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Abstract. In this paper we introduce and study computational aspects
of Y g-constraints which are powerful enough to represent computable
continuous data, but also simple enough to be an approach to approx-
imate constraint solving for a large class of quantified continuous con-
straints. We illustrate how X g-constraints can be used for reasoning
about hybrid systems.

1 Introduction

A continuous constraint is a logical formalism which is used extensively in model-
ing, formal analysis and synthesis of control of hybrid systems [1IBI2325]. From
a mathematical point of view a continuous constraint is an expression (well
formed formula) in an appropriate language over the reals involving constants,
variables (ranging over continuous data i.e. the real numbers, functions), opera-
tions, relations, logical connectives and quantifiers. Since continuous constraints
involve continuous data such as real numbers, functions and sets, solving of such
constraints is already a challenging research problem.

This has resulted in various different approaches to continuous constraint solv-
ing. There are at least two main nonequivalent models of continuous constraint
solving. The first one is related to model theory and real algebraic geometry
(e.g. [AIEI724]) where real numbers are considered as basic entities which can be
added, multiplied, divided or compared in a single step. Here most of methods
for continuous constraint solving are exact and based on quantifier elimination
and cylindrical cell decomposition. However, this approach is restricted to special
cases such as quantified polynomial constraints.

The second model is closely related to numerical and computable analysis
(e.g. [2122126] ), where continuous data (real numbers, real-valued functions) are
given by appropriate representations and computations of the solution sets of
continuous constraints are infinite processes which produce inner or outer ap-
proximations to the results.

This model conforms to our intuition of reals based on rational approxima-
tions to a real number, but depends on representations of continuous data [26]
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and particular validated numerical techniques [5]. In this paper we introduce
and study X —constraints which formalise problems involving logical quantifiers
bounded by computable compact sets, computable real numbers and computable
real-valued functions. A key idea of our approach to approximate solving of X x—
constraints is based on a procedure which given a Y —constraint produces an
effective sequence of quantifier free formulas (inequality polynomial constraints)
defining the solution set. On one hand proposed approach agrees with the second
model mentioned above, on the other hand it does not depend on the particular
representation of real numbers. We illustrate how X -constraints can be used
for studying reachability problems of switched controlled systems.

The paper is structured as follows. In Section 2 we give the main definitions
and notions. We recall properties of X-definability and computability over the
real numbers. In Section 3 we introduce the notion of X x—constraints and pro-
pose an approach to approximate X x—constraint solving. In Section 4 we recall
slightly modified SHS-specifications of switched controlled systems introduced
in [I8] and show that under natural assumptions the behaviour of a hybrid sys-
tem is computable. We illustrate how Xi-constraints can be used for studying
reachability problems.

2 Basic Notions and Definitions

In order to introduce X'k -constraints we propose a basic model, recall the notions
and properties of XY-definability and computability over the reals.

2.1 Basic Model

Our approach to continuous constraints is based on the notion of definability
[T4UT5], where continuous objects and computational processes involving these
objects can be defined using finite formulas in a suitable structure. Definability
has been a very successful framework for generalised computability theory, de-
scriptive complexity and databases. One of the most interesting and practically
important types of definability is Y'-definability, which generalises recursive enu-
merability over the natural numbers [3I8]. However, the most developed part of
definability theory deals with abstract structures with equality (i.e., the natu-
ral numbers, trees, automata, etc.). In the case of continuous data, such as real
numbers, real-valued functions and functionals, it is reasonable to consider the
corresponding structures without equality. This is motivated by the following
natural reason. In all effective approaches to exact real number computation via
concrete representations [22J26], the equality test is undecidable. In order to do
any kind of computation or to develop a computability theory, one has to work
within a structure rich enough for information to be coded and stored. For this
purpose we extend the structure IR by the set of hereditarily finite sets HF(IR).
The idea that the hereditarily finite sets over a structure form a natural domain
for computation is discussed in [3I]]. Note that such or very similar extensions
of structures are used in the theory of abstract state machines [I1], in query
languages for hierarchic databases [20].
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According to this motivation we consider the ordered structure of the real
numbers in the finite predicate language, (R,op,<) = (R,o0-), with op D
{ My, My, AL, Af;, Y, where Mg, M, are interpreted as an open epigraph and
an open hypograph of multiplication respectively, and .AE, .A}; are interpreted
as an open epigraph and an open hypograph of addition respectively. We don’t
assume that the language op contains equality.

We extend the real numbers by the set of hereditarily finite sets HF (IR) which
is rich enough for information to be coded and stored. We construct the set
of hereditarily finite sets, HF (IR) over the reals, as follows:

1. HFy(R) = R,
2. HFh 41 (R) = P,(HF,(IR)) U HF,(IR), where n € w and for every set B,
P, (B) is the set of all finite subsets of B.
3. HF(R) = U, .., HF (R).
We define HF(IR) as the following model: HF(IR) = (HF(IR),U,0.,0,€) =
(HF(IR), 0) , where the constant () stands for the empty set and the binary pred-
icate symbol € has the set-theoretic interpretation. We also add a 1-ary predicate
symbol U naming the set of urelements (the real numbers). The natural numbers
0, 1,... are identified with the (finite) ordinals in HF(IR) i.e. 0, {0,{0}},...,
so in particular, n + 1 = n U {n} and the set w is a subset of HF(IR).
The atomic formulas include U(x), ~U(x), z < y, € s, x¢s where s ranges
over sets, and also, for every ); € op with the arity n;, Q;(x1,...,x,,) which
has the following interpretation:

HF(R) | Qi(z1,...,x,,) if and only if
R = Qi(x1,...,zy,) and, for every 1 < j <mn;, z; € R.

The set of Ag-formulas is the closure of the set of atomic formulas under A, V,
bounded quantifiers (3x € y) and (Va € y), where (3x € y) ¥ means the same
as Jx(x € y A ¥) and (Vo € y) ¥ as Va(x € y — ¥) where y ranges over sets.
The set of X-formulas is the closure of the set of Ap-formulas under A,V,
(3z € y), (Vz € y) and 3, where y ranges over sets.

Remark 1. Tt is worth noting that all predicates @; € op and < occur only
positively in X-formulas. Hence, if op does not contain equality then in X-
formulas we don’t allow equality on the urelements (elements from IR).

Definition 1. 1. A relation B C HF(R)" is X-definable if there exists a Y-
formula @(a) such that b € B « HF(R) = &(b).

2.2 Basic Properties Y-definability over the Reals

In this subsection we recall the basic principles for X-definability which allow to
make effective reasoning about continuous constraints using Y-formulas.
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2.3 Gandy’s Theorem and Inductive Definitions

Let us recall Gandy’s Theorem for HF(R) which shows that continuous objects
and computational processes involving these objects can be defined using X-
formulas. Let ®(aq,...,a,, P) be a X-formula, where P occurs positively in @
and the arity of @ is equal to n. We think of @ as defining an effective operator
I : PHF(R)") — P(HF(R)") given by I'Q) = {a| (HF(R),Q) k= (a, P)}.
Since the predicate symbol P occurs only positively the corresponding operator
I' is monotone, i.e., from B C C implies I'(B) C I'(C). By monotonicity, the
operator I" has a least (w.r.t. inclusion) fixed point which can be described as
follows. We start from the empty set and apply operator I until we reach the
fixed point: I =, ' =T(I'™), I'" = U,<,I™, where 7 is a limit ordinal.

One can easily check that the sets I'™ form an increasing chain of sets: 1'% C
I't C .... By set-theoretical reasons, there exists the least ordinal v such that
I'(I') =TI". This I'7 is the least fixed point of the given operator I'.

Theorem 1. [15][Gandy’s Theorem for HF(R)]

Let I' : P(HF(R)™) — P(HF(R)™) be an effective operator. Then the least fixed-
point of I' is X-definable and the least ordinal such that I'(I') = I'Y is less or
equal to w.

Definition 2. A relation B C R"™ is called X-inductive if it is the least-fized
point of an effective operator.

Corollary 1. Fvery X-inductive relation is X -definable.

2.4 Universal ¥Y-predicate

The following result shows that we can effectively check validity of a X-formula
on HF(IR). As a corollary there exists a universal X-predicate for X-formulas
over this model.

Theorem 2. [T]] There exists a binary X-definable predicate Tr such that for
any n € w and A € HF(IR) we have that (n,A) € Tr if and only if n is the
Gaodel number of a X-formula @, v4 is a correct interpretation for free variables
of @ and HF(IR) = @[va4].

2.5 Semantic Characterisation of Y-definability

The following theorem reveals algorithmic properties of X-formulas over HF (IR).

Theorem 3. [Tj)][Semantic Characterisation of X-definability]
A set B C R"™ is X-definable if and only if there exists an effective sequence of
quantifier free formulas in the language o<, {®s(x1,...,2n)}scw, such that

(@1,...,2n) €EBo R \/ Ou(21,...,2).

SEw
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The proof of this theorem is based on Gandy’s theorem and existence of X-
universal predicate. It is worth noting that both of the directions of this char-
acterisation are important. The right direction gives us an effective procedure
which generates quantifier free formulas approximating X-relations. The con-
verse direction provides tools for descriptions of the results of effective infinite
approximating processes by finite formulas.

2.6 Computability and X-definability over IR

In order uniformly characterise computability of different continuous data in
logical terms, we consider an arbitrary structure A = (A,op,#) = (A,04),
where A contains more than one element, and op is a finite set of basic pred-
icates. We assume that the existential theory of A is computably enumerable.
For the structure A, we introduce a topology 7x, with the base consisting of the
subsets defined by existential formulas with positive occurrences of basic pred-
icates and #. As examples we can consider the real numbers without equality
R< = (IR,0.), the real numbers with equality IR— = (IR, +, , <), the real-
valued continues functions C(IR) = (C(IR), P, ..., P12, #) [12]. We denote X-
definability in the language o as X-definability in o. For the definitions of com-
putable real numbers, computable functions, and computable compact sets we
refer to [T2IT922126]. The following theorems connect computable continuous
data with validity of X’ —formulas.

Proposition 1. [I7] A real number is computable if and only if the left Dedekind
cut and the right Dedekind cut are X -definable in o~ .

Theorem 4. If f € C[0,1] and its epigrap and hypograph are X-definable in o—
then f is computable.

Proposition 2. [T7] A total function F : R — IR is computable if and only if
its epigraph and hypograph are X -definable in o .

Definition 3. A total continuous function F : A x R — R is called weakly
computable if there exist effective infinite sequences {(¢, (x), ¢, (Y, 2)) }mew and
{(h (2), o (y, 2)) bmew of X-formulas, where ., (x) and ¥} (x) are X-formulas
inoa, ¢, (y,2) and ¢ (y,z) are X-formulas in o~ such that

F(a,y) <z \/ (Wn(@) Ad,(y,2) and

mew

F(z,y) >z« \/ (0h@) A dh(y,2)).

mew

It is worth noting that the computable functions is a proper subclass of the
weakly computable functions.

Theorem 5. Let F': AXIR — IR be a weakly computable continuous function. If
there exists a computable function H : Ax R — R such that |F(x,y)| < H(x,y)
for allx € A and y € R then I is computable.
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Proposition 3. [2] A compact subset K C IR" is computable if and only if the
distance function dy is computable and there exist rational numbers q1 and g2
such that K C [q1, q2]™-

3 XY k-constraints

Now we consider the real numbers IR in an extended language o. Define o =
opUocUoyrUog = (0,1, 4, <,C1y ey Chiyees 1y ey iy oo s K1y ooy Ky o0,
where ¢; is a computable real number, f; is a computable function, and Ky is a
computable compact subset of IR".

The atomic Y-constraints include p(z) < q(y), fi(Z) < f;(y), where  and
y range over the real numbers, p and ¢ are polynomials with computable real
coeflicients, f; and f; are computable real functions.

The set of Y -constraints is the closure of the set of atomic XYk -constraints
under A,V, existential quantifiers 3z and bounded quantifiers (3z € K;) and
(Va € K,,), where K, and K, are computable compact subset of IR".

Remark 2. By definition, Y x—constraints involve continuous data such as vari-
ables ranging over the real numbers, computable real constants, computable
real-valued functions, the strict inequality relation <, logical connectives V, A
and quantifiers bounded by computable compact sets. It is worth noting that
the predicate < occurs only positively in Y i —constraints.

Theorem 6. There is an algorithm which by a Yk —constraint ¢ produces an
effective sequence of quantifier free formulas {w;}icw in the language o< such
that

R p@) = RE \/ vi(2).

1EW
First we prove the following proposition.

Proposition 4. For every X-formula ¢ there exists a X-formula v such that

HF(IR) ': vx € [a” b]g@($7 y17 Tt yn) Zﬁ HF<IR) ': w(a7 ba yla st yn)7
where free variables range over IR.

Proof. First we consider the case of I-formulas in the language or. Using in-
duction on the structure of a I-formula ¢, we show how to obtain a required
formula 1. Then, based on Theorem B we construct a required formula 1 for
an arbitrary X-formula.

Atomic case. We consider nontrivial subcases.

a) If p(z,z) = a -2 > z then

P(a,b,z) =2<0Va>bV(a>0Ab>0Aa-a>2)V(a<O0Ab<OAb-b>2z).

b) If (x,2) = 2 -z < z then ¢(a,b,z) =a>bV(a-a<zAb-b<z).
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c) If o(x,y) = x -y > x then
P(a,b,z) =a>bV(a>0Ab>0Ay>1)V(ea<0Ab<OAYy<1).

d) If () =2 -2 >z then ¢P(a,b) =a>bV(a>1Ab>1)V(a<0Ab<O).
e) If y-z < x then ¢¥(a,b,y,2) = y -z < aVb< a. Other atomic subcases can
be considered by analogy.

Conjunction.

If ¢ = 1 Ay and Y1, ¥y are already constructed for @1, @9 then ¥ = 11 Ahs.
Disjunction.

Suppose ¢ = 1 V2 and 1)1, 1, are already constructed. Since [a, b] is compact,
validity of the formula Va € [a,b] (p1 V ¢2) is equivalent to existence of a finite
family of open intervals {(a;, 8;)}i=1,....r4+s such that [a,b] C U;_, (o, 3;), for
i=1,....,rREpiand fori=7r+1,...,s R | po. Since ¢1 and ¢y define
open sets, this is equivalent to existence of a finite family of closed intervals
{[ed, Bl }iz1, .. .r4s such that [a,b] C J._,[af, 8], for i =1,...,r R = ¢1 and

fori=r+1,...,s R |E p2. It is represented by the following formula.

\ V 3a1...3004,361 ... 3800 (/\ vz € [of, Bl A\ Vo e [a;,ﬁ;]g@) .

rEwWrEw =1 Jj=r+1

By induction hypothesis and Theorem Bl this formula is equivalent to a X-

formula .
Existential case.
Suppose ¢ = Jz¢1(z, 21, ...,2,). As [a,b] is compact and

Ho1R | e1(z,21, . an)er = {Vetzer
is an open cover, there exists a finite set J = {z1,..., 25} C IR such that [a,b] C
U.cs V. So, validity of the formula Y, € [a,b]32¢1(2,21,...,7,) is equivalent
to existence of the finite set J = {z1,..., z,} such that

R E Va1 € [a,b]3zp1(z,21,...,2n) < IR E V21 € [a,0]¢° (21, ..., 2s,T1, ..., Tn),

where ©*(z1, ..., 25,1,y Tn) = ©1(21, %1, ..., Tn) V- - V ©1(25, T1,y .o o, Tny).
By induction hypotheses, for every J = {z1,...,2s} there exists a Y-formula
V¥(z1,. .., 2s,a,b, T2, ..., xy,) in the language o U{P{|\: {1,...,n} — {1,...,n}}
which is equivalent to Vz, € [a,b]¢®(z1, ..., 25, %1, ..., 2,). Finally,

R =V € [a,b]32¢01(2, 21, ..., Tp) <
HF(R) = Ve, 321 ... F2s (W%(21,. .. 2s,0,b, 02, .. 1))

A required Y-formula 1 can be constructed using Theorem [3

Now we are ready to construct a required formula 1 for a given X-formula
. By Theorem [3] there exists an effective sequence of quantifier free formulas
{®i}iew such that HF(IR) = ¢ < HF(IR) |= /., @i. As [a,b] is compact and
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{z1R = @i(21,...,20)} }ico, = {Uiticw is its cover, there exist k € w and a
finite family {U;},.,, such that [a,b] C ;<. U;. So,

R E V2 € [a,b]p(z1,...,2,) <
HF(R) = Ve, Vo1 € [0, 0] Vi 021, - - @)

By induction hypotheses, for every k € w there exists a X—formula ¢ (a,b,...)
which is equivalent to Vz1 € [a,b] \/;<, wi(21,...,2,). A required X-formula ¢
can be constructed using Theorem Bl

Proof (Theorem[d).

We proceed by induction on the structure of the X -constraint (.
Atomic X —constraint case. Suppose ¢(Z) = f1(Z) < f2(Z), where f1(Z), f2(Z)
are computable real-valued functions. It is easy to note that

R ): (p(.i‘) iff IR ): ElalEIagElblEIbQVyl € [al, bl]Vyg S [ag, bg}
(Avcics (Fi(@) < bi A fi(@) > ai) A (1 < 12) -

By Proposition 2 f; is computable if and only if f;(Z) < z and f;(Z) > z are
XY-definable. So, we can construct a required sequence of quantifier free formulas
{t}iew using Proposition @] and Theorem [3

Conjunction, Disjunction and FEzistential quantifier cases are straightforward
from Theorem [Bl
Bounded Existential quantifier case. Suppose ¢(Z) = Jy € K¢(y,x), where K
is a computable compact subset of IR"™. Since ¢ defines effectively open set, the
formula ¢ is equivalent to the formula

Fy'3e > 0(p(y',2) Ndr(y') < eAVz e By, €)o(z,7)),

where B(y/, €) is a closed ball. By properties of computable compact sets, the dis-
tance function dg is computable [2], and, as a corollary, the set {(v/, €)|dk (y') <
€} is Y-definable. By Proposition Ml and Theorem B] there exists a required se-
quence of quantifier free formulas {t};e,,-

Bounded Universal quantifier case. Suppose ¢(Z) = Vy € Ko(y,z), where K is
a computable compact subset of IR". It is easy to see that ¢ is equivalent to the
formula

Yy € [~q,q]" (yg KV »(y, 7))

for some rational ¢ which can be find effectively by K. By properties of com-
putable closed sets, the distance function dg is computable [2], and, as a corol-
lary, {yly¢ K} = {y|dx(y) > 0} is X-definable. By Proposition @l and Theo-
rem [ there exists a required sequence of quantifier free formulas {¢}icq.

Remark 3. Tt is worth noting that Theorem [ provides an effective procedure
which generates quantifier free formulas approximating the solution set of Xy —
constraints.
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4 XY g——constraints for Hybrid Systems

In this section we reconsider reachability problems in terms of Y x—constraints
for a large class of hybrid systems, where continuous dynamics are represented
by computable real-valued functions or functionals. In contrast to special types
of hybrid systems such as timed automata or linear hybrid systems, for the
considered class of hybrid systems difficulties arise from the fact that we can not
exactly compute flow successors, but can only effectively approximate.

4.1 SHS-Specifications of Hybrid Systems

We consider the models of hybrid systems proposed by Nerode, Kohn in [21],
called switched controlled systems. A hybrid system is a system which consists
of a continuous plant that is disturbed by the external world and controlled by a
program implemented on a sequential automaton. In the Nerode-Kohn model a
hybrid system is represented by a continuous device given by a collection of dy-
namical systems parameterised by a control set along with a control automaton
for switching among them.

The control automaton has input data (the set of sensor measurements) and
the output data (the set of control laws).

The control automaton is modeled by three units. The first unit is a converter
which converts each measurement into input symbols of the internal control au-
tomaton. The internal control automaton, in practice, is a finite state automaton
with finite input and output alphabets. The second unit is the internal control
automaton, which has a symbolic representation of a measurement as input and
produces a symbolic representation of the next control law to be imposed on
the plant as output. The third unit is a converter which converts these output
symbols representing control laws into the actual control laws imposed on the
plant. The plant interacts with the control automata at discrete times t;, where
the time sequence {t;};c., satisfies realizability requirements. At time ¢; the con-
trol automaton gets sensor data, computes the next control law, and imposes
it on the plant. The plant will continue using this control law until the next
interaction at time t;41.

The specification SHS = (T'S, X, U, D, Init, F, Convl, A, Conv2) of a hybrid
system consists of:

o TS = {t;}icw is an effective sequence of rational numbers which encodes
the times of communication of the external world, the plant and the control
automata and satisfies realizability requirements.

X C IR" is a plant state space.

U C IR” is a set of control parameters.

D C C(R) is a set of acceptable disturbances.

F:DxUxZXxIR" — Xis a total computable function modeling the
behaviour of the plant.

Convl : D x X — w is a weakly computable function. At the time of com-
munication this function converts measurements, presented by F, and the
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representation of external world f into finite words which are input words
of the internal control automata.

e A: w — wis a Y-definable function. The internal control automata, in
practice, is a finite state automata with finite input and finite output al-
phabets. So, it is naturally modeled by X-definable function which has a
symbolic representation of measurements as input and produces a symbolic
representation of the next control law as output.

e Conv2 : w — U is a computable function. This function converts finite words
representing control laws into control laws imposed on the plant.

e Init = Inity x Initx is a computable compact set of initial conditions.

Definition 4. The behaviour of a hybrid system is defined by a function

H :Dx X xIR" — X if for any external disturbance f € D and initial states
x € Initg the function H(f,z,-) : RY — X defines the trajectory of the hybrid
system.

In order to investigate the behaviour of a hybrid system we consider the spaces X,
U and D and their products as structures in appropriate languages with induced
Ty, topologies (see Subsection [2:0]).

Theorem 7. Suppose a hybrid system is specified as above. If the behaviour of
the hybrid system is defined by a continuous function H : D x X x RT — X and
there exists a computable function G : DxXxIRT — R™ such that ||H(f,x,t)|| <
G((f,z,t)) for all f €D,z € X and t € RT then H is computable.

4.2 Yg-constraints and Reachability Problems

In this section we illustrate how X -constraints can be used for reasoning about
hybrid systems. Suppose a hybrid system is formalised by

SHS = (T'S,X,U, D, Init, F, Convl, A, Conv2)
which satisfies the conditions of Theorem [7]

Theorem 8. The set of X-definable sets of X which are reachable by the hybrid
system is computably enumerable.

Proof. Let A be X-definable set. The reachability problem can be formalised
as follows: ¥ = (Jz € Initx)IfItH(f,z,t) € A. Since the set of polynomials
with rational coefficients is dense in C'(IR) with the compact open topology,
Theorem [6] and Theorem [7] imply the equivalence of 1) and a X-formula. So, for
every Y-definable set we can effectively check reachability.

Let D = {fi}icw be a computable family of acceptable computable disturbances.

Theorem 9. The set

{<i,j > |A; is reachable by the hybrid system under a disturbance f;,
where A; is X-definable and f; € D}

1s computably enumerable.
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Theorem 10. The set

{<i,j > |K; is unreachable by the hybrid system in bounded time under

a disturbance f;, where K; is a co-semicomputable compact set and f; € D}

1s computably enumerable.

Proof. Let K be co-semicomputable compact set and time bounded by N and
f a computable disturbance. The unreachability problem can be formalised
as follows: ¢ = Va € InitxVt € [0, N]H(f,a,t) ¢ K. By properties of co-
semicomputable compact sets, the distance function dg is lower semicomputable
[2], and, as a corollary, {z|z¢ K} = {x|dkx(z) > 0} is X-definable. By The-
orem [6] and Proposition 2 ¢ is equivalent to a X-formula. So, for every co-
semicomputable compact set we can effectively check unreachability.

Now let us fix X-definable set A and co-semicomputable compact set K. Let
I, denote a subset of Initx from which the set A is reachable and I,, denote a
subset of Initx from which the set K is unreachable in bounded time.

Theorem 11. The sets I, and I, are X-definable.

5 Conclusion

We present a methodology that enables the algorithmic analysis of Yk -const-
raints via translation to effective sequences of quantifier free formulas. We hope
that proposed results and existing numerical constraint satisfaction techniques
(e.g. [5I23]) will lead to new algorithms for effective continuous constraint solving.
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