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Abstract

We consider a new idea for model reduction of second order dynamical sys-
tems. It is based on a new theorem which shows under which conditions one can
recover the second order form of a dynamical system. This theorem adds some
constraints on the projection matrices that will be used to construct the reduced
model.

1 Introduction

We consider second order dynamical systems that govern the motion of large-scale
structures

M
d2

dt2
q(t) + D

d

dt
q(t) + Kq(t) = Fu(t), y(t) = Gq(t), (1)

with input u(t) ∈ R
m, stateq(t) ∈ R

N and outputy(t) ∈ R
p, andm, p ≪ N .

We assume that the matricesM,D,K,F , andG are of appropriate dimensions. The
numberN is called the state-space dimension of (1),m is the number of inputs, andp
is the number of outputs.
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Systems of the form (1) arise in important applications, forexample in weather sim-
ulation, molecular dynamic simulations (e.g., modeling ofbio-molecules and their
identification), structural dynamics (e.g., flex models of the international space sta-
tion, and structural response of high-rise building to windand earthquakes), electronic
circuit simulation (e.g., VLSI circuit simulation), and simulation and control of micro-
electro-mechanical (MEMS) devices [1].
The matrixM can be singular such as for example in VLSI circuit simulation, and
thus the equations (1) are indeed integro-differential algebraic equations. The only
assumption we make here is that the quadratic matrix polynomial

Q(s) := s2M + sD + K

is regular.
For systems of very large state-space dimensionN , it is inefficient or even prohibitive
to solve the original system (1). Furthermore, in applications such as VLSI circuit
simulation, equations of the form (1) describe only linear subsystems of a much more
complex, in general nonlinear, physical system. In these cases, the linear subsystems
are coupled to the equations describing the remainder of thesystem via their input
and output vectorsu(t) and y(t). As a result, for the simulation of the complete
system, it is usually sufficient to replace each system (1) byan approximate version of
much smaller state-space dimensionn ≪ N , provided that the input-output behavior
u(t) 7→ y(t) is well enough approximated. Such approximate versions arecalled
reduced-order models [1, 2].
More precisely, a reduced-order model of (1) of state-spacedimensionn is a system
of the form

M̂
d2

dt2
q̂(t) + D̂

d

dt
q̂(t) + K̂q̂(t) = F̂ u(t), ŷ(t) = Ĝq̂(t), (2)

whereM̂ , D̂, K̂ aren × n matrices,F̂ is ann × m matrix, andĜ is ap × n matrix.
The challenge of reduced-order modeling is to construct matricesM̂ , D̂, K̂, F̂ , Ĝ
such that the input-output behavioru(t) 7→ ŷ(t) of the reduced-order model (2) is a
good approximation of the input-output behavioru(t) 7→ y(t) of the original system
(1).
The standard way of dealing with model order reduction (MOR)of a second order
system is to reformulate it as a first order system and then apply model reduction

techniques for first order systems [1]. Withx(t) =

[

q(t)
d
dt

q(t)

]

, the first order system

is
{

E d
dt

x(t) = Ax(t) + Bu(t)
y(t) = Cx(t),

(3)

where

E =

[

IN 0
0 M

]

, A =

[

0 IN

−K −D

]

, C =
[

G 0
]

, B =

[

0
F

]

.

(4)
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HereE,A ∈ R
2N×2N , B ∈ R

2N×m, andC ∈ R
p×2N . A drawback of this approach

is that the reduced system is of first order rather than secondorder.
Second order Balanced Truncation and Krylov subspaces methods that perform model
reduction directly for the second order system have been derived. This happens to have
many advantages as compared with the transformation to the first order system [2, 3,
5, 6, 9]. Here we consider another approach based on a new theorem which shows
under which conditions one can recover a reduced second order form of a dynamical
system from a first order reduced form. This theorem adds someconstraints on the
projection matrices used to construct the reduced model.

2 New Reduction method of second order systems

Most model reduction methods destroy the second order structure of the underlying
equations, but recently some adaptations of these methods were proposed, like sec-
ond order balanced truncation [3, 5] and Krylov subspaces structure preserving model
reduction [7, 8, 9].
Basically, the new idea is to impose constraints during the construction of the reduced
model in order that the second order structure is preserved.it was first introduced in
[8]. It consists of three steps: conversion of the second order model into first order
representation, reduction by any method preserving the second order character inside,
then back conversion into a second order representation. This conversion is based on
the following theorem.
Theorem
The generalized state space system (of state dimension2n)

(

λÊ − Â B̂

Ĉ 0

)

(5)

is system equivalent to the so-called second order form




λIn −In 0

K̂ λM̂ + D̂ F̂

Ĝ 0 0



 (6)

if and only if there exists ann × 2n matrixR such that

rank

[

RÊ

RÂ

]

= 2n, RB̂ = 0, rank

[

RÊ

Ĉ

]

= rank
[

RÊ
]

. (7)

Proof. The only if part is trivial since if both generalized state space systems are
equivalent, then there exist invertible matricesS andT such that

[

S(λÊ − Â)T SB̂

ĈT 0

]

=





λIn −In 0

K̂ λM̂ + D̂ F̂

Ĝ 0 0



 .
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But then clearly the matrixR made from the firstn rows ofS satisfies

[

In 0
0 −In

] [

RÊ

RÂ

]

T = I2n, RB̂ = 0,

[

RÊ

Ĉ

]

T =

[

In 0

Ĝ 0

]

(8)

which clearly satisfies (7). The if part follows the conversereasoning. Construct the
inverse of the matrixT from the given matrixR, and partition it as follows

T−1 :=

[

In 0
0 −In

] [

RÊ

RÂ

]

,
[

T1 T2

]

:= T.

Now chooseS1 = R andS2 such thatS2ÊT1 = 0 where

S :=

[

S1

S2

]

,

is of full rank. This can always be done sinceS1ÊT1 = In implies that none of the
rows ofS1 are orthogonal tôET1 while S2ÊT1 = 0 implies that all the rows ofS2

are orthogonal tôET1. We now obtain with this construction the required equivalence
(7) by putting

Ĝ := ĈT1, F̂ := S2B̂, K̂ := S2ÂT1, M̂ := S2ÊT2, D̂ := S2ÂT2.

Notice that we have not assumed any special properties of thesystems (5) and (6). It
easily follows that

1. The system (6) is regular if and only if the system (5) is regular

2. The system (6) is minimal if and only if the system (5) is minimal

3. The matrixM in (6) is nonsingular if and only if the matrix̂E in (5) is nonsin-
gular

since equivalence transformations do not change these properties. Moreover, if the
system is regular, then the transfer function is also given by

G(λ) = Ĝ(λ2M̂ + λD̂ + K̂)−1F̂ .

In this talk we will present this method and show how to construct the matrixR in
the theorem. We will discuss the limitations, the advantages and drawbacks of a such
method.
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