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Introduction

The purpose of this expository article is to describe in an elementary and homoge-
neous manner, the relationship between the geometric and algebraic multiplicities
of isolated critical points of holomorphic functions. In particular, I am interested in
the setting where the function is invariant under some group action. The emphasis
is on functions invariant under actions of finite groups as very little is knownif the
group is not finite. Most of the results described here are already explicitly in the
literature; the only small extension is to functions that are not invariant, butequiv-
ariant under the action of a groupG: a function f satisfying f (gx) = ϑ(g) f (x) for
some homomorphismϑ : G→ C∗. The results (in Section 7) on the multiplicity of
critical points of homogeneous functions invariant underC∗ are also new.Caveat:
I will say nothing about the other important invariant of critical points of functions:
the Milnor fibre. For this, the interested reader should refer to the originalmaterial,
namely [8], [20] (for finite group actions), [10] (forC∗-actions) and [9, 13] (for the
weighted homogeneous cases).

This article grew out of a series of lectures I gave at the ICMSC in July 1992,
preceding the conference. I would particularly like to thank Maria Ruas for inviting
me to give the lectures, for organizing a wonderful conference, and finally for en-
couraging me to write up the lectures for publication in these proceedings. I would
also like to thank Mark Roberts and Duco van Straten for the many stimulating
discussions I have had with them on the material in these lectures.

TERMINOLOGY AND NOTATION All functions and differential forms will be as-
sumed to be holomorphic, and although we will usually say, “letf be a function
on Cn”, we will mean that f is defined in a neighbourhood of 0 inCn. All the
actions we consider are linear; consequently the terms representation andaction
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2 J. MONTALDI

are interchangeable. The motivation for considering only linear actions is that the
results we are interested in here are purely local, and locally, near a fixedpoint, any
action can be linearized.

We assume a basic familiarity with the representation theory of finite groups,
see for example Serre’s book [17]. For a representationV of the groupG, we
write [V] for its image in the representation ring ofG. The representation ring is
isomorphic to the ring of virtual characters (the ring generated by the characters of
G), and consequently we use the symbol[V] as a character. Thus[V](g) = tr(g;V),
for eachg ∈ G. From standard representation theory,[V ⊕W] = [V] + [W] and
[V ⊗W] = [V][W].

If Sis a finite set acted upon byG, then[S] denotes the associated representation
(or rather its image in the representation ring ofG); that is, the action induced on
Map(S,C), or again, on the vector space{∑s∈Sλss | λs ∈ C}, with g · (∑λss) =

∑λsg · s. A particular case is the action of a finite groupG on itself by say left
multiplication, giving theregular representationC.G and its character[G]. As is
well-known,[G](g) = 0 for g 6= e, and[G](e) = |G|.

Note that a 1-dimensional representation can be identified with its character,so
we need not distinguish[ϑ] from ϑ.

If G acts onV, andg∈ G, thenVg denotes the subspace fixed pointwise byg.
The fixed point subspace for the entire groupG is denotedVG.

CONTENTS Section 1 describes the basic method used from commutative/homological
algebra to relate algebraic and geometric multiplicities, namely deformations of
complexes of modules or sheaves. Section 2 applies this method to isolated critical
points of holomorphic functions. Section 3 describes some elementary invariant
theory needed to understand critical points of invariant functions, whichare the
subject of Section 4. Section 5 describes some recent results on critical points of
functions that are invariant under actions ofC∗. This is the only case where results
are known on multiplicities of critical points of functions invariant under groups
that are not finite. Finally, Sections 6 and 7 show how one can calculate the al-
gebraic multiplicities of critical points of weighted homogeneous functions, both
general functions and invariant functions.
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1 Complexes and their deformations

Our proof of the results relating algebraic and geometric multiplicities of critical
points of functions in these notes is through complexes ofR-modules (or sheaves,
if the reader prefers), whereR is the ring of (germs at 0 of) analytic functions on
Cn. There are two central abstract results that we use: one on deformations of
complexes and the other (the acyclicity lemma) on exactness. Before giving these,
we first give a brief description of how the two multiplicities are related. Note
that similar arguments can be used for counting multipicities of other geometric
phenomena.

The algebraic definition of multiplicity is as the dimension (overC) of some
R-moduleM0 that depends on the geometry in question, here the critical point of
an analytic function. This module will be finite dimensional, which is equivalent to
it being supported at an isolated point (by the Nullstellensatz). The aim is to show
that if the function in question is perturbed, the resulting perturbationMt of the
moduleM0 is such that its dimension remains constant, or rather the sum of the
dimensions of the constituent parts remains constant.

This is made precise by including the deformation parametert ∈ C. ThenM
is the family ofMt as t varies, and is anS= R{t}-module. IfM0 is finite di-
mensional, thenM is a finitely generatedC{t}-module. The crucial point to be
established is that it is afreeC{t}-module.

To see this, letC⊂ Cn×C be the support1 of theS-moduleM, and letπ : C→
C, (x, t) 7→ t be the restriction toC of the Cartesian projection which is finite-to-
1. If we considerM as aC{t}-module, we can writeπ∗(M). The relationship
betweenM andπ∗(M) is given by

π∗(M)t = ⊕(x,t)∈π−1(t)M(x,t), (1.1)

for eacht ∈ C. Thus, ifπ∗(M) is a free module, then

r(t) = ∑
(x,t)∈π−1(t)

dimCM(x,t)

is constant. From here on, we will write dimM rather than dimCM.
The geometric step is to interpret dimM(x,t) when this is as simple as possible;

for us at non-degenerate, or generic, critical points.
In the above discussion, and everywhere else, all constructions suchasC should

really be interpreted as germs to ensure that we only consider critical pointsof ft

1If M is anR-module, thenx ∈ supp(M) if the localisation ofM at x is non-zero. In terms of
sheaves, this means that for any neighbourhoodU of x in Cn, the restriction ofM to U is non-zero
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that approach 0 ast → 0. This will always be tacitly assumed, and I make no
further reference to this point.

DEFINITION Let R be a commutative ring with unit — for example the ring
C{x1, . . . ,xn} of analytic functions or its subring of invariants under a given group
action — and let

K0 : 0→ M0
0

d
−→ M1

0
d

−→ ·· ·
d

−→ MN−1
0

d
−→ MN

0 → 0

be a complex of finitely generatedR-modules. LetS= R{t} (so R≃ S/tS). A
deformation ofK0 overC is a complexK of finitely generatedS-modules

K : 0→ M0 d
−→ M1 d

−→ ·· ·
d

−→ MN−1 d
−→ MN → 0,

where for eachi = 0, . . . ,n we have an exact sequence

0→ Mi t
−→ Mi → Mi

0 → 0,

where
t

−→ is multiplication byt, and the differentialsd commute with multiplica-
tion by t. In particular, this implies that eachMi is torsion-free as aC{t}-module.
There is thus an exact sequence of complexes:

0→ K t
−→ K → K0 → 0.

This short exact sequence of complexes gives a long exact sequence in cohomology
as follows:

0→ H0 t
−→ H0 −→ H0

0 −→ H1 t
−→ ·· ·

· · · → H i−1
0 → H i t

−→ H i → H i
0 → H i+1 t

−→ ·· ·

· · · → HN−1
0 → HN t

−→ HN → HN
0 → 0,

whereH i = H i(K), andH i
0 = H i(K0). The long exact sequence is obtained by an

easy diagram chase (if the reader is unfamiliar with this, he should remind himself
of the simplicity of the argument; the mapH i−1

0 → H i is essentially the differential
d of the complexes).

Lemma 1.1 Let K0 be a complex of R-modules, such that all cohomology groups
are finite dimensional vector spaces. LetK be a deformation of the complexK0,
depending on the parameter t∈ C. Then,

1. the Hi are finitely generatedC{t}-modules;
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2. Hi
0 = 0 implies Hi = 0 (though not conversely!);

3. HN−1
0 = 0 implies HN is a freeC{t}-module.

PROOF: 1. This follows from the preparation theorem (see for example [5]), asH i

is a finitely generatedS-module, and

dim(H i/tH i) ≤ dim(H i
0) < ∞.

2. SupposeH i
0 = 0. Then there is an exact sequenceH i t

−→ H i → 0, so that
H i/tH i = 0. It follows from Nakayama’s Lemma thatH i = 0.

3. This follows immediately from the last row of the long exact sequence
above, for thenHN t

−→ HN is injective soHN is a torsion freeC{t}-module, and
hence free. 2

Remark 1.2 One can show more, namely that in the deformation the Euler char-
acteristic of the complex is constant: for eachs∈ C

χ(K s) = χ(K0),

whereK s is the complex induced fromK by puttingMi
s = Mi/(t −s)M.

To see this, note that sinceH i is finitely generated overC{t}, it is the direct
sum of a torsion module (which is necessarily a finite dimensional vector space)
and a free module. Write accordingly

H i ∼= T i ⊕F i .

Let αi be the number of generators ofT i , andβi the number of generators ofF i ,
soβi = rk(F i) = rk(H i). Note that multiplication byt respects the decomposition

H i ∼= T i ⊕ F i , and αi = dimker[T i t
−→ T i ] = dimcoker[T i t

−→ T i ], while βi =

dimcoker[F i t
−→ F i ] and ker[F i t

−→ F i ] = 0. From the long exact sequence in
cohomology given above, it follows that

dim(H i
0) = αi +βi +αi+1. (1.2)

Consequently,
N

∑
i=0

(−1)i dim(H i
0) =

N

∑
i=0

(−1)iβi ,

(note thatα0 = 0 since by the long exact sequence,H0 is torsion free). Thus, the
Euler characteristic of the complexK0 depends only on the free part ofH(K). This
will also be true for any other specializationK s.
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We now turn to the acyclicity lemma. Suppose now that

K : 0→ M0 d
−→ M1 d

−→ ·· ·
d

−→ MN−1 d
−→ MN → 0, (1.3)

is a complex offreefinitely generatedR-modules. The cohomology groups of this
complexH i(K) are alsoR-modules, sinced is R-linear. Note that by the Hilbert
Nullstellensatz, the hypothesis that the complexK0 have finite dimensional coho-
mology groups is equivalent to their support being a finite set.

Lemma 1.3 (Acyclicity Lemma — Basic version)Suppose the cohomology of the
complex (1.3) of free R-modules is supported on an algebraic subset ofcodimen-
sion c, then

H0 = H1 = · · · = Hc−1 = 0,

where Hi = H i(K).

This famous lemma is due to Peskine and Szpiro. For an elementary self-
contained proof see the appendix of [10], and for a more detailed account, see
the recent book of J. Strooker [19]. In our use of this lemma, the cohomology of
(1.3) will be supported at an isolated point, andN = n, so we will have that all
cohomology groups exceptHn vanish — that is, the complex isacyclic.

More general versions of the Acyclicity Lemma replace the freeness hypothesis
with one on the depth of theR-modulesMi . That this is the “correct” hypothesis is
(hopefully) made clear in [10].

2 Isolated critical points

We are interested principally in two invariants associated to isolated critical points
of holomorphic functions. They are the geometric and algebraic multiplicities, de-
notedµgeomandµalg respectively. It was shown by Milnor [8] and Palamodov [14]
that in fact these are equal. We concentrate on Palamodov’s algebraic/geometric
proof; Milnor’s proof is more differentio-topological in nature, relying on the de-
gree of the gradient of the given function.

A 1-parameter deformationof a function f (x) onV is a functionF(x, t), t ∈ C
such that for eachx ∈ V, F(x,0) = f (x). The deformed functionF(·, t) is also
denotedft . All our deformations will be 1-parameter deformations, although it is
seldom made explicit. A critical pointx of a functionf is said to benon-degenerate
if the second differential off at x is a non-degenerate quadratic form. We say a
function f is non-degenerate if all critical points are non-degenerate. The following
result is of central importance.
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Proposition 2.1 Suppose f has an isolated critical point. Then there are defor-
mations F of f with the property that for t6= 0, all the critical points of ft are
non-degenerate.

This is proved by considering the explicitn-parameter deformationF : Cn×
(Cn)∗ → C, (x,a) 7→ fa(x) = f (x)−a(x). Then the “catastrophe set”C(F) (those
pairs (x,a) corresponding to critical points) is ann-dimensional submanifold of
Cn×(Cn)∗. Singularities of the projectionC(F)→ (Cn)∗ correspond to degenerate
singular points. Moreover, the set of singular values of an analytic map is contained
in some hypersurface, hereH ⊂ (Cn)∗. To find a non-degenerate deformation, it
suffices to take any curveC in (Cn)∗ such thatC∩H = {0}.

MULTIPLICITIES Let f : V → C have an isolated critical point at the origin (V =
Cn). Then by the proposition above, there are deformationsF(x, t) of f with only
non-degenerate critical points in a neighbourhood of 0. The number of such critical
points is thegeometric multiplicityof the critical point off at 0, denotedµgeom=
µgeom( f ,0). The fact that this is independent of the non-degenerate deformation
F can be proved directly, but also follows from the results below.

The standard definition ofalgebraic multiplicityis:

µalg = µalg( f ,0) := dimC

(
R
Jf

)
,

whereR is the ring of germs at the origin of analytic functions, andJf denotes the
Jacobian ideal, the ideal generated by then partial derivatives off . However, we
are going to use an alternative expression for this invariant using differential forms.

Let f have an isolated critical point atx. Define themultiplicity moduleto be
theR-module

M( f ,0) =
Ωn

V

d f ∧Ωn−1
V

,

whereΩp
V is theR-module of analyticp-forms onV.

Proposition 2.2 Let f : V → C have an isolated critical point at0, then

µalg( f ,0) = dimCM( f ,0).

PROOF: Indeed more is true: asR-modules,M( f ) andR/Jf are isomorphic. The
proof is merely an observation: there is an isomorphism ofR-modules

ψ : R → Ωn
V

h 7→ hdx1∧ . . .∧dxn,
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(depending of course on a choice of coordinates onV), and under this isomor-
phism,ψ(∂ f/∂xi) = (−1)i−1d f ∧ d̂xi , whered̂xi ∈ Ωn−1 denotes the formdx1∧
. . .∧dxi−1∧dxi+1∧ . . .∧dxn. Thusψ induces an isomorphismR/Jf →M( f ). 2

Theorem 2.3 (Milnor [8], Palamodov [14]) Let f : V → C have an isolated crit-
ical point at the origin. Then µalg = µgeom.

PROOF: Consider the complex of differential forms:

0→ R→ Ω1
V

d f∧
−→ Ω2

V → ·· · → Ωn−1
V

d f∧
−→ Ωn

V → 0, (2.1)

where the differentials are given byα 7→ d f ∧α, for α ∈ Ωp. Given a deformation
F of f , this complex has a natural deformation as follows. LetS= R{t} and define
theS-modules ofrelative differential forms:

Ωp
V×C/C =

Ωp
V×C

dt∧Ωp−1
V×C

.

This module is isomorphic to the moduleΩp
V ⊗C C{t} — forms onV that are

parametrized byt ∈ C. The deformationF thus defines a map

dF∧ : Ωp
V×C/C → Ωp+1

V×C/C

which corresponds to the differential ofF with respect to all but thet variable.
Clearly we haveΩp

V×C/C/tΩp
V×C/C ≃ Ωp

V . Consequently, there is a short exact
sequence of complexes:

0→ (Ω·
V×C/C,dF∧)

t
−→ (Ω·

V×C/C,dF∧) → (Ω·
V ,d f∧) → 0.

DenoteHn(Ω·
V×C/C,dF∧) byM(F).

Since f has an isolated critical point at 0, the cohomology of the complex
(Ω·,d f∧) is supported at 0. For, ifU is a contractible open set away from 0 co-
ordinates can be chosen onU so thatd f = dx1, and then exactness onU is clear.
It follows from the acyclicity lemma thatH i

0 := H i(Ω·,d f∧) = 0 for i < n, and by
definitionHn

0 := Hn(Ω·,d f∧) = M( f ).
It follows from Lemma 1.1(3) thatM(F) is a freeC{t}-module.
It remains to show that ifF is a non-degenerate deformation, then fort 6= 0,

dimM( ft) = µgeom. Now,

dimM( ft) = ∑
x∈C( ft)

dimM( ft ,x),

so we reduce to a local calculation in a neighbourhood of a non-degenerate crit-
ical point. By the Morse lemma, coordinates can be chosen locally such that
ft(u1, . . . ,un) = ∑i u

2
i , and soM( ft ,ui = 0) ∼= C as required. 2
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Remark 2.4 (i) If the deformation fails to be non-degenerate, the same proof im-
plies that

µalg( f0,0) = ∑
x∈C( ft)

µalg( ft ,x).

This can be interpreted as saying thatµalg defines a ‘good’ notion of multiplicity.
We will see below that there are instances where the allowed deformations are
never non-degenerate.

(ii) This proof is isomorphic to the proof that Palamodov gave [14]. He con-
sidered the Koszul complex on the generators ofJf :

K(Jf) : 0→ Kn → Kn−1 → ·· · → K1 → K0 → 0,

whereKp is the freeR-module generated by{ei1 ∧ ei2 ∧ . . .∧ eip}, with 1≤ i1 ≤
i2 ≤ . . . ≤ ip ≤ n, which is therefore of rank

(n
p

)
. The differentials in this complex

are theR-homomorphisms generated by

d : Kp → Kp−1,

∧
i∈I ei 7→ ∑

k∈I

(−1)k ∂ f
∂xk

∧
i∈I\{k}ei ,

whereI is any index set of lengthp.
(iii) The theorem was also proved by Milnor, using techniques that are more

topological. Briefly, let∇ f : Cn → Cn be the “holomorphic gradient” off :

∇ f (x) =

(
∂ f
∂x1

, . . . ,
∂ f
∂xn

)
.

Clearly, critical points off are zeros of∇ f , and a critical point is non-degenerate
if and only if the corresponding zero of∇ f is simple. Clearlyµgeom( f ,0) is the
number of solutions of the equation∇ ft = 0, that is the multiplicity of the zero
of ∇ f at 0. It remains to show that the multiplicity of an isolated zero of a map
g : Cn → Cn is given by dim(R/〈g1, . . . ,gn〉). This Milnor does by topological
arguments involving the degree of∇ f in [8, Appendix B].

3 Invariants

Let G be a finite group acting linearly onV = Cn. If necessary, we will make
explicit the representationρ : G→ GLn(C). For any subgroupH < G we denote
by VH or Fix(H;V) the set of points ofV fixed by every element ofH:

VH = Fix(H;V) = {x∈V | h·x = x,∀h∈ H}.



10 J. MONTALDI

Being the intersection of eigenspaces of the elements ofH, VH is a linear subspace.
Recall thetrace formula:

dimVH =
1
|H| ∑

h∈H

tr(h;V). (3.1)

Here tr(h;V) is the trace of the elementh as it acts onV.
The action ofG onCn induces an action onR, by

g· f = f ◦g−1.

(The inverse power is just to ensure the action is indeed a homomorphism:(gh) ·
f = g· (h· f ).) TheG-action onV also induces an action on the modules of differ-
ential forms:

g·ω = (g−1)∗ω. (3.2)

That is,(g·ω)x(v1, . . . ,vp) = ωg−1x(g
−1v1, . . . ,g−1vp), wherev1, . . . ,vp are tangent

vectors atgx. This action is compatible with exterior differentiation:d(g ·ω) =
g·dω. The action on the module of vector fields is given by(g·v) = g∗v.

Since the action ofG is linear, then for eachg ∈ G there is aλ(g) ∈ C∗ such
that

g·dx1∧ . . .∧dxn = λ(g)dx1∧ . . .∧dxn.

Then λ =
∧n(V∗) is a 1-dimensional representation ofG, and the isomorphism

ψ : R→ Ωn of Proposition 2.2 provides an isomorphism ofRG-modules,

λ⊗G R
∼=

−→ Ωn.

A function f is said to beinvariant if g· f = f for all g∈G, and more generally
equivariantif there is a homomorphismϑ : G→ C∗ such that

f (g·x) = ϑ(g) f (x). (3.3)

In other words,g · f = ϑ(g−1) f = ϑ(g)−1 f . The image ofϑ is contained in the
cyclic groupC|G| of order|G|. Such a homomorphismϑ is called anabelian char-
acter of the groupG; we also refer to it as thetwist of the equivariant function
f .

The set of all invariant functions is a subring ofR, denotedRG, and for a fixed
homomorphismϑ, the set ofϑ-equivariant functionsf forms a module overRG,
which we denoteRϑ. Thus,RG = R1. Such equivariants are classically calledco-
variantsor semi-invariants, and the modulesRϑ are calledmodules of covariants.

Let f : V → C be an equivariant function, with twistϑ. Then its differential
d f is an equivariant formsince one finds on differentiating (3.3), thatg · d f =
ϑ(g)−1d f .
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Any finite group has the property that every representation is completely re-
ducible. That is, ifV is a representation andW ⊂ V an invariant subspace, then
there is a complementary invariant subspaceW′ with V = W ⊕W′. Moreover,
the irreducible representations are all finite dimensional. In particular,R is a G-
representation so splits as an infinite sum (or product) of irreducible subspaces.
Let χ be the character of a particular irreducible representation ofG. Then collect-
ing all the irreducible subspaces ofR that have characterχ we obtain a subsetRχ

of R which, as is easy to see, is anRG-module called theisotypic componentof R
with characterχ. Thus one has the following direct sum decomposition:

R=
⊕

χ
Rχ,

where the sum is over all charactersχ of G. The modulesRϑ for abelian characters
are special cases of theRχ just defined.

Example 3.1 ConsiderG=CN acting onV = C with its natural action, identifying
CN with theNth roots of unity. The functionf (x) = xk is equivariant, withϑk(ω) =
ωk for eachNth root of unityω, and we have the decomposition

R=
N−1⊕

k=0

Rϑk.

More generally, for an abelian group, all characters are abelian (thatis, all irre-
ducible representations are 1-dimensional), and one has thatR is the direct sum of
all the modules of equivariants.

QUOTIENT SPACE The ring of invariants defines the algebraic/analytic structure
of the quotient space. However, this space has a more refined structure, namely that
of a stratified space. The said stratification is byorbit type: the orbit type of a point
x∈V is defined to be the conjugacy class(Gx) of the isotropy subgroupGx ⊂ G of
x. The subset ofV consisting of points with isotropy conjugate to a given subgroup
H of G is denotedV(H). It is a submanifold ofV, and the collection of all suchV(H)

defines a stratification ofV. More precisely, one should take the strata to be the
connected components of theV(H). Furthermore, the quotient mapπ : V →V/G is
of constant rank when restricted to each stratum, and the images of the stratadefine
the stratification ofV/G by orbit type.

SinceG is finite, each stratum is an open subset ofVH for someH. Let x ∈
V(H), with Gx = H. Then there exists anH-invariant neighbourhoodSx of x in V,
such that anyH-invariant function onSx can be extended in a unique fashion to a
G-invariant function on the image ofSx under the group action. This enables us
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to localize the study of critical points of invariant functions. Note furthermore that
Sx∩V(H) = SH

x .
There is an important result — known as theprinciple of symmetric criticality

— which states that an invariant functionf on V has a critical point atx iff the
restriction of f to VGx has a critical point atx. Sinceπ is a submersion on each
stratum, this is in turn equivalent tof having a stratified critical point at[x] ∈V/G.
This correspondence is taken advantage of particularly by Bruce and Roberts [3].

The principal of symmetric criticality is proved by noting that iff is invariant,
thend fx is fixed byGx, so is (co)tangent toVGx. Thus if d fx restricted toVGx

vanishes, then so doesd fx.

REFLEXION GROUPS Consider a representationρ : G→ GL(V). This is said to
begenerated by pseudo-reflexionsif there is a setS of generators ofG with each
elements∈ S having the property that Fix(ρ(s);V) has codimension 1 inV. If
a generator is of order 2 then it is called a reflexion. The action in the previous
example is generated by pseudo-reflexions.

It is well-known that the ring of invariants for a pseudo-reflexion groupaction
is a polynomial ring with no relations between the generators. Moreover, each of
the modules of equivariants is a free module over this ring, andR≃ RG⊗C C.G,
whereC.G is the regular representation ofG. See for example, Chapter V.5 of [2].

REAL ACTIONS Let G be a finite group acting (linearly) onRn. Then there is a
positive definite quadratic form onRn invariant under the group action. To see this,
let Q be any positive definite quadratic form onRn, and letQ be the average ofQ
over the group:

Q(x) =
1
|G| ∑

g∈G

Q(gx).

ThenQ is also positive definite, and so in particular non-degenerate.
Now consider the complexification of the action onRn. This action also has a

non-degenerate (quadratic) invariant function, namely the same quadratic form Q
considered as a function onCn. An action onCn is said to be areal actionif it is the
complexification of an action onRn. The existence of a non-degenerate invariant
quadratic form in fact characterizes the real actions, as was shown byG. Schwarz
[16, Proposition 5.7].

EQUIVARIANT COMPLEXES We describe briefly the effect of an action of a finite
groupG on the material in Section 1. IfR is a ring andG a group, one says that
an R-moduleM is anRG-module if it carries anR-linear action of the groupG;
that is, if there is a homomorphism ofG to the group of automorphisms ofM. An
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RG-complex is a complex ofRG-modules such that the differentials in the complex
are equivariant:d(g·m) = g·(dm). It follows then that the cohomology groups are
alsoRG-modules. Furthermore, if there is a short exact sequence ofRG-complexes,
then the maps in the associated long exact sequence in cohomology commute with
theG-actions.

One defines the equivariant Euler characteristic of anRG-complexK to be

∑
i

(−1)i [H i(K)].

This enjoys the usual properties of Euler characteristics; in particular, ifthe RG-
modulesMi in the complex are finite dimensional, then the equivariant Euler char-
acteristic is equal to∑i(−1)i [Mi ].

4 Multiplicities of invariant critical points:
Finite Groups

Consider a functionf on Cn with an isolated critical point, and supposef ∈ Rϑ

whereϑ is an abelian character of a finite groupG. Let ft be a 1-parameter de-
formation of f , with ft ∈ Rϑ for all t. Note that ifx ∈ Cn is a critical point of ft ,
then so isg · x for all g ∈ G. The results described in this section are mostly due
to Mark Roberts [15]; he only deals with the case thatf is invariant under a real
representation ofG, but the extension to the general case we treat here is more or
less straightforward.

There are three representations of interest. First, we haveG acting onR, and
if f ∈ Rϑ is an equivariant, thenG preserves the Jacobian idealJf ⊂ R. There is
therefore an induced action on theR-moduleR/Jf . Since f has an isolated critical
point, this module is a finite dimensional representation ofG. Secondly,G acts
on the multiplicity moduleM( f ), and thirdly there is the action on the critical
locusC( ft), and its associated permutation representation. The isomorphismψ of
Proposition 2.2 shows that asRG-modules

M( f ) ∼= λ⊗ (R/Jf). (4.1)

The remaining problem is to relate the representationsM( f ) or (R/Jf) to theG-
action on the critical locusC( ft).

GENERIC MULTIPLICITY It is important to note that most modules of equivariants
contain no non-degenerate functions. As a simple example, considerG = CN (N >
1) acting as in Example 3.1. Any element ofRϑk (0≤ k≤N−1) is a function of the
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form ∑i≥0aixk+iN . For example, fork = 0, RG contains non-degenerate functions
if and only if N = 2, while if k≥ 1 then f ∈ Rϑk is never non-degenerate.

Still worse is the possibility that certain modules of equivariants contain no
functions with isolated critical points. A simple necessary, though not sufficient,
condition for the existence of isolated critical points is that dimVg ≤ 1

2 dimV, for
all g ∈ G with ϑ(g) 6= 1 This is because ifϑ(g) 6= 1 then necessarilyf |Vg = 0.
Consequently, we can writef = ∑a

i=1xi fi for some functionsfi , wherex1 = · · · =
xa = 0 is the equation forVg. It is easy to see that if this sum has an isolated critical
point inVg thena≥ n−a.

Thegeneric multiplicityis the local multiplicity of a critical point of an equiv-
ariant function that cannot be broken up under equivariant deformation of the func-
tion. The generic multiplicity depends purely on the local geometry of the action
together with the twistϑ, and the local geometry is best described by the stratifi-
cation ofV (or equivalently ofV/G) by orbit type — see Section 3. Here we give
this description forinvariant functions. For the more general equivariant functions,
matters are not so well understood.

Supposef : Sx → C is H-invariant with an isloated critical point atx. We
perturb f to make it generic in two stages (which of course can be done simulta-
neously). To begin, we choose anH-invariant splittingSx

∼= SH
x ×T — note that

TH = 0. Now, perturbf to f1 by adding a function independent ofT, so that the re-
striction of f1 to SH

x is non-degenerate. In a neighbourhood of each non-degenerate
critical pointxi ∈ SH

x of f1, we can apply the (equivariant) splitting lemma to write
f1 = non.deg.+hi , where non.deg. is a non degenerate function onSH

x , andhi is an
H-invariant function onT. We are now reduced to the local problem of perturb-
ing thehi : T → C. Problem: for a given representationT of H, how simple can
an isolated critical point be? The multiplicity orG-multiplicity, of such a critical
point is thegeneric multiplicityin question. Note that sinceTH = 0 there are no
linear invariant functions, so that the generic multiplicity is at least 1. For a given
representationT, it is not hard to determine the generic multiplicity provided one
knows the invariants of low degree. However, it would be nice to have geometrical
or representation theoretic estimates for this generic multiplicity.

The results known at present are due to Schwarz [16], and Wall [21]. Schwarz
proves that if the representationV of G is real then the representationsT of the
isotropy subgroupsH that arise as above, are also real. For any real action there
is an invariant non-degenerate quadratic form, and hence the generic multiplicity
for a real representation is 1. Wall considers the case that dimV = 2, and there are
no fixed point sets of codimension 1 (pseudo-reflexion hyperplanes).He produced
a formula for the generic multiplicity in terms of the embedding dimension and
the resolution of the quotient spaceV/G, see Remark 6.8 below. By the reduction
procedure described above, Wall’s results also apply to points on codimension 2
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strata which do not lie on pseudo-reflexion hyperplanes.
It is easy to give the generic multiplicity for generic points on pseudo-reflexion

hyperplanes. Here, dimT = 1, and so the isotropy group isH ∼= CN — the cyclic
group of orderN for someN. The generic invariant is thenf (x) = xN, and the
generic multiplicity is thus[M( f )] = ϑ1+ · · ·+ϑN−1, a vector space of dimension
N−1 with all 1-dimensional representations ofCN present except the trivial one.

It is an important open problem to find further estimates on generic multiplicity.
M. Roberts [15] uses techniques of equivariant jet bundles to prove the equiv-

ariant version of Proposition 2.1 for invariants of real actions. The moregeneral
version of Proposition 2.1 for invariants can be deduced from a theoremof Lê [7]
on Morsifications of isolated critical points on analytic varieties. The analogous
statement for equivariants does not follow from Lê’s theorem, as they are not func-
tions on the quotient space.

Example 4.1 Consider the cyclic groupC3 of order 3, acting in its natural repre-
sentation onC (i.e. by ϑ1: notation established in Example 3.1), and letft(x) =
x6 − 2tx3. The action onC.dx is ϑ2. For t = 0, we haveM( f0) = M( f0,0) =

x u r

r

r

t = 0 t 6= 0

ϑ2C{x}/
〈
x5

〉
. This has multiplicity 5; as a representation it is isomorphic to

ϑ2(2ϑ0 + 2ϑ1 + ϑ2) = 2ϑ0 + ϑ1 + 2ϑ2. For t 6= 0, we have critical points at 0
and solutionsx1,x2,x3 of x3 = t. ThenM( ft) = M( ft ,0)⊕⊕3

i=1M( ft ,xi). Let u1

be a local coordinate about the pointx1, andu2,u3 its images under elements of the
group, thenπ∗M(F)t is given by

M( ft) =
C{x}
〈x2〉

dx⊕
C{u1}

〈u1〉
du1⊕

C{u2}

〈u2〉
du2⊕

C{u3}

〈u3〉
du3.

As a representation,[C{x}/
〈
x2

〉
] = ϑ0 +ϑ1. Thus,

[M( ft)] = ϑ2(ϑ0+ϑ1)+ϑ2[{x1,x2,x3}] = (ϑ0+ϑ2)+(ϑ0+ϑ1+ϑ2) = [M( f0)].

Thus, [M( ft)] = [M( f0)], and provided we know that any “generic” invariant
function has a critical point at 0 of multiplicity 2 (and more precisely ofG-multiplicity
ϑ0 +ϑ2), we can deduce the representation[C( ft)]. More generally, of course, one
has to deal with generic critical points with multiplicity not equal to 1 away from
0 too. We now proceed to prove in general that[M( ft)] = [M( f0)].
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Theorem 4.2 Let f = f0 be an equivariant function on V with an isolated critical
point at 0, and ft an equivariant deformation of f . Then, as representations of the
finite group G,

M( ft) ∼= M( f0).

Moreover, if all critical points of ft are non-degenerate, then

[C( ft)] =

[
R

Jf0

]
= λ−1[M( f0)].

PROOF: Using the notation of Section 1, recall thatπ∗M(F) is a freeC{t}-
module, and by the preparation theorem, it is generated as such by any basis for
M( f0). For any elementg ∈ G, let µt(g) be the matrix representingg in the re-
sulting basis ofM( ft). Then the entries ofµt(g) are continuous int. Since the set
of characters of a finite group is finite, it follows that the representationM( ft) is
constant, up to conjugation.

It follows that[R/Jft ] = [R/Jf0], so there remains to relate[C( ft)] with [R/Jft ].
If all critical points ofFt are non-degenerate then

R/Jft ∼= ⊕x∈C( ft)R/mx,

wheremx is the maximal ideal of functions vanishing atx. The groupG acts on the
right hand side as a permutation of the generators 1x ∈ (R/mx), which coincides
with the action onC( ft). 2

Remark 4.3 (i) Wall proves in [20] that iff is invariant then

[M( f )](g) = (−1)n−n(g) dimMg( f ),

whereMg( f ) is the multiplicity module of the restriction off to Vg andn(g) =
dimVg. His proof involves passing to the Milnor fibration so is outside the scope of
these lectures. However, we do give a proof in the case of weighted homogeneous
functions in Corollary 6.7.
(ii) The representation[S] does not always determine the action ofG on a finite
setS. Thus one cannot in general read off the action ofG on the critical locus of
ft from the theorem. To overcome this problem, Roberts [15] introduces a finer
invariantρ( f ) for invariant functions which depends on the multiplicities of the
restriction off to the fixed point subspacesVH of V. He shows that for real actions,
the invariantρ does indeed determine the action ofG on the critical locusCt . In
particular, if every fixed point subspace ofV is of the formVg for someg ( as is the
case for reflexion groups) then the representationM( f ) determines theG-action
on the critical locus of a generic deformationft of f . See [15] for details.
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5 Multiplicities of invariant critical points:
Reductive Groups

The title of this section is rather over-optimistic, for results on multiplicities of
critical points of functions invariant under the action of reductive groups are only
known for the groupC∗, or more generally for finite extensions thereof, see [10].
The first reason that the general reductive case is more difficult than the finite group
case is that critical points are no longer isolated, since group orbits no longer con-
sist of isolated points.

In this section, we describe some pertinent geometry of reductive group actions
in general, and then proceed to give the known results for actions ofC∗.

INVARIANT THEORY LetV be a representation of a reductive groupG. (Reductive
means that every representation ofG is completely reducible; an important class of
reductive group is the complexification of compact Lie groups consideredas real
algebraic groups, [6].) LetRbe the ring of invariant functions onV (polynomial or
analytic, according to taste — or use).

The quotient spaceY =V/G has to be defined with care; it is not so straightfor-
ward for reductive groups as for finite groups (or compact groups inthe topological
setting) since not all orbits are closed. Thus, if the quotient space were defined as
the set of orbits, then the natural topology would fail to be Hausdorff (orevenT1).
As a set, the quotient space is therefore defined to be the set ofclosedorbits. It
can be proved in general, that ifx∈V, then the closure of the orbitG · x contains
exactly one closed orbit. This fact is used to define the quotient mapπ : V →Y, by
letting π(x) be this unique closed orbit inG·x. The analytic structure onY is de-
fined simply by the ring or invariants. This is justified by the fact that the invariant
polynomials separate the closed orbits( see [11, Corollary 1.2]).

When dealing with invariants of representationsV of reductive groups, an im-
portant geometrical construction is thenull cone. This is defined by

Z = {x∈V | f (x) = f (0) for all invariant functionsf}.

If Y is the quotient space, andπ : V → Y the quotient map, thenZ = π−1(0).
Clearly then,x∈ Z if and only if 0∈ G·x.

Example 5.1 Consider the action of the compact groupSO(n) on the space of
symmetric matrices of ordern, acting by similarity:g·A = gAgT . It is well known
that the invariants are generated by the symmetric functions in the eigenvalues.
Thus,π : V → Rn. If we complexify, we haveSO(n,C) acting in the same way
on the space of symmetric complex matrices, with quotient mapπ : VC → Cn. The
null cone is thus the space of symmetric matrices all of whose eigenvalues arezero.
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For reductive groups one has two notions similar to that of invariant forms for
finite groups. Firstly, theinvariant formsthemselves:

Ωp = {ω ∈ Ωp
V | g∗ω = ω, ∀g∈ G}.

These are finitely generated modules over the ring of invariants, and can be inter-
preted as coherent sheaves on the quotient spaceY. However, in contrast to the
case for finite groups, the invariant forms are in no sense differential forms onY;
for example,Ωp has full support onY for 0≤ p≤ dimV, and dimV > dimY. The
other class of forms are thebasic formswhich are more correctly interpreted as
forms onY. These are defined by

Ωp
Y = {ω ∈ Ωp | iθω = 0 ∀θ ∈ G}.

HereG is the Lie algebra ofG, and iθω is the contraction ofω with the vector
field on V associated toθ ∈ G. On the regular part of theG-action whereπ is
a submersion, this means thatω ∈ Ωp

Y defines a well-defined differentialp-form
on Y — or rather on its smooth part. In [10], it is shown that forC∗-actions,
Ωp

Y = j∗Ωp
U , where j : U →Y is the inclusion of the smooth part ofY. (The same

is probably true for other reductive groups, but I do not know a proof.)

ISOLATED CRITICAL POINTS For a reductive group action onV, critical points of
invariant functions are almost never isolated (except for invariant non-degenerate
quadratic forms in the case of a real action). However, the appropriate notion is
that a critical point should be isolated inY. Note in particular, that if 0 is an
isolated critical point inY of an invariant functionf , then f may have critical points
throughout the null coneZ. This fact is at the root of the difficulty of the general
reductive case. (Note that asking that a critical point inV should be isolated inY
makes sense: ifx is a critical point of an invariant functionf and the orbit through
x is not closed, then any pointy∈ G·x is also a critical point off .)

Notice that if f is an invariant function, andω an invariant or basic form, then
d f ∧ω is also invariant or basic, respectively. Thus, associated to an invariant
function there are now two complexes of interest:

(Ω·,d f∧) : 0→ R→ Ω1 d f∧
−→ Ω2 d f∧

−→ ·· ·
d f∧
−→ Ωn−1 d f∧

−→ Ωn → 0,

and

(Ω·
Y,d f∧) : 0→ R→ Ω1

Y
d f∧
−→ Ω2

Y
d f∧
−→ ·· ·

d f∧
−→ ΩN−1

Y
d f∧
−→ ΩN

Y → 0,

whereN = dim(Y) andR is the ring of invariants. One can show easily that away
from the critical locus off , these complexes are exact (because the complex (2.1) is
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exact). However, one cannot apply the acyclicity lemma as theseR-modules are not
free (and do not even satisfy the depth hypothesis for the generalized formulation
of the acyclicity lemma). Furthermore, the first complex is too long to have any
real chance of being acyclic.

Accordingly as there are two complexes, we can define two multiplicity mod-
ules:

M( f ) =
Ωn

d f ∧Ωn−1 and MY( f ) =
ΩN

Y

d f ∧ΩN−1
Y

,

and for a deformationF of f there are the corresponding relative versionsM(F)
andMY(F).

Conjecture Let ft be a family ofG-invariant holomorphic functions onCn for
some reductive groupG, and suppose thatf0 has an isolated critical point on the
quotient space. Then the modulesM(F) andMY(F) are free.

In particular, this would imply the conjecture of M. Roberts, that for real ac-
tions of reductive groups, the dimension of the module(R/Jf)G is preserved in a
deformation.

C∗-ACTIONS Here we give a brief description of the principal results in [10],
though to simplify matters we restrict our attention to the case of realC∗-actions.
The problem for general reductive groups (even complex tori) is still open. It
should be emphasised that the results of [10] apply only to invariants, and not
to the more general class of equivariants.

Let C∗ act linearly onCn. Such an action can be diagonalized, so thatt ∈ C∗

acts onCn via the matrix diag[tw1, . . . , twn]. If all weights are positive or zero then
the invariants are just the functions of the variables with weight zero; we therefore
assume that there are some positive weights an some negative weights. Leta be the
number of strictly positive weights, andb the number of strictly negative weights;
so we suppose thata,b > 0. Let c be the multiplicity of the weight zero, so that
a+b+c= n. We denote the positive weights byλ1, . . . ,λa and the negative weights
by µ1, . . . ,µb. Write Cn = Ca×Cb×Cc, with corresponding coordinatesx1, . . . ,xa,
y1, . . . ,yb, z1 . . . ,zc.

It is easy to see that the null cone for this action is the union of two linear
subspacesZ = Ca×{0}×{0} ∪ {0}×Cb×{0} ⊂ Ca×Cb×Cc.

Example 5.2 Let S1 act linearly onRn. The irreducible real representations ofS1

are either 1-dimensional — the trivial representation — or 2-dimensional:

χr : θ 7→

[
cos(rθ) −sin(rθ)
sin(rθ) cos(rθ)

]
.
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This representation can be diagonalized overC to

t 7→ diag[tr , t−r ].

Here t is a priori a complex number of modulus 1. However, any holomorphic
function which is invariant under thisS1-action onCn is also invariant under the
correspondingC∗-action defined by allowingt to be any non-zero complex number.
Such aC∗-action is said to bereal, and the realC∗-actions are characterised by the
fact that the set of weights is of the form{±λ1, . . . ,±λa}.

Suppose now that we have a real action ofC∗ onV = Cn, and supposef is an
invariant function with an isolated critical point at 0 inY. Then there are defor-
mations ft of f (remaining in the class of invariant functions) such that all group
orbits of critical points are non-degenerate. We are therefore in a position to give
a simple definition of the notion ofgeometric multiplicity: µgeom= µgeom( f ,0) is
the number of closed group orbits of critical points offt near 0 fort 6= 0 sufficiently
small. (We say a group orbit of critical points is non-degenerate if the restriction of
f to a transversal to the orbit has a non-degenerate critical point in the usual sense.)

Theorem 5.3 ([10]) Suppose we have a real action ofC∗ onCn, and suppose that
f is an invariant holomorphic function, with an isolated critical point on Y. Then

µgeom= dimCM( f ).

The geometric multiplicity can be expressed in terms of the Jacobian ideal us-
ing the isomorphismψ of Proposition 2.2, since for real actionsψ isC∗-equivariant.
Consequently,ψ(RG) = Ωn, andψ((Jf)G) = d f ∧Ωn−1. Furthermore,(R/Jf)G ∼=
RG/JfG (by elementary linear algebra), andJfG can be computed using equivariant
vector fields:JfG = Θ( f ) = ΘY( f ). HereΘ is theRG-module of equivariant vector
fields, andΘY is theRG module of vector fields on the quotient space tangent to
the stratification by orbit type, see [16] and [10, Section 5]. Thus we obtain,

Corollary 5.4 With the above hypotheses,

µgeom= dimC

(
R
Jf

)G

= dim

(
RG

ΘY( f )

)
.

PROOF: Here we give an outline of the proof of the theorem as given in [10] (note
that there is a change of notation: dim(V) = n+1 in that paper, andV is denoted
X). We will write H i := H i(Ω·,d f∧) andH i

Y := H i(Ω·
Y,d f∧). Thus,M( f ) = Hn

andMY( f ) = Hn−1
Y .
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The first problem is that bothHn andHn−1 are non-zero; in fact dim(Hn)−
dim(Hn−1) = 1 independently off . Consequently, one cannot apply Euler charac-
teristic arguments directly to this complex. However, contraction with the vector
field ϑ generating theC∗-action defines a homomorphismHn → Hn−1

Y , which is an
isomorphism (unless the fixed point space inV has codimension 2, in which case
there is a 1-dimensional kernel). Thus, ifHn−1

Y deforms well in a deformation, then
so doesHn, as required.

Now, the hypotheses of the acyclicity lemma fail for the complex of basic forms
(Ω·

Y,d f∧), and indeed this complex fails to be acyclic. However, it is “quasi-
acyclic” in that for i < n− 1 the cohomology groupsH i

Y do not depend onf :
provided f has an isolated critical point at 0∈Y then

H i
Y = C, for i = 3,5, . . . ,n−2

while H i
Y = 0 for all otheri < n−1 (recall dimY = n−1.) This result depends on

some calculations of the local cohomology of the modules of invariant and basic
differential forms.

Let F(x, t) be a deformation off — as always, assumed to beC∗-invariant.
Following the proof of Theorem 2.3, we define the modules of relative basicforms:

Ωp
Y×C/C =

Ωp
Y×C

dt∧Ωp−1
Y×C

,

which is isomorphic toΩp
Y⊗C C{t}. The functionF defines a mapdF : Ωp

Y×C/C →

Ωp+1
Y×C/C as in the ordinary case, which gives rise to a short exact sequence ofcom-

plexes

0→ (Ω·
Y×C/C,dF∧)

t
−→ (Ω·

Y×C/C,dF∧) → (Ω·
Y,d f∧) → 0.

Thus(Ω·
Y×C/C,dF∧) is indeed a deformation of(Ω·

Y,d f∧).
Write ft(·) = F(·, t). Since for everyt,

dimC Hn−2(Ω·
Y,d ft∧) = 1

it follows thatHn−2 is a freeC{t}-module of rank 1, and soHn−1
0

∼= Hn−1/tHn−1.
Consequently, the mapHn−2

0 →Hn−1 of the long exact sequence of Section 1 (with
N = n−1) is zero. Thus, by Lemma 1.1,Hn−1 is torsion free, and

dimMY( f ) = dimMY( ft).

Note that one can argue more simply by conservation of Euler characteristic.
For by Remark 1.2 the Euler characteristic of(Ω·

Y,d ft∧) is independent oft. Since
the dimensions of their cohomology groupsH i for i < n−1 coincide, it follows
that so does that of their top cohomology group. 2
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Remark 5.5 GeneralC∗-actions. If the action is not real, then the main result re-
mains the same, namely that dimM( f ) defines a (fairly) good notion of multiplic-
ity. The complex(Ω·

Y,d f∧) is still quasi-acyclic, soM(F) is free and dimM( f )
is preserved in deformations. The problem is one of “generic multiplicity”, asdis-
cussed in Section 4. Indeed, the situation here is worse than that in Section 4, as
there can be generic orbits of critical points where the multiplicity is 0. This arises
for points on pseudo-reflexion hyperplanes, where the quotient space is smooth,
and a function with a generic critical point on the hyperplane becomes non-singular
on the quotient space. This problem also arises on pseudo-reflexion hyperplanes
for finite groups if one only considers invariant functions and invariantforms in the
analysis of the critical points.

On the other hand, the dimension dim(R/Jf)G is not in general constant in
deformations, but is only upper semicontinuous as is shown by the following ex-
ample.

Example 5.6 (Mark Roberts) Consider theC∗-action onCn with weights(1, . . . ,1,−1),
and coordinatesx1, . . . ,xn−1,y accordingly. The invariants are thus functions of the
n−1 variablesui = xiy. Consider the family of functions

ft(u) = 1
2

n−1

∑
i=1

u2
i − tu1.

Then
∂ f
x1

= (u1− t)y,
∂ f
xi

= uiy for i > 1,
∂ f
y

= ∑uixi − tx1.

Consequently

R
Jft

=
C{x1, . . . ,xn−1,y}

〈(u1− t)y,u2y, . . . ,un−1y,∑uixi − tx1〉
.

For t = 0, this has a single closed critical orbit at 0, and
(

R
Jf0

)G

=
C{u}〈
uiu j

〉 ,

so dim(R/J f0) = n. There are also many critical orbits that are not closed, namely
all orbits (other than 0) contained in the null cone

Z = {y = 0}∪{x1 = · · · = xn−1 = 0}.

On the other hand, fort 6= 0, ft has 2 critical orbits (both closed) at 0 and at{u1 =
t, u2 = · · · = un−1 = 0}, and

(
R
Jft

)G
∼=

R
〈u1, . . .un−1〉

⊕
R

〈u1− t,u2, . . . ,un−1〉
,
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which has dimension 2. Thus dim(R/Jf0) = dim(R/Jft) if and only if n = 2, in
which case we have a real action ofC∗. See [3] for a geometric interpretation of
this loss of multiplicity in terms of the geometry of the quotient space.

If instead we consider the differential forms, we find that

d ft ∧Ωn−1 = 〈u1− t,u2, . . . ,un−1〉Ωn,

and thusM( ft) has dimension 1 for allt. Note however, that the critical point at 0
for t 6= 0 is not seen byM( f ). The same result is found if we consider the basic
forms, since ifn > 2 thenMY( f ) ∼= M( f ). Alternatively this can be proved by
inspection since on a smooth quotient, theΩp

Y coincide with the usual holomorphic
forms.

6 Weighted homogeneous functions

In this section we will have continuous recourse to the following simple fact. Itcan
easily be proved by puttingT in Jordan canonical form.

Lemma 6.1 Suppose T is a linear transformation of a vector space W of dimen-
sion n. Then T induces transformations Tp of the exterior powers

∧p(W), and

n

∑
p=0

(−1)p tr(Tp) = det(I −T),

where I is the identity transformation of W.

Now we suppose that the functionf is weighted homogeneous of degreed with
respect to the weightsw1, . . . ,wn. This means that there are coordinatesx1, . . . ,xn

and an action ofC∗ onCn:

λ · (x1, . . . ,xn) = (λw1x1, . . . ,λwnxn),

and f satisfies
f (λ ·x) = λd f (x).

The weightswi are supposed strictly positive, so the action is a so-called good
action.

For each integeri ≥ 0, we have the linear subspaceRi of R consisting of
weighted homogeneous polynomials of degreei (with respect to the given weights),
and similarlyΩp

i consists of thep-forms of degreei. For example, if all the weights
are equal to 1, thendx1∧ . . .∧dxp ∈ Ωp

p. In particular, there are nop-forms of de-
gree less thanp.
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POINCARÉ SERIES SupposeM is a finitely generatedR-module which isgraded:
M = ⊕iMi with

RiM j ⊂ Mi+ j .

Each graded partMi of M is finite dimensional, and one defines thePoincaŕe series
(or Hilbert series) of M by

P(M, t) = ∑
i

dimC(Mi)t
i .

Remark 6.2 The Poincaŕe series of a graded module isa priori a formal power
series, and as suchP(M, t) can be interpreted as the character (or trace) of the action
of t ∈C∗ onM. In a neighbourhood oft = 0, this formal power series is convergent
and can be expressed as a rational function with denominator∏n

i=1(1−twi ). If M is
finite dimensional overC, thenP(M, t) is a polynomial, and dimC(M) = P(M,1).

Suppose thatM1 andM2 are graded modules overR1 andR2 respectively. A
basic property of Poincaré series is that ifM = M1 ⊗C M2 is given the induced
grading, thenP(M, t) = P(M1, t)P(M2, t). It follows by induction onn that the
Poincaŕe series ofR= C[x1, . . . ,xn] with respect to the weightsw1, . . . ,wn is

P(R, t) =
n

∏
i=1

1
1− twi

.

It also follows that
P(Ωp, t) = P(R, t)P(

∧p(V∗), t).

Observe that
P(

∧p(V∗), t) = tr(τp(t)),

whereτp(t) is the action oft ∈ C∗ on thep-th exterior power
∧p(V∗).

If f ∈ Rd, then
d f ∧Ωp

i ⊂ Ωp+1
d+i .

The differentiald f∧ in the complex (2.1) is therefore homogeneous of degreed,
and the complex is agraded complex. Under the usual assumption thatf has
an isolated critical point, we can compute the Poincaré series of the multiplicity
moduleM( f ) as follows.

The cohomology of the complex (2.1) is

H i(Ω·, f∧) =

{
0 if i 6= n
M( f ) if i = n.
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Now, this complex is not of finite dimensional vector spaces. However, foreach
r ≥ 0, there is a subcomplex consisting of finite dimensional vector spaces

0→ Rr−nd
d f∧
−→ Ω1

r−(n−1)d
d f∧
−→ ·· ·

d f∧
−→ Ωn−1

r−d
d f∧
−→ Ωn

r → 0. (6.1)

The cohomology of this complex isHn = M( f )r , with the otherH i = 0. Recall
that the Euler characteristic of a complexK = (K·,d) of finite dimensional vector
spaces satisfies

n

∑
i=0

(−1)i dim(H i(K)) =
n

∑
i=0

(−1)i dim(K i).

Thus,

dimM( f )r =
n

∑
i=0

(−1)i dim(Ωn−i
r−id),

and so

P(M( f ), t) = ∑
p

(−1)n−ptd(n−p)P(Ωp, t) (6.2)

= P(R, t)∏
i

(twi − td).

Here we use Lemma 6.1 withT = diag[tw1, . . . , twn].
Using the fact that the isomorphismψ of Proposition 2.2 is homogeneous of

degree∑i wi , we obtain the following theorem of Milnor and Orlik [9].

Theorem 6.3 Suppose f is a weighted homogeneous function onCn of degree d,
with respect to the weights w1, . . . ,wn, and has an isolated critical point at 0, then

P(R/Jf, t) =
n

∏
i=1

(
1− td−wi

1− twi

)
.

A series of interesting corollaries to this result is given in [1]. They also give
an example of weights and degrees in dimension 4 for which there is no function

with isolated critical point, and yet the expression∏n
i=1

(
1−td−wi

1−twi

)
is a polynomial.

Evaluating the expression in the theorem att = 1 gives the following.

Corollary 6.4

µgeom= dimCM( f ) = ∏
i

(
d−wi

wi

)
.
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(Note thatd−w1, . . . ,d−wn are the degrees of the partial derivatives off ,
i.e. the generators ofJf . There is a more general result, a weighted version of
Bezout’s Theorem: ifI is a weighted homogeneous complete intersection ideal of
n generators of degreesd1, . . . ,dn, then dim(R/I) = ∏(di/wi). See [2] for more
details.)

INVARIANT FUNCTIONS We now turn to the case of a weighted homogeneous
function which is invariant under the action of a finite groupG. We suppose that
the action ofG preserves the weight spaces, so we can write

V = ⊕kWk

where eachWk is invariant underG, and has weightwk. We will denote byρk :
G → GL(Wk) the representaion ofG on Wk. Note then that the representation on
V∗ given byg ·ξ = ξ◦g−1, satisfiesV∗ ∼= ⊕kW∗

k , and ifρ∗
k is the representation of

G onW∗
k then,

ρ∗
k(g) = ρk(g)−1.

It follows that each of the summands inR=⊕iRi is G-invariant. We sayM is a
graded RG-moduleif it is an RG-module, which is graded as anR-module, and the
grading is such that eachMi is G-invariant. This all amounts to saying that we have
an action ofG×C∗ onCn and hence onR, and thatM is anR(G×C∗)-module.

The results of this section are due to Orlik and Solomon [13], though they give
their formula in the case that all weights are equal, andϑ = 1 (the function is
invariant).

The equivariant Poincaŕe seriesof a gradedRG-moduleM is defined as fol-
lows. For eachg∈ G,

PG(M, t)(g) := ∑
r
[Mr ](g)tr = ∑

r
tr(g;Mr)t

r ,

In particular,PG(M, t)(e) coincides with the ordinary Poincaré series ofM. More-
over, if M is finite dimensional (overC) then evaluating att = 1 gives the or-
dinary character of the representationM. Note that, taking Remark 6.2 a step
further, PG(M, t)(g) is the character of(g, t) ∈ G×C∗ which is a formal power
series int, and as such it would perhaps be more elegant to write it asPG×C∗(M) ∈
C[[t]]⊗C Char(G,C), where Char(G,C) is the ring of complex-valued virtual char-
acters ofG.

The equivariant Poincaré series of the ringR is given by

PG(R, t)(g) =
r

∏
k=1

1
det(IWk − twkρ∗

k(g))
.



CRITICAL POINTS 27

This can be proved by induction after diagonalizingρ(g). Note that applying the
trace formula (3.1) gives Molien’s formula for the Poincaré seriesP(RG, t) of the
ring of invariants.

Consider again the complex (6.1). This is a complex of finite dimensional
representations ofG, and the maps are equivariant with a twistϑ:

Ωp d f∧
−→ Ωp+1⊗ϑ.

For such a complexK = (K·,d) the equivariant Euler characteristic satisfies

n

∑
i=0

(−1)p[H p(K)]ϑp =
n

∑
i=0

(−1)p[Kp]ϑp.

Consequently, in analogy to (6.3), the equivariant Poincaré series ofM( f ) is
given by,

PG(M( f ), t) = ϑ−n∑
p,r

(−1)n−pϑp[Ωp
r−(n−p)d]t

r−(n−p)dt(n−p)d.

We now repeat the argument prior to Theorem 6.4, but taking the representa-
tions into account. Note that, as with ordinary Poincaré series,

PG(Ωp, t) = PG(R, t)PG(
∧p(V∗), t).

Thus

PG(M( f ), t) = ϑ−nPG(R, t)∑
p

(−1)n−pϑpt(n−p)dPG(
∧p(V∗), t).

Applying Lemma 6.1 with

T = −ϑ(g)t−d diag[tw1ρ∗
1(g), . . . , twr ρ∗

r (g)],

we deduce

Theorem 6.5 Suppose f is a weighted homogeneous function on V with an iso-
lated critical point at 0, and which is an equivariant for the G-action with twistϑ,
then

PG(M( f ), t)(g) = ∏
k

det(twkρ∗
k(g)−ϑ(g)−1tdIWk)

det(IWk − twkρ∗
k(g))

.

The isomorphismψ : R/Jf →M( f ) is homogeneous and equivariant, so if we
divide bytwλ(g), wherew = ∑k wk dim(Wk) we deduce the following result due to
Orlik and Solomon [13]. Note thatλ(g) = ∏k detρ∗

k(g) = detρ∗(g) = detρ(g)−1.



28 J. MONTALDI

Corollary 6.6 With the same hypotheses as the theorem,

PG(R/Jf, t)(g) =
r

∏
k=1

det(IWk − td−wkϑ(g)−1ρk(g))

det(IWk − twkρ∗
k(g))

.

For eachg∈ G, let n(g) = dim(Vg) = the multiplicity of 1 as an eigenvector of
ρ(g). And supposew1, . . . ,wn(g) are the weights onVg, then one easily evaluates
the expression in the theorem att = 1 to deduce

Corollary 6.7 Suppose in addition that f is invariant (or more generally that
ϑ(g) = 1), then

[M( f )](g) = (−1)n−n(g)
n(g)

∏
i=1

(
d−wi

wi

)
.

Remark 6.8 If the action ofG is free off the origin (i.e. for allg 6= e one has
Vg = 0), then[M( f )](g) = (−1)n for g 6= e. Such a character is easy to interpret.
Note that the character[G] of the regular representationC.G satisfies

[G](g) = 0 if g 6= e

and of course[G](e) = |G|. Thus for f with an isolated critical point andG acting
freely off the origin,

[M( f )] = ν( f )[G]+ (−1)nC,

for some integerν( f ), whereC is the trivial representation. In [21, Section 5], Wall
uses this in the case dim(V) = 2 to produce a formula for the generic multiplicity
— seeGeneric Multiplicityin Section 4. Supposef is a generic critical point and
write ν( f ) = ν(G,V). Wall’s formula is in terms of the embedding dimension of
V/G and the resolution ofV/G, and states that for dimV = 2 andG free off 0,

ν(G,V) =

{
e−3 if G is cyclic, orb > 2
e−2 if G is not cyclic andb = 2,

wheree is the embedding dimension and−b is the self-intersection number of the
central curve of the resolution.

The dimension of the fixed point subspacesM( f )G and(R/Jf)G can be com-
puted by applying the trace formula to the formulae in Theorem 6.5 and Corollary
6.6 respectively.

It is interesting to translate the corollaries of Theorem 6.3 given in [1] into
corollaries of the theorem above.
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7 Weighted-homogeneous C∗-invariant functions

We continue with the notation used in Section 5 forC∗-invariant functions. In
particular, the weights of theC∗-action areλi > 0 andµj < 0 (with i = 1, . . . ,a, j =
1, . . . ,b). In this section we considerC∗-invariant functions onV that are also
weighted homogeneous with respect to some set of (strictly positive) weightswi

andv j . We thus have twoC∗-actions, and we suppose that they commute. That is,
we have an action of the torus(C∗)2, and correspondingly every monomial has a
bidegree(α,d) with d ≥ 0; in particular, bidegree(0,d) corresponds to invariant
functions of degreed with respect to the positive weightswi ,v j . The monomialxi

has biweight(λi ,vi) and the monomialy j has biweight(µj ,w j).
If an invariant functionf is weighted homogeneous of degreed, then the good

C∗-action defines a grading onM( f ), and we wish to compute its Poincaré series.
To this end, we reconsider the complex (2.1), each term of which has a bigrading,
and for each bidegree(α,e),

d f ∧ [Ωp](α,e) ⊂ [Ωp+1](α,e+d).

The Poincaŕe series of a bigraded vector spaceA with finite dimensional bi-
graded parts is a formal power series in two variables:

P(A;s, t) = ∑
r,e

dim(A(α,e))s
αte.

(Again, this is the character of the representation of the torusC∗×C∗ on A.) Note
that the ringS= C[xi ,y j ] is bigraded with finite dimensional graded parts, since
S(α,e) ⊂ Se which is finite dimensional (Se being the subspace ofS consisting of
functions of degreeewith respect to the weightswi ,v j ).

The Poincaŕe series of the ringC[xi ,y j ] with biweights(λi ,wi),(µj ,v j) (with
λi ,wi ,v j > 0 andµj < 0) converges to

P(S;s, t) =
a

∏
i=1

1

(1−sλi twi )

b

∏
j=1

1
(1−sµj tv j )

,

provided that|sλi twi | < 1 and|sµj tv j | < 1 for all i, j. This domain of convergence
contains no value oft with |t| > 1, and for eacht with |t| < 1 it is an annulus in
s-space:|t|m2 < |s| < |t−1|m1, wherem1 = min{λi/wi} andm2 = min{v j/(−µj)}.
In particular, if|t| < 1 it contains the circle|s| = 1.

Now a polynomial is invariant underC∗ if and only if it is invariant under the
maximal compact subgroupS1 ⊂ C∗. To calculate the Poincaré series of the ringR
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of invariants, one therefore applies the trace formula (3.1) to theS1-action:

P(R)(t) =
1
2π

∫ 2π

0
P(S;eiθ, t)dθ

=
1

2πi

∮

|s|=1
P(S;s, t)

ds
s

.

One can use the residue theorem to compute this as a sum of residues at the poles
of the rational functions−1P(S;s, t). It seems unlikely that this can be expressed as
a simple closed formula for general weights.

Now, by Lemma 6.1 the Poincaré series for the complex(Ω·,d f∧) is given by

P(Ω·,d f∧)(s, t) = P(S)(s, t)
a

∏
i=1

(sλi twi − td)
b

∏
j=1

(sµj tv j − td)

=
a

∏
i=1

(sλi twi − td)

(1−sλi twi )

b

∏
j=1

(tv j −s−µj td)

(s−µj − tv j )
.

(Recall−µj > 0.) Sincef does not in general have an isolated critical point inCn,
this series is not a polynomial.

The Poincaŕe seriesP(Ω·,d f∧) for the complex of invariant forms is deduced
from P(Ω·,d f∧) by the same method asP(R) is found fromP(S): averaging over
theS1-action. Thus for|t| < 1,

P(Ω·,d f∧)(t) =
1

2πi

∮

|s|=1
ρ(s, t)ds,

where

ρ(s, t) =
∏a

i=1(s
λi twi − td)∏b

j=1(t
v j −s−µj td)

s∏a
i=1(1−sλi twi )∏b

j=1(s
−µj − tv j )

. (7.1)

For fixed t, the disc|s| < 1 contains poles of the integrand ats = 0 and at all
solutions ofs−µj = tv j , for j = 1, . . . ,b. Thus there are 1+ ∑ j |µj | poles, counting
multiplicity. For |t| < 1, let

St = {s | s−µj = tv j , for somej = 1, . . . ,b}. (7.2)

Then
P(Ω·,d f∧)(t) = res{s=0} ρ(s, t)+ ∑

s0∈St

res{s=s0} ρ(s, t).

The first summand is easy to compute: res{s=0} ρ(s, t) = tad. The other terms are
not so easy for general weights. In practice, for given weights they can easily be
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computed with the aid of a computer package such as Maple. Note that taking the
disc |s| ≥ 1, one obtains an analogous formula, involving the residue ofρ at s= ∞
and at solutions ofsλi = twi for i = 1, . . . ,a. Which formula is chosen in practice
would depend on the specific weights and their multiplicities.

We thus have, in principle, a formula forP(Ω·,d f∧)(t). It remains to see
how this is related to the Poincaré series for the multiplicity moduleM( f ). Let
m= min{a,b}. The information we require on the cohomologyH · of the complex
(Ω·,d f∧) is given in [10, Proposition 3.6]. It is shown there that the following are
exact sequences:

a = b : 0→ C.[ωm] → Hn → Hn−1 → 0;

|a−b| = 1 : 0→ Hn → Hn−1 → C.[ωm] → 0;

|a−b| > 1 : 0→ Hn → Hn−1 → 0 andH2m ∼= C.[ωm];

and all otherH i = 0. The mapHn → Hn−1 is given by contraction of differential
forms with the vector fieldϑ generating theC∗-action, which is of degree 0. The
2-form ω is defined byω(ϑ,−) = d f , soω has the same degree asf . Thus, with
M = max{a,b},

a = b : P(M( f )) = (1− td)−1(P(Ω·,d f∧)− t(a+1)d);

a 6= b : P(M( f )) = (1− td)−1(P(Ω·,d f∧)− tMd);

We have therefore proved

Theorem 7.1 Let f be a weighted homogeneous polynomial of degree d with re-
spect to the weights wi ,v j that is also invariant under theC∗-action with weights
λi ,µj (see above for precise notation). Suppose that f has an isolated critical point
in the quotient space. Letρ be given by (7.1) and St by (7.2). Then

P(M( f )) = R+C(a,b);

where

R =
1

(1− td) ∑
s0∈St

res{s=s0} ρ(s, t)

and

C(a,b) =






tad if a = b
0 if a > b
(tad− tb)/(1− td) if a < b.



32 J. MONTALDI

Examples 7.2We give a few examples involving real actions. The casen = 2 is
trivial, for the quotient space is 1-dimensional and smooth, so our examplesare for
n = 4 and 6.
(1,1,−1,−1): SupposeC∗ acts onC4 with these weights, and letf be a ho-
mogeneous invariant polynomial of degreed with all weights =1. The invariant
polynomials are polynomials in thexiy j , and therefored must be even. Then

ρ(s, t) =
(st− td)2(t −std)2

s(1−st)2(s− t)2 .

Using Theorem 7.1, one finds

P(M( f ), t) = t2d +
t4(1− td−2)

(1− t2)3

[
1+ t2 + td−2−6td + td+2 + t2d−2 + t2d

]
.

This is a polynomial if and only ifd is even. Evaluating this att = 1 gives

dimM( f ) = 1+
1
4
(d−2)(d2−2d+4),

which is an integer if and only ifd is even.

(1,2,−1,−2): Consider thisC∗-action onC4. The invariants are functions of
x1y1, x2

1y2, x2y2
1, x2y2. Consider first the case thatf is homogeneous of degreed

(all wi = v j = 1). Then

ρ(s, t) =
(st− td)(s2t − td)(t −std)(t −s2td)

s(1−s)(1−s2)(s− t)(s2− t)
.

Applying Theorem 7.1 gives

P(M( f ), t) = t2d +
t4(1− td−2)

(1− t)(1− t2)(1− t3)
p(t)

with

p(t) =
[
1− t + t2 + td−2− td−1−2td − td+1 + td+2 + t2d−2− t2d−1 + t2d

]
.

P(M( f ), t) is a polynomial if and only ifd is congruent to 0 or 2 modulo 6. Eval-
uating att = 1 gives

dimM( f ) = 1+
1
6
(d−2)(d2−2d+6),
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Consider now the case thatw1 = v1 = 1, w2 = v2 = 2 (corresponding to(λ1 =
−µ1 = 1, λ2 = −µ2 = 2). Then

ρ(s, t) =
(st− td)(s2t2− td)(t −std)(t2−s2td)

s(1−st)(1−s2t2)(s− t)(s2− t2)
.

Applying Theorem 7.1 and evaluating att = 1 gives

dimM( f ) = 1+
1
16

(d3−6d2 +20d−32),

which is an integer if and only ifd is a multiple of 4.

(1,1,1,−1,−1,−1): Now C∗ acts onC6 with these weights, andf is invariant
and homogeneous of degreed with respect to the weights 1. Again, the invariants
are generated by thexiy j , andd is necessarily even. We have

ρ(s, t) =
(st− td)3(t −std)3

s(1−st)3(s− t)3 .

From Theorem 7.1, one deduces

dimM( f ) =
1
16

(
3d5−18d4 +48d3−72d2 +72d−32

)
.

Using generating functions, it is possible to express more explicitly the formula
of Theorem 7.1 in the case that all the weights are±1.

Consider the real action ofC∗ on C2N with weights±1 (so generalizing two
of the examples above). Letf be a homogeneous function of degreed invariant
under thisC∗-action, and with an isolated critical point in the quotient space. The
Poincaŕe series of the multiplicity module of the critical point is given by Theorem
7.1. More explicitly, introducingN into the notation,

P(MN( f ), t) =
1

1− td

(
1

2πi

∮

|s|=1
ρN(s, t)ds− tN+1

)
,

with

ρN(s, t) =
1
s

(
(st− td)(t −std)
(1−st)(s− t)

)N

.

Now form the generating function,

G(t,T) = ∑
N≥0

P(MN( f ), t)TN.
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ForT sufficiently small, this converges to

G(t,T) =
1

(1− td)

(
1

2πi

∮

|s|=1

ds
s(1−sρ1(s, t)T)

−
t

1− tT

)
.

The integral can be evaluated by the residue theorem. After “clearing the frac-
tions”, the denominator of the integrand becomes

s[s2t(tdT −1)+s(1+ t2(1−T)− t2dT)+ t(tdT −1)].

The integrand thus has three poles, ats= 0, ats1 ≈ t ands2 ≈ 1/t. The first two
are within the unit circle, the last is without.

The residue ats= 0 is simply 1/(1− tdT). The residue ats= s1 is too long to
be reproduced here, but when evaluated att = 1 gives the following result.

Theorem 7.3 Let M(N,d) = dim(MN( f )), where f is aC∗-invariant function,
homgeneous of degree d, with an isolated critical point in the quotient. Suppose
theC∗-action to be real with weights±1. Then

∑
N≥0

M(N,d)TN =
1

1−T
+ 1

2(d−2)T(1−T)−3/2(1− (d−1)2T)−1/2.

Remark 7.4 The case of real actions with weights±1 was considered under a
different guise by van Straten [18]. LetH2 be a homogeneous non-degenerate
quadratic form onC2N invariant underC∗ andHd a degreed invariant function with
an isolated critical point on the quotient spaceY (these are not exactly van Straten’s
hypotheses, but they are equivalent). Consider the map(Hd/2

2 ,Hd) : Y → C2, and
let Σ be its singular locus. Suppose further thatΣ∩{H2 = 0} = {0} (verified for
genericHd). Let S(N,d) be the number of branches inY of Σ. Van Straten proves
by algebro-geometric methods, that

∑
N≥0

S(N,d)TN = T(1−T)−3/2[1− (d−1)2T]−1/2.

(Note that van Straten’sn+1 is ourN, and his 2d is ourd.)
The relation between this result and our Theorem 7.3 is as follows. Con-

sider the deformationHλ = Hd + λd/2−1H2 of Hd (which is homogeneous inY×
C). Now, if (x,λ) is a critical point ofHλ thenx is a singular point of the map

(Hd/2
2 ,Hd). Let Σ ⊂ Y×C be the set of critical points ofHd + λd−2H2, which is

1-dimensional. One branch of this curve is{0}×C ⊂Y×C. Let Σ′ consist of the
remaining branches. The projectionΣ → C, ([x],λ) 7→ λ has multiplicityM(N,d)
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([x] is theC∗-orbit throughx). The projectionΣ′ → Y has multiplicity 1
2(d−2),

and is onto the critical set of(Hd/2
2 ,Hd). Thus,

M(N,d)−1 = 1
2(d−2)S(N,d).

This provides an alternative proof of Theorem 7.3.
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