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Abstract

In the paper we study the qualitative dynamics of piecewise-smooth slow-fast sys-
tems (singularly perturbed systems). First we consider in detail a planar system
when the slow and the fast dynamics are one-dimensional. The slow manifold of the
reduced system is a piecewise continuous curve — differentiability is lost across the
switching surface. We show that in the full system the slow manifold is no longer
continuous across the switching surface. There is an O(¢e) discontinuity across the
switching manifold. However, this discontinuity cannot qualitatively affect system
dynamics. We show that system trajectories move across the switching surface and
evolve exponentially fast toward the slow manifold that lies on the other side of
the switching surface; small scale oscillations between the two parts of the slow
manifold are not possible. We then classify the system dynamics in the case when
there is an equilibrium on the switching surface. The results of our analysis are then
used to investigate the dynamics of a simple box model of a climate change. The
presence of a non-smooth equivalent of a fold bifurcation in the model is shown. Fi-
nally, the results on the topology of the slow manifolds across the switching surface
are generalized to n + 1-dimensional slow-fast systems (the slow dynamics being
n-dimensional).
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1 Introduction

Many systems of relevance to applications are modeled using piecewise-smooth
dynamical systems. Examples include systems modeled by a set of ordinary dif-
ferential equations that lose their smoothness properties across co-dimension
one manifolds in phase space. Applications include DC/DC power convert-
ers which are modeled using distinct sets of ordinary differential equations
between which a converter switches depending on whether the switching ele-
ment is in the on or off state [1]; friction oscillators [2—4], impacting systems
[5-7] are other examples of applications which are modeled by systems with
discontinuous nonlinearities.

Much research effort has recently been spent on understanding the qualitative
dynamics of these systems and a theory of phase space transitions triggered by
the presence of discontinuous nonlinearities has been developed [8-10]. These
phase space transitions are termed discontinuity induced bifurcations, DIBs
for short. At present there exists a fairly complete description of co-dimension
one DIBs of limit cycles and equilibrium points. However, one of the pressing
issues with regards to investigations of the dynamics of piecewise-smooth sys-
tems is the effect of stable singular perturbations. For sufficiently differentiable
vector fields the theory developed by Tikhonov [11] and Fenichel [12] makes
it possible to treat singular perturbation problems as regular perturbation
problems by proving the existence of a hyperbolic invariant manifold. This is
not the case when piecewise-smooth systems are treated. Due to the presence
of the discontinuity a slow manifold usually exhibits a discontinuity across a
surface (or hyper-surface) of phase space where the smoothness property of
vector fields governing system equations are lost [13]. In this case - systems
modeled by discontinuous vector fields (Filippov systems) - it was shown that
when the switching between vector fields does not depend on the fast variable
then a hyperbolic limit cycle that exists in the reduced system is also present
in the full system and its stability properties are preserved.

However, the presence of the discontinuity may carry significant implications
regarding system dynamics; Fenichel’s theory reduces singular perturbations
of smooth vector fields to regular ones by proving the existence of a hyper-
bolic smooth manifold which is approached exponentially fast by trajectories
and hence qualitative studies of system dynamics can be conducted by con-
sidering the dynamics on the manifold. However, if the modeling results in a
system that is piecewise-smooth then the slow manifold of the full system is
discontinuous and Fenichel’s theory cannot be applied. For instance, singu-
larly perturbed planar Filippov systems may produce micro-chaotic dynamics
[14]. This in turn carries practical implications: seemingly noisy output from
an experiment may result from the fast dynamics neglected in the modeling
procedure and be in fact of a deterministic nature. The knowledge of the ef-



fects of singular perturbations on system dynamics would then allow one to
establish the ‘size’ of this neglected dynamics and provide more insight into
the experiment. For these reasons it is necessary to complete the theory of
piecewise-smooth systems by considering the effects of singular perturbations.

In our work we focus on a class of piecewise-smooth systems which are con-
tinuous in the phase space region of interest but the vector field Jacobians are
discontinuous across a smooth manifold (switching manifold).

The paper is organized as follows. In Sec. 2 we introduce the planar slow-
fast piecewise-smooth systems studied here. The slow and fast dynamics are
one-dimensional. In Sec. 3 phase space topology, and in particular the topol-
ogy of the slow manifold, of the reduced and full system is investigated. The
difference between our approach and the work presented in [13] is that we
consider smooth vector fields with discontinuous Jacobians and the switch-
ing depends on both the slow and fast variables. In [13] Filippov systems are
investigated and the authors make additional assumption that the switching
does not depend on the fast variable. This assumption though convenient for
the analytical purposes may not be met in practice.

The discontinuity of the slow manifold in the full system is established and the
size of the discontinuity is linked with the differentiability properties of the
vector fields across the switching manifold. In Sec. 4 the qualitative dynamics
of the reduced and full system is investigated in the special case that an equi-
librium point exists on the switching surface. This is a natural co-dimension
one bifurcation point, but we show that nothing surprising can be induced by
the discontinuity. Then, in Sec. 5 a box model of a thermohaline circulation is
analyzed. The model is a planar piecewise-smooth slow-fast system obtained
by a novel scaling of an example due to [15].

We then use our results from previous sections to analyze the dynamics of
the model. In particular, the presence of a non-smooth equivalent of a fold
bifurcation is explained. In Sec. 6 we extend our investigations to n + 1
dimensional slow-fast piecewise-smooth systems where the slow dynamics is
n—dimensional. We show that the character of the discontinuity of the slow
manifold across the switching surface generalizes to higher dimensional sys-
tems. Finally in Sec. 7 we conclude the paper highlighting open problems and
indicating further directions for the theory of singularly perturbed piecewise-
smooth systems.

2 Switched slow-fast systems

Consider slow-fast systems of the form



. Jgi(z,y;e) if h(z,y) >0,
" No-@yse) if hizy) <0,

(2)

i = f—l—(x?y; 5) 1f h(l’,y) 207
f-(z,y; &) if h(z,y) <0,

where x € R, y € R, and € > 0 is a small parameter measuring the difference
in the time scale between the evolution of fast (z) and slow variables (y).
Assume that fi, g+ : R? x R — R are sufficiently differentiable functions of
x, y and ¢, well defined for all (x,y) in a region of interest. The zero-level set
of function h : R? +— R defines the switching surface, ¥, i.e.

Y= {(z, y) € R?: h(z, y) =0}

Note that A is independent of . We assume that f_ = f,, and g_ = g, for
(x,y) € ¥ but Vfy # Vf_ and Vg, # Vg_ on X, where ‘V’ denotes the
gradient differential operator. In what follows we will also use the notation
Vi = [fiw, fry] and Vg = [g1s, g1y|, where subscripts ‘2’ and ‘y’ denote
partial differentiation with respect to ‘z’ and ‘y’ variables.

Furthermore, define regions where the system dynamics is smooth and gov-
erned by the slow-fast systems (fy, g1) and (f_, g_) respectively, as

Gy = {(z,y) € R*: h(z, y) > 0},
G_ = {(z,y) € R*: h(x, y) < 0}.

We assume further that for ¢ = 0 the nonlinear equations fi(z, y; 0) = 0 can
be solved for x for all y giving 29 (y) respectively. We also assume the stability
condition

0> —c > Re D, f+(2%(y),y;0), Yy, (3)

where D, denotes differentiation with respect to x variable, and ¢ is a positive
constant. The first of these two assumptions is guaranteed provided that the
Implicit Function Theorem can be applied for all (z, y) to find 2% (y) in the
region of interest, and the second of these is the standard condition for the
application of Fenichel Theory [12].



3 Phase space topology
3.1 General description

Let us first consider phase space topology of (1) and (2) when € = 0. Relations
fe(z,y, 0) = 0 define smooth manifolds, say M, in G, and M_ in G_
respectively. Let (z(y*), y*) and (z(y%}), vy} ) be the points of intersection of
M_ and M with ¥, respectively. There exists only one point (z(y*), y*) € &
such that f9(z(y*), y*;0) = 0 and f°(x(y*), y*;0) = 0. Hence, (z(y*), y*) =
(x(yh),vy:) and My, M_ intersect on 3. We made an implicit assumption here
that M are transversal to ¥ at (z(y*), v*) = (x(y}),y%) Le. (VR VfL) #0
on X, which can be assumed without loss of generality ({ , ) denotes the dot
product). In this notation Vh is a vector normal to X and Vf9 is a vector

normal to {f2(x(y), y) = 0} respectively.

In this setting we define the reduced system that lives on M_ U M as

(4)

j— 19+ @5),y:0) i h(zy) 20,
9-(22(y), y; 0) if h(z,y) <O0.

Clearly, the reduced system (4) evolves on a piecewise continuous slow mani-
fold M = M, UM _. Consider now how the structure of phase space changes
for ¢ > 0.

In each of the regions G, and G'_ there exist invariant manifolds, say M€ and
M respectively, consisting of all trajectories (in our case it is one trajectory)
without rapidly decaying fast parts. By the continuity argument these mani-
folds are O(g) perturbations of M and M_. It is important to determine if
these manifolds create a continuous manifold, say M*® = M5 U M2 defined
in the whole phase space of interest.

We assume that the slow manifold M% can be expressed as a power series in
g, i.e.
74(y) = ao(y) + e (y) + O(e?) (5)

and its coefficients are such that (5) solves (2) for e > 0; obviously oy (y), a1(y), -

are coefficients (functions of the slow variable y) to be determined. Differenti-
ating =, (y), term by term, with respect to t gives

4+ (y) = ag(y)y +eai(y)y + O(e?), (6)
where the ‘7’ symbol denotes differentiation with respect to y.

The slow manifold M can then be given by an equivalent functional expres-



sion

v-(y) = Boly) +bily) + O(e?). (7)

Differentiating x_(y) term by term gives
i-(y) = Bo(y)y + Bi(y)y + O(e?), (8)
where again Gy(y), B1(y), - - , are coefficients (functions of the slow variable

y) to be determined. Let us express fi(z, y; €) and g (x, y; €) as power series
in €. We then have

falw, yi ) = f(x,y) + e f2) (2, y) + O(2), (9)
and
e, yi €) = 99 (w,y) + egl (z,y) + O(e?), (10)

where fio)(x,y) = fi(z,y; 0). We can now use (1), (2), and (5)-(9) to deter-
mine «q, oy, By, and F;.

Consider first O(1) terms of (2) when the left-hand side of (2) is 0, that is
when ¢ = 0. Substituting into the right-hand side of (2), equation (9), we have
that the O(1) term can be defined through

P (2,y) = 0. (11)

Under our initial assumption that the Implicit Function Theorem (IFT) can
be applied for all (z, y) in the region of interest to find z%(y), we can find
ao(y), and By(y). Note that ag(y) = 2% (y) and So(y) = 2% (y). In other words
the leading order terms that give functional expressions for the slow manifolds

< of the full system reduce to those that determine the slow manifolds M,
of the reduced system (4).

Note in particular that as (11) holds for all y in h(x, y) <0 and h(z, y) > 0,

i(J““io)(Oéo(y),y)) = 0. Hence 1% (a0, y)ah(y) + ) (a0, y) =0,

dy
which gives
: £y
ap(y) = =5 (12)
f—l—x
and is well defined provided that fJ(rox) # 0, and similarly
: 15
Biy) = —=& (13)
[z
and is well defined provided that fﬁox) # 0. It then follows that



We now compute terms of O(e). Collecting terms of O(e) from (2) we have
that

ah(®)9 (00, y) = 01(y) £ 00,9) + 11 (00, 9). (15)
Substituting (12) for aqg into (15), we can rewrite (15) to get

a(y) = —gr= (£ + £V £2) (16)
[.f—i—x]

with the quantities on the right-hand side of (16) evaluated at (ayg, y). Similarly
we find that (;(y) is given by

m@:%ﬁ@w+wwy (17)

We now wish to determine if z(y) and x_(y) are continuous on X.

Suppose that (z_(y™), y™) and (x4 (y%*), y}*) are the points of intersection
of M2 and MZ with X respectively, and that ¥ is defined by the equation
h(z,y) = 0, with no ¢ dependence (although such dependence could easily
be treated). Recall that M° and MY intersect ¥ at the same point, with
y—coordinate y*. Thus we are looking to find the order € terms for the inter-
section points, and we can expand

v =yt eyl + 0. (18)
and seek to find y7; and the corresponding correction to the x—coordinates.

By definition

ao(y) + aa(y')e + O(e?)
ao(y* +eyiy) + an(y e + O(?) (19)
ao(y?) + (ah(y )y + aa(y")) € + O(?)

and so h(z4(y"), (y")) = 0 becomes (retaining only terms up to order ¢)

W, y*) + (oo )y + en(y") + byl ) e =0, (20)

where starred functions are evaluated at (ag(y*), y*). The first term is zero by
the definition of y*, and so setting the € term to zero gives

hyaa (y)

-t 7 7 21
T ) + )

* —_
Y=



provided h,af(y*) + hy # 0, or, using (12),

* 0)* * 0)x* *
yo— Wi ) o)
A N

(22)

with «; given by (16). Now, if the boundary ¥ is written in the form x =
b(y) then h(b(y),y) = 0 implies that O'(y) = —h,/h, by the same argument
which showed (12). But since f is continuous across ¥ then f{”(b(y),y) —
fﬁo)(b(y),y) = 0 and so the same argument implies that b'(y) = —(fJ(FOy) —

fﬁoy) )/(f2 — £9) on the boundary, and so putting these two equations for
b'(y) together we obtain

hy _ (f5 = 15)
TR .

z R A
on the boundary ¥. This allows us to replace the ratio h,/h, in the lowest
order expansion by the right hand side of (23) evaluated at y*, which after a

little tidying up using (16) gives

0 0 0) (0 1) (0
g, = = P + O L) (24)
_l’_ .
(01 - 15

A precisely analogous argument yields

( J(FO) _ f(O))(g(O)f(O) + f(l)f(O))

* x —X —_ -y — —x

Y1 = 0), 7(0) £(0 0) (0 : (25)

PRS- SR

Thus y}, # y*, in general, so M* is discontinuous across ¥ and the size of the
discontinuity is O(e). The discontinuity is triggered by the non-differentiability
of the slow manifold of the reduced system. Note that 2 (y") can be calculated
from (24) and (19), with an analogous result for z_(y™).

3.2 Equilibrium of the reduced system on ¥

In Sec. 4.2 we consider the case when the reduced system exhibits an equilib-
rium, which we denote as (ao(y*), y*), on the switching manifold, i.e.

9 (aoly™), y") = 0. (26)

In this case we need to check whether the general conclusions of the previous
section still hold. Note that (24) and (25) hold when ¢{” = 0, so

GRS
0 0 0 0
(PP = 191D

yil = (27)



with the functions on the right hand side evaluated at (z(y*), y*). But since
fﬁl) + fJ(rl) in general (the order e equation for the continuity of f across the

boundary ¥ contains terms from fio)) so the discontinuity of M5 UMS on X
remains of order €.

3.8 A local co-ordinate system

In Sec. 4.1 we consider the dynamics close to the switching surface and near
the slow manifolds. To make the analysis as simple as possible it is natural to
introduce a co-ordinate set in which the switching surface is given by {z = 0}
in terms of a new x variable. If (z*, y*) is the intersection of the slow manifolds
for ¢ = 0 with the switching surface > then we assume that the equation

X = h(x,y) (28)

can be inverted near (z*,y*) giving + = H(X,y). This is possible provided
hi(x,y) # 0 in a neighbourhood of (z*,y*). Using (1) and (2) we find

eX = hyfi + chygs (29)

with the right hand side evaluated at (H(X,y),y), and where the switching
surface is now the set {X = 0}.

Defining Y = y—y* we obtain a new set of equations for which the intersection
of the slow manifolds when e = 0is at (X,Y’) = (0,0) and the switching surface
has X = 0.

Without writing the new system in full detail we note that in these new
coordinates the size of the discontinuity is again O(e) for typical systems.

3.4 Special case

The box model for the climate change that we study in Sec. 5 is a special
case of the planar slow-fast systems studied here; the function f(z, y; 0) is
at least C! differentiable V(x, y) which implies that the slow manifold of the
reduced system is a smooth curve across . Thus, we will consider how the
smoothness of the slow manifold affects system dynamics. Let us assume that
the fast dynamics is given by

ef (e y) + 2 f (0,9) + OE) i hr,y) 20,

/() + 2P0 y) + OE) it hiy) <0,

et = fO(z,y) + {



where fJ(rl) = fﬁl) for (x,y) on ¥ but VfJ(rl) #+ fol) (by the assumption on the
continuity of the vector fields across the switching manifold the coefficients at
all orders of ¢ are equal on ¥). In this setting, when we consider the reduced
system, we note that the equation f(©(z,y) = 0 defines the slow manifold of
the reduced system M = M (UM _, and M is a smooth curve across > by
the fact that £ (x, ) is differentiable. Obviously under our initial assumption
that the IFT can be applied for all (x, y) in the region of interest to find % (y),

we find that ag(y) = 29.(y) = Go(y) = 22 (y).

It might now appear from (24) and (25) that y*, = y_., but a closer look at

the derivation of (23) reveals that this relation uses V fJ(ro) # V9 This does
not hold here, and so the correct leading order relation is

hy (5 — )
he (0 £0) 3y

which can be substituted into (22) to find a new expression for y%,, with an
analogous argument giving a revised expression for y*,. In general there is no
reason for these to be equal and hence in general we expect the splitting of
the manifolds to be first order in ¢.

Indeed, this argument shows that that even if the splitting in f is O(e?),
N > 2, then provided the splitting in g remains O(¢), the slow manifolds are
separated by O(g) on X.

4 Qualitative dynamics

In this section we will consider the dynamics of slow-fast system (1) and (2)
at the point of intersection of the slow manifold M of the reduced system
with the switching surface. Away from this point Fenichel’s theory holds and
standard results can be applied to study system dynamics. Let us assume
that the switching surface is given by ¥ := {h(z,y) = z = 0}, and the slow
manifold M of the reduced system crosses ¥ at the origin as described in
Section 3.3.

4.1 Case I: No-equilibrium of the reduced system on the switching surface

We will begin by expanding fi+ about the origin and use this to unfold the
dynamics of the full slow-fast system around the origin. Thus, the slow system
which we shall study is left unchanged except for the switching surface, i.e.

10



we have

; if x>0
y _ g+(.f1}',y,€) 1 xr =Y, (32)
g-(v,y;e) if z <0,
and the fast system becomes
i —Cix+ By +¢eD + O(||z,y,¢||?) if >0, (33)
xr =
—C_z+ By +eD+ O(||z,y,¢||*) if z <0,

where C'y > 0 and C_ > 0 and we can choose B to be positive or negative in
the subsequent qualitative analysis. Without loss of generality we choose to
consider positive B (negative B implies change of the direction of the flow on
the slow manifold of the reduced system but the subsequent analysis can be
conducted in like manner).

The form of the fast subsystem is the result of the continuity across ¥ and the
sign of C'y and C_ being positive is determined by the fact that we consider
stable singular perturbations (see Eq. 3), that is, all trajectories away from the
slow manifold approach it exponentially fast. Thus setting ¢ = 0 in (33) gives
the slow manifold of the reduced system as the union of M := {z; = BCT'y}
and M_ := {x, = BC~'y}. Note that both M, and M_ exist in the whole
phase space G, U X U G_ but we are only considering these parts which
pertain to their domains of definition. Clearly M locally around the origin is
a piecewise linear manifold. Let us assume that at the origin ¢(0) > 0. Then
on the slow manifold M, #(0_) = BC='y(0) > 0 and %(0+) = BC'y(0) > 0.
Thus in the reduced system, locally around the origin the trajectory crossing
exhibits a corner along its evolution and moves on M towards increasing values
of z and y. Note that considering negative B in (33) implies the evolution to
the left across ¥ along the decreasing values of x.

Let us now consider the dynamics of the full system locally around the origin.
Assume C, > C_ > 0. Then B/C_ > B/C, > 0. Functions ¢+(0,0,¢) =
a > 0 for e sufficiently small. Let us determine approximate expressions that
define slow manifolds M9 and M2 about the origin. We use the power series
expansions as explained in the former section. Thus, M? are approximately
defined by the relations x, (y) = ap + caq and x_(y) = [y + €01 respectively,
where ag, aq, (y, 1 are coefficients to be determined. The coefficients «q
and 3y are obviously the functional expressions for the slow manifolds of the
reduced system, and are given by ay = BC7'y and §y = BC~'y respectively.

We use (16) and (17) to find «; and 3 respectively. We have fJ(rox) = —Cy,
fJ(rOy) = B, fJ(rl) = Eozg = —C_, fﬁoy) =B, fﬁl) = D and gf) = a. We then

D
obtain oy = —(BC%a — DCY)e and 3y = —(BC=?a — DC="')e. Thus, the

11



approximate expressions for the slow manifolds can be given by

z,(y) = BC 'y—BC*ac+DC'e, and z_(y) = BC~'y—BC~*ac+DC"'c.

(34)
The slow manifold M? crosses ¥ at (Ci'a+ B~'D)e, and the slow manifold
M crosses ¥ at (CZ'a + B~'D)e. Note that C~tae > C7'ae > 0. Thus
M, crosses the switching surface below M _ and the direction of the flow at
the intersection points of My with ¥ are #(y;) = BC7'a > 0 and @(y_) =
BC~'a > 0 respectively.

4.2 Case II: Equilibrium of the reduced system on the switching surface

Consider now the situation when ¢+ (0,0, 0) = 0, that is, the reduced system
exhibits an equilibrium at the origin. We want to determine what is the dy-
namics of the slow fast system (32) and (33) around the origin in this case.
Expanding (32) in z, y and ¢ to leading order yields
. ez +by+de+ O(||x,y,€|]?) x>0, (35)
c_x+by+de+ O(||x,y,¢||?) if 2 <0.

In the current case the dynamics of the reduced system (33) and (35) about
the origin is characterized by four qualitatively distinct phase portraits. The
slow manifolds of the reduced system are given by the same functional ex-
pressions as in the previous case, namely x; = BCi'y. Thus the dynam-
ics of the reduced system about the origin will depend on the signs of iz,
and g, for x and y about the origin. About the origin on the slow manifolds
&= BCy' (c+ BCL'+b)y and § = (c+ BOL' +b)y. Clearly the aforementioned
four cases depend on the signs of (c. BCT! + b).

o Case I, c; BCT' +b >0 and c.BC=" + b > 0. The origin is a repeller and
for x > 0 the trajectory moves to the right, and for x < 0 the trajectory
evolves to the left, away from the origin (See Fig. 1 (a)).

e Case II, ¢, BC;' +b > 0 and c.BC=! + b < 0. The origin is a saddle and
for x > 0 the trajectory moves away from the origin, and for z < 0 the
trajectory evolves toward the origin (See Fig. 1 (b)).

e Caselll, c; BC7'+b < 0 and c- BC=*+b < 0. The origin is an attractor and
for x > 0 the trajectory moves to the left toward the origin and similarly for
x < 0 the trajectory also evolves toward the origin but along the increasing
x (See Fig. 1 (¢)).

e Case IV, ¢, BC;' +b < 0 and ¢.BC=' + b > 0. The origin is a saddle
and for x > 0 the trajectory moves toward the origin, and for x < 0 the
trajectory evolves away from the origin (See Fig. 1 (d)).

12



Fig. 1. Phase portraits of the reduced system (33) and (35) about the origin for
e = 0; (a) Case I with the origin being a repeller of the reduced system, (b) Case
IT with the origin a saddle node of the reduced system, (c) Case III with the origin
an attractor of the reduced system, and (d) Case IV with the origin a saddle node
of the reduced system.

We will now investigate the qualitative dynamics of (33) and (35) about the
origin pertaining to the above four cases for ¢ > 0. To this aim we first
determine where lie the equilibrium points of (33) and (35).

To leading order we find

) = (i i
+7y+ - C+C_|TIB+b’ C+C-|TIB+b )
o —C~'Bde —de
(,’L’_, y_) - <C_C:IB—|—()7 C_C:IB_'_b) : (36)

The equilibrium (27, ¥} ) is an admissible equilibrium of our system if it exists
for x > 0 otherwise it is a virtual equilibrium. Similarly (z*, y*) is an admis-
sible equilibrium of our system if it exists for x < 0 otherwise it is a virtual
equilibrium.

In principle there is a possibility that switching € to a positive value gives rise

to three distinct qualitative dynamics for each of the four cases enumerated
in the previous section. Namely, we would expect to observe:

13



Fig. 2. Phase portraits of the slow fast system (33) and (35) about the origin for
¢ > 0 in the case when there exist (a) an admissible fixed point of f_ and g_ (black
dot), and a virtual fixed point of f;, g+ (small circle), and (b) an admissible fixed
point of fi and g4 (black dot), and a virtual fixed point of f_, g_ (small circle)

e birth of two admissible equilibrium points;
e birth of two virtual equilibrium points;
e birth of an admissible and a virtual equilibrium.

Thus it would appear that twelve distinct scenarios are possible.

However, the number of existing scenarios will be less then that and it is
limited by the fact that at the points of intersection of M9 and M with
> the vector fields have the same sign. In other words we will not encounter
small amplitude oscillations between M9 and M? in the neighborhood of
the origin, and the flow will either cross the switching manifold and diverge
from the origin or it will reach an equilibrium point existing in the O(e)
neighborhood of the origin.

To show this let us calculate the (&, y) on the slow manifolds about the origin
for vector fields (fy, g4), and (f_, g_) respectively. If it can be shown that
2 and y can take the opposite signs on the slow manifolds in some small
neighborhood of the origin then there is a possibility of oscillations across .
About the origin 9+ = ed and &+ = BCI'ed. Therefore, both . and i are
characterized by the same sign on X and hence small scale oscillations across
) cannot occur.

4.2.1 Phase portraits for Case I (c;BCT'+b>0 and c.BCZ' —b>0)

In the current case there are two scenarios possible: (i) for d > 0 there exist
an admissible fixed point of f_, g_ and a virtual fixed point of f,, g, (see
Fig. 2(a)) or (ii) for d < 0 there exist an admissible fixed point of f; and g,
and a virtual fixed point of f_, g_ (see Fig. 2(b)). Note that this follows from
(36) under our assumption that B > 0. In the former of these two cases the
flow moves to the right across ¥ and in the latter to the left across X.
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Fig. 3. Phase portraits of the slow fast system (33) and (35) about the origin for
€ > 0 in the case when there exist (a) no admissible fixed points of f_, g_ and
f+, g+, and (b) there exist an admissible fixed point of fi, g+ and of f_, g_ (an
attracting fixed point on the left and a saddle point on the right)

4.2.2  Phase portraits for Case II (cyBC7' +b >0 and c_.BC~' +b<0)

In the current case there are two scenarios possible: (i) the existence of two
virtual fixed points of f_, g_ and of f,, g, for d > 0 (see Fig. 3(a)) or (ii)
there exist two admissible fixed points, one of f,, g, and the other of f_, g_
for d < 0 (see Fig. 3(b)). In the former of these two cases the flow moves to
the right across ¥ and in the latter there exist an attracting fixed point on
M and a saddle point on M- .

4.2.3  Phase portraits for Case III (c; BCT'+b <0 and c_.BC='+b<0)

In the current case there are two scenarios possible: (i) the existence of an
admissible fixed point of f_, g_ and of a virtual fixed point of f,, g, for
d < 0 (see Fig. 4(a)) or (ii) there exist an admissible fixed points of f,, g.
and a virtual fixed point of f_, g_ for d > 0 (see Fig. 4(b)). In either case the
admissible fixed point is a local attractor. In the former of these two cases the
flow moves to the left and in the latter to the right across X.

4.2.4  Phase portraits for Case IV (¢ BCT'+b <0 and ccBCZ'+b>0)

This case is equivalent to case II. Namely, for d > 0 there exist an attracting
fixed point on the right and a saddle point on the left of the switching manifold
and the flow, for points sufficiently close to the switching surface, moves to
the right across >; or for d < 0 there are only virtual fixed points in the
neighborhood of the origin and the flow moves to the left across X
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Fig. 4. Phase portraits of the slow fast system (33) and (35) about the origin for
€ > 0 in the case when there exist (a) an admissible fixed points of f_, g_ and
a virtual fixed point of fi, g+, and (b) an admissible fixed point of fi, g4 and a
virtual fixed point of f_, g_

(a) Y (b) y

Fig. 5. Phase portraits of the slow fast system (33) and (35) about the origin for
€ > 0 in the case when there exist (a) an admissible fixed points of f_, g_ and f,,
g+ (an attracting fixed point on the right and a saddle point on the left), and (b)
only virtual fixed points of fi, g4+ and of f_, g_

5 Example: Box model of thermohaline circulation

In the following section we will apply our results to analyse a mathematical
model of thermohaline circulation. The thermohaline circulation (or ‘conveyor
belt’) in the ocean is a current which transports warm water near the surface
from equatorial to polar regions, and cold water at deeper levels back from the
polar regions to the equator. It is driven by heat (the warmer water cools and
then due to greater density sinks as it reaches the poles) and salt (surface water
becomes more salty at the equator as water is removed by evaporation due to
the greater heat) which makes it heavier and allows less salty water to rise).
Thermohaline circulation is a major source of heat transfer, and it has been
disrupted in the past, leading to major climate change, and it may be that the
effects of current climate change could change the circulation pattern again.
Investigation of this has led back to the ‘box’ models of circulation developed
by Stommel [16]. In these models the polar region is described by one well-

16



9
&
-

Fig. 6. Schematic diagram of the box model. Variables with subscripts e are in the
low latitude (equatorial) region and variables with subscripts p are in the higher
latitude (polar) region (after Dijkstra [15]).

mixed box with temperature 7, and salinity S, whilst the equatorial region is
represented by another well-mixed box with temperature T, and salinity S, as
shown in Figure 6. These boxes are connected near the surface and at depth by
tubes which allow a flux ¢ to flow between the boxes which depends upon the
temperature and salinity differences between the boxes. Stommel [16] made
the ansatz that the flux is dominated by the density difference between the

regions,
Pp — Pe
q=" <7p ) :
Po

where p, and p, are the polar and equatorial densities of the water, given in
terms of reference temperatures, salinity and density Tj, Sy and py by

P = po(l — OzT(T — T()) + CYS(S — S()))
Thus

q=" (aT(Te - Tp) - aS(Se - Sp)) . (37)

Following Stommel and Dijkstra [15], assume that heat is added to the po-
lar (resp. equatorial) box at a rate T (resp. T¢) from the atmosphere, with
T¢ — Ty >0, and that salinity is increased at the equator (evaporation) and
decreased at the pole (precipitation) at rates S¢ and Sy with S¢ — S > 0.
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Then the model is defined by four differential equations:

VodT, = CI(T¢ = T.) + |q|(T, — T¢),
Voal. = Cy (T, = T,) + |a|(T. — T,), (38)
V.3, = C5(57 - S,) + |4/(S, — S.),
VoarSe = C(Sy — Sp) + lql(Se — Sp).-

It is standard to assume that the relaxation rates for the temperature are equal
and constant, so C!'/V, = CI'/V, = Ry and similarly for salinity C7/V, =
C'ps /V, = Rg. With this simplifying assumption the equations can be combined
to obtain two differential equations for the temperature difference AT =T, —
T,, and the salinity difference AS =S, — 5, as

JAT = Ry([T2 — T7) — AT) — 2|QIAT

, (39)
AAS = Ry([S¢ — 58] — AS) — 2/Q|AS

where
Q = ’)/(OéTAT — OésAS). (40)
Now define AT* =T —T% and AS* = 5S¢ — 57, and rescale the equations by

setting AT AS
Qg

AT Y 7 ap AT
(this is a slightly different scaling than that used in [15], and will make it
possible to use singular perturbation theory a little later; the same idea is
used by Berglund and Gentz [17] on a slightly different model) giving

T = Rgt (41)

Tr =

g =1 (1 —2) — Alx — yla, (1)

Ly =p— (14 Az —y|)y,

where

agAS? = 2var AT
OzTATa’ N Ry '
To understand the behaviour of this system make one further (reasonable)
assumption:

(43)

Rg <« Ry (44)

so that € = Rg/ Ry is a small parameter. Then (42) can be rewritten as

ex = (1 —x) —eAlr —ylx

y=p— 1+ Az —y|y

(45)

where the dot denotes differentiation with respect to 7.
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Equation (45) is almost in the form analyzed in previous sections, but to be
able to apply the results of Sec. 4 we will make a further transformation to
bring the switching surface to the coordinate axis: set

u=x—y, v=1—y

soy=1—vand x =1— v+ u. In terms of these variables (45) becomes

eu=v—u-+e(l—pu—v—Alulu),
(1—p=v = Aufu) "
V=1—p—v+ Alul(l—v).

This is now precisely the form considered in Sec. 4.1 with C. =1, B =1 and
D = 1. We find that the slow manifolds up to and including terms of order
O(g3) are given by

uy(v) =v —cAv+ 2(A(1 — p) + Av + 24%) + O(e?), (47)

u_(v) = v+ eAv+ 2(—A(1 — p) + Av + 24%0) + O(?). (48)

Note that, in the current case the size of the discontinuity across the switching
surface is not of O(g) but is of O(¢?) (provided that p # 1). We note that h,
in (22) is naught. Moreover, o = 3 since fL =1—pu—wv at (u*, v*) = (0 0)
and thus the discontinuity across ¥ is of O(g?).

If, on the other hand p = 1, then our system exhibits an equilibrium point on
the switching surface and the discontinuity is of O(e?).

Using equation (34) we can compute ug(v) to leading order by noting that
a=g(0,0, ) =9(0,0, ) = 1 — p. Thus we obtain us(v) = v—e(l—p)+e(l—
w) = v, which to leading order agrees with (47) and (48). Finally, we compute
the direction of the flow at the two intersection points of the slow manifold
with the switching surface. These points are given by functional expressions
(48) and (47), Thus we have to compute 4 (v;) and o', where v* denotes the
value of the v component for each of these two points. We note that v’ are
an O(e?) away from the origin. In our case, to leading order, we find @}, = v’
and ), = 1 — p. If 1 — p is positive then the flow across the switching surface
is to the right and upwards along the increasing values of u. Otherwise it is
to the left and downwards along the decreasing values of u.

We have to consider now the final scenario which occurs when @ —1 = 0. This
is the case presented in Sec. 4.2. For p — 1 = 0 the reduced system (46), as
well as the full system with non-zero ¢, exhibit an equilibrium on the switching
surface. Depending on the value of A this equilibrium can be either:

o for A€ (—1, 1) a stable fixed point;
o for A€ (—oo, —1)U (1, oo) a saddle point.
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Since the position of the equilibrium is independent of € when o = 1 then there
is no change in qualitative dynamics when the full system is considered. The
slow manifolds M?._ join the switching surface at the origin, at the equilibrium
point.

However, we may consider small size perturbations of © — 1 about = 1 to
determine the phase portraits of the slow-fast system (46). In this setting we
can use the analysis from Sec. 4.2 with de = 1 — u in equation (35). Then in
the nomenclature of Sec. 4.2 we have to check the conditions on the signs of
¢ BCI'+band c.BCZ'+b. We have that ¢, = A, c. = —A,b=—-1,Cy =1
and B = 1. Therefore our conditions simplify to determining the signs of A—1
and —A — 1. Clearly, depending on A, different scenarios, as enumerated in
Sec. 4.2 may take place:

(1) if -1 <A< 1,then A—1 < 0and —A—1 < 0, and we have two possible
scenarios as depicted in Fig. 4. If 1 — > 0 then the system crosses the
switching surface along the increasing values of u and tends towards the
attractor on u, (v) which corresponds to the case presented in Fig. 4(b).
On the other hand, if 1 — p < 0, then the system crosses the switching
surface along the decreasing values of u and tends towards the attractor
on u_(v), which corresponds to the case presented in Fig. 4(a);

(2) if —oo < A< —1,then A—1<0and —A —1 > 0, and we have two
possible scenarios as depicted in Fig. 5. If 1 — 1 > 0 then there exists
and attracting fixed point on u, and an unstable fixed point on u_, see
Fig. 5(a). On the other hand, if 1—u < 0, then there no equilibrium points
in some small neighborhood of the origin and the flow moves across the
switching surface, see Fig. 5(b);

3)ifl<A<oo,A—1>0and —A —1 < 0, and we have two possible
scenarios as depicted in Fig. 3. If 1 — u > 0 there are no fixed points in
some small neighborhood of the origin, see Fig. 3(a), and if 1 — p < 0
then there exists and attracting fixed point on u_ and an unstable fixed
point on u,, see Fig. 3(b).

The scenarios occurring under the variation of y through 1 for A € (—o0, 1)U
(1, o0) correspond to the non-smooth equivalent of a saddle-node bifurcation.

Having established the dynamics of the system across the switching manifolds
for different values of ;4 and A we can complete the investigations of our system
by considering other invariant sets existing away from the switching manifold.
Since the remaining analysis is standard and we wish to restrict ourselves to
parameter values coming from our modeling we return to (45) to complete
the analysis. In what follows we consider positive A only; these values of A
are feasible physically - see (43). We first look at the existence of fixed points
on the slow manifold x = 1 (this is an approximate expression for the slow
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Fig. 7. Sketch of the graphs of the right hand side of (49) for (a) A < 1; and (b)
A> 1

manifold up to order O(e)) of (45). That is we will analyze
14+ Ay — Ay? for y <1,
p={r A=Ay (19)
(1—-Ay+ Ay* for y> 1.

If 0 < A < 1 then the right hand side of (45) is a monotonic increasing
function with a discontinuity in the derivative at y = 1 (see Fig. 7 a)), so for
each value of u there is a corresponding fixed point which is stable.

The case A > 1 is more interesting. In this case the turning point of the
quadratic defined in y < 1is y = (1 + A)/2A, where the function takes its
maximum value p = (1 + A)?/4A. Since this turning point now lies in y < 1,
the graph of (49) has a turning point in y < 1 and the decreasing branch
attaches to the increasing branch of the parabola in y > 1 at y = 1, at which
the right hand side of (49) takes the value of unity. Thus there are three cases
(imagine moving a horizontal line of constant p up or down in Figure 7 b)):

e if ;1 < 1 the system has one stable solution in y < 1;

o if 1 < pu < (14 A)?/4A there are three solutions: two of these are stable,
one in y < 1 and the other in y > 1;

e if ;1 > 1 then there is a single solution with y > 1.

The bifurcation at g = 1 is a non-smooth version of the saddle-node bifurca-
tion, creating a pair of stable and unstable solutions and it has been discussed
in detail in the (u, v) co-ordinates (see cases 2 and 3 on the previous page);
the bifurcation at u = (1 + A)?/4A is a standard saddle-node bifurcation.
The stability diagram is usually described as in Figure 8, which is essentially
Figure 7(b) turned on its side, and shows the evolution of the fixed points as
a function of p. Current estimations show that the ocean parameters are such
that we lie on the upper branch of the stable solutions in Figure 8. This sug-
gests two sources for concern: if the parameters are in the (middle) bistable
region, then a perturbation of initial conditions, i.e. some extraneous effect
not described by the box model, could push us onto the weaker lower stable
solution; or the parameter ;. may be changing in such a way that it approaches
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Fig. 8. Fixed points of system (45) on the slow manifold z = 1 approximated to O(¢)
for A > 1. Note the existence of three equilibrium states for 1 > u > (1 + A)/24
which is the region of bi-stability. The dashed line denotes the unstable and the
solid line the stable equilibrium points, and the dash-dotted lines denote the points
where the saddle-node bifurcations occur.

= (1+ A)?/4A at which point the system moves dramatically to the stable
lower solution.

Note that the interpretation of solutions relies on the direction of the flow ¢
in (37), and in terms of the variables = and y defined in (41) this becomes
proportional to x — ¥, i.e. to 1 — y on the slow manifold. The concern for the
implications of climate change is that if A > 1 and 1 < pu < (1 + A)?/(44),
a stable solution with ¢ > 0 can coexist with a stable solution with ¢ < 0,
indicating the possibility of flow reversal.

6 Higher-dimensional slow-fast systems

We wish to conclude the paper with a discussion on the topology of the slow
manifold in the case when the dimension of the slow subsystem is n. We will
then use a 3-dimensional piecewise-smooth system with the slow dynamics
being two dimensional to illustrate the implications of phase space topology
on the existence and stability of an isolated hyperbolic limit cycle present in
the reduced system.

6.1 Phase space topology

Consider system (1) and (2) assuming that y € R™. The description of phase
space is equivalent to the one presented in Sec. 2 but the topology is embedded
in R"*! dimensional phase space (differentiability of f4 and g. is assumed).
In what follows we will use the notation as introduced in Sec. 3. Thus M4
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denote the slow manifolds of the reduced system in G, and G_ respectively.
Similarly M¢ denote the slow manifolds of the full system in G, and G_
respectively. Manifolds M. are defined using relations fy(z, y; 0) = 0 in R**!
dimensional phase space. In the region of interest equations fi(x, y; 0) = 0
and f_(z,y; 0) = 0 can be solved for x as a function of y giving = = ay(y)
and x = [y(y) respectively. Since f.(z,y; 0) = f_(z, y; 0) on the switching
surface these manifolds are continuous but non-differentiable on ¥ and ay(y) =
Bo(y) on X. In other words, the vectors normal to M4 on ¥, are such that

Vf+($, y; O) 7A Vf_(l’, Y 0) on .

Let fo = fr=f=fO+efW+0(?) and g =gy =g =g +egM+0O(e?)
for (z, y) € ¥ where g : R"™! = R™ and f: R""! — R.

Let us linearize (2) (for y € R™) about some point (ap(yo), yo) € ¥ and
compute the functional expressions for the slow manifold in the full system
up to and including terms of O(g). That is we seek an expression equivalent
to (34) for y € R"™. Thus to leading order we have

[ Foy) - Ol =) 40, fy —yo) # D, i h(ey) 20
f_(:co,yo)—C_(:c—xo)+8yf_(y—y0)—|—D5, if h(x7Y> <O,

(50)
where Cy are arbitrary but positive constants by (3) and 0,f is a gradient
vector to f when treating the fast variable ‘z’ as a constant. From (50) we
have that the slow manifold M = M, JM_ of the reduced system across
the switching surface 3 := {h(x, y) = 0} is approximated by the functional
expressions

24(y) = 2o + C7' f+(20, yo) + C7 {0y f+, (y — ¥o)) (51)

and
z_(y) = zo + CZ" f_ (w0, yo) + CZH (0, f—, (y — ¥0)), (52)

where (29, yo) € X. By the definition of the slow manifold of the reduced
system f (7o, Yo) = f- (0, yo) = 0 for (zo, yo) € M. Thus

2 0(y) = 20 + CTHO, f+. (y — ¥0)) (53)
and
7 O(y) = 20+ CZHO -, (¥ = ¥0))- (54)

Using (50) we can find the approximate expression for the slow manifold of the
full slow fast system. We assume without loss of generality that g+(z, y,e) ~
a # 0 for all (z, y) in a sufficiently small neighborhood of (xg, yo), where a is
a constant vector. Then

24(y) = 2o + C O, 1, (v — yo)) +e(CF'D = C1%(0, f+, @) (55)
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and

2-(y) = zo+ CZH0,f-, (y — ¥0)) +e(CZ'D — C=*(9, f-. a)). (56)

Let us suppose that (zg, yo) = 0, which can be assumed without loss of
generality. Then by the continuity of f_ and f, across ¥ for any (x,y) € X
sufficiently close to 0 by the continuity of f(z, y;&) on 3 we require

C+h;1hy +Ouf+ = C—hglhy + 0y f- (57)

where subscripts  and y denote differentiation with respect to x and y vari-
ables respectively and all the quantities are evaluated at O.

Let us now calculate the points of intersections of M% with 3, say y'. We
know that

h(zy, yi) = 0. (58)
Expanding (58) in " and y to leading order about 0 gives

hex'l + hyy ] ~ 0. (59)
Using (55) for 2" we have
he (CTHOfry +e(CT'D = C(0, /4, a))) + Byl + O(e*) = 0.

Rearranging gives
yi§ = —A""hlhke + O(?), (60)

where
-1
A7 = |03 (hCl0, Lo +hy) | k= CEID = CF(0,f . a).
Similarly )
y" = —fl_lhghmka + 0(?), (61)

where
A = [T (h,CZ'9,f- +1h,)] ", E=CZ'D—C70,f-.a).

Generically, unless some nonstandard cancelation occurs AV £ A7V and k #
k. Thus y7* are O(e) distance away on X, and the O(g) discontinuity of M<.
on X is preserved in the multidimensional case.

Let us now determine if there is a possibility of boundary oscillations be-
tween M and M across the switching surface ¥. To this aim we calculate

the derivative % at the points of intersection of M? with Y. If both these
derivatives are characterized by the same sign then we cannot observe the
boundary layer oscillations since then the system trajectories move across >
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and approach the slow manifold M€ exponentially fast after crossing >. We
have:

dh , do . . _

E(y =y = hxd—yy + hyy = h,C7' (0, f+, a) + (hy, a) (62)
and

dh - dx . . _

=y = hxd—yy + hyy = h,C-0,f-, a) + (h,, a), (63)

where (z4(y7), y') € ZUM?S and (z_(y™), y™) € ZUME=. Using (57) we
can rewrite (64) as

dh

S =y =7 (ha(9y [, a) + C-{hy, a). (64)

We now have to compare expressions (63) and (64). It can be easily shown that
both these expressions are characterized by the same sign for all admissible
values of the coefficients. Hence, small scale oscillations across the boundary 32
are not possible. This has further implications as to the qualitative dynamics
of the slow-fast system (1) and (2) for y € R™ If a hyperbolic limit cycle
exists in the reduced system then it will also exist in the full system and it
will have the same stability properties — the change in the value of its Floquet
multipliers is at most of O(e).

We will illustrate this in the following section on a numerical example where
the dimension of the slow subsystem is two.

6.2 lllustrative example

Consider a slow-fast system of the form

o) Wy — (z + y3)ys,
wyr + Y2 — (loa] + v3)vo,
ex = |y| — 2 (65)

where y = (y1, y2)T. It is straightforward to verify that system (65) is contin-
uous across the switching surface {y; = 0}. The slow dynamics of system (65)
is based on the normal form for a supercritical Hopf bifurcation that allows
to construct simple planar piecewise-continuous system which exhibits stable
periodic orbits.

The reduced system for (65) with € = 0 has = |y;| and is hence
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Fig. 9. A limit cycle of the reduced system (66); (a) in the projection onto slow
variables (y1, y2), and (b) in 3-D phase space. Note corner type singularity across
the switching plane {y; = 0}.
. y1 — wya — (|| + 43)y1, (66)
wyr +y2 = (ly1l + 13)v2,

which is the normal form for a supercritical Hopf bifurcation in parameter
regions where a stable periodic orbit exists and with one of the usual squared
terms replaced by a modulus. The limit cycle in the projection onto slow
variables is depicted in Fig. 9(a). It is characterized by one non-trivial Floquet
multiplier 4 = 0.13813. The slow manifolds M, and M_ are given by the
functional expressions * = —y; and x = y; respectively. The corner type
singularity is clearly visible across the switching surface {y; = 0} in Fig. 9(b).

We should consider what is the effect of the applied singular perturbation on
the existence and stability of the limit cycle. We first note that the limit cycle
of the reduced system in the projection onto slow variables forms a differen-
tiable closed curve since the right-hand side of (66) is continuous. Consider
now the trajectories of (65) that are rooted on the slow manifold M= or M.
Since M7 are O(¢e) distance away and the right-hand side of the slow subsys-
tem of (65) is a O(e) regular perturbation of (66) then the trajectories rooted
on M¢% or on M¢ of the full system are O(e) distance away from those of the
reduced system up to the point of intersection with the switching surface. We
established earlier that there cannot be any small boundary layer oscillations
between M$ since the direction of the flow at the intersection between M2,
and X, and M and ¥ are the same. This implies further that the trajecto-
ries starting on either M2 or M and crossing ¥ must tend to M2 or Mg
exponentially fast and by the continuity of the vector fields, in the projection
onto slow dimensions the trajectories of the full system cannot cross. More-
over, since the discontinuity in the slow manifold M= UM is of an O(e) the
perturbation to the trajectories induced by the crossing in relation to those of
the reduced system is bounded by the O(g). Thus, trajectories rooted on the
slow manifold of the full system can be seen as O(g) continuous perturbations
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of the trajectories of the reduced system.

Therefore for sufficiently small ¢ if a hyperbolic limit cycle exists in (66) then
it must also exist in (65). Let us now consider the effect of the singular per-
turbation on the stability of the limit cycle.

To determine if there can be any change in the stability properties of the limit
cycle we consider the solutions of the variational equation for trajectories on
M. These will be € close to those given by the solution of the variation
equation for trajectories on M. The fact that there is a discontinuity across
the switching surface adds additional near-identity correction to solutions of
the variational equations for trajectories starting on either M2 and M< and
switching to a distinct flow across the switching surface. Therefore the mon-
odromy matrix [18] obtained from the composition of the solutions of the vari-
ational equations built about a limit cycle of the full system (65) restricted to
the projection onto slow variables will be a e—perturbation of the monodromy
matrix of the reduced system. Since the limit cycle of the reduced system is
hyperbolic the characteristic equation of the monodromy matrix is character-
ized by two separate roots and O(¢g) perturbation to the monodromy matrix
translate onto O(e) perturbation of the characteristic equation and on O(e)
perturbation of the roots. It then follows that the Floquet multipliers of the
full system will be at most O(e) distance away from the Floquet multipliers
of the reduced system.

From the above, using the continuity argument, it then follows that for suffi-
ciently small € > 0 a hyperbolic limit cycle present in the reduced system will
exist also in the full system and will preserve its stability properties. There will
be O(e) jump in the value of the non-trivial Floquet multiplier upon switching
on € to a positive value.

The discontinuity in a slow manifold across the switching surface ¥ implies
further that the limit cycle present in the full system no longer exhibits a
corner type singularity when 3 is crossed; the trajectory evolves smoothly
while moving from M9 to M® across the switching surface while covering
the distance of O(g). The limit cycle of (65) with e = 0.01 is depicted in
Fig. 10. Note that indeed the corner type dynamics is smoothed out in the
full system.

Finally, in Fig. 11 we are depicting the variation of the non-trivial Floquet
multiplier calculated about a periodic point of the limit cycle as a function
of the variable . Clearly there is a small jump in the value of the Floquet
multiplier under the switching of € to a positive value.
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Fig. 10. A limit cycle of the slow-fast system (65) for ¢ = 0.01.
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Fig. 11. Change in the value of the non-trivial Floquet multiplier of the reduced
system (66) with w = 20 for e = 0 (big black dot) against the full system (65)
for ¢ > 0. Small black dots correspond to values of € at which the value of the
non-trivial Floquet multiplier was computed.

7 Conclusions

In the paper we consider the effects of singular perturbations on the dynam-
ics of piecewise-smooth systems that are characterized by vector fields that
have discontinuous jacobians across switching manifolds. We present a detailed
analysis of planar systems that is systems with the slow and fast dynamics
being one-dimensional. We show that the slow manifold of the reduced system
is continuous but non-differentiable across the switching manifold. The slow
manifold of the full system exhibits O(e) discontinuity across the switching
manifold. These results are generalized to n+1-dimensional systems — with the
slow dynamics being one dimensional. In spite of the presence of the discon-
tinuity across the switching surface small scale boundary oscillations between
the slow manifolds are not possible. This implies that stable singular perturba-
tions in the class of piecewise-smooth systems of interest cannot qualitatively
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alter system dynamics provided that no standard or discontinuity induced
bifurcations take place in the systems.

Investigations of the qualitative dynamics in the case when the slow system
has an equilibrium on the switching surface is also conducted for the planar
case. Four distinct dynamic scenarios are found. This analysis is then used to
investigate the dynamics of a planar piecewise-smooth slow-fast box model of
thermohaline circulation. Combined effects of discontinuous nonlinearity and
fast dynamics gave rise to a non-smooth equivalent of a fold scenario observed
in the model.

Presented analysis opens up a number of important research questions. It has
been shown that in the case when a planar Filippov type system exhibits
so-called grazing-sliding scenario a stable singular perturbation applied to the
system may result in the onset of micro-chaotic oscillations [14]. Hence grazing-
sliding is not robust against stable singular perturbations. The question then
arises if this would also be the case when grazing occurs in the absence of slid-
ing which pertains to the class of systems considered here. Another important
issue is the effect of singular perturbations when the reduced system exhibits
an equilibrium on the switching manifold. The scenarios observed in the pla-
nar case will certainly be observed in higher dimensions but it is very likely
that other cases will arise as well. This claim is justified by the fact that sin-
gular perturbations lead to boundary-equilibrium bifurcations — the reduced
system has an equilibrium on the switching surface which is perturbed under
the variation of € to a positive value. Boundary-equilibrium bifurcations in
three-dimensional piecewise-smooth flow lead, for instance, to a non-smooth
equivalent of a Hopf bifurcation — a limit cycle which grows linearly in ampli-
tude is born from an equilibrium colliding with the switching manifold [19].
Finally presented analysis rises a question whether singularly perturbed Fil-
ippov type systems with planar slow dynamics, in the absence of standard or
discontinuity induced bifurcations, can exhibit dynamics qualitatively differ-
ent from the one observed in the reduced model. In [13] it was shown that
in the case when the switching function does not depend on the fast variable
hyperbolic limit cycles present in the reduced system are also present in the
full system preserving their stability properties.
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