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TWO EFFICIENT SVD/KRYLOV ALGORITHMS FOR MODEL ORDER
REDUCTION OF LARGE SCALE SYSTEMS

YOUNES CHAHLAOUI*

Abstract. We present two efficient algorithms to produce a reducedramtmlel of a time-invariant linear
dynamical system by approximate balanced truncation. nfitte is focused on the use of the structure and the
iterative construction via Krylov subspaces of both cditghility and observability matrices to compute low-rank
approximations of the Gramians or the Hankel operator. ahavs us to take advantage of any sparsity in the
system matrices and indeed the cost of our two algorithmalisimear in the system dimension. Both algorithms
efficiently produce good low-rank approximations (in thastesquare sense) of the Cholesky factor of each Gramian
and the Hankel operator. The second algorithm works djremtl the Hankel operator, and it has the advantage
that it is independent of the chosen realization. Moreovir also an approximate Hankel norm method. The two
reduced order models produced by our methods are guarantbedstable and balanced. We study the convergence
of our iterative algorithms and the properties of the fixethpiteration. We also discuss the stopping criteria and
the choice of the reduced order.

Key words. Model order reduction, approximate balanced truncatideinSequations, Hankel map, Krylov
subspaces, approximate Hankel norm method, low-rank ajppations.
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1. Introduction. Most techniques for model reduction of linear dynamicateys are
based on the dominant subspaces of Gramians (energy fasétioin- and outgoing signals)
or the dominant subspaces of their prodi¢t These Gramians are the solutions of Lyapunov
equations in the continuous case, or the discrete Lyapun8¥ein equations in the discrete
case. Efficiently computing these solutions (or their danirsubspaces) when the system
matrices are large and sparse is still a challenging profdemnfor instancef] 5, 6]). In fact,
direct methods ignore sparsity in the Lyapunov/Stein éqna@nd are not easy to parallelize.
Balanced truncation is one of the most used model reductiethoas, and has the desirable
property that from a stable model it produces a reduced ntbeels guaranteed to be stable
with a global a prioriH ..-error bound, but its use is constrained by its complexitgrébver
balanced truncation is not optimal as it is not minimizing agstem norm. A refinement to
an optimal approximation method with respect to the Hamken of the system leads to the
Hankel-norm approximatiori[/]. Despite the beauty of the theory it should be stressed that
its numerical use is often nontrivial. It is interesting tota that as far as th# ., norm of
the error system is concerned (for which we proposed an eadyation method inq]), the
Hankel-norm approximation need not provide better reghls balanced truncation. The
high complexity of balanced truncation is due to the fact tha solve two Lyapunov/Stein
equations and then compute a singular value decompositibie product of these solutions,
which both have complexit®(N?3), whereN is the dimension of the original system. And so
for systems withV = 1000 the cost of balanced truncation is prohibitively expenskeen
the “square root” version of balanced truncation, whereanesider the Cholesky factors of
the Gramians instead of the Gramians themselves, has djiiahcomplexity due to the full
balancing SVD ]]. However, if the Cholesky factors have low rank the compatel cost
will be significantly reduced.

Penzl and other[ 29] have observed that solutions to Lyaponuv/Stein equatksae-
ciated with linear time-invariant (LTI) systems often hd@® numerical rank, which means
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that there is a sharp and early cutoff in the Gramian eigegahnd by consequence also in
the Hankel singular values of the system. Indeed, the id&aefank methods is to take ad-
vantage of this low-rank structure to obtain approximatetsms in low-rank factored form.
The principal outcome of these approaches is that the coitynd the storage are reduced
from O(N?) flops andO(N?) words of memory taO(N?n) flops andO(Nn) words of
memory, respectively, wherneis the “reduced” order and so the “approximate” rank of the
Gramiansf < N). In fact, these low-rank schemes are the only way to sof@&eftly very
large scale Lyapunov/Stein equations. Moreover, appratiig directly the Cholesky factors
of the Gramians and using these approximations to provigslaced model has a compa-
rable cost to that of the popular moment matching methodeeqitires only matrix-vector
products and linear system solves.

There are many methods to approximate the Gramians of anylstés. Among the
most popular are the Smith metha8], the alternating direction implicit (ADI) iteration
method B8], and the Smith(l) methodB]. But all these schemes are computing the solution
in dense form, which is prohibitively expensive for largelplems. Other methods, such as
those in [, 22, 23, 28, 30, 31], use Krylov subspace ideas and take advantage of any gparsi
but they usually fail to yield approximate solutions of higtcuracy. Here we show how to
efficiently approximate recursively the Gramians by a l@amic factorization, or equivalently
to approximate their Cholesky factors by a low-rank appration, and at the same time ex-
ploit the possible sparsity of the model matrices. We pressem efficient iterative methods
that can be used for the model reduction of either time vgrgintime invariant systems.
The two reduced order models produced are guaranteed talile sind balanced. The first
method is mainly dedicated to the low-rank approximatiothefGramians, while the second
method approximates not only the Gramians but also the Handp of the system, which
means that it will be independent of the state space remlimabf the system. It also pro-
vides an approximation to the Hankel-norm model order redndased methods, which are
optimal but very hard to handle. The first key fact about apipnate balanced truncation is
that we define our reduced order model via its Gramians, frémchwve construct the pro-
jection matrices. The second is that an error bound for tfierdnce between systems can be
obtained via the error bound on the difference between tBemians. In §] we presented
some hints on how to choose the projection matrices in oodeave bette? ., and#, error
norms.

This paper is organized as follows. First, in Sectiowe recall some principal notions
for linear time-invariant dynamical systems. In Sectipmwe present the idea of approximate
balanced truncation and we analyze the quality of the retlocger model as a function of
the closeness of the projector matrices to those obtaireedalanced truncation. Sectiohs
and>5 focus on the presentation and discussion of the two newighgas for the low-rank ap-
proximation of the Gramians and the Hankel operator. IniBedt we present the Recursive
Low-Rank Gramian (RLRG) approximation algorithm. It usks tecursive constructibility
of the controllability and observability matrices to eféintly produce low-rank approxima-
tions of the Cholesky factors of the Gramians. We study thevemence of a fixed point
iteration and we give some of its properties. We finish thidiea by illustrating numerically
all these results. In Sectidhthe emphasis reverts to the Hankel operator. The Recursive
Low-Rank Hankel (RLRH) approximation algorithm is presshtIt also uses the recursive
constructibility of the controllability and observabylimatrices, but this time to produce a
low-rank approximation of the Hankel operator. This altori has the merit that it is inde-
pendent of the choice of the realization in use. We presenesesults about approximate
balanced truncation based on these two algorithms in $e6ti@oth algorithms produce a
stable balanced reduced order model. In Sectjome complete our analysis of our methods
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by presenting a further discussion about two very imponpaints: the stopping critera and
the dynamic choice of the reduced order. The emphasis iseomtagration of the second
point into our algorithms. We finally illustrate the qualiand effectiveness of our meth-
ods with some numerical results in the Sect®&nWe finish with some remarks and open
guestions in Sectiof.

2. Linear time-invariant systems. In this work we concentrate on discrete-time sys-
tems, but all our results could be extended to the contintious case using the bilinear
transformation §]. A linear time-invariant system is in general describedy difference
equations

(2.1) Tyl = Azxy, + Buy, Y = Cuxy,

with inputw, € R™, stater;, € RY and outputy, € RP, wherem,p < N, and we assume
that the matricesl, B, andC are of appropriate dimensions. We will assume also thesyste
(2.1 to be stable (i.e., all eigenvalues of the matfvare strictly inside the unit circle). The
transfer function associated with the system is define@’jfy) = C(zI — A)~'B. The
Gramians, defined by

2.2) G. = i (A'B) (4'B)", G, = i (A" (cal)

are solutions of the Stein equations
(2.3) G. = AG.AT + BBT, G,=ATGg,A+CTC

and are also related to the input/output map as follow. Leitusach instani > k restrict
inputs to be nonzero (i.ew; = 0, Vj > k) and consider the outputs from the inst&ntThe
state-to-outputs and inputs-to-state maps are given by

Yk C Ug—1
Ykt1 CA Up—2
Yeso | = C A2 [ B AB A?B ... ] Uk—3

Y U

x (k)
The Hankel mag{ mappingU to Y is H = OC, where

C

CA
O=| a2 |, C:[B AB A’B }

are respectively the observability and the controllapititatrices. Notice that this map has
rank at mostV sincex(k) € RY, and thag. = CCT, andg, = 0T 0.

In applications, the Gramians can be often well approxichatgng low-rank approx-
imations. These low-rank approximations are used instéaldecoriginal Gramians in the
balanced truncation procedure to provide the reduced ondélel. This is the principle be-
hind the so-called approximate balanced truncation mef@d which has very desirable
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properties. The combination of Krylov subspace ideas ardodianced truncation proce-
dure implies that approximate balanced truncation inbéhie desirable properties of both
methods. The iterative computations will reduce signifiedy the cost (mainly from solving
Stein equations) and make use of any sparsity in the dataugénef the balanced truncation
procedure yields bounds on the quality of the approximatamd a guarantee on the stability
of the reduced order system. Next, we investigate this ngetho

3. Approximate balanced truncation. The balanced truncation procedure is based on
the Cholesky factors of the Gramiara ) [1]. In practice, these Gramians are low rank
matrices (at least numerically), so their Cholesky factans be well approximated by low-
rank approximations.

The Gramians are solutions of Stein equations of the form

p(A) Gp(A)T —G=—-MM", where p(A)=AorA”, M = BorCT.

These equations appear frequently with a low rafiR/” in engineering applicationd].
This is the case for example whenewerp < N. This property implies that the solutigh
is a low rank matrix. In theory, this matrix is positive defenivheneverank(Oy) = N or
rank(Cy) = N. However, it is often the case that the eigenvalues pressimaigp and early
cutoff and hence the Gramians are numerically low rank.

The idea of approximate balanced truncation is to use therémk approximations of
the Cholesky factors of the Gramians instead of the origitallesky factors to provide an
approximation to balanced truncation. Notice that eveheflow-rank approximations were
obtained from a discretization of the system, i.e., therdisred Gramians, any low-rank
approximation of the discretized Gramian would be also atdamk approximation of the
corresponding continuous-time Gramian since the Gramaa@greserved under a bilinear
transformation I, 3]. Moreover since the continuous and discrete controligbibbserv-
ability respectively) Gramians are equal, their fundarakstibspaces are also equal. This
property is used to obtain a reduced model of a continuans-fystem whose projection
matrices are computed from the bilinear discretized varsichis system. The algorithm is
as follows.

Algorithm 1 Approximate Balanced Truncation (ABT).
1: procedure ABT(A, B, C,n,tol)
2: Use any algorithm to get low-rank approximatiofis? € RV*" of the Cholesky
factors of the Gramiang. andg,, respectively, such that
|G. — SST|| < tol, |G, — RR"| < tol.

w

Calculate the singular value decomposithR = UV,

LetX = SUY~Y2 andY = RVE~1/2,

The ordem approximate truncated balanced realization is given by
A=Y*AX, B=Y*B, and C=CX.

a &

6: end procedure

We use theSVD in line 3to ensure that the projections matricéandY” are “balanced”.
This is crucial because we approximate the Gramians inalgely. In practice, if the system
has poles close to the unit circle, then one or both Gramienaat well approximated. So
we use the SVD to balance the error. We obtain a better redoicknt model that is balanced.
A similar idea was also proposed by Varga 8Y]| He called itbalancing-free square-root
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method and its advantage is that it has a potentially better nuraksiccuracy for systems
that are poorly scaled originally.

Now, let us discuss the effect of the approximation of Grarmian the quality of the
obtained reduced mod&l(]. We consider theth order reduced system obtained by balanced

truncation,

S Aopt | By _ 7} Am, | ;B

opt Copt | 0 Cr. | 0 )7
whererm; andr,. are the balanced truncation projection matricgs$imilarly, let
S_(A|B>_<Y*Ax|Y*B)
“\Clo) U cx [0

be thenth order reduced model obtained by an approximate balangeckdtion. The follow-
ing equation is then easily derived:

AYA* + BB* — X =Y*EY — Y*AEA'Y,

whereF is the error in the Gramia@,, i.e.,E = G. — SST, andY is a diagonal matrix. The
diagonal elements of the matrixare in fact a perturbation of theHankel singular values of
the systemS = {4, B, C'} and also of the: dominant Hankel singular values of the system
S = {A, B,C}. This perturbation depends mainly dn It is clear that the stability of
the reduced system is not always guaranteed. Howeverbilitstaloes not seem to occur
often in practice (see als@(]]); in general we obtain a stable reduced system for eachrof ou
computational examples. But notice that one can use theati@aplicit restart methodso
stabilize the resulting reduced order model if it is unstdb0].

The following result examines how close is theeduced order modef,,;, obtained
by balanced truncation, to thereduced order mode} obtained by approximate balanced
truncation pQ].

THEOREM3.1.If |7, — X|| < ¢, ||m — Y| < ¢, then

1Sopt = Slloe < e ICNIBIIAI (el + e+ ISl oe I Bl + ISzl |CN +O(€?),

whereS; = ( g"m é ) Sy = ( A;Pt ngt
opt

Proof. DefiAningET =m - X, andE; = m -Y,we have|E,|| < eand| E;|| < e. For
Ea=Aop — A, Ep = Bope — B, Ec = Cope — C, we have
Ea=n]Am, —Y*AX =7 A(n, — X)+ (m = Y)"AX =7 AE, — Ef AX,
Eg=n/B—Y*B=FE;B, Ec=Cr.—CX =CE,.
ThusFE 4, Ep andE¢ satisfy

IBall < el All (Imll + 7l + €Al 125l < el Bll, [ Ec < €lC]-

We have(e/“ I, — A)~! ~ (7“1, — Ayp) "' + E for everyw € R whereE 4 = (e/“1,, —
Aopt) ' E4 (eI, — A)~! satisfies the same upper bounds i.e.,

(3.1) IEall < ellAll (Imll + [l 1) + €[ All.

Now, if we consider thé{., norm of the error systers,,; — S we have

TfOPt(ejw) - ff(ejw) = Copt (eij - Aopt)il Bopt - C (ejwl — A)il B



6 Y. Chahlaoui

Using 3.1) and the definitions oY 4, E'g and E- we obtain

1Sopt = Slirtee = | CoptTaBopt = (Comt = Ec) [Ta+ Ea| (Bopt = Eg)l2
= ”ECTABopt + CoptTAEB - (Copt_EC)EA(Bopt_EB)HQ

whereTy = (ej“I—Aopt)_l. Finally, using

B Aopt I . Aopt Bopt
81_<Oopt O>’ and 82_( 7 0 ,

it is easy to deduce the final result

I1Sopt=Slloe < € (ICHIBINIAN (Il + 7 ]l) + ISl 1Bl + Szl IC1)+O0(e?). D

Hence for smalk, i.e., whenX andY are, respectively, close tg. andm;, we expectS
to be close ta&,,;. This result says that the quality of a reduced order modstdés on the
distance between the projection matrices and those of tedainuncation and the normality
of the matrixA. In [20], this result was given informally without proof for the doruous-
time case. Here we gave a proof for the discrete-time casé¢hisumay not say much about
the quality of approximations ifl is far from normal. In that case the norfhd||, ||S1]co
and||Sz||« will be very large and can destroy the sharpness of this boimdeneral, the
choice of coordinate system far, B andC' plays an important role as well. Below, we will
show two new methods that propose two possible choices fopdd.

Almost all methods proposed for approximate balanced #tioie are based on the fact
that one obvious way to build a factorization of the Gramisay(e.g. the controllability
Gramiang,) is iteratively using

(3.2) Ci=B Cii=[C AB].

This is for example the case for all Smith like methodlsd, 20, 26, 28]. But, this factor
can also be constructed in two different wag$|[ The formula3.2leads to the idea of the
modified low-rank Smith algorithm. A second approach is tdenit as

Ciy1=|B [AB ... A7'B A'B] |
=[B A[B ... A7?2B A7'B]]=[B AG |.

If one has a good low-rank approximation@fwe will have also a good low-rank approxi-
mation ofC; 1, using this formula. This formulation leads to two new algjamis to compute
good low-rank approximations of the Cholesky factor of thrai@ians. Both methods are it-
erative low-rank Gramian methods, and can be included itothgank square Smith method
family. These approaches have the important property tiegt ¢an be generalized to time-
varying systems as well, unlike the other methods. Actudilgse approaches have already
been used for the time-varying case, and periodic lineaesys B, 12]. In these papers,
however, only a result for the time invariant case was ptteskand no proof or discussion of
the convergence was given. Here we shall give a full prosdi(egision of the convergence, the
fixed points, the quality of the Gramians approximationsl, slmow some attractive properties
of the corresponding reduced model.
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4. Recursive low-rank Gramian (RLRG) approximation. As mentioned earlier, in
practice the eigenvalues of the Gramians or the eigenvalutir product present a sharp
early cutoff 2, 29], which suggests approximating the Gramians at each stepldy-rank
factorization. We show below how to obtain such approxioraicheaply and exploit the
sparsity of the model 4, B, C'}. The Gramians can be obtained from the Stein iterations

(4.1) Go(i+1) = AG.(i)AT + BBT, and G,(i) = ATG,(i + 1)A+CTC,

for which the iterateg.(i) andg, (i) are always symmetric positive semi-definite, so we can
substitute them by Cholesky-like factorizations

G.(i) = ¢, and G,(i) = OF 0.

The key idea of the low-rank method is to approximate theofact; and©; by their rankn;
approximationsS(z) and R(i), respectively, at each iteration. TypicaHy is constant, i.e.,
n; = n. We will show, later in this paper (Subsecti@r?), how to let the algorithm choose
an appropriate,; given some user criteria. The algorithm is as follows.

Algorithm 2 Recursive low-rank Gramian (RLRG).
1: procedure RLRG(A, B, C, n, tol)

22 S(0)+ 0eRNxn > Initialize S
3 R(0)+ 0eRNxn > Initialize R
4: repeat

5: Compute the singular value decompositions

[ B| AS(i—1) | =UXV,), [CT|ATR(i—1) | = U5V,

6: Let

_ 2cl
EC _|: 202 :| )

Yo
Uc - [ Ucl | U02 } ; Uo - [ Uol | U02 } ; Uc17U01 S RNX”-

20 nxXn
[ : 202], Se1, Bor € R™T,

7 Construct
S(l) <—U01201, R(Z) <—U01201, Ec(l) (—UCQECQ, Eo(i) <—U02202.

8: until The stopping criterion is verified. > See Subsection.1
9: end procedure

The cost of this algorithm is linear in the largest dimenslorAt each iteration, we need
to multiply AS(i) andR(i)T A, which requirestNna flops, wherex is the average number
of nonzero elements in each row or column of the sparse matrixe need)(N (n +m)?)
flops to formV,. and anotheO (N (n + p)?) flops to formV, [18]. Notice that we have
N >n>m,p,a.

Using the EckartYoung theorerd], it is immediate from the previous algorithm that:

P = S(1)S()T, Qi = RE)R(H)T

are the best rank-approximations t@;,C! andO7 O;, respectively. But this is not sufficient
since we want to comparg; and Q; with G.(¢) andG. (i), respectively. This is analyzed
below.

THEOREM 4.1. At each iteration, there exist unitary matricgs” € R(n+im)x (nim)
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V. ¢ Rntip)x (n+ip) satisfying

eV =[S | E(i) | AB.(i—1) | ... | A71EL(0) ],
OFV{) = [ R(i) | Eo(i) | ATE,(i — 1) | ... | (A7H)TE.(0) ],

whereFE. (i) and E,(i) are the neglected parts at iteratian

Proof. We just show the proof for,"; that for V") is similar. At each step, the orthog-
onal matrixV, is such that

[ B|AS(i—1) |Ve=[ S@) | Ec(i) ].

Fori = 1 we haveC, = [ S(0) | E.(0) |. We prove the general result by induction.
Suppose that there exists an orthogonal mati¥ such that

CVD = [ 8G) | Boli) | AB.(i—1) | ... | A1EL(0) ].

SinceC; 1 can be obtained frord; by C;;1 = [ B | AC; |, we choose

; I, 0 v 0
o5 Bl el
¢ 0o v 0 Iit1ym

from which it follows that

Co VI = [ B| AC | [ In O } [ Ve 0 ]

0o v 0 Iitym
B p1[ Ve 0
= | B|acv! H 0 Iisiym }
= [ B| ASG) | AE.(i) | ... | AE.(0) ] { Vo 0 ]
0 Iit1ym
=[S(i+1)| E(i+1) | AE(i) | ... | A'E.(0) |. O

We can use this result to compaig(i) and G, (i) with P; and Q;, respectively. Note
first that using the previous theorem we have

G(i) = cel = v vo)rer

i—1

— S()SH)T NE.()T =i g.(j) (A E.G) .
=5( )i() +E(i)Ec(i) +J§(A E.(5)) (A7 E.(j))
It follows that
(4.2) Geli) = Pi+ Y (A Eo(j)) (A EL()) "

Similarly we have

(4.3) kaz HATN(E,()A).
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As our original system is supposed to be stable, we can bdwndifferences betweep; and
G.(i) and betweer®; andg, (7) for all 4,

50(2) = gc(l) - Pi go(z) = go(z) - Qi7

in terms of the “noise” levels as follows.
THEOREM4.2.LetP and Q be the solutions of

P=APAT +1, Q=ATQA+1.

Define the noise levels by = oax IE:(D)]l2, 10 = oax IEs(4)||2- Then

k(A)?

@4) 16 < 2Pl < 2= i)l < n2lglle < A
C — 'lc _Cl—p(A)Q’ o = 1o _01_

p(A)?*’
wherer(A) = ||A||||A~| is the condition number ofl and p(A) is the spectral radius of
A.

Proof. Here also we show only the bound 16¢(i); the second bound can be shown
similarly. It follows from (4.2) that

Ec(i+1) = AE.()AT + E.(i)E.(i)T.

With n. = max || E.(7)||2, we can consider the equation:
0<i<oo

Xy = AXAT + (P Iy — E.()E.(1)T), X =0.

Its iteratesX; are clearly positive semidefinite and hence converge towisolX” which is
also positive semidefinite. Moreover by linearity we have

Eli+1)+ Xy = A(Ee(i) + X)) AT + 021y
It then follows thatlim (£.(i) + &;) = 7P, and we obtain|E.(i)||2 < 7n?||P|]2. The
71— 00
second bound follows from the eigen-decompositior of d

We also have the following result on the quality of the apjr@tion of the product of
the Gramians.
THEOREM4.3. Let’P and Q be the solutions of

P=APAT +1, Q=ATQA+1.

Definen. = [max |Ec(D)]l2y mo = [max |E,(7)||2 where E.(i) and E, (i) are the ne-

glected parts in lin& of the Algorithm2. Then

A 2
(4.5) 1G:Go = PQll2 < 7 w(4)

T— (A2 (211Goll2 + 13 11Gell2) -

Proof. Consider the identitg.G, — PQ = (G. — P)G, + P(G, — Q). Taking norms
yields

||gcgo - PQH? S ||gc - PHQHQOHQ + |‘P||2||go - Q||2
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Finally, using the previous theorem we have

nat(A)? 16, — Qll» < nat(A)?

||gc—P|\2§W7 T— (A2

and from the fact thatP || is always bounded above §i. ||, we obtain by linearity

(4)?

1GcGo — PQJ2 < L}w (773||go||2 + 77§||gc||2) : 0

This result says that if one Gramian is not well approximathdn the product of the
Gramians, which is related to the Hankel singular values kthnkel singular values are the
square roots of the eigenvalues of the product of the Grapiamay not be well approxi-
mated.

One should remark that the previous bounds are not explftitictions of the reduced
ordern. Bothn. andn, are functions of.. They will be smaller for a good choice afor
generally for largen. The termx(A)2/(1 — p(A)?) will be very small wherp(A4) < 1 and
k(A) is reasonable. Moreovey,. andn, can be taken equal to the maximum|df.(i)||2
and|| E,(i)||2, respectively, fork < i < oo, since we can interpret the previous theorems
as starting with any initial values. This is particulary fudef after stepk the errors have
converged to their minimal value, i.e., the convergencestolde,,,. In fact, n. andn, are
functions of the initial choice and one can write

nc(k):kgzgl\f?c(l)l\z, no(k):kgzgl\f?o(l)llz-

Sincen.(k) andn,(k) are typically decreasing we can replace them by the maximeen o
the last iteration steps. We will discuss different strasdor the stopping criterion later in
Section7.1

4.1. Convergence of the RLRG algorithm.In this subsection we analyze the conver-
gence of the recursive low-rank Gramian (RLRG) algorithmeftinear time invariant system
{A, B,C}. The convergence will allow us to deduce important resudtsuathe fixed point
of the algorithm RLRG. Although all material below appliestioth approximations' and
R, we focus on the controllability version only,

First, note that the updating transformation $ois nonlinear and implicit. Thus to prove
convergence of the RLRG algorithm, we will use a generabnatf thefixed point theorem
due to Ortega and Reinboldif)], called thecontraction mapping theorem

DEFINITION 4.4. A linear operatorY is nonexpansive if(T) < 1, and contractive if
p(T) < 1.

THEOREM4.5. The nonlinear iteratior; 11 = f(S;), S; € RY*" admits a fixed point
Sy iff there exists a contractive linear operat®if so that for all.S we have

f(Sp+1tS) = f(Sy) +tVfS +O(t?).

V f is calledGateaux-derivativef [ or the Fréchet derivative]l, 25]. For the RLRG
algorithm, it is obvious that the differentiability dependn the differentiability of the SVD
which is guaranteed if there is a gap between the part thateg &nd the part that we neglect
in the algorithm 1Lg], and this is supposed to be the case. To prove the convergenthus
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have to prove that the updating mapping is contractive. iy ket us consider a perturbation
of S, namelyS + A. We can define the SVD

%10
[AS|B|=U| 0 % [VT, whereX; € R™™,
0 0

and using thes& andV matrices, we have

R R 411 412
(4.6) [AA |0 | =UAV"  where A= | Ay Ay
Azr Asp

is partitioned conformably witk.. Let us consider the partitioned transformations

Vii | Via

@.7) v_[v1|v2]_[V21 e

:|7 U:[U1|U2|U3}7

and define2; = 3, + Ay; andXs = Xs + Ags. TO analyze the fixed point iteration we can
distinguish two cases’ constant and” varying. If V' is still constant then the new version

Si+1 is given by
X1
0,
0

f}
421 )

As

Siyi=[AS; | B |vi=U

and the perturbed version 6§, is given by

Si+1+A1:[A(Si+A)|B ]Vle

andthusA; = [ AA | 0 | Vi = AAVy;.  Using thevec formulation we obtain

vec(A;) = (V5 @ A)vec(A).
Here, the ternV;} ® A corresponds to the linear opera%y of the last theorem. As(V} ®
A) = p(Vi1)p(A) < 1 (p(V11) < 1 becausé’; is a submatrix of the orthogonal matrix)

the mappingA — A; is a contraction.
Let nowV be varying as well. The new iterat&s,; is still given by

Siy1=[ AS; | B | Vi = U3y,
and the perturbed version is given by
Siv1+ A1 =[ ASi+A) | B Vi(A) =Uy(A)E,

and soA; = Ul(A)il — U134 If we write the transformatiol/ (A) as

v =v| 5 TF | +onam,
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12
then a first order approximation @ can be obtained fronB8p, p.359], B4, p.206], B9
R ~ili,’f R ilA%l —tAlgig ilé%ﬂl E% 0 O
K| AuXi+X_Af N LAL | K+O(AIZ) = | 0 %3 o |,
A3z1¥y As323 0 0 0 0
I QT . .
whereK = 0 1 | Now, if we consider thg2 : 3,1) blocks, we have
0 S ar { $,3T $AL ] { Ag 3y + 5,AT, } 2
= Q27 4 | 72 + X + O(]|A]3).
0] —memEn e | 32 B0 g | St (A1)

0
This equation can be solved to first ord@s[p.359], B4, p.206], and if we neglec¢is versus

2 (e |27 |2 1222 =~ O(J|All2))*, we obtain
IS5 131213

(48) - | Aty e <tiqn Aotz
3141 1- HEI ||2-HE2||2
And thus one obtains
I
A =U Aglzl_l 21 —UXq1 + O(C)

Az >t
= U (31 + Ap) + UzAg + UsAg — U121 4 O(c)

= U1 A1y + UsAgy + UsAszy + O(c).

From (4.6) we have

éll Ut
(4.9) Aoy | =| U |[AA]O W
Ag Uy
SO
Ay = DWUF AAV + UUT AAVY, + UsUT AAVE + O(c)

= (U] + U UL + UsUT) AAV + O(c).

I
Furthermore from4.8) and @.9 we have

Therefore we have\; ~ AAV); + O(c).
Q]2 = [ AA]|2]| T 12, and so
ol JECBISE IS
C_HQ||2 S—1112]+w 2NH ||2 S—1112]w 2"
== 51135013 L= [IZ7 31135013
Using thevec formulation we obtain finallyec(A;) = (Vi ® A)vec(A)+0(c). Asp(Vii®
A) = p(Vi1)p(A) < 1 the mappingA — A, is a contraction provided>; |22z

INote that in this case
IS ST oAl < olAll3)
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is sufficiently small i.e., the gap is sufficiently large. Wmdhese conditions, the RLRG
algorithm admits a fixed point. Furthermore, this fixed pdias a very desirable property
given by the theorem below. First we introduce {b& B}-invariance.

DEFINITION 4.6. A subspace’ of RY is said to be an{ A, B}-invariant subspace
if V is invariant underA and contains the image space Bf(denotedimB). We denote
YV =T 4ImB.

We have the following equivalences.

LEMMA 4.7.[24]

V=TylmB < AVCImB+V <& (A-BK)VC).

THEOREM4.8. The fixed point of the RLRG algorithm is §A, B}-invariant subspace
provided that the matriX/; (4.7) is nonsingular.

Proof. Leti be the iteration where we reach the fixed point, Le.5 (i) = ImS(i + 1),
which is equivalent to say that there exists a square noakingnatrix X s.t. S(i)X =
S(i + 1). Then, if we put ourselves in a coordinate system where

so=[ 2] mew

(this can be obtained using for example a QR decompositiofi(df followed by a pre-
multiplication of the matrixS(i) by @), the fixed singular subspace implies that we must
have

R

st

] , ReRrR™m,
The two matricesk and R are related using(7) as follows
L] ) ] ] - B ] - [
A1 | A2z 0 B Vo AnR | By Vo 0]
And so, we have

(4.10) A1 RViy 4 BiVay = R, A9 RViy + BaVay = 0.

é must be an{ A, B}-invariant subspace
sinceforK = [ K1 |0 | =[ =Va1Vj7'R71 | 0 |, we have

A — BIK; | Aip } _ [ A — B1Ky | App

Aoy — BoKy | Ag 0 | A |~

If V11 is invertible it follows thatlmS(i) =

A—BK—[

which concludes our proof. d

For the observability, we speak abdut”, CT'} invariance instead dfA, B} invariance.
Moreover we have the following corollary of the Theorém.

COROLLARY 4.9. At each iteration, there exists orthogonal mathix?) ¢ R +im)xn,
satisfyingC; V(¥ = S(i).

Proof. Fori = 0 we haveCy { I(;l ] = S5(0). We prove the general result by induction.

Suppose that there exists an orthogonal mattix such that;V'(") = S(4). SinceC;,, and
S(i+ 1) can be obtained frord; andS(¢) (Theorem4.1and its proof), respectively, as

Cii=|B|AC | and S(i+1)=[ B|AS(i) |V,5, where V' =V.(;,1:n),
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it follows that

(4.11) _[B|4c | [

whereV/ (i+1) = { Ig V%-) } V.t

Now we can characterize the fixed point.

THEOREM4.10. The RLRG algorithm has as a fixed pofit= S(cc) = US2, where
the columns of/ are then dominant eigenvectors of the corresponding Gramian (alsgus
lar vectors, as the Gramian is a Hermitian positive semidefimatrix) and. is a diagonal
matrix of the corresponding singular values of the Gramian.

Proof. We show the proof only for the controllability case, theasthase being similar.
Let o—lgz), j =1,...,n, be then first singular values of; and&ﬁl),j =1,...,n, those of
S(i). We haveCipy = [ B | AC; | = [ Ci | A'B |, which means tha; is a submatrix of
Ci+1, and so
i+1)

0(-i) < UJ(-

J j=1...,n.

Then according to the Theore#nl, there exists a unitary matri () e R(n+im)x(n+im)
such that

VW =[ S4) | €(i) ], where &(i)= E(i) | AE(i—1) | ... | AC-DE(0) ],
andE(j) the neglected part ({f AS(j—1) | B ] at the iterationj. Then using the relation
Ciy1=| Ci | A'B | we can write

[SG+1) [ £G+1) VD" = [ [ 56) | €6) JvO" | 4B ]
We can see easily that
o ([ SG+1) | €G+1) ]V(”l)T) >0, ([ SG) | €6) }V@')T),
and asV’(¥) are unitary matrices, we have
o ([ SG+1) | EG+1) ]) =05 (] SG) | €@ ),
and finally, by constructio (i) is the dominant part of S(i) | £(i) | then
0;(S(i +1)) = 0;(5(7))-

Then singular values of5(i) are nondecreasing from one iteration to another, and as we
have shown before that the fixed poin{id, B }-invariant, the space spanned by the columns
of S(i) converges to a maximal (in term of these singular valuesdsate of dimension.
This maximal subspace is known as thenaximal{ A, B} invariant subspace (se24] for
more details), and can proved to be the rantteminant approximation of the controllability
matrixC = C and so of the controllability Gramiah. = G.(0).

Formally, the RLRG algorithm is based on the facttfiat; = [ B | AC; |. Taking the
limitwheni —s oc in both sides we get.. = [ B | ACo |, so then dominant left singular
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vectors (called also the left fundamental subspac&d]) of C = C., are the corresponding
fixed point. All this discussion leads to the conclusion thatRLRG algorithm has one fixed
point corresponding to the dominant singular subspace of the corresponding Gramian.
d

Actually, we have a double convergence: one for the singudares and the other for
the subspace. Recall théti) = U.(i)X.(i), whereU,(i) are then dominant left singular
vectors of[ AS(i —1) | B |, andX.(i) contains the: corresponding singular values (see
algorithm?2).

Numerically, the convergence for the subspace should bekedeby computing the
canonical angle] (or its cosine) betweel/. (i) and the dominant subspace of dimension
n of the controllability GramiarG. (£ (U.(i),G.)). But, as the Gramian is not available
we can check this convergence using the canonical angleebeti,.(:) and U.(i — 1)
(£(U.(3),U.(z — 1))). This convergence occurs very quickly as sooria® is enclosed
in the subspace, then the algorithm takes a few iteratiomedoh the fixed point (for the
subspace). The convergence rate of this iteration seemesadimction only of the number
min(m, n) (respectivelymin(p, n) for the observability Gramian) and not a function of the
size of A or its spectral radius. On the other hand, the convergemthdasingular values is
mainly function of the spectral radius df

The previous theorem has an important hidden outcome. lemtie link with Krylov
subspace methods. We hdve C = K (4, B). So then fundamental left subspace 6f
which is the fixed point iterations of the RLRG algorithm, isathen dominant subspace of
Koo (4, B). This is the reason why approximated balanced truncatioalisd a SVD/Krylov
method.

4.2. Numerical illustration. We illustrate all this discussion using the following nu-
merical example. We generate five random stable sys{etsB, C'} of order N = 400,
with m = 6 inputs,p = 4 outputs (we keep the sani¢ andC for all five systems), and
the spectral radiug(4;) = 0.95, p(42) = 0.9, p(A4s) = 0.8, p(A4) = 0.6, p(A5) = 0.4.
We taken = 30. In the first two figures, we show the canonical angle betwégi) and
Ue(i — 1) (L(Ue(2),Uc(i — 1))) (Figure4.1), and the canonical angle betweér(i) and the
dominant subspace of dimensiarof the controllability Gramiag. (£ (U.(i),G.)) (Figure
4.2). Figure4.1shows that there is a fixed point iteration, and Figuigeshows that this fixed
point is the dominant subspace of dimensioof the controllability Gramiarg.. One should
notice that we would like to avoid computing the exact domirsaibspace of dimensianof
the controllability Gramiarg, as it is expensive.

From these figures, it is very easy to see the effect of thetigpeadiusp(A) on the con-
vergence rate. The smaller the spectral radius the fageothvergence to the fixed subspace,
but at the end, in general the quality of the approximatioeasured by the canonical angle
between subspaces, is of the same order. In Figizene verify that the fixed subspace is
effectively the dominant subspace of the Gramian of din@nsi In Figure4.3 we can see
that after a few iterations the noise level is converging &sa constant value, which is also
function of the spectral radius df, i.e. smaller is this spectral radius smaller will be theseoi
level. Actually, we could use this convergence in the nogsellto restart the algorithm in
order to get a good approximation. This takes in generalfevyterations. The convergence
of the singular values is considered in the last two figuregure 4.5 shows the number of
the Gramian singular values matched at each iteration,rafthure4.4 the corresponding
distance between the two sets of the singular values. Hgodlad convergence is function of
the spectral radius ofl. But the effect is more evident, and the slope is more sigmifias
this spectral radius become smaller. In general, these nicaheesults confirm our previous
results about the relationship between the spectral radidsand the convergence rate and
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the quality of the approximation. Whei{A) is close to 1 (but still smaller than 1), we need
many more iterations to get the same quality than wheh) is much smaller than 1. This
will be very useful, if one has a continuous system on handgoudd choose a bilinear dis-
cretization in order to get the spectral radius of the r@syiinatrix A much smaller than 1 in
order to get a very fast good approximation.

PR E—
10° 7=y ——p(A) =0.95] |

. e - - p(A)=0.6 ||
10 §2 ——p(A) =04

20 40 60 80 100
iterations

F

o)

4.1, 4 (Ue(i), Ue (i — 1)).

;
—e—p(A) = 0.4
- = p(A)=06 H
p(A) =08
——p(A)=0.95
- - -p(A)=0.9

20 40 60 80
iterations

FIG. 4.2.4 (Uc(7), Ge).-

This convergence result will allow us later to deduce sonefulproperties for the re-
duced model, especially about the stability and balancing.

Unfortunately, the RLRG algorithm produces an independpptoximation of the two
Gramians. So to obtain a reduced model we have to “balaneeptbjection matrices ob-
tained from these two approximations. The quality of therapipnation and indeed of the
reduced model depends on the two “noise” level parameigend 1., which determine if
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—=—p(A)=0.4 3
-- p(A)=06 [

p(A)=0.8 [
---p(A)=0.9 [
——p(A)=0.95

I I I I I I
2 4 6 8 10 12 14 16 18

iterations

FIG. 4.3.Noise levely

—a—p(A)=0.4
-~ p(A)=0.6
p(A)=0.8
- - -p(A)=0.9
——p(A) =0.95

iterations

FiG. 4.4.miax |02(S(3)) — 04(Ge)|.

the two Gramians are well approximated or not. These paemate independent as we
approximate Gramians independently from one another, anshe can imagine the case
where one Gramian is well approximated and the other not.ttg® affects the quality of
the approximation of the reduced model. For instance, iftaliyear transformatiofi’ is ap-
plied to the systemj A, B, C'} to get a new systefil’ ~* AT, T~ B, CT'}, the corresponding
controllability, observability, matrices and Gramiarespectivelly, will be

c=17'¢, O=0T, G =T'6T1T", G,=T"G,T.

This transformation will also affect the product of the Gians (which is taken in account
for the balancing) as follow§,.G, = T'G.G,T. We can see very easily that to have good
approximations of the Gramians, one has to choose gooaagals of the system, which
means the choice of the matricas B, andC. This is not obvious, and could lead to a very
bad result. In the following section we present an algorithimich avoids this problem.
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30—
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——p(A)=0.4
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FIG. 4.5.Number ofo; (G.) matched at each iteration.

5. Recursive low-rank Hankel (RLRH) approximation. The key idea of this ap-
proach is to use the underlying recurrences defining theabeecHankel matrices. Because
the system order at each instant is given by the rank of théélanatrix at that instant, one
can approximate the system by approximating the Hankebxdtnis is the idea of the exact
Hankel norm approximation methodsq. In this case, the norm approximation problem is

(5.1) min  |[H —H],

rankH<n

whereH is the Hankel map which makes the correspondence betweetsiapd outputs (see
Section2). The problem%.1) has many solutions, since only the largest singular vadfies
the difference? = H — 7{ is minimized, anch — 1 others are free as long as they remain
smaller. In general, to solve this problem, one has to seleetppropriate representation of
the desired high-order model that can be used computaljoAadimple but high-complexity
realization is given by the generalized companion form. Ngiwen this realization one can
solve the problem5.1) for a given precision which is measured using a Hermitiamgtly
positive diagonal operatdr (in fact it could be taken aB = ¢/ for some small value of),

by solving

sup | (e=mr) <1

i.e., H approximatesH up to a precision given by. This problem can be solved using
the Schur-Takagi algorithmlp]. Indeed, Hankel norm approximation theory originates as
a special case of the solution to the Schur-Takagi intetipolgproblem in the context of
complex function theory. Several techniques were predenténd the optimal solution, see
e.g. the work of Dewilde and van der Veelrt] 36], and Chandrasekaran and Gus[14, 15].

The complexity of these techniques are normally of the oode?(N?) but can be made
“fast” or “super fast” to be just of the order ¢#(/V). But in order to obtain this speed up,
the matrices involved must have a special structure calledsequentially semi-separable
matrix structure. This structure involves some rank coods for optimality which cause
some minor complications. This whole procedure has to beatepl forl' = ¢, where
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¢, eventually converges to a small optimal value. The prirldiiea of these algorithms is
to use the SVD to approximate the Hankel matrices by mathessg a Hankel structure.
Our algorithm follows the same line. It has the particulatiitat it approximates the Hankel
matrices at each instant by a low rank approximation in agfinindow. Let us now formulate
this in more detalil.

5.1. The RLRH algorithm. The key idea of this algorithm is to use the Hankel matrices
H, = O,C; representing the Hankel m&p = OC. As the system order is given by the rank
of the Hankel map, it is a good idea to approximate the systeapproximating the Hankel
matrices via a recursive SVD performed at each step. Thaigeb is very similar to the pre-
vious algorithm, RLRG, but now we perform at each step thgudar values decomposition
of a product similar to the produ€C. Consider indeed the SVD of the matrix

C

(5.2) W

| B| AS(i) | =UsVT,

and partitionU := [ Uy |U; |,V := [ Vi | Vo | whereU; € R"P>*" andV; €
R(n+m)xn_Define then

[ SGi+1)
[ R(i+1)

E(i+1) |=[ B[ASG) [[ ] Va ],
Ey(i+1) | =[ CT | ATRG) |[ U1 | U2 ].

It follows that

{%} [ S(i+1)|EC(i+1)]—{201 202},

whereX; contains the neglected singular values at this step. Fointtialization at step
i =0 we use agai¥(i) = 0, andR(i) = 0. We summarize this algorithm as follows.

Algorithm 3 Recursive Low-Rank Hankel (RLRH).
1: procedure RLRH(A, B, C, n, tol)

22 S(0) - 0eRVx" > Initialize S
3 R(0)+ 0e€RNxn > Initialize R
4: repeat
5 Compute the singular value decomposition
% G T
— | [ B|AS(i) | =UsvT.
R(H)TA

6: LetU = [ U, | Us },V: [ Vi | Vs ],U1 € Rmp)xn v, Rntm)xn,

7: Construct
S(i+1)«[ B| ASGi) | Vi, R(i+1)«[ CT | ATR(i) | U,
E.(i+1)«[ B| AS@) |V, Eo(i+1)«[ CT | ATR(i) | Us.

8: until The stopping criterion is verified. > See Subsection.1
9: end procedure

Let us investigate the amount of work involved in our aldurit First we need to form
products of the typedS(i) and R7 (i) A. If we assume the matri¥d to be sparse and let
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the number of non-zero elements per row or columnipthen the amount of work needed
for thisisO(aNn) [18]. The construction of the left hand side &) requires an additional
2N (n+m)(n+p) flops and the application of the transformatiéhandV requiresO((p +
n)(m+n)(2n+p+m)) flops, and so the complexity of this algorithn§N (p+n)(m-+n))
for each iteration. Which is comparable to the work involirethe RLRG algorihm.

As before we have some results linking the intermediater enadrices and the control-
lability and observability matrices.

THEOREM 5.1. At each iteration, there exist unitary matricgs?) e R(»+im)x(ntim)
andU() ¢ R(v+p)x(n+ip) gatisfying:

VW =[56) | Bi) | ACc(i) |, OFUW =] R() | B,() | ATO(i) |,

whereF, (i) and E, (i) are the neglected parts at iteratiain the algorithm, and the matrices
C.(i) andO.(i) are defined as follows:

Col) = [ Beli=1)| .. [ A E(0) ],0.6)" = [ EBo(i-1) | ... | (A7) Eu(0) |-

Proof. We just show the proof fo¥ (¥), the other being similar. At each step, there exists
an orthogonal matri¥’ = [ Vi | V, | such that

[ B|ASG) |V =[5G+1) | Eli+1)].
Fori = 0 we haveCy = [ 5(0) | E.(0) |, and soV/(?) = I. We prove the general result by
induction. Suppose that there exists an orthogonal mtfiksuch that
CVW = [ 8(i) | E(i) | AB.(i—1) | ... | A EL(0) ].

SinceCiy1 = [ B | ACG; } we choose

; 1, 0 vV 0
+1) m
S I R

from which it follows that

Ci+1V(”1)—[B|ACi][Im 0 ][V 0 }

0 v® 0 ILim
—[B|Aciv<i>][‘g I?m]
— [ B| AS(i) | AB.(i |...|Ai1EC(0)][E I?m]
=[ S(i+1) | Ec(i+1) | AE.(i) | ... | AEe(0) ]
=[S6+1) | E(i+1) | AC(i+1)]. D

As a consequence of this theorem we have the following regutth give us an approx-
imation of the original Hankel matrik;.

THEOREMS5.2. At each iteration;, there exist unitary matrice () e R(n+im)x(n+im)
andU) e R(v+ip)x(n+ip) gych that

r R(#)"5(i) 0 R(i)TAC.(i)
(5.3) (U(”) HV D = 0 Eo()TE.(i) | Bo(i)TAC.(i)
O (1)AS (i) | Oc(i)AE.(i) | Oc(i)A%C,(7)
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Proof. First we have the relationship between the Hankel matritescontrollability
and the observability matricgg; = O;C;, and from the previous theorem, there exist two
unitary matriced/ () ¢ R(ntim)x(ntim) gndy () ¢ R(n+ir)x(n+i) gych that:

(Uu)) EETRVON (U@)T 0,0,V

The final result then follows easily. d

This result enables us to evaluate the quality of our apprations by using the Hankel ma-
trices (and so the Hankel map) without having to pass by Graspiwhich can be very unsuit-
able in some cases (especially when the original systemadypbalanced). The procedure
yields two matricesS(n) and2(n) of full rank n. Using those matrices we can approximate
the Gramiang, andg, of the original model by5(n)S(n)” andR(n)R(n)T, respectively.
The differences between the approximate low-rank Granaadshe exact Gramians

gc(l) = gc(l) - Pi7 go(l) = go(l) - QZ

remains bounded for largeas indicated in the following theorem.
THEOREMS.3. LetP and Q be respectively the solutions of

P=APAT +1, Q=ATQA+1.
Then

A)?
Mo < 2 < 2 i
”50(2)”2 — nc|‘P||2 — nc 1— p(A)27

A)?
N < 2 K(
||50(Z)H2 — 770||Q||2 — 770 1— p(A)27

wherer. = max || E.(i)||2 and7, = max || E, (i)]|2.
Proof. It follows from Theorenb.1that

E(i+1) = AE()AT + E.()E.())T, E(i+1) = ATE,(i))A+ E,(i)E, (i) .
We can also consider the equations:

Xo(i4+1) = AX()AT + ()’ I — E.(i)E.(1)T), X.(0) =0,

Xoli4+1) = ATX, () A+ (1 — E,(0)E,(i)T),  X,(0) =0.

Their iteratesX,.(i) and X, (i) are clearly positive semi-definite and hence converge to a
solutionX,. and X, which are also positive semi-definite. Moreover by linganie have

E(i+ 1)+ X, (i + 1) = AEe(D) + X () AT + 121,
Ei+1)+ X,(i 4 1) = AT(E,(7) + X, (1)) A + 1.

It then follows that
lim E.(1) + X.(i) = n?P, lim &,(i) + X, (i) = > Q,
11— 00 71— 00

and we obtain|&.(i)||2 < n2||P|l2, and||E(i)||2 < 72||Q|l2. The second bound follows
from the eigendecomposition df. O
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THEOREM5.4. Using the first, columns/{” of U and V") of (), we obtain a rank
n approximation of the Hankel map

N A N A
H-UPRGTS6) (V) = Enli),
for which we have the error bound

K(A)
V1 p(A)
Proof. This follows directly from the bounds of Theores? that can be used to bound

the blocks in the form inq.3) different from the(1, 1) block. More explicitly, from 6.3) we
have

: X . o A)2
(D)2 < max{nc||RT A2, 10| AS||2} + 1_(7)

p(A)2 77077(:‘-

[ R@TSG) | 0 R(H)TAC.(i r
H; = U 0 ‘ B () E() E,(i)TAC.() (V(Z))
O.(1)AS(i) | O.()AE.(1) O.(i)A%C. (i)

and safy (i) = 5}}’(2') + 5}1,2) (i) where

0 0 R@)TAC.()
5(1)(2-) — U(z) 0 | 0 0 (V(i))T
O.(i)AS (i) ‘ 0 0
_ . DT E(i) Eo(i)TAC.(i
ande® (i) = U [%’EL} (Vo) g, = { gél)) A?Ec((i)) g((z)) Af;‘ge((i)) } and thus

|€r(@)ll2 < max{|| R(i)" AC(i)|2, |0 () AS (i)[|2} + [|Ec]l2. D

We make the following remarks.

— One obtains an approximate rank factorization of a Hankgd mih i block columns
and rows at each instant The bounds obtained in TheoremB and5.4 are moreover
independent of. As i grows larger one can expect that reasonable approximatfons
and, are in fact given by the neglected parts of the last iterati@n, n. ~ || E.(i)]2
andn, = || E.(4)|2 which will give much tighter bounds in these theorems. In,fas we
remarked before;. andr, are function of the initialization instant and one can write

ne(k) = max [[Ec(i)ll2,  n0(k) = max [|E,(i)]]2-

k<i<oco k<i<oco

Sincen.(:) andn, (i) are typically decreasing we can replace it by the maximunn thee
last iteration steps.

— We can make the same convergence study, as for the RLRGthlgoto conclude that the
RLRH algorithm has a unique fixed point which{ig, B} invariant and{ 4, C'} invariant
in the same time. This leads to the conclusion that the fixéut pothis case is the domi-
nant part of the commune “balanced” Gramian. This propeityalso imply a very nice
result for the reduced model that we show in the followingisec
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— If any bilinear transformatiofi” is applied to the systerhA, B, C'} to get a new system
{T—YAT, T~'B,CT}, the corresponding controllability, observability, nieés and the
Hankel map, respectively, will be

C=T""'c, O=0T, H=0C=0C="H.

This transformation will not affect the Hankel map (whichtéken in account for the
balancing). This means that for any realization of the sys®RLRH-ABT will do as good
as for a balanced realization. And so it is a powerful veryagh@ethod to produce a good
balanced approximation to a linear system.

6. Approximate balanced truncation using RLRG and RLRH algarithms. Using
the two previous algorithms: RLRG and RLRH, we can use tha ad@pproximate balanced
truncation (see Sectio8) to obtain a reduced order model. The idea, here, is to use low
rank approximations of the Gramians, obtained via RLRG oRRLinstead of the original
Cholesky factors of the Gramians in the balanced truncatigarithm. The implemented
algorithms are given by Algorithméand5.

Algorithm 4 RLRG Approximate Balanced Truncation (RLRGBT).
1: procedure RLRG_ABT(A, B, C, n,tol)
2: Run RLRG (Algorithm?2) to get low-rank approximation§, R € RN*" of the
Cholesky factors of the Gramiags andg,, respectively.

3:  Calculate the singular value decomposit®hRr = ULV,
4 LetX = SUX™Y2 andY = RVE~1/2,
5: The ordem approximate truncated balanced realization is given by

A=Y*AX, B=Y*B, C=CX.

6: end procedure

Algorithm 5 RLRH Approximate Balanced Truncation (RLRABT).
1: procedure RLRH_ABT(A, B, C, n,tol)
2: Run RLRH (Algorithm3) to get low-rank approximation§, @ € RY*" of the
Cholesky factors of the Gramiags andg,, respectively.
3 LetX =S%7Y% andy = RY7V/2,
4: The ordem approximate truncated balanced realization is given by
A=Y*AX, B=Y*B, C=CX.

5: end procedure

In Algorithm 4, we use theésVD in Line 3 to “balance” the projection matrices. This is
crucial because we approximate independently the Gramlargactice, if the system has
poles close to the unit circle, one or both Gramians are ndtapproximated. This is not
needed in Algorithnd, because the product of the two low-rank approximationsdresady
equal to a diagonal matrix of nonnegative values. This iditseadvantageous property of
the RLRH approximate balanced truncation method.

These two approximate balanced truncation algorithms bawee very desirable prop-
erties that we show below.

THEOREMG6.1. Both algorithms, RLRGABT and RLRHABT lead to a balanced stable
reduced model.
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Before giving the proof of this result, we will need to showe flollowing lemma.

LEMMA 6.2.LetX,Y € RF*andZ € R**". If XTZ = 0 and XTY is full rank then
YT7Z =0.

Proof. Firstly, asX”Y is full rank, the columns ofX and those oft” span the same
subspace oR¥*!, Secondly, ast”'Z = 0, the columns ofZ span a subspace &"*" that
is orthogonal complementary to the subspace spanned bythmes of X into RF*(+7),
Then the subspace spanned by the columnis ©f also orthogonal to the subspace spanned
by the columns ofZ, i.e.,Y”Z = 0. 0

Proof. [Proof of Theoren®.1] We will prove the theorem for the RLRGBT algorithm;
the proof for the other algorithm is similar. Let consideatts’ and R are the fixed points of
the RLRG algorithm applied to the systd, B, C} (2.1). i.e.,

(6.1) [S|E.]=[AS|B]V. [R|E,|=[ATR|CT ]V,
whereV, € R(mtm)x(n+m) gndy, e R(+»)x(n+p) gre unitary matrices. It follows that
6.2) SST+E.ET=AS8STAT + BBT RRT + E,E' = ATRRTA+CTC.
Recall that the projection matrices are

m=RVY "z, 7.=SUY"z, STR=USVT, where U,V ecR"™™.

Now, using these projection matrices we can project bottaggpus 6.2, and we obtain
respectively.

(6.3) i (SST + E.El)m =] ASST AT ] + nf BB,
(6.4) 7/ (RR" + E,EY) m, = nf ATRR" Arr,. + n} CT Crr..

By definition we haver! 7, = I,,, and by construction we ha’ £, = 0 andRT E, = 0.
Moreover, we have

s =x3VIRTS =230, a'R=%":UTSTR=yx3V".

And applying the previous lemma will yields that E. = 0 and= E, = 0. Then equations
(6.3 and ©.4) become

7 88 m = nl ASST ATl + n] BB m,
WTTRRTWT = W?ATRRTAWT + WTTCTCWT.

We can check easily that (5andV are unitary matrices)
7l 8STm =a'RR"r, =%, SST =n2x”, and RRT = m¥n].
Finally we obtain the Stein equations
Y =l Am,Snl ATrl + 7 BBTm and ¥ =l ATmSrl Ar, + 7L CT COr,.
These two equations prove that the reduced m({d{érlAm,wlTB, C7,.} has a balanced

GramianX. This Gramian is by construction positive definite and thieitsemn of the last
two Stein equations from which we conclude that the redugstém is stable. d



Two algorithms for approximate balanced truncation 25

The next result concerns the convergence of the computekigHsimgular values.
THEOREM 6.3. Leto; and &; denote Hankel singular values of the original model and
the reduced model via either RLRGBT or RLRHABT respectivelyo? = \(G.G,) and
= AMSSTRRT). Then

)2
ZO’ - Z z — 1 ) (mnctrace(go) +pnotrace(g0)) 9
wherem is the input numberpp is the output number, angl. and, are the corresponding
noise levels.
Proof. We have

Z o; Z 67 = trace(G.G,) — trace(SST RRT)
i=1
= trace(G.G, — SSTRRT)
= trace ((G. — SST)G, + SST(G, — RR"))

< trace(G. — SST)trace(G,) + trace(SST )trace(G, — RRY).

And using previous results in this paper we obtain finally

iaz—i62<ﬂ(m 24, g 2t g a
; i< 5 (mng trace( o) + prstrace( c))

Here, it should be mentioned that for RLRGBT the noise levels). andn, could be
not of the same order as the Gramians are approximated indep#y. This could affect the
quality of the previous bound. On the other hand, for the RLRBT, we haven = n. ~ 1,,
which yields

A 2,2
Z o; — Z o; < % (m trace(G,) + p trace(Ge)) .
Another result for the Hankel singular values is obtaingdgishe perturbation theory
for the singular valueslg, p. 449] and Theorem 4.14.
THEOREM 6.4. Leto; and&; denote Hankel singular values of the original model and
the reduced model via RLRIABT. Thenfoi = 1,...,n

KA K(A)?
T p(A)2n01||A||2 t 1 Ve

log — 64| <

wheren is the noise level.
Proof. We apply Corollary 8.6.21[8, p. 449] and Theorem 4.14. We also use the fact
thatn = . ~ 1, |Rll2 =[R2 =61. O

7. Further discussion.

7.1. Stopping criterion. Since our iterative method computes successive approxima-
tions to the solution of a Lyapunov equation, a practical iemieeded to determine when
to stop the iteration. Ideally this test would measure thatadice of the last iterate to the
true solution (the Gramian), but this is not possible asithe $olution is unknown. Instead,
various other metrics are used, typically involving thadeal (noise level) or reached fixed
point. The following stopping criteria could be considered
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— Maximal number of iteration step3he iteration is stopped after a certain numbgy, of
iterations steps. Obviously, no additional computatioescthto be performed to evaluate
it. The drawback of this stopping criterion is that it is nelated to the attainable accuracy
of the delivered low-rank Gramian.

— Stagnation of the canonical angle$he iteration is stopped when stagnationad' (i —

1), S(i)) is detected. Roughly speaking, these angles are considsrsthgnating” when
no noticeable decrease is observed in consecutive itarsteéps. This criterion works well
in practice. It requires the computation of an SVD, whictegithe cosines of these angles.

— Stagnation ofS.. We predefine a toleraneg, and test if|| X.(i) — X.(i — 1)|| < e, for
several iterations, in the 2-norm or the Frobenius norm.

— Smallness of the noisg.. We predefine a tolerancsg, and test ify. < ¢, for sev-
eral iterations. Loosely speaking, this means the follgwikVvhenr. and consequently
|E.(7)|| become smaller tha, , then the “contribution” from the following iterations is
not needed as it will not ameliorate the quality of the appration.

In general, the three last criteria are affected by rouriévobrs, which is why we should wait

a few more steps before stopping of the algorithm. Note thatdelay between stagnation

and stopping of the algorithm can be changed; in our algostive consider a delay of 10

steps. In practice, the second and third stopping critegacambined to have a good low-

rank approximation of the Gramians (see the discussionviitlg Theorem?.10. The two
last stopping criteria could be considered as equivalerd, stagnation ofl. means that the
noise levels are very small and negligible.

7.2. The choice ofi. So far we have only considered the case where the reduced orde
n is constant and fixed from the beginning by the user. But #igtuione wants to choose
a convenient value fon one has to do an explicit thorough analysis of the whole Hanke
operator (or matrix) involved and strive for some sort ofgsilar value ranking. For large-
scale dimensions this pre-treatment is prohibitive.

The current situation is that we can choose dynamically ¢deced order by choosing
the number of vectors kept during the iterations of the allgor (i.e.,n = n; is variable).
This is very cheap as we already pass through the whole maitfixa kind of a sliding
window which sorts locally the singular values. And so ona adaptn; as soon as the
information “unveiled” by the sliding window is relevant tbe approximation. One should
notice that as we are using SVD-based algorithms, the gualihe approximations will be
a function of the existence and the importance of the gapdmtwhat we keep and what we
neglect [Lg]. Here, one can adopt many strategies using some ad-hoficgisan. e.g.

— Absolute tolerance strategyin this case, one has to predefine a tolerance wgluend
ask the algorithm to neglect all singular values which aralmnthan this tolerance, i.e.,
n; =min{j: 0;(S) <}

— Relative tolerance strategy his strategy is more dynamic and suitable. Typicallyuber
can define an intervéh.,,;,, nmaq.] C N, the algorithm has to find the optimal value for
such that,,,;, < n; < nn,qe.. By optimal, we mean the smallest such that the quality
of the approximations is acceptable. Lkgtbe a pre-specified tolerance value. At each
iteration we apply our algorithm and we check for all compusghgular values;(.S),

j =1:n; +m, the quotient;(S)/o1(S), for j = 1 : n; + m. The firstj for which we
will have o (S)/01(S) < <., is compared tay;, if this j is smaller tham, we take the
nextn;,; equal ton; (i.e.,n;+1 = n;), if not we taken;;1 = j, and so on.

— Another strategy can be adopted for the choice;oflt is based on the fact that the quality
of the approximation depends on the gap between the retadads and the neglected
ones. So one can detect the gaps between singular valueshinveedow, and adapt as
for the relative tolerance strategy.
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In the strategies above, becausg;, < n1 < ns < -+ < Nyae, If ONE keeps in memory
all values ofn;, we can choose at the end the low-rank approximation only ftioe n-
rank approximation, which will embed all other-rank approximations. Of course, the
pre-specification of, or ¢, will be crucial.

8. Numerical examples.In this section we apply our algorithms to four different dy-
namical systems: a building model, a CD player model, andihternational Space Station
models. These benchmarks are described in more detaljn], 19. These models are con-
tinuous, so we discretize each system using a bilinearfoanation with parametef = 2
[3]. In Table8.1we give the order of the systenV{, the number of inputs«), and outputs
(p), the order of reduced system)( and the corresponding tolerance value. We show also in
this table the spectral radius and the condition numberefihtrix A.

TABLE 8.1
Summary of data of the benchmark models.

N m
build model 48 1
CDplayer model| 120 | 2
ISS 1R model | 270 | 3
ISS 12A model | 1412 | 3

n | tol.value | p(A) K(A)

10 0.16 0.4997] 8.0478.103
24 | 2.8.1077 | 0.5266| 1.7793.10%
32 | 21073 | 0.7338] 9.6802.10°
195| 65.10~% | 0.8310]| 5.7728.10°

Wl WINPT

The first remark is that because we work directly on the Hamkap (with RLRH
method) we do not need to “balance” (using an SVD) the priwjaanatrices to obtain a
convenient reduced-order model.

For each example, the relati#€,, norms of the full systen$ and the error systems are
tabulated in Tabl&.2, and ther,, . -plot of the full order and the corresponding error system
are shown in Figure8.1, 8.3, 8.5 and8.7. We use the notationsS,,, for the reduced order
model by balanced truncatio®; for the reduced order model by RLR@BT algorithm,
andS, for the reduced order model by RLRIABT algorithm.

It can be seen from Figurésl, 8.3, 8.5 and8.7that we obtain, with RLRH approxima-
tion, results which are close to those obtained via BT. Theselts are also close of those
of RLRG approximation, but we have applied the RLRG algonitio the controllability and
observability matrices with &, wheren > n, and we have balanced the projection matrices
using an SVD to keep only projection matrices. These operations make the RLRG more
expensive, and so the RLRH algorithm is less expensive antegults are as good as those
obtained using the RLRG approximation.

Figures8.2, 8.4, 8.6, and8.8 show the noise levels. andn,. Notice that these noise
levels shown must be interpreted also in a special way assitleae for the RLRG algorithm.
The noise levels must be multiplied by the correspondinggraf the spectral radius of
to obtain the real values of the noise level at the end, he.real noise level, is obtained
asfie(i) = p(A)""'ue(i), wherer is the number of iteration. And so the values of noise
levels considered in the previous theorems will be taker@nlast obtained values which
will be very small. We notice here also that for poorly bakthsystems the resulting noise
levels are not of the same order as for well balanced systéhisis still the case for the CD
player model. We remark also that for “close balanced” systdike the CD player model
(x(T) = 40.7341 whereT is the balancing transformation) RLRG vyields better resuBut,
RLRH is as least better for “poorly balanced” systems. Thishie case for the Building
model (7)) = 347.0781) and more clearly for the International space statiefi() =
7.4018.10°). Of course, RLRH is always faster and cheaper as we do ndttodsalance the
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approximations at the end of the algorithm (by computingSe® of a product of two tall
and skinny matrices).

TABLE 8.2

H norm of benchmark models, and the error systems.

IS = Soptllos | 18 =Silloe | IS = S2lloo
model IS0
— IS]]oc ISl [S]loc
Building 0.0053 0.1143 0.4301 0.4320
CDplayer | 2.3198.10° | 8.0704.10~% | 6.8931.10 ° | 1.7.10°°
ISS 1R 0.1159 0.0013 0.1023 0.0979
ISS 12A 0.0107 0.0071 0.9697 0.9390
TABLE 8.3
Noise levelg.e for benchmark models.
model MRLRG MRLRG MRLRH IuRLRH
Building | 6.5063.10~ 1 | 4.3799.10- 2 | 7.7292.10~° | 3.2445.10~ !
CDplayer| 4.0575.10~2° | 6.0341.10 29 | 1.6867.10 % | 2.8846.10 13
ISS 1R 1.5063.10~% | 1.1641.10~ 1% | 6.2550.10~® 1.6270.107°
ISS12A | 7.1973.10~2° | 1.1751.10~27 | 7.5093.10~22 | 4.7292.10—2°
TABLE 8.4
CPU time for different algorithms.
model BT RLRG_ABT | RLRH_ABT
Building 0.3750 0.3380 0.0810
CDplayer 0.7970 0.7340 0.7030
ISS 1R 11.6720 4.7350 2.5470
ISS12A | 1.1327.10% | 0.1029.103 0.0282.103

9. Concluding remarks. In this paper, we proposed two recursive approximate bal-
anced truncation model reduction methods based on the @nanaind the Hankel map.
Subsequently the approaches for computing approximatmi@ns and Hankel map were
derived. These approaches provide closer results to thHatséned by balanced truncation,
considered to be optimal, with lower computational cost.likénall other methods in the
literature, the reduced order model produced by our methoelguaranteed to be stable and
balanced. Bounds on the quality of the approximation arergwith some numerical exam-
ples. The RLRH algorithm is the best algorithm for approxim@athe balanced truncation
in terms of accuracy and computational cost. Its co6t(i& (n + m)(n + p)), which is only
linear in the large dimension N, unlike balanced truncatiiich has a cost which is cubic in
the large dimension (i.eQ(N?)). The numerical examples show that this algorithm has very
good properties in term of stability, convergence rate &edjuality of the approximation.

Despite the obviously desirable features of the Hankel nmpaach proposed here,
many open questions remain. There are a number of refinemihtespect to performance,
convergence, and accuracy which require more theoretickalgorithmic analysis. There is
one particularly interesting feature concerning the canispa between the original Hankel
map and the Hankel map of the reduced order model. For instane just compared the
original Hankel map and its dominant block approximatiorm cbmpare the two Hankel
maps we still need an advanced understanding of the algostid its features.
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