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Abstract

Balanced truncation of discrete linear time-invariant systems is an automatic
method once an error tolerance is specified and it yields an a priori error bound,
which is why it is widely used in engineering for simulation and control. We
derive a discrete version of Antoulas’s H2-norm error formula and show how to
adapt it to some special cases. We present an a posteriori computable upper
bound for the H2-norm of the error system defined as the system whose transfer
function corresponds to the difference between the transfer function of the orig-
inal system and the transfer function of the reduced system. We also present
a generalization of the H2-norm error formula to any projection of dynamics
method. The main advantage of our results is that we use the information
already available in the model reduction algorithm in order to compute the H2-
norm instead of computing a new Gramian of the corresponding error system,
which is computationally expensive. The a posteriori bound gives insight into
the quality of the reduced system and it can be used to solve many problems ac-
companying the order reduction operation. Moreover, it is often more accurate
in floating point arithmetic.

Keywords: model reduction, balanced truncation, a posteriori error bound,
Gramians, Stein equations, H2-norm
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1. Introduction

Modeling real world physical processes gives rise to mathematical systems
of increasing complexity. Good mathematical models have to reproduce the
original process as precisely as possible but the computing time and the stor-
age resources needed to simulate the mathematical model are limited. As a
consequence, there must be a tradeoff between accuracy and computational
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constraints. One often has to deal with systems that have an unacceptably high
level of complexity. It is then desirable to approximate such systems by systems
of lower complexity. This is the model reduction problem.

Balanced truncation is one of the best known methods for model reduction
of linear systems [1–4]. It is characterized by the principle of projection of dy-
namics. Balanced truncation is widely used in practice for four main reasons.
First, it automatically preserves stability if the original system is stable. Second,
for a reasonably small system order, say a few hundred, it gives a satisfactory
approximation in the majority of cases without having to solve a complicated
minimization problem or having to choose a set of essential system parameters
first. Third, this approximation can be obtained at relatively reasonable compu-
tational cost. Fourth, an a priori upper bound for the error between the original
plant and the reduced-order model exists for the H∞-norm, the preferred mea-
sure of approximation accuracy in engineering. Recently, an H2-norm error
formula was presented by Antoulas [5, p. 218]. Here we will derive a discrete
version of this formula. This version has interesting properties that we will use
later to deduce some a posteriori error bounds. Here the a posteriori distinction
is made because our bounds require computation of the projection matrices.
We will show how to adapt all these results to the special case of the square
systems. After that we will generalize our results to general case of projection
of dynamics methods. These error bounds are computable upper bounds for
the H2-norm of the error system defined as the system whose transfer function
corresponds to the difference between the transfer function of the original sys-
tem and the transfer function of the reduced system. The main advantage of
our results is that we use the information already available in the model reduc-
tion algorithm in order to compute the H2-norm instead of computing a new
Gramian of the corresponding error system. There is always a computational
restriction on solving high-dimensional Lyapunov equations for Gramians [5].

The a posteriori bounds give insight into the quality of the reduced system
and can be used to solve many problems associated with the order reduction
task, such as the choice of the best reduced order for a given tolerance. The
purpose of the model often determines the “acceptable” reduced order in an
implicit way, and no explicit criterion can be formulated without an a priori
prohibitively expensive analysis and ranking of the dynamics involved. Our
results could be implemented into the model reduction algorithm in order to
check if the chosen reduced order is the best choice or needs to be modified
before stopping the reduction algorithm. Another possible benefit from our
results is related to the approximate balanced truncation method [5]. It is
a hybrid method obtained from balanced truncation, where we approximate
rather than accurately compute the solutions of the Stein equations and use
these approximations to build new projection matrices. Our results give a hint
on how to choose these projections in order to achieve a better H2 error norm
or any other related problem to the order reduction.
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We consider discrete-time systems

S
{

xk+1 = Axk +Buk

yk = Cxk
(1)

with input uk ∈ Rm, state xk ∈ RN and output yk ∈ Rp, and m, p ≪ N .
We assume that the matrices A, B, and C are of appropriate dimensions. We
will assume also the system S to be stable (i.e., all eigenvalues of the matrix A
are strictly inside the unit circle). The transfer function corresponding to the
system S is

H(z) = C(zI −A)−1B.

The controllability and observability Gramians related to S are defined by

Gc =

∞∑
k=0

(AkB)(AkB)T , Go =

∞∑
k=0

(CAk)T (CAk),

and they are solutions of the Stein equations

AGcA
T − Gc +BBT = 0, ATGoA− Go + CTC = 0. (2)

This paper is organized as follow. In Section 2, we review the balanced
truncation method. Section 3 is dedicated to the presentation of the new error
formulas and some new a posteriori bounds of the H2 norm of the error system
corresponding to the balanced truncation method. We also discuss some features
of these formulas and bounds. We end this section by specialising the bounds
to the square case. In Section 4, we generalize the error formula and bound to
any projection of dynamics method. In Section 5, we present some numerical
examples to show the relevance of our results. We finish with some further
discussion and concluding remarks in Section 6.

2. Balanced truncation

The method of balanced truncation is well established for model reduction
of linear systems. It is a special case of the projection of dynamics methods
(also known as transform and truncate methods). The main idea is to rewrite
the system S, which we suppose stable, controllable and observable1 [2, 6],
using a similarity transformation T called the balancing transformation. The
balanced system has some desirable sensitivity properties with respect to poles,
zeros, truncation errors in digital filter implementations, and so on [2, 6]. It
is therefore recommended whenever the choice of a realization (A,B,C) is not
specified by the user. The transformation T can be obtained from the Cholesky
factorizations

Gc = STS, Go = RTR,

1This means essentially that the Gramians are full rank.
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as follows:
T−1 = Σ−1/2V TR, T = STUΣ−1/2,

where SRT = UΣV T is the SVD of SRT . In this coordinate system one has [7]

TGcT
T = T−TGoT

−1 = Σ = diag(σ1, σ2, . . . , σN ),

where the σi are the Hankel singular values of S [6].
The balancing transformation T ensures that each state is as controllable

as it is observable in the new coordinate system. After balancing the system,
a reduced model is obtained by truncating the new state x = (x1, . . . , xN )T to
x̂ = (x1, . . . , xn)

T , where n ≪ N . The truncated states are the least controllable
and observable states, corresponding to the smallest Hankel singular values and
having little effect on the input/output behavior. This truncation is equivalent
to projecting the system with a rank n projection

[
In 0

]
∈ Rn×N . The

so-called truncation matrices Πr and Πl are

Πl = RTV1Σ
−1/2
1 , Πr = STU1Σ

−1/2
1 , (3)

where Σ1 = diag(σ1, . . . , σn). We can easily see that ΠT
l GcGoΠr = Σ2

1.
An a priori error bound in the induced 2-norm can be given for the error

between the original and the reduced system [6]

σn+1 ≤ ∥S − Ŝ∥H∞ ≤ 2(σn+1 + · · ·+ σN ). (4)

This result says that the H∞-norm of the error system is bounded above by
twice the sum of the neglected Hankel singular values.

More recently, a new result was derived by Antoulas [5, p. 218] for the
H2 norm. It is a computable H2 norm of the error system which yields also
a computable upper bound for this norm. A convenient expression for the H2

norm is
∥S∥2H2

= trace
(
BTGoB

)
= trace

(
CGcC

T
)
. (5)

A result that follows immediately is given by the following proposition.

Proposition 1. Let (A,B,C) be a balanced realization of the system S, and σ1

its first Hankel singular value. We have

σ1 max(α∥C∥22, β∥B∥22) ≤ ∥S∥2H2
≤ σ1 min(p∥C∥22,m∥B∥22)

where α = ∥C:1∥22/∥C∥22, β = ∥B1:∥22/∥B∥22 and C:1 the first column of C and
B1: the first row of B.

Proof. Let prove first that

σ1α∥C∥22 ≤ ∥S∥2H2
≤ σ1p∥C∥22.

Using the formula (5) and the fact that CTC is a positive matrix, we have

∥S∥2H2
= trace

(
CGcC

T
)
= trace

(
CTCGc

)
≤ ∥Gc∥2trace

(
CTC

)
= ∥Gc∥2∥C∥2F .
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As the system S is balanced we have ∥Gc∥2 = σ1. Moreover we have [8] ∥C∥F ≤√
p∥C∥2. Then we deduce the upper bound

∥S∥2H2
≤ σ1p∥C∥22.

For the lower bound, it is sufficient to remark that Gc = Σ = diag(σ1, . . . , σN ),
then

∥S∥2H2
= trace

(
CGcC

T
)
=

N∑
i=1

σi∥C:i∥2F ≥ σ1∥C:1∥2F

where C:i is the ith column of C. It follows that

∥S∥2H2
≥ σ1∥C:1∥22 = σ1α∥C∥22.

Similarly we show that

σ1β∥B∥22 ≤ ∥S∥2H2
≤ σ1m∥B∥22,

and the proposition follows easily.

One should remark here that for SISO systems (i.e. p = m = 1) the previous
proposition will be simplified as ∥B∥F = ∥B∥2 = ∥C∥2 = ∥C∥F .

If the original system is of order2 N and the reduced order is n, the order of
the error system will be N + n. To compute the H2 norm of the error system
we have to solve another Stein equation for a new Gramian of this error system,
and so the cost will be of the order of (N + n)3 added to the cost of the model
order reduction method. With Antoulas’s formula, one needs only the Gramian
of the original system. This Gramian is supposed to be available already from
the balanced truncation method. So the cost will be only the cost of the double
product of the Gramian by the input matrix (or equivalently the output matrix)
and its transpose, and the computation of the trace of that product.

In the following section we give a discrete-time version of this formula, and
show how to adapt it to some special cases. The discrete-time version presents
some interesting features that we will discuss later.

3. H2 norm of the error system for balanced truncation

In this section we derive a computable a posteriori upper bound for the H2

norm of the error system for balanced truncation. For simplicity, let us assume
henceforth that the system S is already in balanced form, and partition the
matrices A, B and C as follows:

A =

[
A11 A12

A21 A22

]
, B =

[
B1

B2

]
, C =

[
C1 C2

]
,

2Also called the McMillan degree.
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where Â
.
= A11 ∈ Cn×n, B̂

.
= B1 ∈ Cn×m and Ĉ

.
= C1 ∈ Cp×n. We will use the

notation A:2 =

[
A12

A22

]
. Since the system S is balanced its controllability and

observability Gramians are diagonal and equal:

Gc = Go = G =

[
G1 0
0 G2

]
, where G1 ∈ Rn×n.

We have G1 = diag(σ1, . . . , σn) and G2 = diag(σn+1, . . . , σN ), where σi are the
Hankel singular values. The unified Gramian G then solves the Stein equations

AGAT − G +BBT = 0, ATGA− G + CTC = 0. (6)

To obtain the result, we consider the error system Se, defined as the system
which has the transfer function He(z) := H(z) − Ĥ(z) = C(zI − A)−1B −
C1(zI − A11)

−1B1, where H(z) is the transfer function of S and Ĥ(z) is the
transfer function of Ŝ. A realization of the system Se is given by{[

A 0
0 A11

]
,

[
B

−B1

]
,
[
C C1

]}
. (7)

The bound on the approximation error ∥S − Ŝ∥H2 = ∥Se∥H2 is obtained
directly by bounding theH2 norm of Se. Let us first note that the controllability
Gramian Gce and the observability Gramian Goe of Se are given by

Gce =

[
G −Y

−Y T Ĝc

]
, Goe =

[
G Z

ZT Ĝo

]
,

where Ĝc and Ĝo are the controllability and observability Gramians of the re-
duced model Ŝ, respectively, which solve

A11ĜcA
T
11 − Ĝc +B1B

T
1 = 0, AT

11ĜoA11 − Ĝo + CT
1 C1 = 0, (8)

and where Z =

[
Z1

Z2

]
and Y are solutions of

AY AT
11 − Y +BBT

1 = 0, ATZA11 − Z + CTC1 = 0. (9)

The H2 norm of the error system is given by

∥Se∥2H2

.
= trace

([
BT −BT

1

] [ G Z

ZT Ĝo

] [
B

−B1

])
= trace

(
BTGB − 2BTZB1 +BT

1 ĜoB1

)
= trace

(
BTGB − 2BT

1 Z1B1 − 2BT
2 Z2B1 +BT

1 ĜoB1

)
. (10)

Now, from (6), we obtain

A11G1A
T
21 +A12G2A

T
22 +B1B

T
2 = 0,
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and consequently

trace
(
−2BT

2 Z2B1

)
= trace

(
−2B1B

T
2 Z2

)
= trace

(
2A11G1A

T
21Z2 + 2A12G2A

T
22Z2

)
.

Substituting in (10) yields

∥Se∥2H2
= trace

(
BTGB−2BT

1 Z1B1+2A11G1A
T
21Z2+2A12G2A

T
22Z2+BT

1 ĜoB1

)
.

From (9), we have

AT
11Z1A11 +AT

21Z2A11 − Z1 + CT
1 C1 = 0,

and consequently

trace
(
2A11G1A

T
21Z2

)
= trace

(
2G1A

T
21Z2A11

)
= trace

(
−2G1A

T
11Z1A11 + 2G1Z1 − 2G1C

T
1 C1

)
.

Combining this with the definition of the H2 norms of S and Ŝ,

∥S∥2H2
= trace

(
BTGB

)
= trace

(
CGCT

)
, ∥Ŝ∥2H2

= trace
(
BT

1 ĜoB1

)
= trace

(
C1ĜcC

T
1

)
,

gives

∥Se∥2H2
= trace

(
2A12G2A

T
22Z2 + C2G2C

T
2 − C1G1C

T
1 + C1ĜcC

T
1

)
+trace

(
−2B1B

T
1 Z1 − 2A11G1A

T
11Z1 + 2G1Z1

)
.

The (1, 1) block of (6) gives

A11G1A
T
11 +A12G2A

T
12 − G1 +B1B

T
1 = 0,

from which it follows that

trace
(
−2B1B

T
1 Z1 − 2A11G1A

T
11Z1 + 2G1Z1

)
= trace

(
2A12G2A

T
12Z1

)
.

Finally, we obtain

∥Se∥2H2
= trace

(
C2G2C

T
2 + C1(Ĝc − G1)C

T
1 + 2A12G2

[
AT

12 AT
22

] [ Z1

Z2

])
= trace

(
C2G2C

T
2

)
+ trace

(
C1(Ĝc − G1)C

T
1

)
+ 2trace

(
A12G2A

T
:2Z

)
.

Theorem 2. Let S =

{[
A11 A12

A21 A22

]
,

[
B1

B2

]
,
[
C1 C2

]}
be a balanced

system and Ŝ = {A11, B1, C1} be the n-truncated model. The H2 norm of the
error system is given by both

∥Se∥2H2
= trace

(
C2G2C

T
2

)
+trace

(
C1(Ĝc − G1)C

T
1

)
+2trace

(
A12G2A

T
:2Z

)
(11)
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and

∥Se∥2H2
= trace

(
BT

2 G2B2

)
+trace

(
BT

1 (Ĝo − G1)B1

)
+2trace

(
A12G2A

T
:2Y

)
(12)

where G2 is the (N − n) × (N − n) trailing principal submatrix of the unified
Gramian of S, Ĝc and Ĝo are respectively the controllability and the observability
Gramians of Ŝ, and Z and Y are the solutions of the Stein equations

ATZA11 − Z + CTC1 = 0, AY AT
11 − Y +BBT

1 = 0.

Remark 1. The second formula is obtained if we used the C matrices instead
of the B matrices in the definition of the H2 norm of the error system (10).

From the Cauchy–Schwarz inequality we obtain∣∣trace(C2G2C
T
2

)∣∣ ≤ σn+1p∥C2∥22, where σn+1 = ∥G2∥2,∣∣∣trace(C1(Ĝc − G1)C
T
1

)∣∣∣ ≤ ∥Ĝc − G1∥2p∥C1∥22,∣∣trace(2A12G2A
T
:2Z

)∣∣ ≤ 2σn+1∥A12∥2∥A:2∥2∥Z∥2.

As Z is the solution of the Stein equation (9), it has the form

Z =
∞∑
i=0

(AT )iCTC1(A11)
i,

and so

∥Z∥2 ≤ ∥C∥22
∞∑
i=0

∥Ai∥2∥(A11)
i∥2.

Moreover, the difference E := Ĝc − G1 satisfies the Stein equation

AT
11EA11 − E +AT

21G2A21 = 0, (13)

which yields the formula

E = Ĝc − G1 =
∞∑
i=0

(AT
11)

iAT
21G2A21(A11)

i.

Finally, we have

∥Ĝc − G1∥2 ≤ σn+1

∞∑
i=0

∥(A11)
i∥22∥A21∥22.

This analysis yields the following result.
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Theorem 3. The H2 norm of the error system satisfies the a posteriori bound

α∥C∥22σn+1 ≤ ∥Se∥2H2
:= ∥S − Sn∥2H2

≤ cpσn+1∥C∥22
where

c = 1 + 3∥A∥22
∞∑
i=0

∥Ai∥2∥(A11)
i∥2, α = ∥C:1∥22/∥C∥22,

and C:1 is the first column of C

Proof. Here the left inequality follows from Proposition 1.

Another bound could be obtained as follows. Reconsider the Stein equations
(9) and (13)

ATZA11 − Z + CTC1 = 0, AT
11EA11 − E +AT

21G2A21 = 0,

and let A = UDU−1, and A11 = U1D1U
−1
1 be the eigenvalue decompositions of

A and A11. The Stein equations can be rewritten as

DU−1ZU1D1 − U−1ZU1 + U−1CTC1U1 = 0,

D1U
−1
1 EU1D1 − U−1

1 EU1 + U−1
1 AT

21G2A21U1 = 0.

From this, it can be easily seen that

∥Z∥2 ≤ ∥C∥22κ2(U)κ2(U1)

1− ρ(A)ρ(A11)
, ∥E∥2 ≤ σn+1∥A21∥22κ2

2(U1)

1− ρ(A11)2
, (14)

where ρ(·) denotes the spectral radius and κ2(M) = ∥M−1∥2∥M∥2 is the con-
dition number. We have

ρ(A) = max
i

|dii|, ρ(A11) = max
i

|d̂ii|,

where D = (dij)
N
i,j=1 and D1 = (d̂ij)

n
i,j=1.

Theorem 4. The H2 norm of the error system satisfies the a posteriori bound

α∥C∥22σn+1 ≤ ∥Se∥2H2
:= ∥S − Sn∥2H2

≤ c1pσn+1∥C∥22,

where

c1 = 1 +
∥A∥22κ2(U)κ2(U1)

1− ρ(A11)2
+

2∥A∥22κ2
2(U1)

1− ρ(A)ρ(A11)
.

Proof. Recall from (11) that

∥Se∥2H2
= trace

(
C2G2C

T
2

)
+ trace

(
C1(Ĝc − G1)C

T
1

)
+ 2trace

(
A12G2A

T
:2Z

)
≤ p∥C2∥22∥G2∥2 + p∥C1∥22∥E∥2 + 2∥A12∥2∥G2∥2∥A:2∥2∥Z∥2.

Using the bounds (14), we have

∥Se∥2H2
≤ p∥C2∥22σn+1 + p∥C1∥22

σn+1∥A21∥22κ2(U)κ2(U1)

1− ρ(A11)2
+ 2∥A12∥2∥G2∥2∥A:2∥2

∥C∥22κ2
2(U1)

1− ρ(A)ρ(A11)

≤ p∥C∥22σn+1 + p∥C∥22
σn+1∥A∥22κ2(U)κ2(U1)

1− ρ(A11)2
+ 2∥A∥22σn+1

∥C∥22κ2
2(U1)

1− ρ(A)ρ(A11)
,

which gives the upper bound. The lower bound follows from Proposition 1.
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3.1. Discussion

First, notice that in Theorems 3 and 4, the term ∥C∥22 could be replaced by
∥B∥22 as a result of Theorem 2 and the definition of theH2-norm. The discussion
will focus then on the results with C.

In Theorem 2, the first term trace
(
C2G2C

T
2

)
is the H2-norm of the neglected

subsystem of the original system; the second term trace
(
C1(Ĝc − G1)C

T
1

)
is the

difference between the H2-norms of the reduced order system and the dominant
subsystem of the original system; finally the third term trace

(
A12G2A

T
:2Z

)
is

the inner product of the non-dominant block of the Gramian with the Z (non
square matrix) weighted by non-dominant submatrices of A. G2 is diagonal and
its spectral norm is supposed to be negligible compared to the spectral norm of
G1. Then as the first and last terms are proportional to G2, they will be very
small; the mid-term has the major contribution to the value of the norm. As
E = Ĝc − G1 is the solution of the Stein equation

AT
11EA11 − E +AT

21G2A21 = 0,

if either the non dominant Gramian G2 or the off-diagonal block of A are small
(zero), then E will be small (zero). As a conclusion, the quality of the reduced
model will be a function of the smallness of the off-diagonal blocks of A and
the smallness of σn+1, the largest neglected Hankel singular value. The last
dependence is known but the first one is quite unusual. It can be interpreted as
follow. The reduced order model will be a good approximation of the original
system if and only if firstly there is a gap between the kept Hankel singular values
of the original system and the neglected ones and secondly if the truncated states
have no major contribution to the dynamics of the other states.

In Theorems 3 and 4, if the matrix A is close to normal we will have

∥A∥2 ≈ ρ(A) ≈ ρ(A11) < 1, lim
i 7→∞

∥Ai∥2 = 0, κ2(U) ≃ κ2(U1) ≃ 1.

The constant c1 can be taken as

c1 = 1 +
3∥A∥22

1− ρ(A)2
.

Moreover, the two constants c and c1 should be of the same order in this case.
Note that usually the matrix A results from the finite-element method applied
to a partial differential equation, which yields in general a matrix that is close
to being normal or symmetric.

We end this discussion by discussing the utility of these formulas and bounds,
and even more specifically the utility of the discrete case. First, a relationship
between the discrete and continuous time H2 norms can be derived by intro-
ducing the relationship between discrete and continuous time Gramians. One
obtains

∥Sc∥2H2
=

1√
∆t

∥Sd∥2H2
,
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where Sc is a continuous system and Sd its discretization corresponding to the
sampling time ∆t. As a result of this formula, the discrete time H2 norm
does not converge to the continuous time H2 norm when the sampling time
approaches zero.

One key utility of the discrete case is that the spectral radii of the matrices
A and A11 are smaller than 1. This follows from the stability of both systems:
the original and the reduced. If A is close to normal, this property will make
both coefficients c and c1 in Theorems 3 and 4 reasonably small. For c, notice
that the terms ∥Ai∥2 and ∥Ai

11∥2 will vanish very quickly as A has its spectral
radius smaller than 1 and A11 is a sub-matrix of A. Both coefficients c and c1
are only functions of A and A11. Moreover, if A is normal we can bound c as
follows:

c ≤ 1 + 3∥A∥22
∞∑
i=0

ρ(A)2i.

This leads to the conclusion that our error bounds are only functions of σn+1,
the matrix A (its 2-norm and spectral radius) and the matrix C. This is simpler
in comparison with the continuous case [5] where one has to consider another
residual system and computes its H∞-norm. Moreover, the quality of the bound
will be only a function of the smallness of σn+1 as the term c∥C∥2 is constant
and not a function of the reduced order system. So in this case the bound is an
a priori bound.

Our formulas in Theorem 2 is (like Antoulas’s formula) computable. We use
the data already available from balanced truncation and solve a Stein equation
for a thin matrix which is much less expensive than evaluating directly the H2-
norm. The direct evaluation of the H2-norm, as for example by the function
normh2 of MATLAB’s Control System Toolbox, means that one has to compute
the error system, find a realization of this error system, then solve a Lyapunov
or a Stein equation for one Gramian in order to evaluate the H2-norm.

3.2. A special case: square system

For square systems (m = p) one can define the cross Gramian X of S as the
solution of the Stein equation

AXA−X +BC = 0. (15)

The H2 norm of the system S is given in this case by

∥S∥2H2
= trace(CXB).

In this case, the H2 norm of the error system Se (7) is

∥Se∥2H2
= trace

([
C C1

] [ X Y

Z −X̂

] [
B

−B1

])
, (16)

where Y and Z are solutions of the Stein equations

AY A11 − Y +BC1 = 0, A11ZA− Z −B1C = 0, (17)
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and X̂ is the cross Gramian of the n reduced system by balanced truncation Ŝ.
X̂ is also solution of a Stein equations given by

A11X̂A11 − X̂ +B1C1 = 0. (18)

Theorem 5. The H2 norm of the error system is given by

∥Se∥2H2
= trace(C2X22B2) + trace

(
C1(X̂ −X11)B1

)
+ trace

(
A12

[
X21 X22

]
AY

)
−trace

(
A21ZA

[
X12

X22

])
.

Proof. To show this result we need to expand the formula (16) as

∥Se∥2H2
= trace(C1X11B1 + C2X21B1 + C1Z1B1 + C1X12B2 + C2X22B2)

+trace
(
C1Z2B2 − C1Y1B1 − C2Y2B1 + C1X̂B1

)
.(19)

From the (1,2) and (2,1) blocks of (15) we have respectively

B2C1Z2 = (X21 −A21X11A11 −A22X21A11 −A21X12A21 −A22X22A21)Z2,

and

B1C2Y2 = (X12 −A11X11A12 −A12X21A12 −A11X12A22 −A12X22A22)Y2.

Then from the second blocks of the equations (17) we have

(A11X12A22 −X12)Y2 = −X12A21Y1A11 −X12B2C1,

and
(X21 −A22X21A11)Z2 = X21A11Z1A12 −X21B1C2.

Collecting all this in the formula (19) we get

∥Se∥2H2
= trace

(
C1X11B1 + C1Z1B1 + C2X22B2 − C1Y1B1 + C1X̂B1

)
−trace(A21X11A11Z2 −A21X12A21Z2 −A22X22A21Z2 +A11X11A12Y2)
+trace(A12X21A12Y2 +A12X22A22Y2 −X12A21Y1A11 +X21A11Z1A12).

(20)
From the (1,1) block of (15) we have

B1C1 = X11 −A11X11A11 −A12X21A11 −A11X12A21 −A12X22A21

Injecting this in (20) and using the first leading blocks of (17), i.e.,

Z1 −A11Z1A11 −A11Z2A21 = −B1C1,

and
−Y1 +A11Y1A11 +A12Y2A11 = −B1C1,

12



we get finally

∥Se∥2H2
= trace

(
−C1X11B1 + C2X22B2 + C1X̂B1 −A11X12A21Z1 −A12X22A21Z1

)
+trace(A12X21A11Y1 +A12X22A21Y1 −A21X12A21Z2 −A22X22A21Z2)
+trace(A12X21A12Y2 +A12X22A22Y2)

= trace
(
C1(X̂ −X11)B1 + C2X22B2 −A21Z1A11X12 −A21Z1A12X22

)
−trace(A21Z2A21X12 −A21Z2A22X22 +A12X21A11Y1 +A12X22A21Y1)
+trace(A12X21A12Y2 +A12X22A22Y2)

= trace

(
C1(X̂ −X11)B1 + C2X22B2 −A21

[
Z1 Z2

] [ A11 A12

A21 A22

] [
X12

X22

])
+trace

(
A12

[
X21 X22

] [ A11 A12

A21 A22

] [
Y1

Y2

])
,

which proves the result.

In this theorem, the first term is the H2-norm of the neglected subsystem of
the original system; the second term is the difference between the H2-norms of
the reduced order system and the dominant subsystem of the original system;
finally the third term is the difference of the inner product of the second block
row of the cross Gramian with Y and that of Z with the second block column
of the cross Gramian (each term weighted by the block off-diagonal terms of A
and A).

Notice that the difference X̂ −X11 satisfies the Stein equation

A11(X11 − X̂)A11 − (X11 − X̂) +A12X21A11 +A11X12A21 +A12X22A21 = 0,

if the cross Gramian is block diagonal, i.e., X12 = 0 and X21 = 0. The first
consequence of this assumption is that X11−X̂ as solution of the Stein equation

A11(X11 − X̂)A11 − (X11 − X̂) +A12X21A11 = 0,

is given by the formula

X11 − X̂ =
∞∑
i=0

Ai
11A12X22A21A

i
11.

As for the last term it becomes A12X22A2:Y − A21ZA:2X22. We obtain the
following corollary.

Corollary 6. If the cross Gramian is block diagonal, the H2 norm of the error
system is given by

∥Se∥2H2
= trace(C2X22B2)+trace

(
C1(X̂ −X11)B1

)
+trace(A12X22A2:Y −A21ZA:2X22).

Using the same analysis as the previous section (for Theorems 3 and 4) we
obtain the following results.
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Theorem 7. The H2 norm of the error system satisfies the following a poste-
riori bound

α∥C∥2∥B∥2σn+1 ≤ ∥Se∥2H2
:= ∥S − Sn∥2H2

≤ pcσn+1∥C∥2∥B∥2

where

c = 1 + 3∥A∥22
∞∑
i=0

∥Ai∥2∥(A11)
i∥2.

Theorem 8. The H2 norm of the error system satisfies the following a poste-
riori bound

α∥C∥2∥B∥2σn+1 ≤ ∥Se∥2H2
:= ∥S − Sn∥2H2

≤ pc1σn+1∥C∥2∥B∥2

where

c1 = 1 +
∥A∥22κ2(U)κ2(U1)

1− ρ(A11)2
+

2∥A∥22κ2
2(U1)

1− ρ(A)ρ(A11)
.

Here also our error bounds are only functions of the matrix A (its 2-norm and
spectral radius) and the matrices B and C. We will illustrate later all this
discussion in the numerical examples.

4. Generalization

The previous results obtained for balanced truncation can be generalized
to any other projection of dynamics method. First, let us suppose that a re-
duced model {Y TAX,Y TB,CX} is obtained from S by applying the projection
matrices X,Y ∈ RN×n (Y TX = In).

In order to exploit the ideas in the previous sections, we need to find a
similarity transformation in which X and Y are embedded. We consider the
matrices

Tl =
[
Y Y1

]
, Tr =

[
X X1

]
such that

1. Y TX1 = 0,

2. Y T
1 X = 0,

3. Y T
1 X1 = IN−n,

4. rank(Tl) = rank(Tr) = N ,

5. XY T +X1Y
T
1 = IN ,

6. Y T
1 GcY = 0, XT

1 GoX = 0.

The fifth first conditions insure that Tl and Tr are both similarities transfor-
mations with TT

l Tr = IN . Both matrices X1 and Y1 can be constructed as
the orthogonal complements to X and Y , respectively, verifying the fourth last
property above.
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If we apply now the similarity transformations to the system S, we obtain an
equivalent3 system S̄ = {Ā, B̄, C̄} = {TT

l ATr, T
T
l B,CTr}. The corresponding

Stein equations are also transformed to

ĀḠcĀ
T − Ḡc + B̄B̄T = 0, ĀT ḠoĀ− Ḡo + C̄T C̄ = 0,

where

Ḡc =

[
Ḡc1 0
0 Ḡc2

]
= TT

l GcTl, Ḡo =

[
Ḡo1 0
0 Ḡo2

]
= TT

r GoTr.

Note that we have also Gc = TrḠcT
T
r and Go = TlḠoT

T
l . Now we decompose the

matrices

Ā = TT
l ATr =

[
Ā11 Ā12

Ā21 Ā22

]
, B̄ = TT

l B =

[
B̄1

B̄2

]
, C̄ = CTr =

[
C̄1 C̄2

]
,

where Ā11 = Y TAX, B̄1 = Y TB and C̄ = CX. We obtain the following result.

Theorem 9. Let S = {A,B,C} be a stable system and S̄ = {Y TAX,Y TB,CX}
be any reduced system where X,Y ∈ RN×n (Y TX = In). The H2 norm of the
error system is given by

∥Se∥2H2
= trace

(
C(IN −XY T )Gc(IN −XY T )TCT

)
+ trace

(
CX(Ĝc − Y TGcY )XTCT

)
+2trace

(
Y TA(IN −XY T )Gc(IN −XY T )TATTlZ

)
where Gc and Ĝc are respectively the controllability Gramians of S and S̄, Z is
the solution of the Stein equation

ATZY TAX − Z + CTCX = 0,

and Tl =
[
Y Y1

]
, where Y1 is chosen such that

Y T
1 X = 0, rank(Tl) = N, Y T

1 GcY = 0.

The previous result can be also expressed similarly as a function of the
observability Gramian. The proof of this theorem is very similar to the proof of
Theorem 2. The only difference is that in Theorem 2 we have a unified diagonal
Gramian for the system S, and here we have two different Gramians. But the
transformed Gramians are block diagonal due to the conditions Y T

1 GcY = 0,
XT

1 GoX = 0.
In the theorem, the first and third terms are functions of IN−XY T . So their

values will be reasonably small if the projector XY T is selecting the dominant
part of the Gramian Gc. The third term is the inner product of the non-dominant
block of the Gramian with the Z (non square matrix) weighted by non-dominant
submatrix Y TA(IN −XY T ). Similarly to the discussions earlier in this paper,
we can conclude that the quality of the reduced model will be a function of the
smallness of the trailing blocks of A and the smallness of (IN −XY T )Gc(IN −
XY T )T , the largest neglected approximated Hankel singular value.

3Here, the equivalence is in the system sense: two systems are equivalents if their transfer
functions are equal.
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5. Numerical examples

In this section we illustrate the relevance of our formulas and bounds. The
results reported here are obtained using the Control System Toolbox (version
6.0) of MATLAB. This version uses the SLICOT libraries for the numerical
engine, resulting in faster and more accurate computations, especially for the
solvers for stable Stein and Lyapunov equations. We use three different dy-
namical systems: a building model, a CD player model, and an International
Space Station model. These benchmarks are described in more details in [9–11].
These models are continuous, so we discretize each system using a sampling
time equal to 1 (we use the MATLAB Control System Toolbox function c2d),
then we balance each system using balreal. In Table 1 we give the order of the
system (N), the number of inputs (m) and outputs (p), and the spectral radius,
2-norm and condition number of the matrix A of the discrete system.

Table 1: Summary of the benchmark models.

N m p ρ(A) ∥A∥2 κ(A)
building model 48 1 1 0.769 2.157 1.312.103

CD player model 120 2 2 0.975 0.995 1.782.1023

ISS 1R model 270 3 3 0.996 1.451 10.433

For each example, we compute the H2-norm of the error system Se using
different formulas. We construct both the original and the reduced systems
using the MATLAB Control System Toolbox function ss, then we construct
the error system Se and we compute its H2-norm using normh2. The MATLAB
procedure constructs the error system Se as a new object, then it extracts a
new realization for which a new Gramian (either controllability or observability
Gramians) is computed. Then it uses this Gramian to compute the H2-norm of
the system Se using the formula (5). This value is shown as a reference of the
quality for our results. But one should notice that this operation is much more
expensive than the other H2-norm computations considered here. Second, we
use the formula of Theorem 2 to compute the same norm. Third, we compute
both controllability and observability Gramians for the realization (7), and we
use the formula (5) to compute ∥Se∥H2 . Fourth, we compute the constants c
and c1 in Theorems 3 and 4, respectively, and hence evaluate the error bounds
of the theorems. Table 2 gives the minimum and the maximum values of c and
c1 as the reduced order n varies. The values of c and c1 are stagnant after
few iterations at cst and c1st, respectively. The table gives also the value of

1 +
3∥A∥22

1− ρ(A)2
= c2. It seems that the constants c and c1 are not dependent

on the reduced order for the three examples, even for the CD player example
for which the matrix A is not normal. This can be explained as follows. First,
note that both formulas for c and c1 are functions of A11, the submatrix of A.
As n is taken larger, this submatrix is closer to A. Second, as the system is
balanced, the matrix A has been transformed in such a way that the principal
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square submatrices A11 have the most significant part of A for the system at
each value of n. We conclude that a good numerical approximation of both
constants is given by

c ≈ c1 ≈ 1 +
3∥A∥22

1− ρ(A)2
.

Table 2:

building model CD player model ISS 1R model
min max min max min max

c 3.677334 55.184797 1.016176 7.755511 0.552425.102 6.395860.102

c1 2.016561 21.680204 1.016307 7.796813 0.526626.102 6.123425.102

cst 42.687381 7.755511 6.395860.102

c1st 21.680204 7.796813 6.123425.102

c2 35.265914 63.600353 1.017945.103

Figures 5.1 – 5.3 show the evolution of these values as a function of the
reduced order. One should expect that as the reduced order becomes closer
to the original order N , the H2-norm should decay. In the three examples, all
exact H2-norm formulas start by decaying before stagnating at a certain level.
And even if the reduced order is taken larger and larger, the H2-norms seem to
be not changing. This is due to the machine tolerance implemented in different
MATLAB functions used. Comparing the instant at which different formulas
for the H2-norm are stabilizing and the Hankel singular values of each model in
the Figure 5.4, we can deduce that different methods used consider that up to
a certain tolerance the states corresponding to the remaining Hankel singular
values are not adding anything to the system. This is relevant in the following
sense. When this tolerance is reached, say at n = n1, there will be no numerical
difference between a reduced system of order k ≥ n1 and any other reduced
system of order k1 ≥ n1 (k ̸= k1), even if in theory this is not true. This is
due to the sensitivity of the Stein equation [12]. The reference (the MATLAB
procedure) is more accurate than the other formulas of theH2-norm because the
computed Gramian for this procedure is more accurate and it is less sensitive
to round-off errors.

The bounds in Theorems 3 and 4 seem to be following the behavior of the
exact H2-norms and continue to decay. After a certain order, they are better
than the reference (the MATLAB procedure). For the ISS example, this does
not happen as quickly as for the two other examples, but we can see easily that
it does happen later on as the two bounds are decaying and the reference is
stagnating.

In Theorem 2, the matrix Z is a non-square matrix solution of a Stein
equation. As Z is not symmetric in some of our numerical tests, the trace of the
term involving Z shows an imaginary term, nevertheless neglectable. Moreover,

the term trace
(
C1(Ĝc − G1)C

T
1

)
even enough very small could have negative

17



sign. This is related to the still open problem of over-approximation and under-
approximation of the Gramians [5, 12].

6. Concluding remarks

We have presented computable error formulas and bounds for the response
approximation for the most used projection based method in model reduction
of linear time-invariant dynamical systems, balanced truncation and the general
case of projection of dynamics. The advantage of these results is that we are
using the already given results by balanced truncation and we do not need
any additional computation. This has the feature that it can be included into
the order reduction loop in order to improve the quality of the reduced order
model by choosing the optimal reduced order before ending the model reduction
algorithm. We also presented the special case of square systems. These systems
have the property that only one Gramian needs to be computed to evaluate the
H2-norm. We generalized the result obtained for balanced truncation to any
other projection of dynamics method. The bounds presented are less sensitive
to the round-off errors than the exact formulas.

Despite the obviously desirable features of the easily computable bound for
the H2-norm of the error system, many open questions remain. There are a
number of refinements with respect to performance, convergence, and accuracy
which require more theoretical and algorithmic analysis. There are two partic-
ularly interesting features. The first is how to modify the balanced truncation
projection matrices to achieve a better H2-norm and still be the best for the
H∞-norm. The second is how to choose the projection matrices from a projec-
tion of dynamics method in order to have H2-norm optimality.

Acknowledgements

This work was initiated and largely influenced by an informal seminar that
Prof. D.C. Sorensen gave during his sabbatical months spent at UCL in 2003.
Prof. Sorensen gave a course on Numerical linear algebra for systems and control
for the Graduate School in Systems and Control. I hoped that at least a fraction
of his insight and intuition have rubbed on me. His precision seemed nearly
infinite. Different conversations with him saved me a lot of time to focus on
the right directions. I am very thankful to him for that. I also gratefully
acknowledge the helpful remarks and suggestions of Nick Higham, Françoise
Tisseur which significantly improved the presentation of this paper.

References

[1] D. F. Enns, Model reduction with balanced realizations: An error bound
and frequency weighted generalization, Proc. of the IEEE Conference on
Decision and Control (1981) 127–132.

18



Legend for Figures 5.1 – 5.3:
∥Se∥H2

= normh2(Se), · · · ∥Se∥H2
by (11), • bound of Theorem 3,

· ∥Se∥2H2
= trace

(
CeGceC

T
e

)
from (5), ∥Se∥2H2

= trace
(
BT

e GoeBe

)
from (5).
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Figure 1: Building model
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