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1 Introduction

It is shown in [5] that for a ringed space with a basis of compact open sets, the
category of modules on the space is locally finitely presented. In this paper we
generalise this result to sheaves of modules over a ring object in an arbitrary
locally finitely presentable topos. This is a consequence of the monadicity of
the module category over the base topos, which we present as a consequence of
Beck’s theorem.1

Throughout, we take λ to be a regular cardinal. We will think mainly of
the case when λ = ℵ0, but all of the results carry over for arbitrary regular
cardinals. By a λ-small set, we will mean a set with cardinality less than λ.

In section 2, we recall basic facts about monads, and state Beck’s Theorem.
In section 3, we provide necessary and sufficient conditions for the category

of sheaves on a space to be locally finitely presented.
In section 4, we show that the associated sheaf functor for presheaves of

modules commutes with the forgetful functor.
In section 5, we use this fact to prove that the category of modules over

the sheaf of rings is monadic over the base topos, and show that our result is a
consequence of this fact.

2 Monads

Recall that a monad on a category C is given by a triple (T, ε, µ) where T : C → C
is a functor and ε : 1C → T , µ : T 2 → T are natural transformations, such that
the diagrams below commute:

T
εT //

1T   @
@@

@@
@@

@ T 2

µ

��

T
Tεoo

1T~~~~
~~

~~
~~

T 3
µT //

Tµ

��

T 2

µ

��
T T 2

µ // T

1The use of monadic functors to approach this problem was suggested to us by Tibor Beke.
The work reported in this paper will form part of the doctoral thesis of the author.
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Given a monad T = (T, ε, µ) on a category C, an algebra on T consists of a
pair (A,α), where A is an object of C, and α : TA → A is a map such that the
diagrams below commute.

A

1A   B
BB

BB
BB

B
εA // TA

α

��

T 2A
µA //

Tα

��

TA

α

��
A TA

α // A

A morphism of algebras f : (A,α) → (B, β) is a map f : A → B in C such
that fα = βTf .

For a monad T, the category of algebras and their morphisms is called the
Eilenberg-Moore category, denoted CT.

There is an obvious forgetful functor U : CT → C, mapping each algebra
(A,α) to A. Also, there is a ‘free algebra’ functor F : C → CT, left adjoint
to U, sending each object C of C to the algebra (TC, µC). We say a functor
R : X → C is monadic if there is some monad T on C such that X is equivalent
to CT and R corresponds to the forgetful functor U under the equivalence.

The following result characterizes such functors, see eg [2, vol.2, 4.4.4] or [4,
IV.4.2], for a proof.

Theorem 1 (Beck’s Theorem). A functor R : X → C is monadic iff it has a
left adjoint L, it reflects isomorphisms, and it creates split coequalisers.

Here a split coequaliser diagram is a diagram

C
v
//

u //
D

r
oo

q //Q
s
oo

where qu = qv, qs = 1Q, ur = 1D and vr = sq (this of course makes q a
coequaliser for u and v). R is said to create such coequalisers if given u, v :
X → Y in X such that Ru and Rv have a split coequaliser in C, then there is a
coequaliser of u and v in X , and this is preserved by R.

We will also use the following result, which is derived from the reflection
theorem for accessible categories on p.124 of [1]. We provide a direct proof here
for completeness.

Lemma 2. If T = (T, ε, µ) is a monad on a locally λ-presentable category C, and
T preserves λ-directed colimits, then the category of algebras CT is also locally
λ-presented.

Proof. A direct proof of the cocompleteness of CT is given at [2, vol.2, 4.3.6].
We will show that the free T-algebras on the λ-presented objects in C are

λ-presented in CT, and that these form a strong generating set in CT.
Let C be a λ-presented object in C. The free T-algebra generated by this is

the object (TC, µC) in CT.
Suppose we have a λ-directed colimit cocone in CT, say

{(Di, γi)
di //(D, γ)}

and some T-algebra map f : (TC, µC) → (D, γ).
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By [2, 4.3.2], the forgetful functor U : CT → C preserves λ-directed colimits,
so

{Di
Udi //D}

is a λ-directed diagram in C. Thus the map fεC : C → D must factor through
one of the cocone maps Udi, say fεC = Udif̃ , where f̃ : C → Di is some map
in C. But now by the universal property of the free functor, there must be some
T-algebra map f̄ : (TC, µC) → (Di, γi) such that f̃ = f̄ εC . Furthermore, we
must have UdiUf̄ = Uf since both are factorisations of UfεC through the free
T-algebra (TC, µC). But this is just the statement that dif̄ = f . Similarly, the
essential uniqueness of this factorisation follows from the essential uniqueness
of the factorisation of fεC in the category C. This proves that (TC, µC) is
λ-presented in CT.

To show that the objects (TC, µC) form a generating set for CT, suppose we
have a pair of arrows f 6= g : (A,α) → (B, β) in CT. These are represented by
arrows Uf, Ug : A → B in C. Now since the objects C form a generating set
in C, there is some map x : C → A with C λ-presented such that Ufx 6= Ugx.
Letting x̄ : (TC, µC) → (A,α) be the factorisation of x through εC given by the
universal property of the free functor, we get that fx̄ 6= gx̄. This shows that
the objects (TC, µC) form a generating set.

To show this generating set is strong, suppose we are given an object (A,α)
in CT, and a proper subobject (S, σ) s //(A,α). It is easy to show that the
map Us : S → A in C is a proper subobject in C, and so there is some map
x : C → A that does not factor through it. The map x̄ : (TC, µC) → (A,α) in
CT cannot factor through s, since if it did this would give a factorisation of x
through s. This shows that the objects (TC, µC) form a strong generating set
for CT, completing the proof.

3 Sheaves on a space

Our main result concerns categories of module objects in locally λ-presentable
toposes. It is therefore natural to ask when a topos is locally λ-presentable.
In this section we give necessary and sufficient conditions for the category of
sheaves on a space to be locally λ-presentable, for any regular cardinal λ.

Let C be a small category with pullbacks, and let J be a Grothendieck
topology on C, with a basis K as in [4, III.2]. Then a presheaf P : Cop → Sets
is a sheaf with respect to this topology iff for any cover {fi : Ci → C | i ∈ I} in
K, the diagram

PC
e //

∏
i∈I PCi p1

//
p2//∏

i,j∈I P (Ci ×C Cj)

is an equaliser, where e is given by the collection of maps Pf : PC → PCi, and
the maps p1, p2 are given by the first and second projections of the pullbacks,
see [4, III.4.1].

We say a Grothendieck topology is of λ-type if there exists a basis K in
which all the covering families have size less than λ. In particular, for such a
topology, the diagram above is λ-small.

Since in a locally λ-presentable category, we have that λ-small limits com-
mute with λ-directed colimits [1, 1.59], we have the following result:
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Lemma 3. Let C be a small category with pullbacks, and let J be a topology
on C with a basis K consisting entirely of λ-small families. Then Sh(C, J) is a
locally λ-presentable category.

In the case where λ = ℵ0, this is the well-known fact that coherent toposes
are locally finitely presented, see eg [3, D.3.3.12].

Remark. Alternatively, we can write a λ-ary essentially algebraic theory as in
[1, 3.34], whose models are precisely the sheaves for the topology J .

The sorts for our language will be the objects of C.
For each arrow f : C → C ′ in C, we include in our language a (total) function

symbol f : C ′ → C, and include equations in our theory expressing that the
composition of two function symbols is the function symbol corresponding to
the composition of the two arrows.

In addition, for each covering family S = {fi : Ci → C} in K, we add a
partial morphism σ :

∏
i∈I Ci → C.

For each pair i, j ∈ I, let pi,j
1 and pi,j

2 be the function symbols corresponding
to the arrows in the pullback diagram

Ci ×C Cj
pi,j
1 //

pi,j
2
��

Ci

fi

��
Cj

fj // C

We now define
The collection of models for this theory are precisely the sheaves over the

site (C, J); since each operation symbol is λ-ary, each equation uses less than λ
variables, and each Def(σ) uses less than λ-equations. It follows from [1, 3.36]
that the category of models is locally λ-presentable. Def(σ) to be the collection
of equations pi,j

1 (x̄) = pi,j
2 (x̄), as i and j range over all possible pairs from I.

The partial map σ thus maps each ‘matching family’ to a unique ‘amalgama-
tion’; we add equations to our theory σ({fi(x)}i∈I) = x and fj(σ({xi}i∈I) = xj

to express this.

Definition 4. Suppose X is a topological space; we define an open subset of X
to be λ-compact if every open cover of it has a λ-small subcover.

That is, an open set is λ-compact if it is λ-presented in O(X), the lattice of
open sets in X.

Example. 1. If λ = ℵ0, this is just the usual notion of compact.

2. The open intervals (p, q) form a basis for the topology on R, where p, q ∈ Q.
Every open subset of R is therefore ℵ1-compact, since every cover can be
broken down into elements of this basis, and countably many of these sets
must suffice to cover a given open set in the real line.

3. In general, if a space X has a λ-small basis, then all the open sets in it
are λ-compact.

Now suppose X is a topological space with a basis B of λ-compact sets.
Then the category of sheaves on X is equivalent to the category of sheaves on
the basis, see for example [4, II.1.3]. Moreover, the covers in B are precisely
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those containing λ-small covers, by λ-compactness. Thus the λ-small covers
form a basis for the Grothendieck topology on B, and by the previous result,
the category of sheaves is locally λ-presentable.

The rest of this section is dedicated to showing that the converse is true.
To prove the next result, we will need to look at slice categories, see eg

[2, vol.1, p.92], [4, p.12]. Given an object C in a category C, the category of

objects over C, denoted C/C, has as its objects arrows B
f //C in C, and as

its morphisms, commutative triangles

B

f   A
AA

AA
AA

A
h // B′

f ′

��
C

.

Proposition 5. Let C be a locally λ-presentable category; let C be an object of
C. Then Sub(C) is locally λ-presentable.

Proof. We start by showing that C/C is locally λ-presentable.
That C/C is cocomplete is proved in [2, vol.1, 2.16.3]; we describe the colimits

here. Suppose I is a small category and we have some functor D : I → C/C,

sending each object i in I to the object Di
di //C in C/C, and each map

µ : i → j in I to Dµ : Di → Dj . Then we can compose with the forgetful

functor U : C/C → C and form the colimit {Di
li //L} of UD in C. The maps

{di} now form a compatible cocone over the diagram, so by the colimit property

we get a unique map L
d //C . One can easily verify that this map is a colimit

for the diagram D in C/C.
We now claim that C/C has a strong generating set of λ-presented objects.

Suppose B is a λ-presented object in C; then we claim that any map B
b //C

is a λ-presented object in C/C. This is clear, since by the construction of the
colimits in C/C, they are preserved by the forgetful functor U ; thus given a map

f from B
b //C to a λ-directed colimit in C/C, we apply the forgetful functor

and can factorize Uf through the colimit cocone. One may easily check that

this is also a factorization in C/C, and so the object B
b //C is λ-presented

in C/C.
The collection of all maps B → C with B λ-presented is a strong gener-

ating set of objects for C/C: this follows immediately from the fact that the
λ-presented objects form a strong generating set in C.

This proves that C/C is locally λ-presentable.

Now if D
f //C is any object in C/C, then defining rf to be the image of

f , we get a reflection functor C/C → Sub(C); the image exists because C has
strong epi - mono factorisations.

This shows that Sub(C) is reflective in C/C. It now suffices to show that
Sub(C) is closed in C/C under λ-directed colimits; the result will then follow
by [1, 1.39].

Now suppose we have a λ-directed system in Sub(C), that is, a λ-directed
collection of maps over C

{(Si
fi //C )}
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such that each fi is monic. Then the colimit in C/C is given by taking the
colimit

{(Si
µi //S )}

of the system in C, and taking the map S
f //C induced by the fi to get a

colimit in C/C. To show that this colimit is in Sub(C), it suffices to show that
f is monic (in C).

So suppose we have distinct arrows B
α //
β
//S such that fα = fβ. Then

since C has a generating set of λ-presentable object, we can choose an arrow
G

x //B with G λ-presentable, such that αx 6= βx. Now since the Si form a
λ-directed system, αx and βx both factor through one of the Si’s, and taking
an upper bound we can choose Si with maps

G
a //
b
//Si

µi //S

such that µia = αx, µib = βx.
But now fµia = fαx = fβx = fµib. Since fµi = fi which is monic, this

gives us that a = b and therefore αx = βx. This is a contradiction.

For any topological space X, the lattice of open sets O(X) is equivalent to
the lattice of subobjects of the terminal object in Sh(X) [4, III.8(17)], so we
have the following result:

Corollary 6. Let X be a topological space such that Sh(X) is locally λ-presented.
Then O(X) is locally λ-presented.

Since the sets λ-presented in this lattice are precisely the λ-compact opens,
each open set can therefore be presented as the λ-directed union of its λ-compact
subsets. In particular, the λ-compact open subsets form a basis.

We summarize:

Corollary 7. The category Sh(X) is locally λ-presented iff X has a basis of
λ-compact open sets.

Remark. This corollary shows that for spatial toposes, being coherent is equiv-
alent to being locally finitely presentable. Examples are given in [3, D.3.3.12] of
locally finitely presentable toposes that are not coherent. It is shown that if the
category of sheaves on a space is a coherent topos, then the space has a basis of
compact open sets in [3, D.3.3.14].

4 The Associated Sheaf Functor for a Presheaf
of Modules

The results in this section will be used to prove our main theorem. We could
not find a full account of this material in the literature, so we have proved the
results we need.

Given a ring object in a category of sheaves, we want to show that the asso-
ciated sheaf functor for presheaves of modules over the ring commutes with the
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forgetful functor. We begin by summarizing the construction of the associated
sheaf functor for sheaves of sets, which is given in (for example) [4, III.5].

Let (C, J) be a site and let P be a presheaf of sets on C. For any object
C in C and any cover S ∈ JC, a matching family of elements of P is a map
of presheaves S → P , where we consider S to be a subpresheaf of Hom(−, C).
Equivalently, we can think of it as a set {xf}f∈S where for each f : D → C in R,
xf ∈ PD, and such that xfg = Pf(xg). We write Match(S, P ) for the collection
of all matching families of elements of P for the cover R. An amalgamation for
a matching family {xf}f∈S is some x ∈ PC such that xf = Pf(x) for each
f ∈ S.

The associated sheaf functor is defined by two applications of the ‘plus-
functor’ P 7→ P+. For an arbitrary presheaf P , this is given by

P+C = lim
−→S∈JC

Match(S, P ),

that is, each element of P+C is an equivalence class of matching families for
covers of C where two matching families {xf}f∈S and {yg}g∈T are equivalent if
there is a common refinement of S and T on which they agree, that is, if there
exists U ⊆ S ∩ T such that for all f ∈ U , xf = yf .

For each map h : C ′ → C, and each subpresheaf S of Hom(−, C), we write
h∗S = {g : D → C ′ | hg ∈ S}.

We define P+h : P+C → P+C ′ by

{xf | f ∈ S} 7→ {xhf ′ | f ′ ∈ h∗S}.

Thus P+ is a presheaf. Each map φ : P → Q of presheaves induces a map
φ+ : P+ → Q+ of presheaves by taking a matching family S //P to the

composite S //P
φ //Q .

There is a map of presheaves η : P → P+ defined by sending each x ∈ PC
to the equivalence class of {Pf(x) | f ∈ tC}, where tC is the maximal sieve on
C.

If F is a sheaf and P is a presheaf, then any map φ : P → F of presheaves
factors uniquely through η; we write φ = φ̃η, as in the diagram

P
η //

φ   B
BB

BB
BB

B P+

φ̃

��
F

Moreover, for every presheaf P , (P+)+ is a sheaf. Thus defining aP = P++,
we get that a : SetsC

op
→ Sh(C, J) is a left adjoint to the inclusion functor

i : Sh(C, J) → SetsC
op

.
We now turn to the question of sheaves of modules for a given sheaf of rings

R.

Lemma 8. Let R be a sheaf of rings on a site (C, J), and let M be a presheaf of
R-modules. Then there is a canonical R-module structure on UM+, for which
η : UM → UM+ is a homomorphism.
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Proof. For each object C in C, the elements of UM+C are given by equivalence
classes of families

{xf |f : D → C, f ∈ S}

where S ∈ JC, and two such families x = {xf | f ∈ S} and y = {yg | g ∈ T}
are equivalent if there is a common refinement U ⊆ S ∩ T with U ∈ JC such
that xf = yf for all f ∈ W .

So if x and y are two such classes, choose representations {xf |f ∈ S} and
{yg|g ∈ T}; then choose the sum x + y to be (the equivalence class of) the
point-wise sum of xf and yg on S ∩ T .

To show this is well-defined, suppose we choose another representative {x′f |f ∈
S′} of x. Then there is a refinement W ∈ S∩S′ such that xf = x′f for all f ∈ W .
So for f ∈ W ∩ T , we have xf + yf = x′f + yf . Now

W ∩ T ⊆ (S ∩ T ) ∩ (S′ ∩ T )

and W ∩ T ∈ JC. So this shows that the two sums above are equivalent, that
is, that the addition operation is well-defined.

If r ∈ RC, and x is an equivalence class represented by {xf |f ∈ S} as above,
then we can define the scalar product rx to be the equivalence class represented
by {Rf(r).xf |f ∈ S}. It is easy to show that this definition is independent of
the choice of matching family to represent x.

We have now shown that UM+(C) has a canonical RC-module structure.
Now suppose h : D → C is a morphism in C. Then UM+(h) is defined by

UM+(h)({xf |f ∈ S}) = {xhf ′ |f ′ ∈ h∗S}

and this is well-defined on equivalence classes.
To verify this commutes with addition, suppose x and y are equivalence

classes with representatives {xf |f ∈ S}, {yg|g ∈ T}. Adding their images under
UM+, we get:

{xhf ′ |f ′ ∈ h∗S}+ {yhg′ |g ∈ h∗T} = {xhf ′ + yhf ′ |f ′ ∈ h∗S ∩ h∗T} (1)

Now we note that h∗S ∩ h∗T = h∗(S ∩ T ) (from the definition of h∗) and
that

xhf ′ + yhf ′ = UM(h)(xf ′) + UM(h)(yf ′) = UM(h)(xf ′ + yf ′)

since UM(h) is a module map. It follows that the right hand side of (2) is just
the image of the sum x + y under UM+(h), which is precisely what we set out
to prove.

To show that UM+(h) commutes with scalar multiplication is similar.
This shows that the plus-operator maps presheaves of modules to presheaves

of modules. It remains to show that it maps morphisms to morphisms. Let

M
φ //N be a morphism of presheaves of R-modules. Then Uφ+ : UM+ →

UN+ is defined by

{xf |f ∈ R} 7→ {φdom(f)(xf )|f ∈ R}

This clearly commutes with the module operations since φ does.
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To show φ is a natural transformation, let h : C → C ′ be a morphism in C.
We need to show the diagram:

UM+C
UM+h//

Uφ+
C

��

UM+C ′

Uφ+
C′

��
UN+C

UN+h // UN+C ′

commutes. But this can be immediately verified by inspection.
We also need to show that η : UM → UM+ is an R-module homomorphism.

To show it’s a homomorphism of (sheaves of) abelian groups, consider an object
C in C, and take two elements x, y ∈ MC. Then since Pf is a module morphism
for every morphism f in C, we have

ηC(x + y) = {Pf(x + y)|f ∈ tC} = {Pf(x) + Pf(y)|f ∈ tC} = ηC(x) + ηC(y)

To show η commutes with scalar multiplication is similar.

Lemma 9. Let P be a presheaf of modules, F a sheaf of modules, and φ : P → F
be a map of presheaves of modules. Then φ̃ : P+ → F is a map of presheaves
of modules.

Proof. Let xand y be elements of P+C, represented by {xf | f ∈ S} and
{yg | g ∈ T} respectively, for some C ∈ C.

The image φ̃(x) is the unique amalgamation of {φ(xf ) | f ∈ S} in FC, φ̃(y)
is the unique amalgamation of {φ(yg) | g ∈ T}. So for all f ∈ R ∩ S, we have

Ff(φ̃(x) + φ̃(y)) = φ(xf ) + φ(yf )

But then φ̃(x) + φ̃(y) is an amalgamation of

{φ(xf ) + φ(yf ) | f ∈ R ∩ S} = {φ(xf + yf ) | f ∈ R ∩ S} = φ̃(x + y)

The proof that φ̃ respects scalar multiplication is similar.

Let M be a presheaf of modules over R. Then let M+ be the presheaf
of modules whose underlying presheaf of sets is UM+, and whose R-module
structure is that just given.

Corollary 10. Let P be a presheaf of modules. Then for any morphism φ :
P → F where F is a sheaf of modules, there is a unique morphism (of presheaves
of modules) φ̃ : P+ → F such that the diagram below commutes:

P
η //

φ   B
BB

BB
BB

B P+

φ̃

��
F.

(2)

Now we define ã : PreMod-R → PreMod-R by ãM = M++. Since the
underlying set of aM is just UM++, we have proved the following.
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Corollary 11. The functor ã : PreMod-R → Mod-R is left adjoint to the
inclusion functor ĩ : Mod-R → PreMod-R.

Furthermore, sheafification commutes with the forgetful functor, in the sense
that the diagram below commutes:

PreMod-R
ã //

U

��

Mod-R

U ′

��
SetsC

op a // Sh(C, J)

We also need the following lemma.

Lemma 12. The forgetful functor U : PreMod-R → SetsC
op

preserves directed
colimits.

Proof. We begin by showing that directed colimits in PreMod-R can be taken
pointwise.

Let {Mi}i∈I be a directed system in PreMod-R for some directed poset
(I,≤). Then define L ∈ PreMod-R by taking LC to be the colimit of the
directed system {MiC}, for each object C in C. Write liC for the colimit maps
MiC → LC.

Given a map C
f //D in C, we get maps {MiC

Mif //MiD
liD //LD} form-

ing a compatible cocone over the directed system {MiC}; the map Lf : LC →
LD is now given by the universal property of colimits. It follows from this that
the families of maps li = {liC}C∈C are natural transformations, as implied by
the notation.

To see this construction forms a colimit in PreMod-R, suppose we have

some compatible cocone {Mi
αi
//P }i∈I in PreMod-R. Then in each compo-

nent C, we get a unique factorisation map LC
α̃C //PC . We need to show that

the α̃ so defined is a natural transformation, that is, given any map f : C → D
in C, that the following square commutes:

LC
α̃C //

Lf

��

PC

Pf

��
LD

α̃D // PD.

This is true because for each i ∈ I, we have that

Pfα̃C liC = Pf.αi
C = αi

DMif = α̃DliDMif = α̃DLfliC

and so Pfα̃C = α̃DLf by uniqueness of the factorisation through the colimit.
For each C, the theory of RC modules is an algebraic theory and by [1,

3.4(4), 3.6(6)], the forgetful functor U preserves directed colimits. The same
argument as above now shows that the maps UMi → UL form a colimit cocone
for the directed system UMi in SetsC

op
.
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5 Monadicity of the module category

Theorem 13. Let E be a Grothendieck topos, and let R be a ring object in E.
Then Mod-R, the category of right R-modules in E is monadic over E.

Proof. Let (C, J) be an underlying site for E .
Let SetsC

op
be the category of presheaves of sets over C. Now R is a ring

object in SetsC
op

, (since the inclusion functor i : E → SetsC
op

preserves the
finite product R × R) so we can define a category PreMod-R of (presheaves
of) modules over R, that is, the R-module objects in SetsC

op
.

We have the forgetful functor

U : PreMod-R → SetsC
op

.

This restricts to a forgetful functor between the sheaf categories (recall that
a sheaf of modules is a presheaf such that the composition with the forgetful
functor is a sheaf).

U ′ : Mod-R → Sh(C, J)

We seek to show that this functor is monadic.
We can construct a ‘free module’ functor, left adjoint to U , point-wise. Let

F : SetsC
op
→ PreMod-R

be the functor defined on each presheaf of sets S by taking (FS)(C) to be the
free RC-module generated by SC, for each object C ∈ C. This induces a unique
definition on arrows. So FS is a presheaf of modules.

We now claim that F is left adjoint to U , that is, that it has the universal
property of a free module. So let S be a presheaf of sets, and let M be a presheaf
of modules, as in the diagram

S
ε //

α
""E

EEEEEEE UFS

UM

with ε being the canonical map S → UFS and α being an arbitrary natural
transformation. Then for each C ∈ C, we can define α̃C : (FS)(C) → MC by
the free module property of (FS)(C). It remains to show that α̃ defined in this
way is a natural transformation.

So let C
f //D be an arrow in C. We need to show that the diagram below

commutes:

FS(C)
α̃C //

FSf

��

MC

Mf

��
FS(D)

α̃D // MD

Now we can expand this diagram in SetsC
op

to
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SC
εC //

Sf

��

UFS(C)
Uα̃C //

UFSf

��

UMC

UMf

��
SD

εD // UFS(D)
Uα̃D // UMD

with (Uα̃C)εC = αC and (Uα̃D)εD = αD.
Since α is natural, the outer rectangle commutes and the square on the left

commutes by the definitions of F and ε. So we have a map of sets SC → UMD,

so there is a unique factorization through SC
εC //UFS(C); and since both

arms of our original diagram are such factorizations, they must be equal. Thus
F a U .

We now have the diagram:

Mod-R
ĩ //

U ′

��

PreMod-R
ã

oo

U

��
Sh(C, J)

i //
SetsC

op

a
oo

F

OO

where by composition of adjunctions, ã.F a U.̃i = iU ′. So in particular, for a
sheaf of modules M and a sheaf of sets S, we have a natural isomorphism

(ãF (iS),M) ∼= (iS, iU ′M) ∼= (S, U ′M)

and so the above adjunction restricts to an adjunction on the sheaf categories

Mod-R
U ′
//
Sh(C, J)

ãF i
oo .

By Beck’s Theorem, U ′ is monadic if it reflects isomorphisms and creates
split coequalisers.

U ′ reflects isomorphisms: let α : M → N be a natural transformation
between sheaves of modules (that is, a morphism in Mod-R) such that U ′α is
an isomorphism. Then (U ′α)C is a bijection for each C ∈ C. Therefore, αC is
a bijection, and thus an isomorphism of modules. Since αC is an isomorphism
for every object C, it follows that it is an isomorphism of functors.

U ′ creates split coequalisers: let α, β : M → N be maps in Mod-R such
that there is a split coequaliser diagram

U ′M
U ′α //
U ′β

// U ′N
γ //

i

ll
P

j
oo

with U ′α.i = 1U ′N , γj = 1P , U ′β.i = jγ, γ.U ′α = γ.U ′β.
To show that U ′ creates this coequaliser, it suffices to show that P underlies

a sheaf of R-modules, with γ being a module map. Since P is already a sheaf,
we just need to show it has R-module structure, that is, for each C ∈ C, PC has
an RC-module structure, that γC is an RC linear map, and that the restriction
maps in P are linear. For each such C we have

12



U ′MC
U ′αC //
U ′βC

// U ′NC
γC //

iC

ll
PC

jC

oo

Since U ′αC .iC = 1U ′NC and γCjC = 1PC , iC and jC must both be injective,
and so PC ⊆ U ′NC ⊆ U ′MC, with maps

U ′MC
U ′αC //
U ′βC

// U ′NC
γC // PC

Here U ′αC is the identity on U ′NC, U ′βC agrees with γC on U ′NC.
To show that PC with the module structure inherited from NC is a sub-

module of NC, let a, b ∈ PC; then since γ is epi, there exist x, y ∈ U ′NC such
that γC(x) = a, γC(y) = b; then

γC(x + y) = U ′βC(x + y) = U ′βC(x) + U ′βC(y) = a + b

so a + b ∈ PC. Likewise if r ∈ RC, then γC(rx) = ra. And since γ agrees with
U ′β on U ′NC, it follows that it is linear.

It remains to prove that if f : C → D is a morphism in C, then Pf is linear.
However this follows immediately from the fact that Pf is just the restriction
to PC of Nf .

We have now shown that U ′ : Mod-R → Sh(C, J) is a monadic functor.

Corollary 14. Let E be a locally λ-presentable topos (and so in particular a
Grothendieck topos) and let R be a ring object in E. Then the category of
modules over R is locally λ-presented also.

Proof. By Lemma 2, it suffices to prove that U ′ preserves λ-directed colimits. If
this is the case, then since left adjoints preserve all colimits, the monad functor
U ′ãF i will preserve them, and the result will follow.

Suppose (I,≤) is a λ-directed poset, viewed as a category, and let

D : (I,≤) → Mod-R

i 7→ Di

be a functor. PreMod-R is cocomplete, so there is a colimit cocone

{ ĩDi
di //E }

over the diagram ĩD : (I,≤) → PreMod-R. Since Mod-R is a reflective
subcategory of PreMod-R, the cocone

{Di
ηEdi // ãE } (3)

is a colimit cocone in Mod-R.
Now by Lemma 12, U preserves directed colimits, and so preserves λ-directed

colimits also; since a is a left adjoint it preserves all colimits. Thus the cocone

{aU (̃iDi)
aU(di) //aU(E)}
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is a colimit. But now by Corollary 11, aU = U ′ã, so the above cocone is the
collection of maps

{U ′ãĩDi

U ′ã(di) //U ′ãE }

which is just the cocone

{U ′Di)
U ′ηEdi)//U ′ãE }.

This is just U ′ applied to the colimit cocone (3).
This shows that U ′ preserves λ-directed colimits, completing our proof.
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