side of a rule in the set, and vice-
versa. For a terminal symbol T0, we use T̂0 to denote the (conjunctive) list of RULER observations
T0,¬T1,¬T2,...,¬T|�|−1 for Ti∈� and Ti=Tj if and only if i= j. Note that for a rule with right-hand
side Tx, with terminal symbol T and parameter x, the corresponding disjunct is T̂ ,x. Similarly, the
non-empty start symbol rules generate the RULER rule

rS : −→◦ ... | T̂i,rNi
1
(...(rNi

ni
(rE))...) | ...

The RULER rule for rE is simply rE : −→◦ and is used as a terminator. If the original grammar has
the production S→λ, then the initial set, i.e. frontier, for the rule system is {rS|rE} otherwise it is
just {rS}. The forbidden set is the set of all rule names apart from rE .

We claim that the rule system so generated accepts the language {tw | t∈�,w∈L(G)}. The
remaining task is to apply a transformation to the rule set to shift the words accepted one place
left so as to lose the arbitrary first symbol t. We demonstrate such a transformation on a small
example rather than describe the detailed steps, which are notationally awkward.

A Greibach Normal Form for the simple grammar S→aSb and S→λ is:

S→λ |aB |aAB
A→aB |aAB
B→b

Using the above translation, the RULER rules generated from this grammar are:

rS : −→◦ a,¬b,rB(rE) |a,¬b,rA(rB(rE))
rA(x) : −→◦ a,¬b,rB(x) |a,¬b,rA(rB(x))
rB(x) : −→◦ b,¬a,x
rE : −→◦

The idea of the shift transformation is to move the terminal symbol constraint appearing in the
consequent of a rule r into the rules that may ‘call’ the rule r. Thus for each parameterized rule rN (x),
we introduce rules rNt(x) for each terminal symbol t that may be the first symbol accepted by the
rule argument x. We name the revised starting rule as rS

′ and replace by rE those occurrences of rule

 at U
niversity of M

anchester on June 11, 2010
http://logcom

.oxfordjournals.org
D

ow
nloaded from

http://logcom.oxfordjournals.org

[16:20 19/5/2010 exn076.tex] LogCom: Journal of Logic and Computation Page: 700 675–706

700 Rule Systems for Run-time Monitoring: from EAGLE to RULER

applications rN (rE) appearing in the right-hand sides of the start rule rS . For the above example, the
transformed rules are then as follows.

rS
′ : −→◦ b,¬a,rE |a,¬b,rAb(rE)

rAb(x) : −→◦ b,¬a,rBb(x) |a,¬b,rAb(rBb(x))
rBb(x) : −→◦ b,¬a,x
rE : −→◦

The initial frontier of the rule system then becomes {a,¬b,rS
′ |rE}.

6.3 Including data parameters in RULER

As in EAGLE, we can also parameterize RULER rules by data values, thus introducing variables and
predicated atoms. It is through such means that RULER can be used for encoding/interpreting real-
time and stochastic logics, as well as enabling encodings of monitoring formulas that can be more
efficiently evaluated. As was the case for the inclusion of rule-expression arguments, the basic high-
level steps of the monitoring algorithm are not effected by this extension. The binding mechanism
used for rule-expressions handles data expressions as well. We therefore just exemplify the concepts
with two further examples.

Example 23
Let us assume that each observation state is ‘time-stamped’ by the inclusion of a unique
grounded predicate clock(t) for some real value t, e.g. one might have an observation state
{p,clock(49738.22264)} indicating that p occurred at time 49738.22264. The data parameterized
rule schema

r(k :R) :clock(n:R) −→◦ clock(t :R),p,t−n<k |
clock(t :R),¬p,t−n<k,r(k−t+n)

defines a constraint that the atom p must be consistent with an observation state within k time
units from the observation state in which the rule r(k) is required to hold. The n:R appearing as
argument to the clock predicate name in the rule’s condition means that the variable n is to be bound
to some value from R by the current observation state. The occurrence of clock(t :R) in the rule
consequent means that there is an obligation on the next observation state to binding t with some value.
Suppose we have an observation state containing just {clock(1),¬p,r(3)}. The rule r(3), through
binding n to 3, gives rise to the set {{clock(t :R),p,t−1<3},{clock(t :R),¬p,t−1<3,r(4−t)}}.
If the next actual observation state is {clock(3),¬p}, the merge with the obligation sets yields the
frontier set {{clock(3),¬p,r(1)}}, which gives rise, through r(1), to obligations {{clock(t :R),p,t−3<
1},{clock(t :R),p,t−3<1,r(4−t)}}. If we have another observation this time with {clock(4),p} then
the merge yields the empty frontier set as 4−3<1, which appears in both possible futures, is clearly
false. Hence the actual behaviour does not conform to that required by the initial r(3). On the other
hand, had the observation state been, say, {clock(3.9),p}, then the rule set would be satisfied.

Example 24
In contrast to the encoding of context-sensitive language anbncn for n>1 given in Example 21, we
provide a simpler and less memory expensive encoding using data parameters. The rule system first
counts the number of as, then attempts to match the observation with n bs followed by n cs. Any
mismatch on this requirement leads to non-acceptance. The evaluation of the rule system requires
constant space for each evaluation step in contrast to the previous given example that requires linear
space. Informally, if the rule ra(n) is active then n as have been previously observed; if the rule

 at U
niversity of M

anchester on June 11, 2010
http://logcom

.oxfordjournals.org
D

ow
nloaded from

http://logcom.oxfordjournals.org

[16:20 19/5/2010 exn076.tex] LogCom: Journal of Logic and Computation Page: 701 675–706

Rule Systems for Run-time Monitoring: from EAGLE to RULER 701

Table 5. A nested call return observation trace

Observation State Number
1 2 3 4 5 6 7 8 9 10 11

b
call

p
return

p
begin

q
call

q
return

q
end
q

begin
r r

end
r

rb(n,m) is active then n more bs are required and m cs; and if rc(m) is active then m cs are still
required. The rule set is given as below.

ra(n:N) : −→◦ a,¬b,¬c,ra(n+1) |
¬a,b,¬c,rb(n−1,n)

rb(n:N,m:N) : −→◦ ¬a,b,¬c,n>0,rb(n−1,m) |
¬a,¬b,c,n=0,m>1,rc(m−1) |
¬a,¬b,c,n=0,m=1,rend

rc(m:N) : −→◦ ¬a,¬b,c,m>1,rc(m−1) |
¬a,¬b,c,m=1,rend

rend : −→◦ rfail
rfail : −→◦ rfail

The rule system has an initial frontier set given as {{a,ra(1)}} and the forbidden rule set is
{ra,rb,rc,rfail}.

6.4 Using both data and rule parameters in RULER

In Ref. [1], Alur, Etessami and Madhusudan introduced a temporal logic of nested calls and
returns using abstract temporal modalities for skipping over states corresponding to procedure body
invocations, e.g. an abstract next-time operator that jumps from a call state to its matching return
state. They hint at past-time versions and other modalities.Arecent paper of Rosu, Chen and Ball [17]
develop specialized run-time monitors for such a past-time version of CaRet, called ptCaRet. For
ptCaRet, it is assumed that observation states include, in addition to other monitored information,
at most one of the following propositions, call, return, begin and end. It is further assumed that
begin-states immediately follow call-states, and end-states immediately precede return-states and
that observation traces are prefixes of traces with matched call and return states. In the next example,
we show how a uniform and practically efficient encoding of such ptCaRet temporal operators can
be given in RULER.

Example 25
We first encode the abstract ‘previously’ temporal operator introduced in Ref. [17]. We assume that
each observation state contains at most one of the propositions call, begin, end and return, and their
ordering follows the requirements given in Ref. [17]. Table 5 depicts a possible observation trace
over properties represented by the propositions b, p, q and r. For ease, we have separated out the

 at U
niversity of M

anchester on June 11, 2010
http://logcom

.oxfordjournals.org
D

ow
nloaded from

http://logcom.oxfordjournals.org

[16:20 19/5/2010 exn076.tex] LogCom: Journal of Logic and Computation Page: 702 675–706

702 Rule Systems for Run-time Monitoring: from EAGLE to RULER

states according to the nesting of call states. Assuming
⊙̂

denotes the abstract ‘previously’ temporal
operator, then we have that:

(i)
⊙̂

p is true only at the observation states numbered 3, 10 and 11;
(ii)

⊙̂
q is true only at the observation states numbered 4, 5, 8 and 9;

(iii)
⊙̂

r is true only at the observation states number 6 and 7.

Assuming a strict abstract ‘since’ operator defined by (the least solution of)

φŜ−ψ≡⊙̂
(ψ∨(φ∧φŜ−ψ))

we then have that:

(i) pŜ−b is true only at observation states 2, 3, 10 and 11;
(ii) (p∨q)Ŝ−b is true only at observation states 2, 3, 4, 5, 8, 9, 10 and 11.

In order to model the abstract temporal operators in RULER one needs to determine matching calls
and returns. We thus introduce a rule level(n) that will record for each observation state the current
call stack nesting level. We also need to determine the value of a given formula at some matching
call observation state. We introduce the rule RMC(n,x) that records whether the rule argument x was
true on the most recent call at stack level n. We will then use the rule AP(x) to encode the truth of
abstract previously temporal operator, which is then defined by the following two rules.

APg1(x) :end,level(m:N),RMC(m−1,x)−→◦ AP(x)
APg2(x) :¬end,x−→◦ AP(x)

The first rule determines the value of AP(x) for a return observation state. Recall that an end state
must immediately precede a return state. Therefore if the end state is currently at stack level m and
the rule argument x was true at the matching call state for stack level m−1 then AP(x) must hold
in the return state (which for RULER means that the rule must be present). On the other hand, if we
are currently not at an end state and the rule argument x holds then AP(x) must also hold in the next
observation state.

There are three rules to maintain the call stack level counter, level(n).

Lg1 :call,level(n:N)−→◦ ¬level(n),level(n+1)
Lg2 :end,level(n:N)−→◦ ¬level(n),level(n−1)
Lg3 :¬call,¬end,level(n:N)−→◦ level(n)

The rule RMC(n,x) is also defined using three rules.

RMCg1(x) :return,level(n:N)−→◦ ¬RMC(n,x)
RMCg2(x) :call,level(n:N),x−→◦ RMC(n,x)
RMCg3(x) :RMC(n:N,x),level(m:N),n<m−→◦ RMC(n,x)

The first rule ensures that RMC(n,x) is switched off for the state following a return state at stack
level n. The second rule ensures RMC(n,x) is switched on in the state following a call state at level n
in which x is true. The third rule in the above group propagates RMC(n,x) over more deeply nested
observation states.

 at U
niversity of M

anchester on June 11, 2010
http://logcom

.oxfordjournals.org
D

ow
nloaded from

http://logcom.oxfordjournals.org

[16:20 19/5/2010 exn076.tex] LogCom: Journal of Logic and Computation Page: 703 675–706

Rule Systems for Run-time Monitoring: from EAGLE to RULER 703

The above rule schema then needs to be switched on. For example, if it is required to monitor the
abstract temporal property

⊙̂
p we would include the generator rule

rg : −→◦ rg,
APg1(p),APg2(p),
Lg1,Lg2,Lg3,
RMCg1(p),RMCg2(p),RMCg3(p)

with an initial frontier set {{rg,Lg1,Lg3,APg2(p),RMCg2(p),level(0)}}.
The encoding of the abstract ‘since’ temporal operator can be given in a similar way using the

following four generator rules for determining whether the rule name AS(x,y) should be present in
a rule activation state.

ASg1(x,y) :¬end,y−→◦ AS(x,y)
ASg2(x,y) :end,level(m:N),RMC(m−1,y)−→◦ AS(x,y)
ASg3(x,y) :¬end,x,AS(x,y)−→◦ AS(x,y)
ASg4(x,y) :end,level(m:N),RMC(m−1,x),RMC(m−1,AS(x,y))

−→◦ AS(x,y)

Whilst the above has shown the translation for a specific formula, a uniform translation can be
based on these schema as was done for the translation of the past-time fragment of LTL into RULER.

7 Conclusions

A low-level rule-based system RULER for run-time monitoring has been introduced. An on-the-
fly trace-checking algorithm, which checks a finite trace of ground observations for conformance
against the rules of the RULER specification on a step-by-step basis, was first informally described
for the propositional subset of RULER and then illustrated through examples. A formal semantics
of the propositional subset of RULER was given and used to establish correctness of a syntactic-
level translation of linear-time temporal logic incorporating both past and future operators into
propositional RULER. A key concept in RULER is that the rules have the capability to switch rules on
or off as an evaluation of a rule system proceeds over a trace. We refer to such systems as reactive
rule systems/grammars/Kripke structures [13]. For regular grammars, the reactivity does not extend
expressivity. However, for general context-free grammars, this reactivity extends the expressivity
to non-context free grammars. A relationship with alternating automata [11] and state-alternating
context-free grammars [16] is clear, however, a more detailed study of reactive grammars and their
place in the complexity hierarchy is work in progress, see Ref. [7] for some initial results and
examples.

We illustrated the greater expressiveness of the rule-expression parameterized version of RULER
by encoding a context-free and a context-sensitive language as RULER rule systems. We then gave
a general translation for any context-free grammar, which thus established the strict containment of
context-free languages within that version of RULER. In addition to rule-expression parameters,
RULER supports rules parameterized by data expressions, just as in EAGLE. Formally, RULER
incorporating counting on the natural numbers is able to simulate a Turing machine. However, the
inclusion of data is essential for effective run-time monitoring and leads to practically more efficient
rule systems. The semantic details are not difficult and RULER adopts an approach similar to that
in first-order METATEM [3]. The inclusion of data, of course, enables RULER to be used to encode
real-time and stochastic properties.

 at U
niversity of M

anchester on June 11, 2010
http://logcom

.oxfordjournals.org
D

ow
nloaded from

http://logcom.oxfordjournals.org

[16:20 19/5/2010 exn076.tex] LogCom: Journal of Logic and Computation Page: 704 675–706

704 Rule Systems for Run-time Monitoring: from EAGLE to RULER

We have kept the core elements of RULER syntactically small and concise. There are, however,
commonly occurring patterns of rules where some additional syntax in RULER can simplify the rule
system presentation. One example is to introduce the notion of ‘persistent’ rule activations in addition
to the basic single-step interpretation RULER has for rule activation; this removes the need for the
‘generator’ rules that have been used throughout most of the examples. It is also quite common
to find a collection of rules always being switched on, or off, collectively, for example, a set of
rules characterizing some reoccurring state. Hence another syntactic extension is to introduce names
referring to such sets of rules and then treating the new name in a similar way to a rule name. As a
brief example, suppose one wished to count the number of p events that occur before a q event. In
‘core’ RULER this can be encoded by the rules

Ap : p,V (x :N)−→◦ V (x+1),Ap,Aq,G
Aq : q,V (x :N)−→◦ B(x)
G : ¬p,¬q,V (x :N)−→◦ G,V (x),Ap,Aq

where the initial frontier is {G,V (0),Ap,Aq}. The rule V (x) is used to record the current number of p
events seen. The rule G is a generator rule that causes the rules Ap, Aq and V (x) to persist only when
p and q events do not occur. In the following syntactic extension, we provide a named collection of
rules with such a form of persistence (introduced by the keyword state).

state A(x :N){
p−→◦ A(x+1);
q−→◦ B(x);

}
An appropriate initial frontier would now be {A(0)} indicating that the count is initially 0. If A(n)
is active and neither of the rules associated with A(x :N) when the formal argument x is replaced
by n are ‘fired’, i.e. the antecedents evaluate false, then A(n) persists to the next monitoring step.
If either of the rules do fire, then only the consequents of the associated rules determine the active
rules for the next monitoring step. Hence the collective rule A(x :N) is very much like a state in a
state-transition system. We have experimented with a range of such syntactic extensions that (i) can
be transformed into the ‘core’ RULER rule forms, (ii) can lead to optimization in the trace-checking
algorithm and (iii) can lead to clearer user-level rule system specifications. A tutorial paper on RULER
[8] exemplifies many of these extensions that are also implemented in the current Java prototype.

An associated feature not yet fully treated in RULER is rule priority. Given the ability to switch
rules on and off, conflicts may occur. Sometimes the conflicts may be desired, but in other situations
we may wish one rule to override another, as is the case in handling priority and preferences in default
logic (defeasible reasoning) [9]. Of course, this changes the nature of the logics expressible quite
considerably and is an area of future development. We note, also, that rule priorities are important
for defining transition priority in hierarchical state charts.

The low-level simplicity of RULER leads to the main advantage for its potential use over EAGLE.
If optimal (asymptotic) complexity bounds have been established for a particular subset logic of
EAGLE, such as for the LTL subset, in general a RULER encoding will be no better asymptotically.
However, we assert that smaller constants arise through the significant reduction in the symbolic
processing that has to be undertaken at run-time in the interpretation of EAGLE formulas. Of course,
there would be a one-off translation cost from the LTL formula to the appropriate rule systems. This
a compilation versus interpretation gain. A compilation from full EAGLE to RULER remains to be
implemented.

 at U
niversity of M

anchester on June 11, 2010
http://logcom

.oxfordjournals.org
D

ow
nloaded from

http://logcom.oxfordjournals.org

[16:20 19/5/2010 exn076.tex] LogCom: Journal of Logic and Computation Page: 705 675–706

Rule Systems for Run-time Monitoring: from EAGLE to RULER 705

A prototype Java implementation of RULER, including data (covering integers and object
references) and rule-expression parameters, has been developed. The translation algorithm for LTL
into RULER has also been implemented, as well as translations from finite automata and regular
expressions. The RULER prototype tool has been interfaced as a run-time monitoring system for Java
programmes usingAspectJ for to instrument the monitored Java code.All examples in the article have
been run through the system. Furthermore, the Java integrated RULER tool and tutorial have been
used to support a Master’s level course on run-time monitoring at Caltech; the students found RULER
easy to use and effective. Whilst it is premature to report on case study performance, the prototype
is, so far, supporting our assertions that using RULER rather than EAGLE does lead to more efficient
run-time monitoring. Further developments and refinements of the current prototype are in hand and
include, for example, hierarchical compositions of RULER monitors, see the tutorial paper [8] for
details.

Acknowledgement

The authors are grateful to Djihed Afifi for producing a parser for the prototype RULER
implementation.

References
[1] R. Alur, K. Etessami and P. Madhusudan. A temporal logic of nested calls and returns. In

Proceedings of the 10th TACAS. Vol. 2988 of LNCS, pp. 467–481. Springer, 2004.
[2] J. Baran and H. Barringer. Forays into sequential composition and concatenation in EAGLE.

To appear in Proceedings of Run-time Verification Workshop, RV 2008, Budapest, Hungary.
Vol. 5289 of LNCS. Springer, 2008.

[3] H. Barringer, M. Fisher, D. Gabbay, R. Owens and M. Reynolds. The Imperative Future:
Principles of Executable Temporal Logic. Research Studies Press, Taunton, England, 1996.

[4] H. Barringer, M. Fisher, D. Gabbay, G. Gough and R. Owens. METATEM: an introduction. Formal
Aspects of Computing, 7, 533–549, 1995.

[5] H. Barringer, A. Goldberg, K. Havelund and K. Sen. Rule-based runtime verification. In
Proceedings of the VMCAI’04, 5th International Conference on Verification, Model Checking
and Abstract interpretation, Venice. Vol. 2937 of LNCS, pp. 44–57. Springer, 2004.

[6] H. Barringer, A. Goldberg, K. Havelund and K. Sen. Run-time monitoring in EAGLE. In
Proceedings of PADTAD ’04, Santa Fe, New Mexico, IEEE Computer Society, IDPDS’04,
Vol. 17, No. 17, p. 264b, 2004.

[7] H. Barringer, D. Rydeheard and D. Gabbay. Reactive grammars: an initial exploration. Draft
paper, see http://www.cs.man.ac.uk/~david/reactive.html, 2007.

[8] H. Barringer, D. Rydeheard and K. Havelund. RULER: a tutorial guide. Report available from
http://www.cs.man.ac.uk/~howard/LPA.html

[9] G. Brewka. Reasoning about priorities in default logic. In Proceedings of AAAI National
Conference on Artificial Intelligence. Vol. 2, pp. 940–945. The AAAI Press/The MIT Press,
1994.

[10] M. D. Fisher. A normal form for temporal logics and its applications in theorem-proving and
execution. Journal of Logic and Computation, 7, 429–456, 1997.

[11] B. Finkbeiner and H. Sipma. Checking finite traces using alternating automata. Formal Methods
in System Design, 24, 101–127, 2004.

 at U
niversity of M

anchester on June 11, 2010
http://logcom

.oxfordjournals.org
D

ow
nloaded from

http://logcom.oxfordjournals.org

[16:20 19/5/2010 exn076.tex] LogCom: Journal of Logic and Computation Page: 706 675–706

706 Rule Systems for Run-time Monitoring: from EAGLE to RULER

[12] D. M. Gabbay. Declarative past and imperative future: executable temporal logic for interactive
systems. In Proceedings of Coll. on Temporal Logic in Specification, Altrincham. Vol. 398 of
LNCS, pp. 67–89. Springer, 1989.

[13] D. M. Gabbay. Introducing reactive kripke semantics and arc accessibility. In Pillars of
Computer Science, Vol. 4800 of LNCS, pp. 292–341. Springer, 2008.

[14] S. Greibach. A new normal-form theorem for context-free phrase structure grammars. Journal
of the Association of Computing Machinery, 12, 42–52, 1965.

[15] K. Havelund. Runtime verification of C programs. In Proceedings of 20th IFIP TC 6/WG 6.1
International Conference, TestCom 2008 8th International Workshop, FATES 2008, Vol. 5047
of LNCS, pp. 7–22. Springer, 2008.

[16] E. Moriya, D. Hofbauer, M. Huber and F. Otto. On state-alternating context-free grammars.
Theoretical Computer Science, 337, 183–216, 2005.

[17] G. Rosu, F. Chen and T. Ball. Synthesising monitors for safety properties — this time with calls
and returns. In Proceedings of Run-time Verification Workshop, RV 2008, Budapest, Hungary,
Vol. 5289 of LNCS, pp. 51–68. Springer, 2008.

Received 7 April 2008

 at U
niversity of M

anchester on June 11, 2010
http://logcom

.oxfordjournals.org
D

ow
nloaded from

http://logcom.oxfordjournals.org

