ty
er

The Universi
of Manchest

MANCHESTER

1824

Multiplicities of Critical Points of Invariant
Functions

Montaldi, James

1993

MIMS EPrint: 2010.24

Manchester Institute for Mathematical Sciences

School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/

And by contacting: The MIMS Secretary
School of Mathematics
The University of Manchester
Manchester, M13 9PL, UK

ISSN 1749-9097


http://eprints.maths.manchester.ac.uk/

Published in:
Workshop on Real and Complex Singular-
ities (M.A.S. Ruas ed.), Mateatica Con-
tempoéneab (1993), 93-135.

Multiplicities of Critical Points of Invariant
Functions

James Montaldi

Introduction

The purpose of this expository article is to describe in an elementary andgeemo
neous manner, the relationship between the geometric and algebraic multiplicities
of isolated critical points of holomorphic functions. In particular, | am irgégd in
the setting where the function is invariant under some group action. Theasisph
is on functions invariant under actions of finite groups as very little is knibtire
group is not finite. Most of the results described here are already #kpiicthe
literature; the only small extension is to functions that are not invarianedpuiv-
ariant under the action of a group: a functionf satisfyingf(gx) = 9(g) f(x) for
some homomorphis : G — C*. The results (in Section 7) on the multiplicity of
critical points of homogeneous functions invariant un@éiare also newCaveat
| will say nothing about the other important invariant of critical points ofcfions:
the Milnor fibre. For this, the interested reader should refer to the origiatérial,
namely [8], [20] (for finite group actions), [10] (f&@*-actions) and [9, 13] (for the
weighted homogeneous cases).

This article grew out of a series of lectures | gave at the ICMSC in Jul 199
preceding the conference. | would particularly like to thank Maria Ruais¥iting
me to give the lectures, for organizing a wonderful conference, aadlyfifor en-
couraging me to write up the lectures for publication in these proceedingsultdw
also like to thank Mark Roberts and Duco van Straten for the many stimulating
discussions | have had with them on the material in these lectures.

TERMINOLOGY AND NOTATION All functions and differential forms will be as-
sumed to be holomorphic, and although we will usually say, flée a function
on C"™, we will mean thatf is defined in a neighbourhood of 0 @". All the
actions we consider are linear; consequently the terms representati@ctéom
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are interchangeable. The motivation for considering only linear actionatishta
results we are interested in here are purely local, and locally, near gfixei any
action can be linearized.

We assume a basic familiarity with the representation theory of finite groups,
see for example Serre’s book [17]. For a representafiarf the groupG, we
write [V] for its image in the representation ring Gf The representation ring is
isomorphic to the ring of virtual characters (the ring generated by thecteas of
G), and consequently we use the sympglas a character. Thyg](g) =tr(g;V),
for eachg € G. From standard representation thedw,s W] = V] + [W] and
[V oW] = [V]W].

If Sis afinite set acted upon Iy, then[S| denotes the associated representation
(or rather its image in the representation ring3)f that is, the action induced on
Map(S,C), or again, on the vector spa¢§ s.sAsS| As € C}, with g- (3 AsS) =
S Asg-s. A particular case is the action of a finite groGpon itself by say left
multiplication, giving theregular representatiorC.G and its characte|G|. As is
well-known, [G](g) = 0 for g # e, and[G]|(e) = |G|.

Note that a 1-dimensional representation can be identified with its charsater,
we need not distinguisip] from 9.

If G acts onV, andg € G, thenV9 denotes the subspace fixed pointwisegby
The fixed point subspace for the entire grdifs denoted/©.

CONTENTS Section 1 describes the basic method used from commutative/homological
algebra to relate algebraic and geometric multiplicities, namely deformations of
complexes of modules or sheaves. Section 2 applies this method to isolatedl critica
points of holomorphic functions. Section 3 describes some elementary imvaria
theory needed to understand critical points of invariant functions, wéxiehthe
subject of Section 4. Section 5 describes some recent results on crdingd pf
functions that are invariant under actiong®f This is the only case where results
are known on multiplicities of critical points of functions invariant under g®u

that are not finite. Finally, Sections 6 and 7 show how one can calculatd-the a
gebraic multiplicities of critical points of weighted homogeneous functions, both
general functions and invariant functions.
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1 Complexes and their deformations

Our proof of the results relating algebraic and geometric multiplicities of critical
points of functions in these notes is through complexd’-nfodules (or sheaves,

if the reader prefers), wheiRis the ring of (germs at 0 of) analytic functions on
C". There are two central abstract results that we use: one on deformafion
complexes and the other (the acyclicity lemma) on exactness. Before giese, th
we first give a brief description of how the two multiplicities are related. Note
that similar arguments can be used for counting multipicities of other geometric
phenomena.

The algebraic definition of multiplicity is as the dimension (0@rof some
R-module Mg that depends on the geometry in question, here the critical point of
an analytic function. This module will be finite dimensional, which is equivalent to
it being supported at an isolated point (by the Nullstellensatz). The aim i®w sh
that if the function in question is perturbed, the resulting perturbatiinof the
module My is such that its dimension remains constant, or rather the sum of the
dimensions of the constituent parts remains constant.

This is made precise by including the deformation parantete€. ThenM
is the family of M; ast varies, and is ai® = R{t}-module. If Mg is finite di-
mensional, theno\ is a finitely generate@{t}-module. The crucial point to be
established is that it isfaee C{t }-module.

To see this, le€ C C" x C be the suppottof the SmoduleM, and letrt: C —

C, (x,t) —t be the restriction t& of the Cartesian projection which is finite-to-
1. If we considerM as aC{t}-module, we can writet,(M). The relationship
betweenM andrt. (M) is given by

TL (M)t = D xpyer 1) M(xt) (1.1)
for eacht € C. Thus, ifr, (M) is a free module, then

r(t) = Z dimc./\/l(x’t)

(xt)em1(t)

is constant. From here on, we will write difvl rather than dirg M.

The geometric step is to interpret ditr 1) when this is as simple as possible;
for us at non-degenerate, or generic, critical points.

In the above discussion, and everywhere else, all constructionasGatould
really be interpreted as germs to ensure that we only consider critical difits

Lif M is anR-module, therx € supgM) if the localisation ofM at x is non-zero. In terms of
sheaves, this means that for any neighbourhdad x in C", the restriction oM toU is non-zero
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that approach 0 as— 0. This will always be tacitly assumed, and | make no
further reference to this point.

DEFINITION Let R be a commutative ring with unit — for example the ring
C{x1,...,%n} of analytic functions or its subring of invariants under a given group
action — and let

Ko: 0—MJ-Lmi-L o LMt mN 0
be a complex of finitely generaté@modules. LetS= R{t} (SOR~ S/tS). A
deformation ofK g overC is a complexXX of finitely generate&-modules

K: 0—-MO-4 Mt 4, . 9 yN-1_ 9 N _, o

where for eaci = 0,...,nwe have an exact sequence
0—M LM —>|\/|5—>O,

where—L is multiplication byt, and the differentialsl commute with multiplica-
tion byt. In particular, this implies that ead¥' is torsion-free as &{t}-module.
There is thus an exact sequence of complexes:

0K K -=Kg—0.

This short exact sequence of complexes gives a long exact seguarahomology
as follows:
0—-HOLHO —H) —H L
s HEL S H S HE S HY S R
--—>H(')V_1—>HNL>HN—>H(')\I—>O,
whereH' = H'(K), andH} = H'(K). The long exact sequence is obtained by an
easy diagram chase (if the reader is unfamiliar with this, he should remindlhimse

of the simplicity of the argument; the melrﬁjl — H' is essentially the differential
d of the complexes).

Lemma 1.1 LetKg be a complex of R-modules, such that all cohomology groups
are finite dimensional vector spaces. lkete a deformation of the complé,
depending on the parameteetC. Then,

1. the H are finitely generate@{t}-modules;
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2. H) = 0implies H = 0 (though not conversely");
3. H'™' = 0implies HY is a freeC{t}-module.

PROOF. 1. This follows from the preparation theorem (see for example [S]'as
is a finitely generate&module, and

dim(H' /tH") < dim(H) < oo.

2. Supposdil = 0. Then there is an exact sequettie—— H' — 0, so that
H'/tH' = 0. It follows from Nakayama’s Lemma thit' = 0.

3. This follows immediately from the last row of the long exact sequence
above, for therHN — HN is injective soHN is a torsion freeC{t}-module, and
hence free. O

Remark 1.2 One can show more, hamely that in the deformation the Euler char-
acteristic of the complex is constant: for each C

X(Ks) = X(Ko),

whereK s is the complex induced fromd by puttingMi = M!/(t — s)M.

To see this, note that sind¢' is finitely generated ove€{t}, it is the direct
sum of a torsion module (which is necessarily a finite dimensional vectoekpac
and a free module. Write accordingly

H =T oF.

Let aj be the number of generators Bf, andp; the number of generators 6f,
soB = rk(F') =rk(H'"). Note that multiplication by respects the decomposition
H =~ TigFl, anda; = dimke{T' — T/] = dimcokefT! — Ti], while i =
dimcokefF' — Fi] and kefF' — Fi] = 0. From the long exact sequence in
cohomology given above, it follows that

dim(HY) = o + Bi + Qi 1. (1.2)

Consequently,
N N

i;3(—1)i dim(Hp) = i;(—l)iﬁi,

(note thatog = 0 since by the long exact sequenkf, is torsion free). Thus, the
Euler characteristic of the compl&g depends only on the free partld{K). This
will also be true for any other specializati#h.
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We now turn to the acyclicity lemma. Suppose now that
K: 0-M0-4 Mt 4, . 9 yN-1 9 N o (1.3)

is a complex ofreefinitely generatedk-modules. The cohomology groups of this
complexH'(K) are alsoR-modules, sincel is R-linear. Note that by the Hilbert
Nullstellensatz, the hypothesis that the compfexhave finite dimensional coho-
mology groups is equivalent to their support being a finite set.

Lemma 1.3 (Acyclicity Lemma — Basic version) Suppose the cohomology of the
complex (1.3) of free R-modules is supported on an algebraic subsetimhen-
sion c, then

HO=H'=...=H"1=0

where H = H'(K).

This famous lemma is due to Peskine and Szpiro. For an elementary self-
contained proof see the appendix of [10], and for a more detailed atceee
the recent book of J. Strooker [19]. In our use of this lemma, the cohayab
(1.3) will be supported at an isolated point, add= n, so we will have that all
cohomology groups except" vanish — that is, the complex &yclic

More general versions of the Acyclicity Lemma replace the freenesgihgpie
with one on the depth of tHe-modulesM'. That this is the “correct” hypothesis is
(hopefully) made clear in [10].

2 Isolated critical points

We are interested principally in two invariants associated to isolated criticakspoin
of holomorphic functions. They are the geometric and algebraic multiplicities, de
notedugeomandua|g respectively. It was shown by Milnor [8] and Palamodov [14]
that in fact these are equal. We concentrate on Palamodov’'s algeboangtyi
proof; Milnor’s proof is more differentio-topological in nature, relying the de-
gree of the gradient of the given function.

A 1-parameter deformatioof a functionf (x) onV is a functionF (x,t),t € C
such that for eaclk € V, F(x,0) = f(x). The deformed functiof (-,t) is also
denotedf;. All our deformations will be 1-parameter deformations, although it is
seldom made explicit. A critical pointof a functionf is said to bewon-degenerate
if the second differential of atx is a non-degenerate quadratic form. We say a
function f is non-degenerate if all critical points are non-degenerate. The foldpwin
result is of central importance.
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Proposition 2.1 Suppose f has an isolated critical point. Then there are defor-
mations F of f with the property that forst O, all the critical points of f are
non-degenerate.

This is proved by considering the explicitparameter deformatioR : C" x
(CM* — C, (x,a) — fa(x) = f(x) —a(x). Then the “catastrophe seE(F) (those
pairs (x,a) corresponding to critical points) is andimensional submanifold of
C" x (C")*. Singularities of the projectio@(F) — (C")* correspond to degenerate
singular points. Moreover, the set of singular values of an analytic mamtained
in some hypersurface, heke C (C")*. To find a non-degenerate deformation, it
suffices to take any cun@in (C")* such thaCnH = {0}.

MULTIPLICITIES Letf:V — C have an isolated critical point at the oright &
CM). Then by the proposition above, there are deformatiopst) of f with only
non-degenerate critical points in a neighbourhood of 0. The numbechbfaitical
points is thegeometric multiplicityof the critical point off at 0, denoteqigeom=
Hgeon f,0). The fact that this is independent of the non-degenerate deformation
F can be proved directly, but also follows from the results below.

The standard definition @lgebraic multiplicityis:

. R
Malg = Halg(f,0) :=dimc (ﬁ) ;

whereR s the ring of germs at the origin of analytic functions, aidienotes the

Jacobian ideal, the ideal generated by niartial derivatives off. However, we

are going to use an alternative expression for this invariant usingefiffiet forms.
Let f have an isolated critical point at Define themultiplicity moduleto be

theR-module

_ @Y

S dfaQl

WhereQS is theR-module of analytiqp-forms onV.

M(£,0)

Proposition 2.2 Let f:V — C have an isolated critical point &, then

PROOF Indeed more is true: &&-modules, M (f) andR/Jf are isomorphic. The
proof is merely an observation: there is an isomorphisiR-ofodules

Y:R — QU
h — hdxA...AdX,
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(depending of course on a choice of coordinates/gnand under this isomor-
phism, P(af /ax) = (—1)'"1d f A dx, wheredx € Q"* denotes the fornax; A
o AA%_1 AdX% 1AL  AdX,. Thusy induces an isomorphisiR/Jf — M(f). O

Theorem 2.3 (Milnor [8], Palamodov [14]) Let f:V — C have an isolated crit-
ical point at the origin. Then g = Hgeom

PrRoOF. Consider the complex of differential forms:

0-R-0 o2 ... qgr1dan g 2.1)
where the differentials are given loy— d f Aa, for a € QP. Given a deformation
F of f, this complex has a natural deformation as follows. $etR{t} and define
the Smodules ofrelative differential forms

p _

QVXC/C =

This module is isomorphic to the modu®) @c C{t} — forms onV that are
parametrized by € C. The deformatior thus defines a map

. P p+1
dFA QY cc = Quie/e

which corresponds to the differential &f with respect to all but thé variable.
Clearly we haveQ\‘;Xc/c/th}Xc/C ~ Q. Consequently, there is a short exact
sequence of complexes:

0= (Qy /e dFA) = (Qyyc/c dFA) — (Qy,d fA) — 0.

DenoteH”(QVXc/C,dF/\) by M(F).

Since f has an isolated critical point at 0, the cohomology of the complex
(Q',dfA) is supported at 0. For, Ifl is a contractible open set away from O co-
ordinates can be chosen bnso thatd f = dx;, and then exactness @his clear.

It follows from the acyclicity lemma thatl) := H'(Q,d fA) = 0 fori < n, and by
definitionHJ := H"(Q',d fA) = M(f).

It follows from Lemma 1.1(3) thatM (F) is a freeC{t }-module.

It remains to show that iF is a non-degenerate deformation, thentfe# O,
dlmM(ft) = Hgeom Now,

dimM(f) =3 dimM(f;,x),
xeC(ft)

so we reduce to a local calculation in a neighbourhood of a non-degjeratt-
ical point. By the Morse lemma, coordinates can be chosen locally such that
fe(Ug,...,Un) = ¥ U2, and saM( fi,u; = 0) = C as required. O
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Remark 2.4 (i) If the deformation fails to be non-degenerate, the same proof im-
plies that
Ualg( fo,0) = Z Ualg( ft,x).
xeC(f)
This can be interpreted as saying thgjy defines a ‘good’ notion of multiplicity.
We will see below that there are instances where the allowed deformatiens ar
never non-degenerate.
(ii) This proof is isomorphic to the proof that Palamodov gave [14]. He con-
sidered the Koszul complex on the generator3fof

KJf):0—=Ky—Kp1— - — Ky — Kyg—0,

whereK, is the freeR-module generated bjg, A&, A... A ap}, with 1 <i; <
iz <...<ip<n, which is therefore of ranl@B). The differentials in this complex
are theR-homomorphisms generated by

ot
Aici& k%(*l)k&/\iel\{k}a’

wherel is any index set of lengtp.
(iif) The theorem was also proved by Milnor, using techniques that are more
topological. Briefly, let1f : C" — C" be the “holomorphic gradient” of:

of of

Of(x) = (6_X1”6—xn>
Clearly, critical points off are zeros oflf, and a critical point is non-degenerate
if and only if the corresponding zero aff is simple. Clearlygeond f,0) is the
number of solutions of the equatianf; = 0, that is the multiplicity of the zero
of Of at 0. It remains to show that the multiplicity of an isolated zero of a map
g:C"— C"is given by dinfR/(g1,...,0n)). This Milnor does by topological
arguments involving the degree@ff in [8, Appendix B].

3 Invariants

Let G be a finite group acting linearly ovt = C". If necessary, we will make
explicit the representatiop : G — GL,(C). For any subgroupl < G we denote
by VH or Fix(H;V) the set of points o¥ fixed by every element df:

VH = Fix(H;V) = {xeV |h-x=x,Yh € H}.
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Being the intersection of eigenspaces of the elemerits vt is a linear subspace.
Recall thetrace formula

1
dimvt = — § tr(h;V). (3.1)
CIp2
Here t(h;V) is the trace of the elemehtas it acts orV.
The action ofG on C" induces an action oR, by

g-f=fog™

(The inverse power is just to ensure the action is indeed a homomorptasin:
f =g-(h-f).) TheG-action onV also induces an action on the modules of differ-
ential forms:

g-w=gHw (3.2)

Thatis,(g- W)x(V1, ..., Vp) = Wg-14(g~V1,...,g V), wherevy, ..., vy are tangent
vectors atgx. This action is compatible with exterior differentiatiod(g- w) =
g-dw. The action on the module of vector fields is given(gyv) = g..v.
Since the action o6 is linear, then for each € G there is a\(g) € C* such
that
g-dxi AL A% =A(g)dXx A ... AdX,.

ThenA = A"(V*) is a 1-dimensional representation & and the isomorphism
Y : R— Q" of Proposition 2.2 provides an isomorphismRi&modules,

AR — Q"

A function f is said to beénvariantif g- f = f for all g € G, and more generally
equivariantif there is a homomorphisi# : G — C* such that

f(g-x) = 9(0) F(X). (33)

In other wordsg- f = 9(g1)f =9(g)~1f. The image of® is contained in the
cyclic groupCig of order|G|. Such a homomorphisi s called arabelian char-
acter of the groupG; we also refer to it as thewist of the equivariant function
f.

The set of all invariant functions is a subringRfdenotedR®, and for a fixed
homomorphismd, the set ofd-equivariant functiond forms a module oveR®,
which we denotd&R®. Thus,RC = R!. Such equivariants are classically caltzut
variantsor semi-invariantsand the moduleB® are calledmodules of covariants

Let f : V — C be an equivariant function, with twist. Then its differential
df is anequivariant formsince one finds on differentiating (3.3), thatdf =
8(g)~1df.
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Any finite group has the property that every representation is completely re
ducible. That is, iV is a representation and C V an invariant subspace, then
there is a complementary invariant subsp¥¢ewith V. =W ¢&W’. Moreover,
the irreducible representations are all finite dimensional. In particRl&,a G-
representation so splits as an infinite sum (or product) of irreduciblepaabs.

Let x be the character of a particular irreducible representati@h dhen collect-
ing all the irreducible subspaces Rfthat have charactey we obtain a subsd®X

of Rwhich, as is easy to see, is Bi-module called thésotypic componerif R

with charactelg. Thus one has the following direct sum decomposition:

R=PR,
X

where the sum is over all charactgref G. The module®R® for abelian characters
are special cases of ti& just defined.

Example 3.1 ConsidelG = Cy acting orivV = C with its natural action, identifying
Cn with theNth roots of unity. The functiori (x) = x is equivariant, wit(w) =
« for eachNth root of unityw, and we have the decomposition

N-1
R=(PR"
k=0

More generally, for an abelian group, all characters are abelianighatl irre-
ducible representations are 1-dimensional), and one haRfkdhe direct sum of
all the modules of equivariants.

QUOTIENT SPACE The ring of invariants defines the algebraic/analytic structure
of the quotient space. However, this space has a more refined strunanrely that

of a stratified space. The said stratification isit type the orbit type of a point

x €V is defined to be the conjugacy clg$€3;) of the isotropy subgroufx C G of

X. The subset d¥ consisting of points with isotropy conjugate to a given subgroup
H of Gis denoted/ ("), Itis a submanifold 0¥/, and the collection of all suci(™)
defines a stratification of. More precisely, one should take the strata to be the
connected components of tié&). Furthermore, the quotient mapV — V /Gis

of constant rank when restricted to each stratum, and the images of thelefiata
the stratification oV /G by orbit type.

SinceG is finite, each stratum is an open subseVéf for someH. Letx e
V) with G, = H. Then there exists aH-invariant neighbourhoo8, of x in V,
such that any-invariant function or5; can be extended in a unique fashion to a
G-invariant function on the image & under the group action. This enables us
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to localize the study of critical points of invariant functions. Note furtheertbat
SinvH =g,

There is an important result — known as trénciple of symmetric criticality
— which states that an invariant functidnonV has a critical point ax iff the
restriction of f to V& has a critical point ak. SinceTtis a submersion on each
stratum, this is in turn equivalent fohaving a stratified critical point &] € V /G.
This correspondence is taken advantage of particularly by Bruce alperiR [3].

The principal of symmetric criticality is proved by noting thaffifs invariant,
thend fy is fixed by Gy, so is (co)tangent t&Sx. Thus if d f, restricted tov ®
vanishes, then so dodd.

REFLEXION GROUPS Consider a representatign G — GL(V). This is said to
be generated by pseudo-reflexioifithere is a se6 of generators o6 with each
elements € S having the property that Fip(s);V) has codimension 1 iN. If
a generator is of order 2 then it is called a reflexion. The action in the prgvio
example is generated by pseudo-reflexions.

It is well-known that the ring of invariants for a pseudo-reflexion graafion
is a polynomial ring with no relations between the generators. Moreoveh, @fa
the modules of equivariants is a free module over this ring,RndR® ¢ C.G,
whereC.G is the regular representation Gf See for example, Chapter V.5 of [2].

ReEAL ACTIONS Let G be a finite group acting (linearly) drR". Then there is a
positive definite quadratic form dR" invariant under the group action. To see this,
let Q be any positive definite quadratic form &%, and letQ be the average @@
over the group:

Q) = %g;qu).

ThenQ is also positive definite, and so in particular non-degenerate.

Now consider the complexification of the action BA. This action also has a
non-degenerate (quadratic) invariant function, namely the same djgafdran Q
considered as a function @¥'. An action onC" is said to be aeal actionif it is the
complexification of an action oR". The existence of a non-degenerate invariant
guadratic form in fact characterizes the real actions, as was shown 8ghwarz
[16, Proposition 5.7].

EQUIVARIANT COMPLEXES We describe briefly the effect of an action of a finite
groupG on the material in Section 1. Ris a ring andG a group, one says that
an R-moduleM is anRG-module if it carries arR-linear action of the grous;
that is, if there is a homomorphism Gfto the group of automorphisms bf. An
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RG-complex is a complex dRG-modules such that the differentials in the complex
are equivariantd(g-m) = g- (dm). It follows then that the cohomology groups are
alsoRG-modules. Furthermore, if there is a short exact sequerRSafomplexes,
then the maps in the associated long exact sequence in cohomology commute with
the G-actions.

One defines the equivariant Euler characteristic dR&wcomplexK to be

3 (—1)'[H'(K)].

|
This enjoys the usual properties of Euler characteristics; in particudre RG-
modulesM' in the complex are finite dimensional, then the equivariant Euler char-
acteristic is equal tg;(—1)'[M'].

4 Multiplicities of invariant critical points:
Finite Groups

Consider a functiorf on C" with an isolated critical point, and suppo$ec RY
whered is an abelian character of a finite gro® Let f; be a 1-parameter de-
formation of f, with f; € R® for all t. Note that ifx € C" is a critical point off;,
then so igg- x for all g € G. The results described in this section are mostly due
to Mark Roberts [15]; he only deals with the case thas invariant under a real
representation o6, but the extension to the general case we treat here is more or
less straightforward.

There are three representations of interest. First, we Geaaeting onR, and
if f € R®is an equivariant, thefs preserves the Jacobian idedlc R. There is
therefore an induced action on tRemoduleR/Jf. Sincef has an isolated critical
point, this module is a finite dimensional representatiosofSecondly,G acts
on the multiplicity moduleM (f), and thirdly there is the action on the critical
locusC(f), and its associated permutation representation. The isomorghism
Proposition 2.2 shows that &5modules

M(F) 2 A (R/IF). (4.1)

The remaining problem is to relate the representatibti ) or (R/Jf) to theG-
action on the critical locu€( f;).

GENERIC MULTIPLICITY Itisimportant to note that most modules of equivariants
contain no non-degenerate functions. As a simple example, cotGigely (N >
1) acting as in Example 3.1. Any element®k (0 <k < N — 1) is a function of the
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form 5;-0ax<*N. For example, fok = 0, R® contains non-degenerate functions
if and only if N = 2, while if k > 1 thenf € R% is never non-degenerate.

Still worse is the possibility that certain modules of equivariants contain no
functions with isolated critical points. A simple necessary, though not garific
condition for the existence of isolated critical points is that @< %dimv, for
all g € G with 83(g) # 1 This is because i®(g) # 1 then necessarily|ys = O.
Consequently, we can writt= Y2 ; x; fi for some functions;, wherex; = --- =
Xa = O is the equation fov'9. It is easy to see that if this sum has an isolated critical
pointinV9 thena> n—a.

Thegeneric multiplicityis the local multiplicity of a critical point of an equiv-
ariant function that cannot be broken up under equivariant detaymaf the func-
tion. The generic multiplicity depends purely on the local geometry of the action
together with the twis, and the local geometry is best described by the stratifi-
cation ofV (or equivalently oV /G) by orbit type — see Section 3. Here we give
this description foinvariantfunctions. For the more general equivariant functions,
matters are not so well understood.

Supposef : § — C is H-invariant with an isloated critical point at We
perturb f to make it generic in two stages (which of course can be done simulta-
neously). To begin, we choose &hinvariant splittingS, 22 S! x T — note that
TH = 0. Now, perturbf to f; by adding a function independent®f so that the re-
striction of f; to § is non-degenerate. In a neighbourhood of each non-degenerate
critical pointx; € S! of f;, we can apply the (equivariant) splitting lemma to write
f; = non.deg:-h;, where non.deg. is a non degenerate functioSbrandh is an
H-invariant function onl. We are now reduced to the local problem of perturb-
ing theh; : T — C. Problem for a given representation of H, how simple can
an isolated critical point be? The multiplicity @-multiplicity, of such a critical
point is thegeneric multiplicityin question. Note that sincE" = 0 there are no
linear invariant functions, so that the generic multiplicity is at least 1. Fovengi
representatiof, it is not hard to determine the generic multiplicity provided one
knows the invariants of low degree. However, it would be nice to havengaaal
or representation theoretic estimates for this generic multiplicity.

The results known at present are due to Schwarz [16], and Wall &tjwarz
proves that if the representati®hof G is real then the representatiomsof the
isotropy subgroupsl that arise as above, are also real. For any real action there
is an invariant non-degenerate quadratic form, and hence the gendtialioity
for a real representation is 1. Wall considers the case tha¥ din2, and there are
no fixed point sets of codimension 1 (pseudo-reflexion hyperplakkesproduced
a formula for the generic multiplicity in terms of the embedding dimension and
the resolution of the quotient spa¢¢G, see Remark 6.8 below. By the reduction
procedure described above, Wall's results also apply to points on cosiione?
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strata which do not lie on pseudo-reflexion hyperplanes.

It is easy to give the generic multiplicity for generic points on pseudo-liefiex
hyperplanes. Here, difh= 1, and so the isotropy group i$ = Cy — the cyclic
group of ordeN for someN. The generic invariant is thefi(x) = xN, and the
generic multiplicity is thugM (f)] =91+ ---+39n-1, @ vector space of dimension
N — 1 with all 1-dimensional representations@f present except the trivial one.

Itis an important open problem to find further estimates on generic multiplicity.

M. Roberts [15] uses techniques of equivariant jet bundles to prevedhiv-
ariant version of Proposition 2.1 for invariants of real actions. The rgereral
version of Proposition 2.1 for invariants can be deduced from a theofér@ [7]
on Morsifications of isolated critical points on analytic varieties. The analego
statement for equivariants does not follow fro@'d.theorem, as they are not func-
tions on the quotient space.

Example 4.1 Consider the cyclic grou@s of order 3, acting in its natural repre-
sentation orC (i.e. by 81: notation established in Example 3.1), and figk) =
x8 — 2tx3. The action orC.dx is 9,. Fort = 0, we haveM(fo) = M(fo,0) =

t=0 t#£0

92C{x}/ <x5>. This has multiplicity 5; as a representation it is isomorphic to
92(280+ 201+ 92) = 280+ 91+ 292. Fort # 0, we have critical points at 0
and solutions, xp, x3 of X% = t. Then M (f;) = M(f,0) @ &3 M(fi,%). Letuy

be a local coordinate about the poxat andus,, uz its images under elements of the
group, thenmt. M (F); is given by

dw @

C Cl{u C C
Mt = <izx>}dX@ <$>} <{uj§}d“2@ <{ul;§}d“3'

As a representatiofiC{x} / (x*)] = 8o+ 91. Thus,
[M(f)] =92(80+91) +92[{X1,X2, X3}] = (B0+92) + (So+91+32) = [M(fo)].

Thus, [M(f;)] = [M(fo)], and provided we know that any “generic” invariant
function has a critical point at 0 of multiplicity 2 (and more precisel@amultiplicity
Y90+ 92), we can deduce the representatjoqf;)]. More generally, of course, one
has to deal with generic critical points with multiplicity not equal to 1 away from
0 too. We now proceed to prove in general thet(f;)] = [M(fo)].
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Theorem 4.2 Let f = fp be an equivariant function on V with an isolated critical
point at 0, and {an equivariant deformation of f. Then, as representations of the
finite group G,

M(fr) =2 M(fo).

Moreover, if all critical points of f are non-degenerate, then

el = | 35| =3 Mo

PROOF. Using the notation of Section 1, recall thatM(F) is a freeC{t}-
module, and by the preparation theorem, it is generated as such by asmydras
M(fp). For any elemeng € G, let 4 (g) be the matrix representingin the re-
sulting basis ofM( f;). Then the entries gk (g) are continuous if. Since the set
of characters of a finite group is finite, it follows that the representatio(f;) is
constant, up to conjugation.

It follows that[R/Jf;] = [R/Jfo], SO there remains to relaf@( ;)] with [R/Jf].
If all critical points of i are non-degenerate then

R/Jf = Syec(r)R/My,

wheremy is the maximal ideal of functions vanishingxatThe groupG acts on the
right hand side as a permutation of the generatgrs (R/m), which coincides
with the action orC( fy). O

Remark 4.3 (i) Wall proves in [20] that iff is invariant then
(M(£)](g) = (=1)" "9 dim Mg(f),

where Mg(f) is the multiplicity module of the restriction of to V9 andn(g) =
dimV?9. His proof involves passing to the Milnor fibration so is outside the scope of
these lectures. However, we do give a proof in the case of weighteddemaous
functions in Corollary 6.7.

(i) The representatiofiS does not always determine the action®bn a finite
setS. Thus one cannot in general read off the actiotain the critical locus of

f; from the theorem. To overcome this problem, Roberts [15] introduces i fine
invariantp(f) for invariant functions which depends on the multiplicities of the
restriction off to the fixed point subspac¥$' of V. He shows that for real actions,
the invariantp does indeed determine the action®fbn the critical locusz;. In
particular, if every fixed point subspace\ois of the formV? for someg ( as is the
case for reflexion groups) then the representatigfif ) determines thé&-action

on the critical locus of a generic deformatiérof f. See [15] for details.
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5 Multiplicities of invariant critical points:
Reductive Groups

The title of this section is rather over-optimistic, for results on multiplicities of
critical points of functions invariant under the action of reductive gsoae only
known for the groupgC*, or more generally for finite extensions thereof, see [10].
The first reason that the general reductive case is more difficult tedimtte group
case is that critical points are no longer isolated, since group orbits nerlang-
sist of isolated points.

In this section, we describe some pertinent geometry of reductive gobigps
in general, and then proceed to give the known results for actio@$.of

INVARIANT THEORY LetV be arepresentation of a reductive gréaip(Reductive
means that every representatiorGis completely reducible; an important class of
reductive group is the complexification of compact Lie groups considesaeal
algebraic groups, [6].) LéR be the ring of invariant functions oh (polynomial or
analytic, according to taste — or use).

The quotient spacé =V /G has to be defined with care; it is not so straightfor-
ward for reductive groups as for finite groups (or compact grougiseimopological
setting) since not all orbits are closed. Thus, if the quotient space weéireed as
the set of orbits, then the natural topology would fail to be HausdorféyenT,).

As a set, the quotient space is therefore defined to be the sttsefdorbits. It
can be proved in general, thatdife V, then the closure of the orb@ - x contains
exactly one closed orbit. This fact is used to define the quotientrmap— Y, by
letting TI(x) be this unique closed orbit iG-x. The analytic structure o¥i is de-
fined simply by the ring or invariants. This is justified by the fact that the inm&ria
polynomials separate the closed orbits( see [11, Corollary 1.2]).

When dealing with invariants of representatidéhsf reductive groups, an im-
portant geometrical construction is thell cone This is defined by

Z={xeV|f(x)=f(0) forallinvariant functionsf}.

If Y is the quotient space, amd: V — Y the quotient map, the = 1 1(0).
Clearly thenx ¢ Z ifand only if 0c G- x.

Example 5.1 Consider the action of the compact gro8@(n) on the space of
symmetric matrices of order, acting by similarity:g- A= gAd'. It is well known

that the invariants are generated by the symmetric functions in the eigenvalues
Thus,m: V — R". If we complexify, we haveSO(n,C) acting in the same way

on the space of symmetric complex matrices, with quotient may- — C". The

null cone is thus the space of symmetric matrices all of whose eigenvaluesrare
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For reductive groups one has two notions similar to that of invariant fooms f
finite groups. Firstly, thénvariant formsthemselves:

QP ={wec Q) |gw=w, vgecG}.

These are finitely generated modules over the ring of invariants, andeciztelp-
preted as coherent sheaves on the quotient spadéowever, in contrast to the
case for finite groups, the invariant forms are in no sense differeptials onY;;
for example QP has full support oY for 0 < p < dimV, and dinV > dimY. The
other class of forms are thmasic formswhich are more correctly interpreted as
forms onY. These are defined by

QY ={wec QP |igw=0 VBeg}.

Here G is the Lie algebra of5, andigw is the contraction ofo with the vector
field onV associated t® € G. On the regular part of th&-action wherert is

a submersion, this means thatc QY defines a well-defined differentigd-form

onY — or rather on its smooth part. In [10], it is shown that fot-actions,
Qf = j.Qf}, wherej : U — Y is the inclusion of the smooth part ¥f (The same
is probably true for other reductive groups, but | do not know afyoo

ISOLATED CRITICAL POINTS For a reductive group action &f critical points of
invariant functions are almost never isolated (except for invariartdegenerate
quadratic forms in the case of a real action). However, the appropdtEnns
that a critical point should be isolated i Note in particular, that if 0 is an
isolated critical point iry of an invariant functiorf, thenf may have critical points
throughout the null con&. This fact is at the root of the difficulty of the general
reductive case. (Note that asking that a critical poirlit ishould be isolated il
makes sense: ¥is a critical point of an invariant functiof and the orbit through
X is not closed, then any poigtc G- x is also a critical point of .)

Notice that if f is an invariant function, ane an invariant or basic form, then
df A w is also invariant or basic, respectively. Thus, associated to an invarian
function there are now two complexes of interest:

@.df7): 0—R—QM A2 Sh . SR gnt S on o,
and
1 dfA o dfA N_1 dfA

(Qy,dfr): 0-R—0b 1Mz M AN oN-1dhoN o

whereN = dim(Y) andRis the ring of invariants. One can show easily that away
from the critical locus off, these complexes are exact (because the complex (2.1) is
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exact). However, one cannot apply the acyclicity lemma as tResedules are not
free (and do not even satisfy the depth hypothesis for the generatinedlftion
of the acyclicity lemma). Furthermore, the first complex is too long to have any
real chance of being acyclic.

Accordingly as there are two complexes, we can define two multiplicity mod-
ules: . N
Q Q
M(f)=——"—— and My(f)= —F—,

M= G g v(f) dfaQN?

and for a deformatiofr of f there are the corresponding relative versigrsgF )
and My (F).

Conjecture Let f; be a family of G-invariant holomorphic functions o@" for
some reductive grouf®, and suppose thdt has an isolated critical point on the
quotient space. Then the module$(F) and My (F) are free.

In particular, this would imply the conjecture of M. Roberts, that for real ac
tions of reductive groups, the dimension of the modiRgJf)© is preserved in a
deformation.

C*-ACTIONS Here we give a brief description of the principal results in [10],
though to simplify matters we restrict our attention to the case ofG&alctions.
The problem for general reductive groups (even complex tori) is stiinoplt
should be emphasised that the results of [10] apply only to invariants, @nd n
to the more general class of equivariants.

Let C* act linearly onC". Such an action can be diagonalized, so thaC*
acts onC" via the matrix diag™1,...,t"n]. If all weights are positive or zero then
the invariants are just the functions of the variables with weight zero; weftive
assume that there are some positive weights an some negative weiglabelibe
number of strictly positive weights, arthe number of strictly negative weights;
so we suppose thatb > 0. Letc be the multiplicity of the weight zero, so that
a+b+c=n. We denote the positive weights By, . .., Az and the negative weights
by pi, . .., hp. Write C" = C? x CP x C€, with corresponding coordinates, . .. , Xa,
Yi,.- Yoo 41-- -, 4

It is easy to see that the null cone for this action is the union of two linear
subspace€ = C? x {0} x {0} U {0} x C? x {0} ¢ C&x CPxC°C.

Example 5.2 Let St act linearly onR". The irreducible real representations3f
are either 1-dimensional — the trivial representation — or 2-dimensional:

. coqrB) —sin(ro)
Xei O sin(r@)  cogr@) |-
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This representation can be diagonalized @véo
t — diagt",t™"].

Heret is a priori a complex number of modulus 1. However, any holomorphic
function which is invariant under thiSt-action onC" is also invariant under the
correspondin@*-action defined by allowingto be any non-zero complex number.
Such aC*-action is said to beeal, and the reaC*-actions are characterised by the
fact that the set of weights is of the forfetAy, ..., A4}

Suppose now that we have a real actiolCdéfonV = C", and supposé is an
invariant function with an isolated critical point at 0 Yh Then there are defor-
mationsf; of f (remaining in the class of invariant functions) such that all group
orbits of critical points are non-degenerate. We are therefore in a positigive
a simple definition of the notion @feometric multiplicity pgeom= Hgeon f,0) is
the number of closed group orbits of critical pointsfofiear O fort # 0 sufficiently
small. (We say a group orbit of critical points is non-degenerate if thectstr of
f to a transversal to the orbit has a non-degenerate critical point in thésense.)

Theorem 5.3 ([10]) Suppose we have a real action@f onC", and suppose that
f is an invariant holomorphic function, with an isolated critical pointonY . The

ngom: dlmcM(f)

The geometric multiplicity can be expressed in terms of the Jacobian ideal us-
ing the isomorphisny of Proposition 2.2, since for real actiofiss C*-equivariant.
Consequentlyp(R®) = Q", andy((Jf)®) = df AQ""L. Furthermore(R/Jf)C =
RC/JfC (by elementary linear algebra), aditf can be computed using equivariant
vector fields:Jf® = O(f) = Oy(f). Here@ is theR®-module of equivariant vector
fields, and®y is the R® module of vector fields on the quotient space tangent to
the stratification by orbit type, see [16] and [10, Section 5]. Thus wdmbta

Corollary 5.4 With the above hypotheses,

Hgeom= dimc <J5f>G =dim (%) .

PrROOF. Here we give an outline of the proof of the theorem as given in [10ig(no
that there is a change of notation: dwf) = n+ 1 in that paper, an¥ is denoted
X). We will write H' := H'(Q",d fA) andH!, := H'(Qi,,d fA). Thus, M(f) =H"
and My (f) = HJ L,
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The first problem is that bothl" andH"~! are non-zero; in fact dif") —
dim(H"1) = 1 independently of . Consequently, one cannot apply Euler charac-
teristic arguments directly to this complex. However, contraction with the vector
field 9 generating th€*-action defines a homomorphigaf — H{(‘*l, which is an
isomorphism (unless the fixed point spacé&/imas codimension 2, in which case
there is a 1-dimensional kernel). Thusl,—|i$*1 deforms well in a deformation, then
so doeH", as required.

Now, the hypotheses of the acyclicity lemma fail for the complex of basic forms
(Qy,dfA), and indeed this complex fails to be acyclic. However, it is “quasi-
acyclic” in that fori < n— 1 the cohomology groupsl\i, do not depend orf:
providedf has an isolated critical point at©Y then

Hi=C, fori=305,...,n—2

while H{( = 0 for all otheri < n—1 (recall dimy = n— 1.) This result depends on
some calculations of the local cohomology of the modules of invariant and bas
differential forms.

Let F(x,t) be a deformation of — as always, assumed to KE-invariant.
Following the proof of Theorem 2.3, we define the modules of relative asits:

p _
YxC/C = o p-1’
dtAQy, ¢
which is isomorphic t€®) ®c C{t}. The functiorF defines a magdF : Qf;xc/c —
Qlfzilc/c as in the ordinary case, which gives rise to a short exact sequenoeef
plexes

0— (Qy /e dFA) = (¢ /e dFA) — (Q,d fA) — 0.

Thus(QYXc/C,dF/\) is indeed a deformation g¢f),,d fA).

Write fi(-) = F(-,t). Since for every,
dimcH"2(Q,dfA) =1

it follows thatH"-2 is a freeC{t}-module of rank 1, and sdj~* = H"1/tH""1.
Consequently, the m&wg* — H"1 of the long exact sequence of Section 1 (with
N =n—1)is zero. Thus, by Lemma 1.H"1 is torsion free, and

dimMy (f) = dimMy ().

Note that one can argue more simply by conservation of Euler characteristic
For by Remark 1.2 the Euler characteristiq©f,,d f;A) is independent df. Since
the dimensions of their cohomology groulds for i < n— 1 coincide, it follows
that so does that of their top cohomology group. |
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Remark 5.5 GeneralC*-actions. If the action is not real, then the main result re-
mains the same, namely that divt( f) defines a (fairly) good notion of multiplic-
ity. The complex(Qy,d fA) is still quasi-acyclic, SO (F) is free and dim\ (f)
is preserved in deformations. The problem is one of “generic multiplicitytliss
cussed in Section 4. Indeed, the situation here is worse than that in Sectisn 4
there can be generic orbits of critical points where the multiplicity is 0. Thissrise
for points on pseudo-reflexion hyperplanes, where the quotienedpamooth,
and a function with a generic critical point on the hyperplane becomesinguar
on the quotient space. This problem also arises on pseudo-reflexiengignes
for finite groups if one only considers invariant functions and invarfiamis in the
analysis of the critical points.

On the other hand, the dimension dRiJf)® is not in general constant in
deformations, but is only upper semicontinuous as is shown by the following e
ample.

Example 5.6 (Mark Roberts) Consider thg*-action onC" with weights(1,...,1,—1),
and coordinates,, ..., X,_1,y accordingly. The invariants are thus functions of the
n— 1 variablesy; = xy. Consider the family of functions

n—1

ft(U) = % Zl Ui2 —tu;.

i=
Then

of ) of
- (ug —1t)y, % uy fori > 1, 7 = zu.xI —tXy.

Consequently
R C{Xla"‘vxn*]-?y}

‘]ft <(u1_t)y7u2y7"'7ul’lflyvzuixi —tX]_)‘
Fort = 0, this has a single closed critical orbit at 0, and

(5%) ey

Jfo <Uin> ’

so dimR/Jfy) = n. There are also many critical orbits that are not closed, namely

all orbits (other than 0) contained in the null cone
Z={y=0}U{x1="--=X%n_1=0}.

On the other hand, fdr#£ O, f; has 2 critical orbits (both closed) at 0 and{at =
t,up=---=un_1 =0}, and

~

(R)G_ R R
th o <U1,...Un,1> <U1—t,U2,...,Un,1>’
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which has dimension 2. Thus diRR/Jfy) = dim(R/Jf;) if and only if n = 2, in
which case we have a real action©f. See [3] for a geometric interpretation of
this loss of multiplicity in terms of the geometry of the quotient space.

If instead we consider the differential forms, we find that

dft /\anl = <ul _t7u27 .- -7Un—1>Qna

and thusM ( f;) has dimension 1 for atl Note however, that the critical point at 0
for t £ 0 is not seen byM (f). The same result is found if we consider the basic
forms, since ifn > 2 then My (f) = M(f). Alternatively this can be proved by
inspection since on a smooth quotient, f&&coincide with the usual holomorphic
forms.

6 Weighted homogeneous functions

In this section we will have continuous recourse to the following simple facant
easily be proved by putting in Jordan canonical form.

Lemma 6.1 Suppose T is a linear transformation of a vector space W of dimen-
sion n. Then T induces transformationsof the exterior powerg\P(W), and

n

> (=1)Ptr(Tp) =detl - T),

p=0
where | is the identity transformation of W.

Now we suppose that the functidris weighted homogeneous of degrkewith
respect to the weightss, ..., w,. This means that there are coordinates. ., x,
and an action o€* onC";

A (X, %) = (AXq, . A,

andf satisfies
f(A-x) = A9 (x).

The weightsw; are supposed strictly positive, so the action is a so-called good
action.

For each integer > 0, we have the linear subspaBe of R consisting of
weighted homogeneous polynomials of degr@éth respect to the given weights),
and similarlyQP consists of thep-forms of degreé. For example, if all the weights
are equal to 1, thedxy A ... Adxp € QE. In particular, there are np-forms of de-
gree less thap.
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POINCARE SERIES SupposeM is a finitely generate®-module which iggraded
M = @;M; with
Rij C Mi-H"

Each graded paM; of M is finite dimensional, and one defines fP@ncaie series
(or Hilbert serieg of M by

P(M,t) = ZdimC(Mi)ti.

Remark 6.2 The Poincag series of a graded moduleaspriori a formal power
series, and as sué{M,t) can be interpreted as the character (or trace) of the action
oft € C* onM. In a neighbourhood df= 0, this formal power series is convergent
and can be expressed as a rational function with denomifitqf1—t"). If M is
finite dimensional ove€, thenP(M,t) is a polynomial, and dig(M) = P(M, 1).

Suppose thai; andM, are graded modules ov& andR; respectively. A
basic property of Poincarseries is that iM = M; ®c M3 is given the induced
grading, therP(M,t) = P(M1,t)P(My,t). It follows by induction onn that the
Poincaé series oR = Clx, ..., Xy| with respect to the weightsy, ..., wy is

n 1
i 1-—tw

It also follows that
P(QP,t) = P(R)P(AP(V),1).

Observe that
P(AP(V*),t) = tr(tp(t)),

wheretp(t) is the action of € C* on thep-th exterior powei\P(V*).
If f e Ry, then

df QP c QftF.

The differentiald fA in the complex (2.1) is therefore homogeneous of dedree
and the complex is graded complex Under the usual assumption thhthas
an isolated critical point, we can compute the Poigcseries of the multiplicity
module M (f) as follows.

The cohomology of the complex (2.1) is

o 0 ifi#n
H(Q’M):{M(f) it i —n.
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Now, this complex is not of finite dimensional vector spaces. Howevegdoh
r > 0, there is a subcomplex consisting of finite dimensional vector spaces

0—Reng 2201 (g 8- Pt on o, (6.1)

The cohomology of this complex K" = M(f),, with the othetH' = 0. Recall
that the Euler characteristic of a compléx= (K", d) of finite dimensional vector
spaces satisfies

n

_Z)(—l)idim(Hi(K)): (—1)' dim(K").

=}

Thus,

=}

dimM(f)r = ¥ (1) dim(Q" ),

and so

PM(f),t) = S (=1)" P PR(QP ) (6.2)
p

= PRO[]E" —t9).

Here we use Lemma 6.1 with= diagt", ..., t"].
Using the fact that the isomorphisgnof Proposition 2.2 is homogeneous of
degre€y; wi, we obtain the following theorem of Milnor and Orlik [9].

Theorem 6.3 Suppose f is a weighted homogeneous functio@'baf degree d,
with respect to the weights;w . ., w,, and has an isolated critical point at 0, then

st ] (55

A series of interesting corollaries to this result is given in [1]. They alse gi
an example of weights and degrees in dimension 4 for which there is no fanctio

with isolated critical point, and yet the expressigfl; (ﬁf—‘i[vlw') is a polynomial.
Evaluating the expression in the theorenh at1 gives the following.

n(%")

Corollary 6.4

ngom: dimc M(f)
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(Note thatd —ws,...,d —w, are the degrees of the partial derivativesfof
i.e. the generators aff. There is a more general result, a weighted version of
Bezout's Theorem: if is a weighted homogeneous complete intersection ideal of
n generators of degrees, ..., d,, then din{R/l) = [](di/wi). See [2] for more
details.)

INVARIANT FUNCTIONS We now turn to the case of a weighted homogeneous
function which is invariant under the action of a finite gradp We suppose that
the action ofG preserves the weight spaces, so we can write

V = &k

where eac\ is invariant undelG, and has weighiv,. We will denote bypy :
G — GL(Wk) the representaion @& onW,. Note then that the representation on
V* given byg-§ = £ og!, satisfied/* = &KW, and if py is the representation of
G onW then,

Pk(9) = px(9)

It follows that each of the summandsk= @R, is G-invariant. We saM is a
graded RG-moduli it is an RG-module, which is graded as &module, and the
grading is such that ead¥; is G-invariant. This all amounts to saying that we have
an action ofG x C* on C" and hence oR, and thatM is anR(G x C*)-module.

The results of this section are due to Orlik and Solomon [13], though they giv
their formula in the case that all weights are equal, &nd 1 (the function is
invariant).

The equivariant Poincagé seriesof a gradedRG-moduleM is defined as fol-
lows. For eacly € G,

PG(Mat)(g) = Z[Mr](g)tr = ztl’(g; Mr)tr,

r r

In particular,Ps(M,t)(e) coincides with the ordinary Poindaseries oM. More-
over, if M is finite dimensional (ove€C) then evaluating at = 1 gives the or-
dinary character of the representativh Note that, taking Remark 6.2 a step
further, Pg(M,t)(g) is the character ofg,t) € G x C* which is a formal power
series irt, and as such it would perhaps be more elegant to writeRtas- (M) €
C|[[t]] ®c ChalG,C), where ChaiG, C) is the ring of complex-valued virtual char-
acters ofG.

The equivariant Poincarseries of the ring is given by

r 1
PG(th)(g) = k|:|1 det(l\M( —twkp§<g)> .
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This can be proved by induction after diagonalizp@). Note that applying the
trace formula (3.1) gives Molien’s formula for the PoineaeriesP(RC,t) of the
ring of invariants.

Consider again the complex (6.1). This is a complex of finite dimensional
representations @b, and the maps are equivariant with a twist

QP M gpitg g,

For such a compleK = (K", d) the equivariant Euler characteristic satisfies

n n

(—DPHP(K)JOP =5 (—1)P[KPJoP.
2, 2,
Consequently, in analogy to (6.3), the equivariant Pomcaries ofM (f) is

given by,

Po(M(f),t) =97"3 (-=1)"PoPQP

P gt PP,
Py

We now repeat the argument prior to Theorem 6.4, but taking the reyaese
tions into account. Note that, as with ordinary Poigcseries,

PG(vat) = PG(th)PG(/\p(V*)vt)'
Thus

Pa(M(f),t) =9 "Pg(R) § (—=1)" POPtM PR (AP(VY),1).
p

Applying Lemma 6.1 with
T =—9(gtt “diadt"pi(g).....t" p; (9)],
we deduce

Theorem 6.5 Suppose f is a weighted homogeneous function on V with an iso-
lated critical point at 0, and which is an equivariant for the G-action with tvist

then
- dett™pg(g) — 9(g) %)
PeMD,00 =] 1™ Gey1, —tpi(g))

The isomorphismp : R/Jf — M(f) is homogeneous and equivariant, so if we
divide byt"“A(g), wherew = ¥, widim(W) we deduce the following result due to
Orlik and Solomon [13]. Note that(g) = [ detp;;(g) = detp*(g) = detp(g) 1
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Corollary 6.6 With the same hypotheses as the theorem,

L det(ly, — 99 (9) 1pk(9))
PG(R/‘]fvt)(g) - k|:|1 det(hM(_thpi(g))

For eachy € G, letn(g) = dim(V?¥) = the multiplicity of 1 as an eigenvector of
P(g). And supposavy, ..., Wy are the weights ok'9, then one easily evaluates
the expression in the theoremtat 1 to deduce

Corollary 6.7 Suppose in addition that f is invariant (or more generally that
9(g) = 1), then
N9 /q_w
(M(D)](g) = (~1)" " M <—> ‘
1=

Wi

Remark 6.8 If the action ofG is free off the origin (i.e. for allg # e one has
V9 =0), then]M(f)](g) = (—1)" for g # e. Such a character is easy to interpret.
Note that the characté®] of the regular representati@h G satisfies

[Gl(g)=0 ifg#e

and of coursgG|(e) = |G|. Thus forf with an isolated critical point an@ acting
freely off the origin,
[M(F)] =v()[G]+(-1)"C,

for some integev(f), whereC is the trivial representation. In [21, Section 5], Wall
uses this in the case diw) = 2 to produce a formula for the generic multiplicity
— seeGeneric Multiplicityin Section 4. Supposgis a generic critical point and
write v(f) =v(G,V). Wall's formula is in terms of the embedding dimension of
V /G and the resolution of /G, and states that for dikh= 2 andG free off 0,

_ [e—-3 ifGiscyclic,orb>2
v(GV) = {e—z if Gis not cyclic andb = 2,

wheree s the embedding dimension ard is the self-intersection number of the
central curve of the resolution.

The dimension of the fixed point subspacet f)© and(R/Jf)® can be com-
puted by applying the trace formula to the formulae in Theorem 6.5 and Cagrollar
6.6 respectively.

It is interesting to translate the corollaries of Theorem 6.3 given in [1] into
corollaries of the theorem above.
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7 Weighted-homogeneous Ginvariant functions

We continue with the notation used in Section 5 @frinvariant functions. In
particular, the weights of the*-action are\; > 0 andy; <0 (withi=1,...,a, j =

.,b). In this section we consideC*-invariant functions orV that are also
weighted homogeneous with respect to some set of (strictly positive) weights
andv;. We thus have tw@&*-actions, and we suppose that they commute. That is,
we have an action of the tor€*)2, and correspondingly every monomial has a
bidegree(a,d) with d > 0; in particular, bidegre€0,d) corresponds to invariant
functions of degreed with respect to the positive weightg, vj. The monomiak;
has biweightA;,v;) and the monomiaj; has biweight(p;, w;).

If an invariant functionf is weighted homogeneous of degkéhen the good
C*-action defines a grading ok ( f), and we wish to compute its Poinésseries.
To this end, we reconsider the complex (2.1), each term of which hasadbigr
and for each bidegre@, e),

dfA Qe C Q7 (aera)-

The Poincag series of a bigraded vector spakavith finite dimensional bi-
graded parts is a formal power series in two variables:

P(Aist) = dim(Aqe)s™t".

re

(Again, this is the character of the representation of the tGfus C* on A.) Note
that the ringS= C|[x;,y;] is bigraded with finite dimensional graded parts, since
Sa.e) C S Which is finite dimensional& being the subspace & consisting of
functions of degree with respect to the weights;, ;).

The Poincag series of the rin@[x;,y;] with biweights (Ai,w;), (1j,Vv;) (with
Ai, Wi, vj > 0 andy; < 0) converges to

a b
P(Sst) = I_l 1— S}"[W' I:I 1_ gJ,tv,

provided thats\it"| < 1 and|gt¥i| < 1 for alli, j. This domain of convergence
contains no value df with |t| > 1, and for each with |t| < 1 it is an annulus in
s-spaceit|™ < |s| < [t~|™, wheremy = min{Ai /wi} andmy = min{v;/(—;)}.
In particular, if|t| < 1 it contains the circlés| = 1.

Now a polynomial is invariant undeZ* if and only if it is invariant under the
maximal compact subgrou§} c C*. To calculate the Poincarseries of the ring
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of invariants, one therefore applies the trace formula (3.1) t&thaction:

P(R)(t) — %T/Oznp(sée,t)de

= i P(Ss,t)is

21 Jig=1 s’
One can use the residue theorem to compute this as a sum of residuesaeshe p
of the rational functiors 'P(S; s t). It seems unlikely that this can be expressed as
a simple closed formula for general weights.
Now, by Lemma 6.1 the Poindaseries for the compleX2',d fA) is given by

P(Q,dfA)(sit) = P(9(st) ﬁ(s)‘itwi _td) ﬁ(s“it"i _td)
i= =

2 (S —td) Bt —sHitd)
o I_! 1—shitw) I_l (s7H —tY)

(Recall—p; > 0.) Sincef does not in general have an isolated critical poir€ih
this series is not a polynomial.

The Poinca serieP(Q',d fA) for the complex of invariant forms is deduced
from P(Q',d fA) by the same method &R) is found fromP(S): averaging over
the St-action. Thus foit| < 1,

: 170
PQ.dTA)1) = 5§ p(s1)ds

where

Ma(St 1) [yt — s Hitd)
STTE2 (1= SV t%) oy (s =)

p(st) = (7.2)

For fixedt, the disc|s| < 1 contains poles of the integrand &= 0 and at all
solutions ofs™ =t"i, for j = 1,...,b. Thus there are % ¥ ; |u;| poles, counting
multiplicity. For |t| < 1, let

S ={s|s ™ =t"i forsomej=1,...,b}. (7.2)

Then
P(Q,dfA)(t) =regs_qy p(St) + zs res—s} P(St).
SEe

The first summand is easy to compute:eg p(s;t) = tad. The other terms are
not so easy for general weights. In practice, for given weights theyeasily be
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computed with the aid of a computer package such as Maple. Note that taking the
disc|s| > 1, one obtains an analogous formula, involving the residyeaifs =
and at solutions o' =t for i = 1,...,a. Which formula is chosen in practice
would depend on the specific weights and their multiplicities.

We thus have, in principle, a formula fé7(Q',dfA)(t). It remains to see
how this is related to the Poiné@series for the multiplicity modulg4(f). Let
m= min{a,b}. The information we require on the cohomoldgyof the complex
(Q,dfA)is given in [10, Proposition 3.6]. It is shown there that the following are
exact sequences:

a=b: 0—C[& —H'— H" 1 0;
la—b/=1: 0—H"—H"* - C.["] - 0;
|a*b| > 1 O*) ﬂn Hﬂn_lﬂ O andﬂzmg C[(A)m],

and all otheH' = 0. The mapH" — H™ 1 is given by contraction of differential
forms with the vector field generating the&*-action, which is of degree 0. The
2-form w is defined byw(d,—) = d f, sow has the same degree AsThus, with
M = max{a, b},

a=b: P(M(f))=(1-t%)"H(P(Q,dfAr) —t@D);
a# b: P(M(f)) = (l—td)fl(P(Q"d f/\) _th);

We have therefore proved

Theorem 7.1 Let f be a weighted homogeneous polynomial of degree d with re-
spect to the weights;w; that is also invariant under th€*-action with weights

Ai, 1 (see above for precise notation). Suppose that f has anisolated critizal p

in the quotient space. Letbe given by (7.1) and; ®y (7.2). Then

P(M(f)) =R+C(ab);

where

1
R = m Sogs reSs—s) P(S;t)

tad ifa=Db
Ca,b)=<¢0 ifa>b

(t29—tb)/(1-t9) ifa<hb.

and
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Examples 7.2 We give a few examples involving real actions. The case?2 is
trivial, for the quotient space is 1-dimensional and smooth, so our exaamaésr
n=4and 6.

(1,1,-1,-1): SupposeC* acts onC* with these weights, and léft be a ho-
mogeneous invariant polynomial of degréevith all weights =1. The invariant
polynomials are polynomials in they;j, and thereforel must be even. Then

(st—th)?(t —std)?
S(1—st)2(s—t)2 "

p(st) =
Using Theorem 7.1, one finds

t4(1—-t92)

F>(M(f),t):t2f‘+W

This is a polynomial if and only ifl is even. Evaluating this at= 1 gives
dimM(f) =1+ %(d —2)(d®>—2d +4),

which is an integer if and only il is even.

(1,2,—1,—2):  Consider this*-action onC*. The invariants are functions of
X1Y1, x%yz, xzy%, Xo¥2. Consider first the case thétis homogeneous of degree
(allw; =v; =1). Then

_ (sttd) (St~ 1)t — st (t — %)
S |y [ N

Applying Theorem 7.1 gives

tH(1-t92)
Toa-oa-o

P(M(f),t) =t +
with

P(M(f),t) is a polynomial if and only ifl is congruent to O or 2 modulo 6. Eval-
uating att = 1 gives

dimM(f) = 1+%(d—2)(d2—2d+6),
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Consider now the case that = v; = 1, w, = v, = 2 (corresponding toA; =
—m =1 A =—lp =2). Then

(st (2t (t - st (12— )
PSY) = i -0 -1

Applying Theorem 7.1 and evaluatingtat 1 gives
dimM(f) =1+ %(di*— 6d? +20d — 32),

which is an integer if and only il is a multiple of 4.

(1,1,1,-1,-1,-1):  Now C* acts onC® with these weights, andl is invariant
and homogeneous of degréavith respect to the weights 1. Again, the invariants
are generated by they;, andd is necessarily even. We have

(st—th)3(t —sth)3

PSY = ST —spee—0 -

From Theorem 7.1, one deduces

1

dimM(f) = =

(3d° — 18d* + 48d° — 72d% + 72d — 32).

Using generating functions, it is possible to express more explicitly the formula
of Theorem 7.1 in the case that all the weights-ale

Consider the real action @* on CN with weights+1 (so generalizing two
of the examples above). Ldétbe a homogeneous function of degk@wvariant
under thisC*-action, and with an isolated critical point in the quotient space. The
Poincaé series of the multiplicity module of the critical point is given by Theorem
7.1. More explicitly, introducingN into the notation,

1 1
P(My(f),t) = 1t <E %Sl_le(S,t)dS—tN"—l) ,

with

1t -s)\"
pN(SJ)—g( (1—st)(s—t) ) '

Now form the generating function,

G(t,T) :NZOP(MN(f),t)TN.
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ForT sufficiently small, this converges to

1 1 ds t
G(t,T) = (1-t9) (ﬁ 72_1 s(1—spy(st)T) 1—tT> '

The integral can be evaluated by the residue theorem. After “clearingdbe f
tions”, the denominator of the integrand becomes

St (9T — 1) + s(1+t2(1—T) —t2T) + (19T — 1)].

The integrand thus has three polessat0, ats; ~t ands, ~ 1/t. The first two
are within the unit circle, the last is without.

The residue as= 0 is simply 3/(1—t9T). The residue &= s; is too long to
be reproduced here, but when evaluateid-atl gives the following result.

Theorem 7.3 Let M(N,d) = dim(My(f)), where f is aC*-invariant function,
homgeneous of degree d, with an isolated critical point in the quotient. d&3epp
theC*-action to be real with weights1. Then

2 M(N,d)TN = —— + 3(d-2)T(1-T) 31— (d—1)?T) 2,
- 1T

Remark 7.4 The case of real actions with weightsl was considered under a
different guise by van Straten [18]. Lét, be a homogeneous non-degenerate
quadratic form or€?N invariant unde€* andHy a degree invariant function with

an isolated critical point on the quotient spc@hese are not exactly van Straten’s
hypotheses, but they are equivalent). Consider the (mgbz, Hq) 1Y — C?, and

let  be its singular locus. Suppose further that {H, = 0} = {0} (verified for
genericHg). Let S(N,d) be the number of branchesYhof Z. Van Straten proves
by algebro-geometric methods, that

NZ SN, )TN =T(1-T)¥2[1— (d - 1)T] Y2
>0

(Note that van Stratenis+ 1 is ourN, and his 2 is ourd.)

The relation between this result and our Theorem 7.3 is as follows. Con-
sider the deformatiof, = Hg +A9/2-1H, of Hy (which is homogeneous ¥ x
C). Now, if (x,A) is a critical point ofH, thenx is a singular point of the map
(H;’/Z, Hq). LetX C Y x C be the set of critical points dfly +A9-2H,, which is
1-dimensional. One branch of this curve[B} x C C Y x C. LetZ’ consist of the

remaining branches. The projectizn— C, ([x],A) — A has multiplicityM (N, d)
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([ is the C*-orbit throughx). The projectior®’ — Y has multiplicity 1(d — 2),
and is onto the critical set céf—lg/z, Hqg). Thus,

M(N,d) — 1= 3(d—2)S(N,d).

This provides an alternative proof of Theorem 7.3.
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