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Abstract

We consider a new idea for model reduction of second order dynhsyisa
tems. Itis based on a new theorem which shows under which conditi@ensaon
recover the second order form of a dynamical system. This theodeissome
constraints on the projection matrices that will be used to construct theeedu
model.

1 Introduction

We consider second order dynamical systems that govern t¢ienmof large-scale
structures
d? d

M—osa(t) + D—q(t) + Kq(t) = Fu(t), y(t) = Gq(t), €y
with input u(t) € R™, stateq(t) € RY and outputy(t) € RP, andm,p < N.
We assume that the matricd$, D, K, F', andG are of appropriate dimensions. The
numberN is called the state-space dimension of (&)is the number of inputs, and
is the number of outputs.

*This work was supported by EPSRC grant EP/E050441/1
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Systems of the form (1) arise in important applications,eample in weather sim-
ulation, molecular dynamic simulations (e.g., modelingo@-molecules and their
identification), structural dynamics (e.g., flex models o tnternational space sta-
tion, and structural response of high-rise building to wamd earthquakes), electronic
circuit simulation (e.g., VLSI circuit simulation), andhsillation and control of micro-
electro-mechanical (MEMS) devices [1].

The matrixM can be singular such as for example in VLSI circuit simulatiand
thus the equations (1) are indeed integro-differentiatlatgic equations. The only
assumption we make here is that the quadratic matrix poljalom

Q(s) :=s*M +sD+ K

is regular.

For systems of very large state-space dimenaioit is inefficient or even prohibitive
to solve the original system (1). Furthermore, in applaadi such as VLSI circuit
simulation, equations of the form (1) describe only linagrsystems of a much more
complex, in general nonlinear, physical system. In thesesahe linear subsystems
are coupled to the equations describing the remainder ofykem via their input
and output vectors(t) andy(t). As a result, for the simulation of the complete
system, it is usually sufficient to replace each system (Brbgpproximate version of
much smaller state-space dimensior< N, provided that the input-output behavior
u(t) — y(t) is well enough approximated. Such approximate versioncalted
reduced-order models [1, 2].

More precisely, a reduced-order model of (1) of state-spigmensionn is a system
of the form

~d? ~d . - . AL
M—zd(t) + D () + Kq(t) = Fult),  9(t) = G4(t), )
whereM, D, K aren x n matrices ' is ann x m matrix, andG'is ap x n matrix.
The challenge of reduced-order modeling is to constructicestM, D, K, F', G
such that the input-output behavieft) — g(t) of the reduced-order model (2) is a
good approximation of the input-output behavidt) — y(t) of the original system
(1).
The standard way of dealing with model order reduction (M@Ra second order
system is to reformulate it as a first order system and thety appdel reduction

techniques for first order systems [1]. Witk¢) = [ dq((]t()t) },the first order system
: dt
is
{Ejtm(t) = Ax(t) + Bu(t) 3)
yt) = Cu(t),

where

| In O _ 0 Iy _ 10
=[5 4] 4% ] emto o o-[2]

(4)
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HereE, A € R2V>X2N B ¢ RZVXm andC € RP>*2N, A drawback of this approach
is that the reduced system is of first order rather than secuatet.

Second order Balanced Truncation and Krylov subspacesaethat perform model
reduction directly for the second order system have beeéwadkerThis happens to have
many advantages as compared with the transformation torti@fder system [2, 3,
5, 6, 9]. Here we consider another approach based on a newethaghich shows
under which conditions one can recover a reduced second forie of a dynamical
system from a first order reduced form. This theorem adds smmstraints on the
projection matrices used to construct the reduced model.

2 New Reduction method of second order systems

Most model reduction methods destroy the second ordertstaiof the underlying
equations, but recently some adaptations of these metheds proposed, like sec-
ond order balanced truncation [3, 5] and Krylov subspageststre preserving model
reduction [7, 8, 9].

Basically, the new idea is to impose constraints during tmstruction of the reduced
model in order that the second order structure is preseiveds first introduced in
[8]. It consists of three steps: conversion of the seconérontbdel into first order
representation, reduction by any method preserving thenskearder character inside,
then back conversion into a second order representatids.cbhversion is based on
the following theorem.

Theorem
The generalized state space system (of state dimeajon
\E—A|B
5
Gy ©)
is system equivalent to the so-called second order form
M, —I, 0
K M+D|F (6)
G 0 o

if and only if there exists an x 2n matrix R such that

rank{gg} =2n, RB=0, rank[RéE]:rank[RE]. ©)
Proof. The only if part is trivial since if both generalized stateasp systems are
equivalent, then there exist invertible matriceandT" such that
. M, I, |0

{S(/\EA—A)TSB]: & ar+bl| e
cr | o o o 1o
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But then clearly the matrix® made from the first rows of S satisfies

I, 0 RE .. - RE)., [I. 0
5 ] e [E][5 0] o

which clearly satisfies (7). The if part follows the conversasoning. Construct the
inverse of the matri<” from the given matrix®, and partition it as follows

_ I, 0 RE
T1:|:O —In][RA], [Tl‘TQ]::T.

Now chooseS; = R andsS, such thatS, ET; = 0 where

Rt
-[2]

is of full rank. This can always be done sinfeE T = I, implies that none of the
rows of S; are orthogonal tds7; while S, ET; = 0 implies that all the rows 0§
are orthogonal td& 7. We now obtain with this construction the required equinate
(7) by putting

é = C’Th F = 5237 R = SZAT17 M = SQETQ, D = SQATQ.
O

Notice that we have not assumed any special properties afygtems (5) and (6). It
easily follows that

1. The system (6) is regular if and only if the system (5) isufag
2. The system (6) is minimal if and only if the system (5) is mmial

3. The matrixA/ in (6) is nonsingular if and only if the matrik in (5) is nonsin-
gular

since equivalence transformations do not change thesepieg Moreover, if the
system is regular, then the transfer function is also given b

G(\) = G\2M + \D + K)7*F.

In this talk we will present this method and show how to carcdtthe matrixR in
the theorem. We will discuss the limitations, the advargaged drawbacks of a such
method.
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