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1 Introduction

We know what is meant by an element of a module. What should we mean by
an element of a sheaf of modules? One answer is that it is simply a section (over
an open set). If, however, one takes the algebraic view that an element should
be of finitary character and hence should belong to a sum of subobjects iff it
belongs to some finite subsum, then this is not a good answer: sections are, in
general, of infinitary character.

One of our original motivations was to develop some model theory for sheaves
of modules, at least to see under what conditions on a ringed space a reasonable
model theory for sheaves of modules may be developed (for this see [?], also [12]).
Here we mean the usual model theory which is based on elements (of finitary
character). Through this we were lead to the problem of determining when a
sheaf of modules is finitely generated or finitely presented in the usual algebraic
sense and to the problem of determining when the category of OX -modules,
where OX is a ringed space, is locally finitely presented. This condition on a
category is equivalent to its objects being determined by their elements.

So far as we could determine, these questions in full generality had not hith-
erto been addressed. Presheaves are genuinely algebraic objects and categories
of presheaves are always locally finitely presented. But the sheaf property is not
an algebraic one and does not fit well with notions like “finitely presented” and
“finitely generated” unless the base space has strong compactness properties
(such as is usually the case for those spaces considered in algebraic geometry
and analysis, where finiteness conditions on sheaves are of central importance).

Our other initial motivation was to investigate the representation of R-
modules, where R is any ring, as sheaves over a certain ringed space which
originally arose in the model theory of modules. This ringed space is the sheaf
of locally definable scalars over the rep-Zariski (=dual-Ziegler) spectrum of R
(see, e.g. [12] [13]). This spectrum has bad (separation and compactness) prop-
erties compared with the spaces usually considered in algebraic geometry and
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analysis. But our interest in this space explains why we consider ringed spaces
in full generality (arbitrary spaces and arbitrary rings with 1).

Our main result (3.5) is that if X has a basis of compact open sets and if
OX is any sheaf of rings over X then the category Mod-OX of sheaves of OX -
modules is locally finitely presented, with the j!OU , where U ranges over any
basis of compact open sets, forming a generating set of finitely presented objects.
Here j!OU is the extension by 0 of the restriction, OU , of OX to U . Indeed,
over any ringed space, j!OU is finitely presented iff the open set U is compact
(3.7). The dependence of this result on X but not on the sheaf OX prompted
us to ask (see the earlier versions, [14], of this paper) whether the answer to the
question also depends only on X; that is, does Mod-OX being locally finitely
presented depend only on the underlying space X? This question is still open
but the independence, given X, of 3.5 from the choice of sheaf OX is explained
in a paper [3] by Bridge: there it is shown that if (C, J) is a Grothendieck site
such that the topos of sheaves of sets over (C, J) is locally finitely presented and,
if R is any ring object in that topos, then the category of R-modules will be
locally finitely presented. Taking the site to be the poset of open subsets of X,
regarded as a category in the usual way, with the usual notion of covering, gives
3.5. In the original version of this paper we also commented that it seemed our
results would generalise to locales; that also is covered by Bridge’s result.

We also investigate the weaker condition that Mod-OX be locally finitely
generated and we begin by showing that if F is a finitely generated sheaf then
the support of F is compact (4.5). We also prove that if K is a locally closed
subset of X then j!OK is finitely generated iff K is compact (4.6). Using this
we obtain a necessary, but not sufficient, condition for Mod-OX to be locally
finitely generated. Namely, if Mod-OX is locally finitely generated then for
every x ∈ X and every open neighbourhood, U , of x there is a compact locally
closed set K with x ∈ K ⊆ U (4.8). We give examples which show that the
property of local finite generation depends on the structure sheaf, not just on
the space: if X is the (closed) unit interval in R with the usual topology and if
OX is the sheaf of continuous functions on X then Mod-OX is locally finitely
generated whereas, if we let O′X be the constant sheaf on the same space then
Mod-OX is not locally finitely generated (4.9, 4.10). We also show that, in the
first case, although Mod-OX is locally finitely generated, it is not locally finitely
presented (5.5); for that we develop a criterion (5.3, 5.4) for j!OK to be finitely
presented over Hausdorff locally compact spaces.

A direction that we have not pursued here is that of replacing Mod-OX with
the full subcategory of quasicoherent sheaves or of sheaves with quasicoherent
cohomology.

Although we have not been able to answer in full the question with which
we started, Bridge’s result, as well as recent interest (see [16]) in this topic,
has prompted the preparation of this (somewhat shorter) version of [14] for
publication.

2 Some general constructions and results on sheaves

First, some basic definitions and notation.
Let OX be a sheaf of rings (all our rings will be associative with an identity

1 6= 0). We denote by PreMod-OX the category of presheaves over X which
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are OX -pre-modules. That is, M ∈ PreMod-OX means that M is a presheaf of
abelian groups such that, for each open set U ⊆ X, M(U) is a right RU -module,
where we set RU = OX(U), and such that, for every inclusion V ⊆ U ⊆ X
of open subsets of X, the restriction map, resMU,V : M(U) −→ M(V ), is a
homomorphism of RU -modules, where we regard M(V ) as an RU -module via
resOXU,V : RU −→ RV . The full subcategory of sheaves, that is, of OX -modules
is denoted Mod-OX . Then (see [2, Sections I.3, II.4]) both PreMod-OX and
Mod-OX are Grothendieck abelian categories.

An object C of a category C is finitely presented (fp) if the representable
functor (C,−) : C −→ Ab commutes with direct limits in C. If C is Grothendieck
abelian, then it is sufficient to check that for every directed system ((Dλ)λ, (gλµ :
Dλ −→ Dµ)λ<µ) in C, with limit (D, (gλ∞ : Dλ −→ D)λ), every f ∈ (C,D)
factors through some gλ∞. A category C is finitely accessible if the full subcat-
egory, Cfp, of finitely presented objects is skeletally small and if every object of C
is a direct limit of finitely presented objects; if C also is complete (equivalently,
[1, 2.47], cocomplete) then C is said to be locally finitely presented (lfp).
Abelian categories which are finitely accessible hence, [6, 2.4], Grothendieck and
lfp are in many ways as well-behaved as categories of modules over rings. In
particular, objects of C are determined by their “elements” (morphisms from
finitely presented objects) and these “elements” have finitary character (as op-
posed to what one has for merely presentable categories). Such categories have
a good model theory and they admit a useful embedding into a related func-
tor category (see e.g., [8], [10], [11], [12]). The category PreMod-OX is locally
finitely presented (see [5, p. 7] for example), indeed it is a variety of finitary
many-sorted algebras in the sense of [1, Section 3A], but Mod-OX need not be
(see 4.10, 5.5).

Next, we recall, following [9] (also see [7], [17]) some standard functors on
categories of sheaves. Let Y ⊆ X and let F ∈ Mod-OX . Let j : Y −→ X denote
the inclusion. The sheaf j∗F is defined by: for any open subset U of Y we set
j∗F.U to be the set of those s such that s is a set-theoretic section of the stalk
space of F over the set U such that for all y ∈ U there exists V ⊆ X open with
y ∈ V ∩ Y ⊆ U and there exists t ∈ FV such that for all z ∈ V ∩ Y we have
sz = tz. That is, sections of j∗F locally look like sections of F . If Y is open in
X then j∗F.U = FU for U ⊆ Y open.

One may check that j∗F is, indeed, a sheaf (exercise in [9, p. 65] or [17,
p. 58]). It is also denoted F |Y or F � Y and called the restriction of F to Y .
If F ∈ Mod-OX then j∗F ∈ Mod-OY where we let OY denote OX |Y (cf. p.
110 of [7] where the notation j−1 is used for what we have denoted j∗: here the
structure sheaf over a subspace is always that induced by the structure sheaf of
the whole space, so the j∗/j−1 distinction does not arise).

Fact 2.1. (e.g. [9, p. 97]) j∗ : Mod-OX −→ Mod-OY is exact and is left
adjoint to the left exact functor j∗ : Mod-OY −→ Mod-OX which is given by
j∗G.U = G(U ∩ Y ) for G ∈ Mod-OY and U open in X (the direct image
functor): (j∗F,G) ' (F, j∗G) for F ∈ Mod-OX , G ∈ Mod-OY .

Let K ⊆ X be locally closed (the intersection of an open set with a closed
set); denote the inclusion by j : K −→ X, and let G ∈ Mod-OK . Define the
sheaf j!G on X, the extension of G by zero by: j!G.U = {s ∈ G(U ∩ K) :
supp(s) is closed in U}. This is a sheaf and j!G ∈ Mod-OX (for an alternative
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description, see [17, p. 63/4]). Recall that the support of a section s ∈ FU is
supp(s) = {x ∈ X : sx 6= 0} where sx is the germ of s at x; this is a closed
subset of U .

Fact 2.2. (e.g. [9, p. 106/7]) j! : Mod-OK −→ Mod-OX is an exact functor
which is an equivalence between Mod-OK and the category of OX-modules which
have all stalks over X \K equal to 0.

Now, given F ∈ Mod-OX and K ⊆ X locally closed, let FK be the sheaf
(clearly it is a sheaf) given by FKU = {s ∈ FU : supp(s) ⊆ K}. So FK is a
subsheaf of F. Set j!F = j∗FK ∈ Mod-OK ; sections of j!F are locally given by
sections of F with support contained in K.

Fact 2.3. (e.g. [9, p. 108/9]) The functor j! : Mod-OX −→ Mod-OK is left
exact and is right adjoint to the functor j! : (j!G,F ) ' (G, j!F ).

Fact 2.4. (e.g. [9, p. 109])
If K = C is closed then j∗ = j!.
If K = U is open then j∗ = j!.
Always j!F ≤ j∗F.

Fact 2.5. (e.g. [9, p. 110], [17, 3.8.11]) If U ⊆ X is open, C = X \ U is its
complement and F ∈ Mod-OX then there is an exact sequence

0 −→ j!(F |U ) −→ F −→ i!(i∗F ) = i∗(i∗F ) −→ 0
where j : U −→ X and i : C −→ X are the inclusions, where the first map is
the natural inclusion and where Fx −→ (i!i∗F )x is the identity if x ∈ C and is
0 otherwise (see [9, p. 97, 4.3]).

In particular we have an exact sequence
0 −→ j!OU −→ OX −→ i!OC −→ 0.

It follows that if C is closed, K is locally closed and C ⊆ K ⊆ X then there
is an exact sequence

0 −→ i′!OK\C −→ OK −→ i!OC −→ 0
where i : C −→ K and i′ : K \ C −→ K are the inclusions. Then, since j! is
exact, where j : K −→ X is the inclusion, we have

0 −→ j!i
′
!OK\C −→ j!OK −→ j!i!OC −→ 0

that is,
0 −→ (ji′)!OK\C −→ j!OK −→ (ji)!OC −→ 0

where ji′ : K \ C −→ X, j : K −→ X and ji : C −→ X are the inclusions.

Lemma 2.6. Let C ⊆ X be closed and let U = X \ C. The canonical sequence
0 −→ j!OU −→ OX −→ i!OC −→ 0 is split iff C is open. (Here and elsewhere
letters such as j, i will denote the obvious inclusions.)

Proof. Suppose that we have g : i!OC −→ OX splitting the canonical surjection

f : OX −→ i!OC . Setting s = g1C , we have sx =

{
1x ∈ OX,x if x ∈ C
0 otherwise

. Then

(1X − s)x =

{
0 if x ∈ C
1x if x /∈ C

, so supp(1X − s) = X \C and, since the support of

any section must be closed, we deduce that C is open in X.
Conversely, if C is open in X then the inclusion i!OC −→ OX clearly splits

f, as required. �
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Since, if K ⊆ X is locally closed, the functor j! is exact, where j : K −→ X
is the inclusion, we have the more general statement.

Lemma 2.7. Let C ⊆ K ⊆ X with C closed and K locally closed, i : C −→ K
and j : K −→ X the inclusions. Then the canonical epimorphism j!OK −→
(ji)!OC (from the exact sequence before 2.6) is split iff C is open in K.

Proof. If C is open in K then we have a split exact sequence as in 2.6 with K
replacing X so then apply j!.

Conversely, if j!OK −→ j!i!OC is split then apply (j)∗, noting (see [9, II.6.4])
that (j)∗j! = Id, and then apply 2.6. �

The dual statement follows immediately.

Lemma 2.8. Let U ⊆ K ⊆ X with U open and K locally closed, i : U −→ X
and j : K −→ X the inclusions. Then the canonical monomorphism i!OU −→
j!OK is split iff U is closed in K.

Lemma 2.9. Let C =
⋂
λ Cλ be closed sets, where the intersection is directed

(i.e. ∀λ, µ∃ν Cν ⊆ Cλ ∩ Cµ). Let ((j!OCλ)λ, (gλµ : j!OCλ −→ j!OCµ)Cλ⊇Cµ)
be the corresponding directed system of epimorphisms (we use j generically
to denote inclusions). Then lim−→λ

(j!OCλ) = j!OC and each limit map gλ∞ :
j!OCλ −→ j!OC is an epimorphism.

Proof. Let G = lim−→ j!OCλ with limit maps gλ∞ : j!OCλ −→ G.
For each λ the inclusion C −→ Cλ gives rise, by the canonical exact sequence

(2.5), to an epimorphism hλ : j!OCλ −→ j!OC and these are compatible, so we
have a unique induced map h : G −→ j!OC with hgλ∞ = hλ for all λ. We show
that h is an isomorphism - so it is sufficient to show that h is an isomorphism
at each stalk.

Let x ∈ X. Then Gx = lim−→x∈U GU = lim−→x∈U lim−→λ
GλU (the presheaf and

sheaf limits agree on stalks) = lim−→λ
lim−→x∈U GλU = lim−→λ

(Gλ)x =

{
Ox if x ∈ C
0 if x /∈ C

.

So G has the same stalks as j!OC and since all maps in the system are,
at the level of stalks, either the identity or zero, we can check that hx ={

id : Ox −→ Ox if x ∈ C
0 otherwise

. So G −→ j!OC is an isomorphism. Also, we

have seen that each gλ∞ is stalkwise surjective and hence is an epimorphism.
�

3 The category Mod-OX: local finite presenta-
tion

Every category Mod-OX is locally presentable because it is a Grothendieck
category (e.g. [4, 3.4.2, 3.4.16]); we would like to determine when Mod-OX is
locally finitely presented.

Remark 3.1. (cf. [2, p. 260]) The sheaves j!OU , with U ⊆ X open, together
generate Mod-OX . This follows, for instance, from the corresponding result
(see [2, Section I.3]) for presheaves by localising/sheafifying (which preserves
generating sets) to the category of sheaves.
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Proposition 3.2. If U is a basis of open sets for X then the j!OU for U ∈ U
together generate Mod-OX .

Proof. Let F ∈ Mod-OX , let x ∈ X and take a ∈ Fx. Since Fx = lim−→x∈U FU

there is U = U(x, a) open and b = bU,a ∈ FU such that the canonical map from
FU to Fx takes b to a. Without loss of generality U ∈ U . Define f ′ : OU −→
F � U by 1 ∈ OUU 7→ bU,a ∈ FU (by linearity and restriction this defines a
presheaf morphism, which is enough).

Since j! is left adjoint to (−)U there is, corresponding to f ′ ∈ (OU , F � U),
a morphism fx,U,a ∈ (j!OU , F ) with (fx,U,a)U : 1U 7→ bU,a. Note that (fx,U,a)x :
(j!OU )x −→ Fx maps 1OX,x to a ∈ Fx.

Hence
⊕

x∈X
⊕

a∈Fx fx,U,a :
⊕

x

⊕
a j!OU=U(x,a) −→ F is an epimorphism

on stalks and hence is an epimorphism in Mod-OX .
�

Proposition 3.3. Suppose lim−→λ
Gλ = G in Mod-OX and suppose that U ⊆

X is compact open. Then the canonical map g : lim−→λ
(GλU) −→ GU is an

isomorphism.

Proof. The sheaf G is the sheafification of the presheaf direct limit, G′, of the
Gλ and this is given, for V ⊆ X open, by G′V = lim−→(GλV ). So the propo-
sition asserts that G′ and G agree at compact open sets. Let g : G′ −→ G
be the sheafification map in the category PreMod-OX . We show that gU is an
isomorphism.

Let s ∈ G′U and suppose that gUs = 0. Then there must be an open cover
{Ui}i of U such that, for all i, we have resG

′

U,Ui
s = 0. Since U is compact we may

take the cover to be finite: U1, ..., Un say. Then, by definition of the restriction
maps in the limit, for each i there are λi and ai ∈ GλiU such that (g′λi,∞)U (ai) =

s (where g′λi,∞ : Gλi −→ G′ is the canonical map) and (g′λi,∞)Uires
Gλi
U,Ui

(ai) = 0.
Since there are just finitely many Ui we may take λ with λ ≥ λ1, ..., λn and also
such that (gλi,λ)U (ai) = (gλj ,λ)U (aj) = b, say, for all i, j (since the ai all map to

the same element in the limit) and, furthermore, such that (gλi,λ)Uires
Gλi
U,Ui

(ai) =

0 for all i (since each res
Gλi
U,Ui

ai maps to 0 in the presheaf limit). But then

resGλU,Ui(b) = (gλi,λ)Uires
Gλi
U,Ui

(ai) = 0 for each i and hence, since Gλ is a sheaf,
b = 0. Therefore s = (g′λ,∞)U (b) = 0 as required.

To see that gU is onto, take any t ∈ GU . For each x ∈ U there is an
open neighbourhood Ux of x and t(x) ∈ G′(Ux) such that gUxt(x) = resGUUx(t).
Since U is compact we may take finitely many open sets U1, . . . , Un say, with
corresponding ti ∈ G′Ui, which cover U .

For each i there is λi and si ∈ GλiUi with g′λi∞si = ti. Since there are
only finitely many λi we may take λ ≥ λ1, . . . , λn and we may suppose that
si ∈ GλUi for each i.

We have, furthermore, that for each pair, i, j, of indices, resG
′

Ui,Ui∩Uj (ti) =
resG

′

Uj ,Ui∩Uj (tj) and hence there is µij ≥ λ such that g′λµij resGλUi,Ui∩Uj (si) =
g′λµij resGλUj ,Ui∩Uj (sj). So, choosing µ ≥ µij for each i, j and setting s′i = gλµ(si)

we may suppose that for all i, j we have resGµUi,Ui∩Uj (s
′
i) = resGµUj ,Ui∩Uj (s

′
j). Since

Gµ is a sheaf, there is s ∈ GµU such that resGµU,Ui(s) = si for each i = 1, ..., n.

6



Then (g′µ∞)U (s) ∈ G′U with (since G is separated) gU
(
(g′µ∞)U (s)

)
= t, as

required. �

It follows that if X is a noetherian space, that is, if every open subset of X
is compact, and if (Gλ)λ is a directed system in Mod-OX then the direct limit,
lim−→Gλ, computed in PreMod-OX is a sheaf and hence equals lim−→Gλ, computed
in Mod-OX .

From the adjunction (j!OU , F ) ' (OU , F � U) ' Γ(F � U) ' FU for U ⊆ X
open we deduce that ΓU (−) ' (j!OU ,−) as functors on Mod-OX . Here Γ
denotes the global section functor, F 7→ FX, and ΓU is the functor F 7→ FU .

Corollary 3.4. If U ⊆ X is compact open then j!OU is a finitely presented
object of Mod-OX .

Proof. Let (Gλ)λ be a directed system in Mod-OX with direct limit G. Then,
as just noted, (j!OU , G) ' GU and lim−→λ

(j!OU , Gλ) ' lim−→(GλU) - and these
coincide by 3.3, as required. �

With 3.2 this gives our first result.

Theorem 3.5. [15], [14] If X has a basis of compact open sets then Mod-OX
is locally finitely presented, with the j!OU for U ⊆ X compact open (or with the
U from any basis of such sets) as a generating set of finitely presented objects
of Mod-OX .

Corollary 3.6. If X is locally noetherian and OX is any sheaf of rings on X
then Mod-OX is locally finitely presented.

We also have the converse to 3.4.

Proposition 3.7. If U is open then j!OU is finitely presented in Mod-OX iff
U is compact.

Proof. If U is compact then we have 3.4, so suppose that U is not compact
- say {Ui}i is an open cover with no finite subcover. We may suppose that
{Ui}i is closed under finite union. Set Gi = j!OUi ; these form a directed system
under inclusion (see 2.5), so set G = lim−→ j!OUi . Then G = j!OU since from the
canonical inclusions j!OUi −→ j!OU we obtain a map G = lim−→ j!OUi −→ j!OU
which locally, and hence stalkwise, is an isomorphism and which is, therefore,
an isomorphism.

So the identity map of G would factor through some j!OUi if G = j!OU were
finitely presented - but since Ui 6= U there can be no such factorisation (recall
that if x /∈ Ui then (j!OUi)x = 0). �

Example 3.8. If F ∈ Mod-OX is finitely presented and U ⊆ X is open then
F |U might not even be finitely generated. Let X = [0, 1] and take U = (0, 1).
Take OX to be the sheafification of the constant presheaf k where k is any chosen
ring. By 3.4, OX is a finitely presented sheaf but, by 3.7, OU is not, because U
is not compact. Indeed, OU is not even finitely generated, as one sees by writing
OU as the sum over n ≥ 1 of the sheaves j!O( 1

n ,1−
1
n ).
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4 The category Mod-OX: local finite generation

Recall that an object F in an abelian category is finitely generated if, when-
ever F =

∑
λ Fλ for some subobjects Fλ, we have F =

∑n
i=1 Fλi for some

λ1, . . . , λn. If the category is locally finitely presented then it is equivalent that
F be the image of a finitely presented object.

Suppose that F ∈ Mod-OX and let s ∈ FX. Define a subpresheaf 〈s〉0 of
F by setting: 〈s〉0U = resFX,U (s).RU (recall that RU = OXU) and with the
restriction maps coming from F. This is a separated presheaf; let 〈s〉 denote the
sheafification of 〈s〉0 - a subsheaf of F .

More generally, if U ⊆ X is open and s ∈ FU then we define the subsheaf of
F generated by s to be j!〈s〉, where j : U −→ X is the inclusion and 〈s〉 ≤ F |U
is defined as above. Recall (2.5) that there is an inclusion j!(F |U ) −→ F and
so, since j! is (left) exact, j!〈s〉 is indeed a subsheaf of F. Although we call it
the sheaf generated by s it need not be a finitely generated sheaf - unless U
is compact s might not be a “finitary element” of F. Here, though, is some
justification for the terminology.

Lemma 4.1. Let F ∈ Mod-OX , let U ⊆ X be open and let s ∈ FU. Suppose
that G ≤ F is a subsheaf such that s ∈ GU. Then j!〈s〉 ≤ G.

Proof. It is immediate from the definition that 〈s〉0 is a subpresheaf of GU and
hence that 〈s〉 ≤ GU . Therefore j!〈s〉 ≤ j!(GU ) ≤ G. �

Lemma 4.2. Let F ∈ Mod-OX . Then F =
∑
{j!〈s〉 : U ⊆ X is open and s ∈

FU} (we write j! for (jU )! where jU : U −→ X is the inclusion).

Proof. By the remarks above, F contains the right hand side. Conversely, given
U ⊆ X open and s′ ∈ FU we have s′ ∈ j!〈s′〉.U (since s′ ∈ 〈s′〉0U) so s′ ∈
(
∑
U

∑
s∈FU j!〈s〉).U as required. �

Note that infinite sums in Mod-OX are obtained by first forming the presheaf
sum (that is, the algebraic sum of U -sections at each open U ⊆ X) and then
sheafifying. We say that a sheaf F is finitely generated if whenever F =∑
λ Fλ with the Fλ subsheaves of F , then there are λ1, . . . , λn such that F =

Fλ1 + · · · + Fλn . It is immediate that any finitely presented sheaf is finitely
generated.

Lemma 4.3. If F ∈ Mod-OX , s ∈ FX and (Vλ)λ are open sets with V =⋃
λ Vλ ⊇ supp(s) then 〈s〉 =

∑
λ j!〈resFX,Vλs〉.

Proof. Arguing as above, the right hand side, G say, is a subpresheaf of 〈s〉. We
have, for each λ, a section in GVλ which agrees with s on Vλ and hence, since
〈s〉 is a sheaf, we deduce that resFX,V s ∈ GV and hence, since G is a sheaf, that
s ∈ GX. Therefore, by 4.1, 〈s〉 ≤ G, as required. �

We define the support of a (pre)sheaf F to be the union, supp(F ) = {x ∈
X : Fx 6= 0}, of supports of sections of F .

Lemma 4.4. Suppose that F ∈ Mod-OX is finitely generated. Then there are
open subsets U1, ..., Un of X and si ∈ F (Ui) such that supp(F ) =

⋃n
1 supp(si).

In particular, supp(F ) is a locally closed subset of X.
If F =

∑
i j!〈si〉 where si ∈ F (Ui) then we may take the Ui and si from this

representation.
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Proof. Take a representation of F as given (we know there is such by 4.2).
Since F is finitely generated we have F =

∑n
1 j!〈si〉, say. Certainly supp(F ) ⊇⋃n

1 supp(si).
Conversely, if x ∈ supp(F ) then there is an open set V containing x and

t ∈ FV such that tx 6= 0. We have FV =
∑n

1 j!〈si〉.V. If a ∈ j!〈si〉.V then
supp(a) ⊆ supp(si) (using the definition of 〈s〉0). But then t ∈

∑n
1 j!〈si〉.V

implies x ∈ supp(si) for some i, as required.
Finally, supp(F ) is locally closed since it is a finite union of closed subsets

of open sets. �

Proposition 4.5. Let F ∈ Mod-OX be finitely generated. Then supp(F ) is
compact.

Proof. We know that F =
∑n

1 j!〈si〉 for some si ∈ F (Ui) for some open Ui and
then, by the lemma above, supp(F ) =

⋃n
1 supp(si).

Suppose that supp(F ) is not compact. Then there are open subsets Vλ
of X such that supp(F ) ⊆ V =

⋃
λ Vλ but no finite number of these cover

supp(F ). For each i = 1, . . . , n the Vλ ∩ Ui cover V ∩ Ui and so, by 4.3, F =∑n
i=1

∑
λ(jVλ∩Ui,X )!〈resFUi,Vλ∩Ui(si)〉 (ignoring those where Vλ ∩ Ui = ∅).

Since F is finitely generated there is a finite subsum
F =

∑m
k=1(jVλk∩Uik ,X)!〈resFUik ,Vλk∩Uik (sik)〉. By 4.4 above we have supp(F ) =⋃m

1 supp(sik) ∩ Vλk ⊆
⋃m

1 Vλk - contradiction, as required. �

Proposition 4.6. Let K ⊆ X be locally closed. Then j!OK is finitely generated
iff K is compact.

Proof. If j!OK is finitely generated then, by 4.5, K is locally closed.
For the converse, suppose that K is locally closed and compact. We have

K = U0 ∩ C for some open U0 and closed C. Let U ⊆ U0 be open. Then
j!OK .U = {s ∈ OK(K ∩ U) : supp(s) is closed in U} is generated by 1K∩U
since supp(1K∩U ) = K ∩ U = C ∩ U is closed in U . Hence j!OK = 〈1K〉.

Now suppose that j!OK =
∑
λ Fλ for some subsheaves Fλ. We may suppose

that the sum is directed. Let x ∈ K. Since
∑
λ Fλ is the sheafification of the

presheaf sum of the Fλ there is an open set Ux containing x (without loss of
generality Ux ⊆ U0) such that 1Ux∩K(∈ j!OK .Ux) belongs to the presheaf sum
of the FλUx and hence (since the sum is directed) belongs to FλUx for some λ.

As x varies over K we get a cover (Ux)x∈K and so, by compactness, some
finite subset, Ux1 , ..., Uxn , covers K. Set U1 = Ux1 ∪ ... ∪ Uxn ⊆ U0. The sum
is directed so we may choose λ such that 1K∩Uxi ∈ Fλ(Uxi) for i = 1, ..., n
and hence such that 1K = 1K∩U1 ∈ Fλ(U1) (since Fλ is a sheaf). Therefore
j!OK = 〈1K〉 ≤ Fλ, as required. �

Proposition 4.7. Let U ⊆ X. Suppose that there is a finitely generated sheaf
F ∈ Mod-OX such that there is a non-zero homomorphism f : F −→ j!OU .
Then U contains a compact locally closed set. If x ∈ X is such that the morphism
of stalks fx : Fx −→ OX,x is non-zero then this compact locally closed set may
be taken to contain x.

Proof. Let F ′ = im(f). Being an image of a finitely generated object, F ′ is
finitely generated. Since F ′ is a non-zero subfunctor of j!OU , we have ∅ 6=

9



supp(F ′) ⊆ supp(j!OU ) ⊆ U and, by 4.5 above, supp(F ′) is compact. The set
supp(F ′) is also locally closed by 4.4. Finally, if fx 6= 0 then x ∈ supp(F ′). �

A Grothendieck abelian category C is locally finitely generated if every
object is an epimorphic image of a direct sum of finitely generated objects. From
the above result it follows that if Mod-OX is locally finitely generated then for
every x ∈ X and open set U containing x there is a compact locally closed set
K with x ∈ K ⊆ U .

We strengthen this as follows. Say that X is locally compact if for every
x ∈ X and for every open set U containing x there is an open set V containing
x and a compact locally closed set K with x ∈ V ⊆ K ⊆ U.

Theorem 4.8. Suppose that Mod-OX is locally finitely generated. Then X is
locally compact.

Proof. Given x and U, consider j!OU . By assumption there is an epimorphism
from a direct sum of finitely generated sheaves to j!OU and this must be sur-
jective on stalks. Hence there is F ∈ Mod-OX finitely generated and f : F −→
j!OU such that fx : Fx −→ (j!OU )x = Ox has 1x ∈ Ox in its image (and hence
which is surjective at x). Therefore there is an open set V ′ with x ∈ V ′ ⊆ U
and sections s′ ∈ FV ′ and t′ ∈ j!OU .V ′ with fV ′s′ = t′ and t′ 7→ 1x under the
canonical map OUV ′ −→ Ox. Since (t′ − 1V ′)x = 0 there is an open set V with
x ∈ V ⊆ V ′ and with resV ′V t

′ = resV ′V (1V ′) = 1V . Thus there is an open set
V with x ∈ V ⊆ U and a section (resFV ′V (s′) =) s with fV s = 1V ∈ OV V. So
we have V ⊇ supp(s) ⊇ supp(fV s) = V, that is supp(s) = V .

Now, F finitely generated implies that fF is a finitely generated subsheaf
of j!OU and so, by 4.6, supp(fF ) ⊆ suppj!OU = U is a compact locally closed
subset of X which contains V . �

Whether or not Mod-OX is locally finitely generated depends on OX , not
just on X.

Example 4.9. Let X be the closed interval [0, 1] and let OX be the sheaf of
continuous functions from X to R. We show that the j!OK with K = [e, f ], 0 ≤
e < f ≤ 1 are generating (these are finitely generated by 4.6). Since, by 3.2, the
i!OU with U = (c, d) are generating it is enough to show that, given such an open
U, x ∈ U and g ∈ OX,x = (i!OU )x, there is such a set K and φ : j!OK −→ i!OU
with φx having g in its image.

Choose a continuous function h1 : [0, 1] −→ R such that supp(h), = K say,
is a closed subinterval of U and such that h1 � V = 1 (the constant function) on
some open set V ⊆ K with x ∈ V . Then choose a function, f , on [0, 1] which
has germ g at x and replace h1 by h = fh1.

Note that h ∈ i!OU .X, in fact, h ∈ (i!OU )K .X and hence h gives a section in
j!(i!OU ).K. Under the adjunction (j!i!OU .K ')(OK , j!i!OU ) ' (j!OK , i!OU ))
this gives a morphism φ : j!OK −→ i!OU with φxhx = g, as required.

The same argument applies if we replace [0, 1] by, for instance, R and/or
take OX to be the sheaf of smooth functions from X to R (see e.g. [9, p. 158]
for the construction of a smooth function like h1 above).

We will see, 5.5, that this category of sheaves is not, however, locally finitely
presented.
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Example 4.10. Let X = [0, 1] (or R) and let OX be the “constant” (i.e.,
sections are constant over connected sets) sheaf with values in a chosen ring
Then Mod-OX is not locally finitely generated.

For suppose that we have a finitely generated OX-module, F , and a non-zero
morphism F −→ i!OU where U is any non-empty proper open subset of X. By
4.5, supp(F ) = K is compact, hence closed. Without loss of generality, F is
cyclic (factor out all but one, suitably chosen, element in a generating set in the
sense of this section). Then there is an epimorphism j!OK −→ F and hence
a non-zero morphism j!OK −→ i!OU . Therefore i!OU has a non-zero section
s in an open neighbourhood V of K but with support contained in K (see the
description, 5.1, of the functor (j!OK ,−) at the beginning of the next section).
This open neighbourhood V is a union of disjoint open intervals and, on each
interval, each section is constant so, if non-zero, has support the whole of that
interval. Therefore supp(s) is a non-empty union of disjoint open intervals and
so, since supp(s) is a proper subset of V , cannot be closed in V - contradiction,
as required.

5 More on finitely presented and finitely gener-
ated sheaves

Recall that if K ⊆ X is locally closed then j!OK is finitely presented if the
functor (j!OK ,−) commutes with direct limits. We give an alternative descrip-
tion of this functor: by 2.3 we have, for F ∈ Mod-OX , (j!OK , F ) ' (OK , j!F ).
Hence (j!OK , F ) ' j!F (K) = j∗FK(K).

Proposition 5.1. Let K be locally closed. Then (j!OK , F ) ' j∗FKK =
lim−→U⊇K(FKU) where the direct limit is taken over all open U ⊆ X contain-
ing K.

Proof. (Cf. [9, p. 149])
First note that, by definition of j∗, we have s ∈ j∗FKK iff for each x ∈ K

there is an open neighbourhood Vx of x in X and a section t ∈ FKVx such that
s and t agree on K ∩ Vx.

For each open set U ⊆ X with K ⊆ U there is a natural map FKU −→
j∗FKK given by restriction and hence we have a canonical map h : lim−→U⊇K(FKU) −→
j∗FKK.

Suppose that a ∈ lim−→U⊇K(FKU) with ha = 0. Take U ⊇ K and t ∈ FKU
such that rU,∞t = a, where rU,∞ : FKU −→ lim−→V⊇K(FKV ) is the canonical
map. Note that hrU,∞ is restriction to K so, since hrU,∞t = 0, and since
supp(t) ⊆ K, we have t = 0 and hence a = rU∞t = 0, as required.

To see that h is onto, let s ∈ j∗FKK. For each x ∈ K choose an open
neighbourhood Vx of x in X and t(x) ∈ FKVx such that s and t(x) agree on
K ∩ Vx. Note that if y ∈ K then t(x) and t(y) agree not just on (K ∩ Vx) ∩
(K ∩ Vy) but, since supp(t(x)), supp(t(y)) ⊆ K, on Vx ∩ Vy and hence there is
t ∈ FK(Vx∪Vy) which agrees with t(x) on Vx and with t(y) on Vy - hence which
agrees with s on (Vx ∪ Vy) ∩K.

Therefore, if V =
⋃
{Vx : x ∈ K} then the compatible sections t(x) yield a

section t ∈ FKV which agrees with s on K. That is, hrV∞t = s, as required.
�
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So (j!OK ,−) is the functor “germs of sections with support in K”.

Proposition 5.2. Let K ⊆ X be compact and locally closed, say K = U ∩ C
with U open and C closed. Suppose that for every downwards-directed system
(Kλ)λ of closed subsets of U with

⋂
λKλ = K there exists U ′ open and λ

with U ′ ∩ Kλ = K. Let ((Gλ)λ, (gλµ)λ≤µ) be a directed system in Mod-OX
and set G = lim−→λ

Gλ in Mod-OX with limit maps gλ∞ : Gλ −→ G. Then
GKK = (lim−→λ

(GKλ ))K. Furthermore if g′ is the canonical map from the presheaf
limit, p lim−→λ

(GKλ ) to GK then g′K is monic.

Proof. Let V be an open set containing K. Note that the GKλ V form a di-
rected system since, if f : G1 −→ G2 is a morphism of sheaves and s ∈ G1V,
then supp(fs) ⊆ supp(s). For the same reason we have (gλ∞)V .GKλ V ≤ GKV
for all V and all λ and hence there is induced, for each V, a canonical map
g′V : lim−→λ

(GKλ V ) −→ GKV and these fit together to give a map g′ : G′ =
p lim−→λ

(GKλ ) −→ GK where p lim−→ denotes the presheaf direct limit.
We have a commutative diagram as shown where G′ −→ G′′ = p lim−→λ

Gλ is
the natural map induced by the inclusions GKλ −→ Gλ.

G′′ = p lim−→λ
Gλ

g′′
// G

G′ = p lim−→λ
GKλ

g′
//

OO

GK

OO

Since direct limit is left exact the left-hand map is an inclusion and so g′ is
just the restriction of g′′ : G′′ = p lim−→λ

(Gλ) −→ G, that is, is sheafification.
We show that g′K is monic. By 5.1 every element of G′K is represented by

a section s ∈ G′V for some open V ⊇ K; note that supp(s) ⊆ K. Suppose that
g′V s = 0. Then there is an open cover (Vi)i of V such that resG

′

V Vi
s = 0 for each

i. Since K is compact there are V1, . . . , Vn, say, which cover K. Replace the
original choice of V by V1 ∪ · · · ∪ Vn and s by its restriction to this set.

For i = 1, . . . , n choose λi and ai ∈ GKλi(V ) such that (g′λi∞)V ai = s and

such that (g′λi∞)Vires
GKλi
V Vi

ai = 0 (because resG
′

V Vi
s = 0 there are such λi and ai).

Here g′λ,∞ denotes the limit presheaf map GKλ −→ G′.
Since a1, . . . , an all map to s in the limit and since ai restricts to 0 on Vi in

the limit and since there are just finitely many of these, there is λ ≥ λ1, . . . , λn
such that for all i, j we have (gλiλ)V ai = (gλjλ)V aj = b say and such that

resG
K
λ

V Vi
(b) = (gλiλ)Vires

GKλi
V Vi

(ai) = 0. So, since GKλ is a sheaf, b = 0 and hence
s = (g′λ∞)V b = 0. It follows that g′K is indeed monic.

Now we show that if we have a section of GKK, represented, using 5.1,
by, say, t ∈ GKV where V is an open neighbourhood of K (without loss of
generality, V ⊆ U) then there is some section of lim−→λ

(GKλ ) over some open
neighbourhood V ′′ of K contained in V which maps to resGV,V ′′(t).

Set L = supp(t) - a closed, hence compact, subset of K.
Since t ∈ GV and G = lim−→Gλ there is, for each x ∈ L, an open neighbour-

hood Vx(⊆ V ) of x and tx ∈ p lim−→Gλ.Vx such that (g′′)Vxtx = resGV,Vx(t).
Finitely many of these Vx suffice to cover L, say V1, . . . , Vn (writing V1 for Vx1

etc.). For each i = 1, . . . , n there is λi and si ∈ GλiVi such that (g′′λi∞)Visi = ti,
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where g′′λ∞ : Gλi −→ p lim−→Gλ is the map to the presheaf limit. We will show
that we may take the si to have support contained in K.

Write sλi = (gλi,λ)Visi ∈ GλVi for each λ ≥ λi and set Lλ =
⋃n
i supp(sλi ) for

each λ ≥ λ1, . . . , λn.
We claim that Lλ is a closed subset of V ′ = V1 ∪ · · · ∪ Vn. Let y ∈ V ′ \ Lλ.

If y ∈ Vi then, since (si)y = 0, hence (sλi )y = 0, there is an open neighbourhood
of y contained in Vi \ supp(sλi ). Taking the intersection of these neighbourhoods
over those i such that y ∈ Vi, we obtain an open neighbourhood of y which is
disjoint from Lλ, as required.

So the Lλ form a downwards-directed system of closed subsets of V ′ with,
note, intersection L. Hence the K ∪ Lλ form a downwards-directed system of
closed subsets of V ′ with intersection K and so, by hypothesis, there is an open
set V ′′ ⊆ V ′ and λ with V ′′ ∩ (K ∪Lλ) = K. Replacing each Vi by V ′′ ∩ Vi and
each si by resGλVi,V ′′∩Vi((gλi,λ)Visi), we may assume now that supp(si) ⊆ K and
hence that si ∈ GKλ Vi.

It remains to show that the si are locally eventually compatible and hence
that, together, they correspond to an element of (lim−→λ

(GKλ ))K. Given x ∈ K, if
x ∈ Vi∩Vj then, since resGVi,Vi∩Vj ((g

′g′′λi∞)Visi) = resGV,Vi∩Vj (t) = resGVj ,Vi∩Vj ((g
′g′′λj∞)Vjsj),

the restrictions in p lim−→GKλ of (g′′λi∞)Visi and (g′′λj∞)Vjsj must agree in some
neighbourhood of x. Hence the si glue together to form a section s ∈ (lim−→GKλ )V ′′

representing t, as required. �

Of course, we would like the stronger result that, in the above situation,
GKK is actually equal to the limit lim−→(GKλ K) of the GKλ K, for then every
morphism from j!OK to G would lift through the direct system, and we would
deduce that j!OK is finitely presented.

In more detail, we have (j!OK , G) ' j∗GKK = lim−→U⊇K(GKU) by 5.1, the
correspondence being, to a morphism f : j!OK −→ G we assign the adjoint mor-
phism f ′ : OK −→ j∗GK and to this we assign the image, f ′1K of 1K ∈ OKK -
this image will be represented by a section of G, over some open neighbourhood
V of K, with support contained in K. So, to show that every morphism from
j!OK to G lifts through some Gλ it would be enough to show that every K-germ
of a section of GK lifts to a K-germ of a section of GKλ for some λ.

Proposition 5.3. Suppose that X is Hausdorff and locally compact in the sense
defined before 4.8. Let K satisfy the hypotheses of 5.2; then the morphism g′K
as there is an isomorphism. Hence j!OK is finitely presented.

Proof. We continue with the notation of the proof of 5.2. Since j∗ is a left
adjoint it preserves colimits and hence G |K= j∗G = lim−→(Gλ |K). By 3.4, OK is
a finitely presented object of Mod-OK and so the morphism from OK to G |K
corresponding to the section t |K ∈ GKK (in the notation of the proof of 5.2)
lifts through some global section u1 of Gλ |K for some λ.

Now we use [9, III.2.2] which has the Hausdorff hypothesis and gives that
u1 is represented by some section, u say, of GλV0 for some open neighbourhood
V0 of K in X. We may assume that V ′′ ⊆ V0 (V ′′ as in the proof of 5.2).
This means that, in the notation at the end of the proof of 5.2, each (g′′λi∞)Visi
agrees with resG

′′

V0,Vi
(g′′λ,∞)Vi(u) already in the presheaf limit and hence there

is µ ≥ λ1, . . . , λn such that res
GKµ
Vi,Vi∩Vj ((gλiµ)Visi) = res

GKµ
Vj ,Vi∩Vj ((gλjµ)Vjsj) for
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each i, j, and so the (gλiµ)Visi glue together to form a section s ∈ GKµ with
(g′′g′′µ∞)V ′′s = t |V ′′ , as required. �

We show that the condition of 5.2 is necessary for j!OK to be finitely pre-
sented.

Lemma 5.4. Let K ⊆ X be locally closed. If j!OK is finitely presented then K
is compact and also for every open set U ⊇ K and for every downwards-directed
set (Kλ)λ of closed subsets of U with

⋂
λKλ = K, there is λ and an open set V

with U ⊇ V ⊇ K and Kλ ∩ U = K.

Proof. We know, by 4.6, that K must be compact since K = supp(j!OK) and
j!OK is finitely generated.

Suppose that we have an open set U ⊇ K and downwards-directed system
(Kλ)λ of closed subsets of U with intersection K. We have, by 2.9, lim−→ j!OKλ =
j!OK . If j!OK is finitely presented then idj!OK lifts through some j!OKλ , that is,
the canonical epimorphism j!OKλ −→ j!OK splits and hence, by 2.7, K is open
in Kλ. That is, there is V (without loss of generality V ⊆ U) with Kλ ∩V = K,
as required. �

We finish by showing that Mod-OX , where OX is the sheaf of continuous
real-valued functions on [0, 1], is not locally finitely presented (recall, 4.9, that
it is locally finitely generated). In fact, only certain properties of this ringed
space are needed so we begin by assuming just that X is a space such that:

(∗) every compact subset of X is closed
(for instance, if X is Hausdorff then we have this).

Suppose also that:
(∗∗) every proper closed subset C of X is a directed intersection C =

⋂
λ Cλ

of compact closed subsets Cλ such that C is not an open subset of any Cλ.
Certainly this is so for X = [0, 1] or, more generally, for X any locally

closed subset of Rn. [Proof for [0, 1]: For each n set Un =
⋃
{B 1

n+1
(x) : x ∈

X \ C is such that B 1
n

(x) ∩ C = ∅} (Bε(x) denotes the open ball of radius ε
centred at x). Then Un ∩ C = ∅ and C is strictly contained in Cn = U c

n and⋂
n Cn = C. Now, if there were n and an open set V such that C = Cn ∩ V

then
⋂
m≥n Cm \C would be non-empty (since each Cm \C would be closed and

since X is compact) - contradiction.]
Then, for such a space X and any ringed space OX on X, we have, by 5.4,

that if K is locally closed and j!OK is finitely presented in Mod-OX then K = X
(and OX will be finitely presented iff X is compact, by 3.4).

Now, suppose further that:
(∗ ∗ ∗) every stalk OX,x of OX is a (not necessarily commutative) local ring

and every section which is, at each point, in the radical, is in fact zero.
This is true in our example since if f ∈ O[0,1](V ) is non-zero, say f(x) 6= 0

for some x ∈ V , then fx ∈ O[0,1],x is invertible.
Suppose that F is a cyclic sheaf in the sense that it is generated over OX

by a single section (see the previous section). Then, we claim, F ' j!OK for
some locally closed K ⊆ X. For say F = j!〈s〉 where s ∈ FU some open
U ⊆ X. Let K = supp(s). Then there is a morphism f : j!OK −→ F with
fU : (j!OK)U −→ FU taking “1K” to s and so f is an epimorphism. Let
G = ker(f), so we have the exact sequence 0 −→ G −→ j!OK −→ F −→ 0. At
x ∈ K this is 0 −→ Gx −→ OX,x −→ Fx −→ 0 so, since Fx 6= 0 and OX,x is
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local, we have Gx ≤ radOX,x. Thus, for every open V , t ∈ GV and x ∈ V , we
have tx ∈ radOX,x, noting that tx = 0 for x ∈ V \K. So, by assumption, t = 0.
Hence G = 0 and so F ' j!OK , as required.

In particular, if F is a cyclic finitely presented sheaf, then F ' OX .
It follows that every finitely presented sheaf, F , is generated by global sec-

tions, for if F =
∑n

1 j!〈si〉 where si ∈ FUi then, without loss of generality,
s1 /∈

∑n
2 j!〈si〉U1. So F ′ = F/

∑n
2 j!〈s〉 is finitely presented and cyclic, gen-

erated by the image of s1. By the above, F ′ ' OX so, since the image of s1
generates F ′, it must have support equal to X. Hence supp(s1) = X and so
s1 must be a global section. The same applies to any member of a minimal
generating set and so we have the claim (which may be compared with the fact,
see [9, III.3.9, III.2.9], that every sheaf of modules over this ringed space is soft).

It follows that every non-zero sheaf generated by finitely presented sheaves
must have a non-zero global section. The final assumption we need is:

(∗ ∗ ∗∗) there is a non-zero sheaf which has no non-zero global sections.
Certainly not every sheaf in Mod-OX , where OX is the sheaf of continuous

fuctions on [0, 1], has a non-zero global section (for instance, consider j!OU
where U is a proper open subset of X) and so we conclude that Mod-OX is not
locally finitely presented. Therefore we have the following for X = [0, 1] among
other spaces (indeed, if X = R then we see that there is no non-zero finitely
presented OX -module).

Proposition 5.5. Let OX be the sheaf of real-valued continuous functions on
the closed real unit interval. Then Mod-OX is not locally finitely presented.
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