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The Social Entropy Process: Axiomatising the

Aggregation of Probabilistic Beliefs

by

George Wilmers

1. Introduction

The present work stems from a desire to combine ideas arising from two histori-
cally different schemes of probabilistic reasoning, each having its own axiomatic
traditions, into a single broader axiomatic framework, capable of providing gen-
eral new insights into the nature of probabilistic inference in a multiagent context.
In the present sketch of our work we first describe briefly the background con-
text, and we then present a set of natural principles to be satisfied by any general
method of aggregating the partially defined probabilistic beliefs of several agents
into a single probabilistic belief function. We will call such a general method
of aggregation a social inference process. Finally we define a particular social
inference process, the Social Entropy Process (abbreviated to SEP), which sat-
isfies the principles formulated earlier. SEP has a natural justification in terms
of information theory, and is closely related to the maximum entropy inference
process: indeed it can be regarded as a natural extension of that inference process
to the multiagent context.

By way of comparison, for any appropriate set of partial probabilistic beliefs of
an isolated individual the well-known maximum entropy inference process, ME,
chooses a probabilistic belief function consistent with those beliefs. We conjecture
that SEP is the only “natural” social inference process which extends ME to the
multiagent case, always under the assumption that no additional information is
available concerning the expertise or other properties of the individual agents1.

Proofs of the results in the present paper, while reasonably straightforward, have
mostly not been included, but will be included in a more detailed version of this

1This condition is sometimes known as the Watts Assumption (see [12]).
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work which will appear elsewhere.

In order to fix notation let S = {α1, α2, . . . αJ } denote some fixed finite set
of mutually exclusive and exhaustive outcomes or atomic events. A probability
function w on S is a function w : S → [0, 1] such that ΣJ

j=1w(αj) = 1 . Slightly
abusing notation we will identify w with the vector of values < w1 . . . wJ > where
wj denotes w(αj) for j = 1 . . . J . If such a w represents the subjective belief of
an individual A in the outcomes of S we refer to w as A’s belief function. All
other more complex events considered are equivalent to disjunctions of the αj

and are represented by the Greek letters θ, φ, ψ etc. A probability function w is
assumed to extend so as to take values on complex events in the standard way,
i.e. for any θ

w(θ) =
∑

αj²θ

w(αj)

where ² denotes the classical notion of logical implication. Conditional probabil-
ities are defined in the usual manner. We note that in this paper the use the term
“belief function” will always denote a probability function in the above sense.

The first scheme referred to above is the notion of an inference process first for-
mulated by Paris and Vencovská some twenty years ago (see [11], [12], [13], and
[14]). The problematic of Paris and Vencovská is that of an isolated individual
A whose belief function is in general not completely specified, but whose set of
beliefs is instead regarded as a set of constraints K on the possible values which
the vector < w1 . . . wJ > may take. The constraint set K therefore defines a cer-
tain region of the Euclidean space RJ , denoted by VK, consisting of all vectors
< w1 . . . wJ > which satisfy the constraints in K together with the conditions
that

∑J
j=1 wj = 1 and that wj ≥ 0 for all j. It is assumed that the constraint

sets K which we consider are consistent (i.e. VK is non-empty), and are such that
VK has pleasant geometrical properties. More precisely, the exact requirement
on a set of constraints K is that the set VK forms a non-empty closed convex
region of Euclidean space. Throughout the rest of this paper all constraint sets
to which we refer will be assumed to satisfy this requirement, and we
shall refer to such constraint sets as nice constraint sets2. Paris and Vencovská
ask the question: given any such K, by what rational principles should A choose
his probabilistic belief function w consistent with K in the absence of any other
information?

2This formulation ensures that conditions such as
w(θ) = 1

3 , w(φ | ψ) = 4
5 , and w(ψ | θ) ≤ 1

2 , where θ , φ , and ψ are Boolean combinations
of the αj ’s, are all permissible in K provided that they are consistent. Here a conditional
constraint such as w(ψ | θ) ≤ 1

2 is interpreted as w(ψ ∧ θ) ≤ 1
2 w(θ) which is always a

well-defined linear constraint, albeit trivial when w(θ) = 0 .
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A set of constraints K as above is often, slightly misleadingly, called a knowledge
base. A rule I which for every such K chooses such a w ∈ VK is called an inference
process. Given K we denote the belief function w chosen by I by I(K). The
question above can then be reformulated as: what self-evident general principles
should an inference process I satisfy? This question has been intensively studied
over the last twenty years and much is known. In particular in [11] Paris and
Vencovská found an elegant set of principles which uniquely characterise the
maximum entropy inference process3, ME, which is defined as follows: given K as
above, ME(K) chooses that unique probability distribution w which maximises
the Shannon entropy of w,

−
J∑

j=1

wj log wj

subject to the condition that w ∈ VK. Although some of the principles used to
characterise ME may individually be open to philosophical challenge, they are
sufficiently convincing overall to give ME the appearance of a gold standard, in
the sense that no other known inference process satisfies an equally convincing
set of principles4.

An apparently rather different problematic of probabilistic inference has been
much studied in decision theoretic literature. Given possible outcomes α1, α2, . . . αJ

as before, let {Ai | i = 1 . . . m} be a finite set of agents each of whom possesses
his own particular probabilistic belief function w(i) on the set of outcomes, and let
us suppose that these w(i) have already been determined. How then should these
individual belief functions be aggregated so as to yield a single probabilistic belief
function v which most accurately represents the collective beliefs of the agents?
We call such an aggregated belief function a social belief function, and a general
method of aggregation a pooling operator. Again we can ask: what principles
should a pooling operator satisfy? In this framework various plausible principles
have been investigated extensively in the literature, and have in particular been
used to characterise two popular, but very different pooling operators LinOp
and LogOp. LinOp takes v to be the arithmetic mean of the w(i), i.e.

vj =
1

m

m∑
i=1

w
(i)
j for each j = 1 . . . J

3This characterisation considerably strengthens earlier work of Shore and Johnson in [16].
4Other favored inference processes which satisfy many, but not all, of these principles are the

minimum distance inference process, MD, the limit centre of mass process, CM∞, all Renyi
inference processes, and the remarkable Maximin process of Hawes [8]. (See Paris [12] for a
general introduction to inference processes, and also Hawes [8], especially the comparative table
in Chapter 9, for an excellent résumé of the current state of knowledge concerning this topic).
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whereas LogOp chooses v to be the normalised geometric mean given by:

vj =
(
∏m

i=1 w
(i)
j )

1
m

∑J
k=1(

∏m
i=1 w

(i)
k )

1
m

for each j = 1 . . . J

Various continua of other pooling operators related to LinOp and LogOp have
also been investigated. However the existing axiomatic analysis of pooling opera-
tors, while technically simpler than the analysis of inference processes, is also more
ambiguous and perhaps less intellectually satisfying in its conclusions than the
analysis of inference processes developed within the Paris-Vencovská framework ;
in the former case one arrives at rival, apparently plausible, axiomatic character-
isations of various pooling operators, including in particular LinOp and LogOp,
without any very convincing foundational criteria for deciding, within the limited
context of the framework, which operator is justified, if any. (See e.g. [6], [2], [1],
[4], [5], [7], [15] for further discussion of the axiomatics of pooling operators).

In the present paper we seek to provide an axiomatic framework to extend the
Paris-Vencovská notion of inference process to the multiagent case, thereby en-
compassing the framework of pooling operators as a very special case. Thus we
consider, for any m ≥ 1, a set M consisting of m individuals A1 . . .Am , each
of whom possesses his own set of consistent constraints, respectively K1 . . .Km ,
on his possible belief function on the set of outcomes α1, α2, . . . αJ . (Note that
we are only assuming that the beliefs of each individual are consistent, not that
the beliefs of different individuals are jointly consistent). We shall refer to such
a set M of individuals as a college.

A social inference process , F , is a function which chooses, for any such m ≥ 1
and K1 . . .Km , a probability function on α1, α2, . . . αJ , denoted by F(K1 . . .Km) ,
which we refer to as the social belief function defined by F(K1 . . .Km) . Note
that, trivially, provided that when m = 1 F(K1) ∈ VK1 for all K1, F marginalises
to an inference process. On the other hand, in the special case where VKi

is a singleton for all i = 1 . . . m , F marginalises to a pooling operator. The
new framework therefore encompasses naturally the two classical frameworks de-
scribed above.

Again we can ask: what principles would we wish such a social inference pro-
cess F to satisfy in the absence of any further information? Is there any social
inference process F which satisfies them? If so, to which inference process and
to which pooling operator does such an F marginalise? It turns out that merely
by posing these questions in the right framework, and by making certain sim-
ple mathematical observations, we can gain considerable insight. It is however
essential to note that our standpoint is strictly that of a logician: we insist on
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the absoluteness of the qualification above that we are given no further informa-
tion than that stated in the problem. In particular we are given no information
about the expertise of the individuals or about the independence of their opin-
ions. This insistence on sticking to a problem where the available information is
rigidly defined is absolutely essential to our analysis, just as it is in the analysis
of inference processes by Paris and Vencovská and their followers. We make no
apology for the fact that such an assumption is almost always unrealistic: in order
to tackle difficult foundational problems it is necessary to start with a general but
precisely defined problematic. As has in essence been pointed out by Paris and
Vencovská, unless one is prepared to make certain assumptions which precisely
delimit the probabilistic information under consideration, even the classical no-
tion of an inference process becomes incoherent. Indeed failure to define precisely
the information framework lies behind several so-called paradoxes of reasoning
under uncertainty5.

2. An Axiomatic Framework for a Social Inference Process

The underlying idea of a social inference process is not new. (See e.g. [17]).
However, to the author’s knowledge, the work which has been done hitherto has
largely been pragmatically motivated, and has not considered foundational ques-
tions. This is possibly due in part to a rather tempting reductionism, which would
see the problem of a finding a social inference process as a two stage process in
which a classical inference process is first chosen and applied to the constraints
Ki of each agent i to yield a belief function w(i) appropriate to that agent, and
a pooling operator is then chosen and applied to the set of w(i) to yield a social
belief function6. Of course from this reductionist point of view a social infer-
ence process would not be particularly interesting foundationally, since we could
hardly expect an analysis of such social inference processes to tell us anything
fundamentally new about collective probabilistic reasoning.

Our approach is however completely different. We reject the two stage approach
above on the grounds that the classical notion of an inference process applies to

5The interested reader may consult [13] for a detailed analysis of this point in connection
with supposed paradoxes arising from “representation dependence”.

6We note that by no means are all authors reductionist in this sense: in particular although
their concerns are somewhat different from ours, neither [17] nor [9] make such an assumption.
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an isolated single individual, and is valid only on the assumption that that in-
dividual has absolutely no knowledge or beliefs other than those specified by his
personal constraint set. Indeed the preliminary point should be made that in the
case of an isolated individual A, whereas A’s constraint set K is subjective and
personal to that individual, the passage from K to A’s assumed belief function
w via an inference process should be made using rational or normative princi-
ples, and should therefore be considered to have an intersubjective character. We
should not confuse the epistemological status of w with that of K. By hypothesis
K represents the sum total of A’s beliefs; ipso facto K also represents, in general,
a description of the extent of A’s ignorance. Thus while w may be regarded as
the belief function which best represents A’s subjective beliefs, it must not be con-
fused with those beliefs themselves, since in the passage from K to w it is clear
that certain “information” has been discarded7; thus, while w is determined by
K once an inference process is given, neither K nor VK can be recaptured from
w. As a trivial example we may note that specifying that A’s constraint set K is
empty, i.e. that A claims total ignorance, is informationally very different from
specifying that K is such that VK = {< 1

J
, 1

J
. . . 1

J
>}, although the application

of ME, or of any other reasonable inference process, yields w = < 1
J
, 1

J
. . . 1

J
>

in both cases.

From this point of view the situation of an individual who is a member of a college
whose members seek to collaborate together to elicit a social belief function seems
quite different from that of an isolated individual. Indeed in the former context it
appears more natural to assume as a normative principle that, if the social belief
function is to be optimal, then each individual member Ai should be deemed to
choose his personal belief function w(i) so as to take account of the information
provided by the other individuals, in such a way that w(i) is consistent with his
own belief set Ki, while being as informationally close as possible to the social
belief function F(K1 . . .Km) which is to be defined. We will show in section 3
that this key idea is indeed mathematically coherent and can be used to define
a particular social inference process with remarkable properties. Notice however
that it is not necessary to assume that a given Ai subjectively or consciously
holds the particular personal belief function w(i) which is attributed to him by
the procedure above: such an w(i) is viewed as nothing more than the belief
function which Ai ought rationally to hold, given the personal constraint set Ki

which represents his own beliefs, together with the extra information available to
him by virtue of his knowledge of the constraint sets of the remaining members
of the college. Just as in the case of an isolated individual, the passage from Ai’s
actual subjective belief set Ki to his notional subjective belief function w(i) has
an intersubjective or normative character: however the calculation of w(i) now de-
pends not only on Ki but on the belief sets of all the other members of the college.

7The word “information” is used here in a different sense from that of Shannon information.

6



Considerations similar to the above give rise to the following radical but attrac-
tive principle for a social inference process to satisfy:

The Collegial Principle

A social inference process F satisfies the Collegial Principle (abbreviated to
Collegiality) if for any m ≥ 1 and A1 . . .Am with respective constraint sets
K1 . . .Km , if for some k < m F(K1 . . .Kk) is consistent with Kk+1 ∪Kk+2 ∪
. . . ∪Km, then

F(K1 . . .Km) = F(K1 . . .Kk)

2

Collegiality may be interpreted as stating the following: if the social belief func-
tion v generated by some subset of the college is consistent with the individual
beliefs of the remaining members, then v is also the social belief function of the
whole college. In particular this means that adding to the college a new individual
whose constraint set is empty will leave the social belief function unchanged.

We now introduce a number of other desirable principles for a social inference
process F to satisfy. Several of these are obvious transfers of familiar symmetry
axioms from the theory of inference processes or from social choice theory.

The Equivalence Principle

If for all i = 1 . . . m VKi
= VK′

i
then

F(K1 . . .Km) = F(K′
1 . . .K′

m)

.
2

Otherwise expressed the Equivalence Principle states that substituting constraint
sets which are equivalent in the sense that the set of probability functions which
satisfy them is unchanged will leave the values of F invariant. This principle
is a familiar one adopted from the theory of inference processes (cf. [12]). In
this paper we shall always consider only social inference processes (or inference
processes) which satisfy the Equivalence Principle. For this reason we may oc-
casionally allow a certain sloppiness of notation in the sequel by identifying a
constraint set K with its set of solutions VK where the meaning is clear and this
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avoids an awkward notation. In particular if ∆ is a non-empty closed convex
set of belief functions then we may write ME(∆) to denote the unique w ∈ ∆
which maximises the Shannon entropy function.

The Anonymity Principle

This principle states that F(K1 . . .Km) depends only on the multiset of con-
straint sets {K1 . . .Km} and not on the characteristics of the individuals with
which the Ki’s are associated nor the order in which the Ki’s are listed.

2

In order to ensure that F behaves like an inference process for the case m = 1
we need the following axiom

The Consistency Axiom

For the case when m = 1
F(K1) ∈ VK1

for any constraint set K1.

2

It is immediate from the Consistency, Anonymity, and Collegiality that F satisfies
the “Unanimity” property that for any K ,

F(K . . .K) = F(K) .

2

Another immediate consequence of the above axioms is:

Lemma 2.1

If F satisfies Consistency and Collegiality, then if K1 . . .Km are such that

m⋂
i=1

VKi
6= ∅

then

F(K1 . . .Km) ∈
m⋂

i=1

VKi

2
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The following principle is again a familiar one satisfied by classical inference pro-
cesses (cf. [12]):

Let σ denote a permutation of the atoms of S. Such a σ induces a corresponding
permutation on the coordinates of probability distributions < w1 . . . wJ >, and
on the corresponding coordinates of variables occurring in the constraints of con-
straint sets Ki, which we denote below with an obvious notation.

The Atomic Renaming Principle

For any permutation σ of the atoms of S, and for all K1 . . .Km

F(σ(K1) . . . σ(Km)) = σ(F(K1 . . .Km))

.
2

Our next axiom goes to the heart of certain basic intuitions concerning proba-
bility. For expository reasons we will consider first the case when m = 1 , in
which case we are essentially discussing a principle to be satisfied by a classical
inference process. First we introduce some fairly obvious terminology.

Let w denote A1’s belief function. Since we are considering the case when m = 1
we will drop the superscript from w(1) for ease of notation. For some non-empty
set of atoms {αj1 . . . αjt} let φ denote the event

∨t
r=1 αjr . Suppose that K de-

notes a set of constraints on the variables wj1 . . . wjt which defines a non-empty
closed convex region of t-dimensional Euclidean space with

∑t
r=1 wjr ≤ 1 and all

wjr ≥ 0 . We shall refer to such a K as a nice set of constraints about φ.

Now let ŵr denote w(αjr | φ) for r = 1 . . . t, with the ŵr undefined if w(φ) = 0.
Then ŵ = < ŵ1 . . . ŵt > is a probability distribution provided that w(φ) 6= 0.
Let K be a nice set of constraints on the probability distribution ŵ: we shall
refer to such a K as a nice set of constraints conditioned on φ. In line with our
previous conventions we shall consider such K to be trivially satisfied in the case
when w(φ) = 0.

The following principle captures a basic intuition about probabilistic reasoning
which is valid for all standard inference processes:
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The Locality Principle (for an Inference Process)

If K1 is a nice set of constraints conditioned on φ, and K∗
1 is a nice set of

constraints about ¬φ, then for every event θ

F(K1 ∪ K∗
1) (θ | φ) = F(K1) (θ | φ)

provided that F(K1 ∪ K∗
1) (φ) 6= 0 and F(K1) (φ) 6= 0

2

Let us refer to the set of all events which logically imply the event φ as the world
of φ. Then the Locality Principle may be roughly paraphrased as saying that
if K1 contains only information about the relative probabilistic beliefs between
events in the world of φ, while K∗

1 contains only information about beliefs con-
cerning events in the world of ¬φ , then the values which the inference process
F calculates for probabilities of events conditioned on φ should be unaffected by
the information in K∗

1, except in the trivial case when belief in φ is forced to take
the value 0. Put rather more more succinctly: beliefs about the world of ¬φ
should not affect beliefs conditioned on φ. Note that we cannot expect to satisfy
a strengthened version of this principle which would have belief in the events in
the world of φ unaffected by K∗

1 since the constraints in K∗
1 may well affect belief

in φ itself. In essence the Locality Principle asserts that ceteris paribus rationally
derived relative probabilities between events inside a “world” are unaffected by
information about what happens strictly outside that world.

As an additional justification for the above principle we may also note the fol-
lowing

Theorem 2.2

The inferences processes ME, CM∞, MD (minimum distance), together with
all Renyi inference processes (see e.g. [8]), all satisfy the Locality Principle.

2

The Locality Principle is in essence a generalisation of the Relativisation Princi-
ple of Paris [12] and the Homogeneity Axiom of Hawes [8], and the above theorem
is very similar to results proved previously, especially to results in [8]. It follows
from Theorem 2.2 that if we reject the Locality Principle, then we are in effect
forced to reject not just ME, but also all the currently most favoured inference
processes.

An interesting aspect of the Locality Principle is that the justification given above
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appears no less cogent when we attempt to generalise it to a collective situation.
If we accept the arguments in favour of the Locality Principle in the case of a
single individual then it is hard to see why we should reject analogous arguments
in the case of a social belief function which is derived by considering the beliefs
of m individuals each of whom has constraint sets of the type considered above.
Accordingly we may formulate more generally

The Locality Principle (for a Social Inference Process)

For any m ≥ 1 let M be a college of m individuals A1 . . .Am . If for each
i = 1 . . .m Ki is a nice set of constraints conditioned on φ, and K∗

i is a nice
set of constraints about ¬φ, then for every event θ

F(K1 ∪ K∗
1, . . . ,Km ∪ K∗

m) (θ | φ) = F(K1 , . . . ,Km) (θ | φ)

provided that F(K1 ∪ K∗
1, . . . , Km ∪ K∗

m) (φ) 6= 0

and F(K1 , . . . Km) (φ) 6= 0 .
2

At this point we make a simple observation. In the special case when for each
i the constraint sets Ki ∪ K∗

i are such as to completely determine Ai’s belief
function, so that the task of F reduces to that of a pooling operator, it is easy to
construct an example to show that if the Locality Principle is to be satisfied then
that pooling operator cannot be LinOp. On the other hand the pooling operator
LogOp is perfectly consistent with the Locality Principle, as we shall see in the
final section of this paper. Related facts concerning LinOp and LogOp have
been widely noted in the literature on pooling operators; what we are noting that
is new here is the compelling nature of certain arguments in favour of the Locality
Principle in the far broader context of a social inference process. Nonetheless,
as remarked above, the Locality Principle is violated by the widely used pooling
operator LinOp, a fact which appears to us to cast serious doubt on the intrinsic
plausibility of LinOp as a pooling operator.

Our final axiom relates to a hypothetical situation where several exact copies of
a college are amalgamated into a single college.

A clone of a member Ai of M is a member Ai′ whose set of belief constraints
on his belief function is identical to that of Ai: i.e. Ki =Ki′ . Suppose now that
each member Ai of M is replaced by k clones of Ai, so that we obtain a new
college M* with km members. M* may equally be regarded as k copies of M
amalgamated into a single college; so since the social belief function associated
with each of these copies of M would be the same, we may argue that surely the
result of amalgamating the copies into a single college M* should again yield the
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same social belief function. This argument generates the following:

The Proportionality Principle

For any integer k > 1

F(K1 . . .K1, K2 . . .K2, . . . ,Km . . .Km) = F(K1, K2, . . . ,Km)

where in the expression on the left there are exactly k copies of each Ki.
2

The proportionality principle looks rather innocent. Nevertheless as we shall see
at the end of the next section a slight generalisation of the same idea formulated
as a limiting version has some surprising consequences.

3. The Social Entropy Process (SEP)

In this section we introduce a social inference process, SEP, which satisfies all
the principles introduced in the previous section, and which extends both the
inference process ME and the pooling operator LogOp.

In order to avoid problems with our definition of SEP however, we are forced to
add a slight further restriction to the set of m constraint sets K1 . . .Km which
respectively represent the beliefs sets of the individuals A1 . . .Am . We assume
in this section that the constraints are such that there exists at least one atom αj0

such that no constraint set Ki forces αj0 to take belief 0. In the special case when
each Ki specifies a unique probability distribution, the condition corresponds to
that necessary to ensure that LogOp is well-defined.

In order to motivate the definition of SEP heuristically, let us imagine that the
college M decide to appoint an independent chairman A0 , whom we may suppose
to be a mathematically trained philosopher, and whose only task is to aggregate
the beliefs of A1 . . .Am into a social belief function v according to strictly ra-
tional criteria, but ignoring any personal beliefs which A0 himself may hold. He
must then convince the members of M that his method is optimal.

A0 decides that he will choose a social belief function v = < v1 . . . vJ > in such a
manner as to minimise the average informational distance between < v1 . . . vJ >
and the m belief functions w(i) = < w

(i)
1 . . . w

(i)
J > of the members of M, where

the w(i) are each simultaneously chosen in such a manner as to minimise this
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quantity subject to the relevant sets of belief constraints Ki of each of the mem-
bers of the college.

Using the standard cross-entropy measure of informational distance this idea
amounts to minimising the function

1

m

m∑
i=1

J∑
j=1

vi log
vi

w
(i)
j

subject to all the constraints. In the above the usual convention is observed that
vilog vi

w
(i)
j

takes the value 0 if vi = 0 and the value +∞ if w
(i)
j = 0 and vi 6= 0.

A little algebraic manipulation establishes that minimising the above expression
subject to all the constraints is equivalent to first choosing the w(i) subject to the
Ki so as to maximise the function

J∑
j=1

(
m∏

i=1

w
(i)
j )

1
m

and then, if this maximum value attained is say M , setting

vj =
1

M
(

m∏
i=1

w
(i)
j )

1
m

for each j = 1 . . . J . Notice that the function being maximised above is just
a sum of geometric means. Since this function is bounded and continuous and
the space over which it is being maximised is by assumption closed, a maximum
value M is certainly attained. Moreover it is easy to see that

Lemma 3.1 Given K1 . . .Km and M defined as above then 0 < M ≤ 1.
Furthermore the value M = 1 occurs if and only if for every j = 1 . . . J and

for all i, i′ ∈ {1 . . . m} w
(i)
j = w

(i′)
j . Hence given K1 . . .Km the following are

equivalent:

1. M = 1

2. Every w(1) . . . w(m) which generates the value M satisfies
w(1) = . . . = w(m) = v.

3. The constraints K1 . . .Km are jointly consistent: i.e there exists some belief
function which satisfies all of them.

2
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Now it is obvious from the above that chairman A0’s proposed method of choos-
ing v will not in general result in a uniquely defined social belief function. Indeed
if

⋂m
i=1 VKi

6= ∅ then any point v in this intersection, if adopted as the belief
function of each member, will generate the maximum possible value for M of 1
and so will be a possible candidate for a social belief function v. Moreover even
if

⋂m
i=1 VKi

= ∅ the process above may not result in a unique choice of either
the w(i) or of v.

Chairman A0 now reasons as follows: if the result of the above operation of
minimising the average cross-entropy does not result in a unique solution for v,
then the best rational resource which he has left is to choose that v which has
maximum entropy from the set of possible v previously obtained. Chairman A0

reasons that by adopting this procedure he is treating the set of v defined by
minimising the average cross-entropy of college members as if it were the set of
belief functions defined by his own beliefs, and then choosing a belief function
from that set by applying the ME inference process.

However in order to show that this procedure is well-defined chairman A0 needs
to prove a number of lemmas.

Definition 3.2

For constraint sets K1 . . .Km we define

MK1 ...Km = Max {
J∑

j=1

(
m∏

i=1

w
(i)
j )

1
m | w(i) ∈ VKi

for all i = 1 . . .m }

and

Γ(K1 . . .Km) = {< w(1) . . . w(m) > ∈
m⊗

i=1

VKi
|

J∑
j=1

(
m∏

i=1

w
(i)
j )

1
m = MK1...Km}

2

By the earlier discussion, each point < w(1) . . . w(m) > in Γ(K1 . . .Km) gives
rise to a uniquely determined corresponding social belief function v whose j’th
coordinate is given by

vj =
1

MK1 ...Km

(
m∏

i=1

w
(i)
j )

1
m

We will refer to the v thus obtained from < w(1) . . . w(m) > as

LogOp(w(1) . . . w(m))
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and we let

∆(K1 . . .Km) = {LogOp(w(1) . . . w(m)) | < w(1) . . . w(m) >∈ Γ(K1 . . .Km) }

∆(K1 . . .Km) is thus the candidate set of possible social belief functions from
which Chairman A0 wishes to make his final choice by selecting the point in this
set which has maximum entropy.

The following structure theorem for Γ(K1 . . .Km) , which depends strongly on
the concavity properties the geometric mean function and of sums of such func-
tions, guarantees that Chairman A0’s plan is realisable.

Theorem 3.3

For fixed constraint sets K1 . . .Km

(i) For any two points < w(1) . . . w(m) > and < w̄(1) . . . w̄(m) > in Γ(K1 . . .Km)
there exists real numbers µ1 . . . µJ ∈ R such that

w̄
(i)
j = w

(i)
j (1 + µj)

for all i = 1 . . .m and j = 1 . . . J .

(ii) Γ(K1 . . .Km) is a compact non-empty convex set.

(iii) ∆(K1 . . .Km) is a compact non-empty convex set.

(iv) The map
LogOp : Γ(K1 . . .Km) → ∆(K1 . . .Km)

is a continuous bijection.

2

Now since ∆(K1 . . .Km) is a closed convex set by 3.3(iii) and since the entropy
function

−
J∑

j=1

vjlog(vj)

is strictly concave over this set, the set contains a unique point v at which the en-
tropy function achieves its maximum value. It follows at once that the following
formal definition of SEP defines, for every K1 . . .Km satisfying the conditions
of this section, a unique social belief function.
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Definition 3.4

The Social Entropy Process, SEP, is the social inference process defined by

SEP(K1 . . .Km) = ME(∆(K1 . . .Km))

2

Theorem 3.5

SEP satisfies the seven principles of the previous section: Equivalence, Anonymity,
Atomic Renaming, Consistency, Collegiality, Locality, and Proportionality.

2

It is worth remarking that Theorem 3.3(i) provides a simple sufficient condition
for ∆(K1 . . .Km) to be a singleton and thus for the application of ME in the
definition of SEP to be redundant:

Theorem 3.6

If K1 . . .Km are such that for each j = 1 . . . J except possibly at most one there
exists some i with 1 ≤ i ≤ m such that Ki forces w

(i)
j to take a unique value,

then ∆(K1 . . .Km) is a singleton. In particular this occurs if for some i VKi
is

a singleton.

2

An interesting characteristic of SEP is that the ME second stage of the defining
process, which is included in order to force the choice of a social belief function
to be unique in cases when this would not otherwise hold, can actually be elimi-
nated by insisting that the social inference process satisfies a variant of the axiom
of proportionality. Such an argument counters a possible objection that the in-
vocation of maximum entropy at the second stage of the definition is somewhat
artificial. To be precise it is possible to substitute the following procedure to
define SEP.

We define a member i of the college to be an ignorant fanatic if VKi
consists of

the single point < 1
J
, 1

J
. . . 1

J
>. Now starting with a college M of m individu-

als and constraint sets K1 . . .Km as before, let us form for any k ∈ N, a new
college M∗

k of km + 1 members, consisting of a single ignorant fanatic together
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with k copies of M. Now one would hope that for a well-behaved social inference
process, in applying the social inference process to M∗

k the effect of the ignorant
fanatic would become negligible as k → ∞, in which case by proportionality in
the limit we should get the same answer as we would get by applying the social
inference process to M.

Pleasingly this is exactly what happens for SEP. In fact, if we accept the above
principle it turns out that we need never invoke the ME stage in the definition of
SEP at all, since by 3.6 the first stage of the definition of SEP already guarantees
the uniqueness of the social belief function for each M∗

k, owing to the presence of
the ignorant fanatic, while the limit of these social belief functions turns out to
be SEP(K1 . . .Km) . We restate this as the following theorem:

Theorem 3.7

With the notation as above the set ∆k of solutions for the social belief functions
for M∗

k corresponding to the first stage of applying SEP consists, for each k, of
a set containing a single probability distribution, say v[k], and furthermore

lim
k→∞

v[k] = SEP(K1 . . .Km)

2

Since the left hand side of the above identity does not involve maximum entropy
in its definition, we can argue that this shows that the invocation of maximum
entropy in the second stage of the original definition of SEP is indeed entirely
natural.

A suggestive way of interpreting this result is as follows. In order to calculate
the social belief function v for M, chairman A0 first minimizes the sum of the
cross entropies as in the first stage of the calculation of SEP. If this results in
a unique solution then that is taken as the social belief function. If the result is
not unique then A0 adds his own casting constraint set K0 as that of an ignorant
fanatic8 and recalculates, while diluting his own effect as much as possible by
imagining that there are k clones of each of the other members of the college,
and that k →∞. The resulting inference process is just SEP.

8Of course in this context it may be preferable to replace the designation “ignorant fanatic”
by “impartial chair with leadership qualities”.
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In conclusion I am grateful to Alena Vencovská for her helpful comments on
some of the ideas presented here, and I also wish to thank Hykel Hosni and
Franco Montagna for their careful editorial suggestions. The sole responsibility
for any errors lies however with the author.
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