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TWO EFFICIENT SVD/KRYLOV ALGORITHMS FOR MODEL ORDER
REDUCTION OF LARGE SCALE SYSTEMS

YOUNÈS CHAHLAOUI∗

Abstract. We present two efficient algorithms to produce a reduced order model of a time-invariant linear
dynamical system by approximate balanced truncation. Attention is focused on the use of the structure and the
iterative construction via Krylov subspaces of both controllability and observability matrices to compute low-rank
approximations of the Gramians or the Hankel operator. Thisallows us to take advantage of any sparsity in the
system matrices and indeed the cost of our two algorithms is only linear in the system dimension. Both algorithms
efficiently produce good low-rank approximations (in the least square sense) of the Cholesky factor of each Gramian
and the Hankel operator. The second algorithm works directly on the Hankel operator, and it has the advantage
that it is independent of the chosen realization. Moreover it is also an approximate Hankel norm method. The two
reduced order models produced by our methods are guaranteedto be stable and balanced. We study the convergence
of our iterative algorithms and the properties of the fixed point iteration. We also discuss the stopping criteria and
the choice of the reduced order.

Key words. Model order reduction, approximate balanced truncation, Stein equations, Hankel map, Krylov
subspaces, approximate Hankel norm method, low-rank approximations.
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1. Introduction. Most techniques for model reduction of linear dynamical systems are
based on the dominant subspaces of Gramians (energy functions for in- and outgoing signals)
or the dominant subspaces of their product [1]. These Gramians are the solutions of Lyapunov
equations in the continuous case, or the discrete Lyapunov or Stein equations in the discrete
case. Efficiently computing these solutions (or their dominant subspaces) when the system
matrices are large and sparse is still a challenging problem(see for instance [4, 5, 6]). In fact,
direct methods ignore sparsity in the Lyapunov/Stein equations and are not easy to parallelize.
Balanced truncation is one of the most used model reduction methods, and has the desirable
property that from a stable model it produces a reduced modelthat is guaranteed to be stable
with a global a prioriH∞-error bound, but its use is constrained by its complexity. Moreover
balanced truncation is not optimal as it is not minimizing any system norm. A refinement to
an optimal approximation method with respect to the Hankel-norm of the system leads to the
Hankel-norm approximation [17]. Despite the beauty of the theory it should be stressed that
its numerical use is often nontrivial. It is interesting to note that as far as theH∞ norm of
the error system is concerned (for which we proposed an easy evaluation method in [9]), the
Hankel-norm approximation need not provide better resultsthan balanced truncation. The
high complexity of balanced truncation is due to the fact that we solve two Lyapunov/Stein
equations and then compute a singular value decomposition of the product of these solutions,
which both have complexityO(N3), whereN is the dimension of the original system. And so
for systems withN & 1000 the cost of balanced truncation is prohibitively expensive. Even
the “square root” version of balanced truncation, where oneconsider the Cholesky factors of
the Gramians instead of the Gramians themselves, has a prohibitive complexity due to the full
balancing SVD [1]. However, if the Cholesky factors have low rank the computational cost
will be significantly reduced.

Penzl and others [2, 29] have observed that solutions to Lyaponuv/Stein equationsasso-
ciated with linear time-invariant (LTI) systems often havelow numerical rank, which means
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that there is a sharp and early cutoff in the Gramian eigenvalues and by consequence also in
the Hankel singular values of the system. Indeed, the idea oflow-rank methods is to take ad-
vantage of this low-rank structure to obtain approximate solutions in low-rank factored form.
The principal outcome of these approaches is that the complexity and the storage are reduced
from O(N3) flops andO(N2) words of memory toO(N2n) flops andO(Nn) words of
memory, respectively, wheren is the “reduced” order and so the “approximate” rank of the
Gramians (n≪ N ). In fact, these low-rank schemes are the only way to solve efficiently very
large scale Lyapunov/Stein equations. Moreover, approximating directly the Cholesky factors
of the Gramians and using these approximations to provide a reduced model has a compa-
rable cost to that of the popular moment matching methods. Itrequires only matrix-vector
products and linear system solves.

There are many methods to approximate the Gramians of an LTI system. Among the
most popular are the Smith method [32], the alternating direction implicit (ADI) iteration
method [38], and the Smith(l) method [28]. But all these schemes are computing the solution
in dense form, which is prohibitively expensive for large problems. Other methods, such as
those in [1, 22, 23, 28, 30, 31], use Krylov subspace ideas and take advantage of any sparsity,
but they usually fail to yield approximate solutions of highaccuracy. Here we show how to
efficiently approximate recursively the Gramians by a low-rank factorization, or equivalently
to approximate their Cholesky factors by a low-rank approximation, and at the same time ex-
ploit the possible sparsity of the model matrices. We present two efficient iterative methods
that can be used for the model reduction of either time varying or time invariant systems.
The two reduced order models produced are guaranteed to be stable and balanced. The first
method is mainly dedicated to the low-rank approximation ofthe Gramians, while the second
method approximates not only the Gramians but also the Hankel map of the system, which
means that it will be independent of the state space realizations of the system. It also pro-
vides an approximation to the Hankel-norm model order reduction based methods, which are
optimal but very hard to handle. The first key fact about approximate balanced truncation is
that we define our reduced order model via its Gramians, from which we construct the pro-
jection matrices. The second is that an error bound for the difference between systems can be
obtained via the error bound on the difference between theirGramians. In [9] we presented
some hints on how to choose the projection matrices in order to have betterH∞ andH2 error
norms.

This paper is organized as follows. First, in Section2 we recall some principal notions
for linear time-invariant dynamical systems. In Section3, we present the idea of approximate
balanced truncation and we analyze the quality of the reduced order model as a function of
the closeness of the projector matrices to those obtained via balanced truncation. Sections4
and5 focus on the presentation and discussion of the two new algorithms for the low-rank ap-
proximation of the Gramians and the Hankel operator. In Section 4, we present the Recursive
Low-Rank Gramian (RLRG) approximation algorithm. It uses the recursive constructibility
of the controllability and observability matrices to efficiently produce low-rank approxima-
tions of the Cholesky factors of the Gramians. We study the convergence of a fixed point
iteration and we give some of its properties. We finish this section by illustrating numerically
all these results. In Section5 the emphasis reverts to the Hankel operator. The Recursive
Low-Rank Hankel (RLRH) approximation algorithm is presented. It also uses the recursive
constructibility of the controllability and observability matrices, but this time to produce a
low-rank approximation of the Hankel operator. This algorithm has the merit that it is inde-
pendent of the choice of the realization in use. We present some results about approximate
balanced truncation based on these two algorithms in Section 6. Both algorithms produce a
stable balanced reduced order model. In Section7, we complete our analysis of our methods
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by presenting a further discussion about two very importantpoints: the stopping critera and
the dynamic choice of the reduced order. The emphasis is on the integration of the second
point into our algorithms. We finally illustrate the qualityand effectiveness of our meth-
ods with some numerical results in the Section8. We finish with some remarks and open
questions in Section9.

2. Linear time-invariant systems. In this work we concentrate on discrete-time sys-
tems, but all our results could be extended to the continuous-time case using the bilinear
transformation [3]. A linear time-invariant system is in general described bythe difference
equations

(2.1) xk+1 = Axk +Buk, yk = Cxk

with inputuk ∈ R
m, statexk ∈ R

N and outputyk ∈ R
p, wherem, p ≪ N , and we assume

that the matricesA, B, andC are of appropriate dimensions. We will assume also the system
(2.1) to be stable (i.e., all eigenvalues of the matrixA are strictly inside the unit circle). The
transfer function associated with the system is defined byTf (z)

.
= C(zI − A)−1B. The

Gramians, defined by

(2.2) Gc =

∞∑

i=0

(
AiB

) (
AiB

)T
, Go =

∞∑

i=0

(
CAi

)T (
CAi

)

are solutions of the Stein equations

(2.3) Gc = AGcA
T +BBT , Go = ATGoA+ CTC

and are also related to the input/output map as follow. Let usat each instantj ≥ k restrict
inputs to be nonzero (i.e.,uj = 0, ∀j ≥ k) and consider the outputs from the instantk. The
state-to-outputs and inputs-to-state maps are given by




yk
yk+1

yk+2

...




︸ ︷︷ ︸
Y

=




C
CA
CA2

...



[
B AB A2B . . .

]




uk−1

uk−2

uk−3

...




︸ ︷︷ ︸
U︸ ︷︷ ︸

x(k)

.

The Hankel mapH mappingU to Y isH = OC, where

O =




C
CA
CA2

...


 , C =

[
B AB A2B . . .

]

are respectively the observability and the controllability matrices. Notice that this map has
rank at mostN sincex(k) ∈ R

N , and thatGc = CCT , andGo = OTO.
In applications, the Gramians can be often well approximated using low-rank approx-

imations. These low-rank approximations are used instead of the original Gramians in the
balanced truncation procedure to provide the reduced ordermodel. This is the principle be-
hind the so-called approximate balanced truncation method[27], which has very desirable
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properties. The combination of Krylov subspace ideas and the balanced truncation proce-
dure implies that approximate balanced truncation inherits the desirable properties of both
methods. The iterative computations will reduce significatively the cost (mainly from solving
Stein equations) and make use of any sparsity in the data. Theuse of the balanced truncation
procedure yields bounds on the quality of the approximations and a guarantee on the stability
of the reduced order system. Next, we investigate this method.

3. Approximate balanced truncation. The balanced truncation procedure is based on
the Cholesky factors of the Gramians (2.2) [1]. In practice, these Gramians are low rank
matrices (at least numerically), so their Cholesky factorscan be well approximated by low-
rank approximations.

The Gramians are solutions of Stein equations of the form

p(A) G p(A)T − G = −MMT , where p(A) = A orAT , M = B orCT .

These equations appear frequently with a low rankMMT in engineering applications [1].
This is the case for example wheneverm, p ≪ N . This property implies that the solutionG
is a low rank matrix. In theory, this matrix is positive definite wheneverrank(ON ) = N or
rank(CN ) = N . However, it is often the case that the eigenvalues present asharp and early
cutoff and hence the Gramians are numerically low rank.

The idea of approximate balanced truncation is to use the low-rank approximations of
the Cholesky factors of the Gramians instead of the originalCholesky factors to provide an
approximation to balanced truncation. Notice that even if the low-rank approximations were
obtained from a discretization of the system, i.e., the discretized Gramians, any low-rank
approximation of the discretized Gramian would be also a low-rank approximation of the
corresponding continuous-time Gramian since the Gramiansare preserved under a bilinear
transformation [1, 3]. Moreover since the continuous and discrete controllability (observ-
ability respectively) Gramians are equal, their fundamental subspaces are also equal. This
property is used to obtain a reduced model of a continuous-time system whose projection
matrices are computed from the bilinear discretized version of this system. The algorithm is
as follows.

Algorithm 1 Approximate Balanced Truncation (ABT).
1: procedure ABT(A,B,C, n, tol)
2: Use any algorithm to get low-rank approximationsS,R ∈ R

N×n of the Cholesky
factors of the GramiansGc andGo, respectively, such that

‖Gc − SST‖ ≤ tol, ‖Go −RRT ‖ ≤ tol.

3: Calculate the singular value decompositionSTR = UΣV T .
4: LetX = SUΣ−1/2, andY = RV Σ−1/2.
5: The ordern approximate truncated balanced realization is given by

Â = Y ∗AX, B̂ = Y ∗B, and Ĉ = CX.

6: end procedure

We use theSVD in line 3 to ensure that the projections matricesX andY are “balanced”.
This is crucial because we approximate the Gramians independently. In practice, if the system
has poles close to the unit circle, then one or both Gramians are not well approximated. So
we use the SVD to balance the error. We obtain a better reduced-order model that is balanced.
A similar idea was also proposed by Varga in [37]. He called itbalancing-free square-root
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method, and its advantage is that it has a potentially better numerical accuracy for systems
that are poorly scaled originally.

Now, let us discuss the effect of the approximation of Gramians on the quality of the
obtained reduced model [20]. We consider thenth order reduced system obtained by balanced
truncation,

Sopt =

(
Aopt Bopt

Copt 0

)
=

(
π∗
l Aπr π∗

l B
Cπr 0

)
,

whereπl andπr are the balanced truncation projection matrices [1]. Similarly, let

Ŝ =

(
Â B̂

Ĉ 0

)
=

(
Y ∗AX Y ∗B
CX 0

)

be thenth order reduced model obtained by an approximate balanced truncation. The follow-
ing equation is then easily derived:

ÂΣÂ∗ + B̂B̂∗ − Σ = Y ∗EY − Y ∗AEA∗Y,

whereE is the error in the GramianGc, i.e.,E
.
= Gc − SST , andΣ is a diagonal matrix. The

diagonal elements of the matrixΣ are in fact a perturbation of then Hankel singular values of
the systemŜ = {Â, B̂, Ĉ} and also of then dominant Hankel singular values of the system
S = {A,B,C}. This perturbation depends mainly onE. It is clear that the stability of
the reduced system is not always guaranteed. However, instability does not seem to occur
often in practice (see also [20]); in general we obtain a stable reduced system for each of our
computational examples. But notice that one can use the ideaof implicit restart methodsto
stabilize the resulting reduced order model if it is unstable [20].

The following result examines how close is then reduced order modelSopt, obtained
by balanced truncation, to then reduced order model̂S obtained by approximate balanced
truncation [20].

THEOREM 3.1. If ‖πr −X‖ ≤ ǫ, ‖πl − Y ‖ ≤ ǫ, then

‖Sopt − Ŝ‖∞ ≤ ǫ (‖C‖‖B‖‖A‖ (‖πl‖+‖πr‖)+‖S1‖∞‖B‖+‖S2‖∞‖C‖)+O(ǫ2),

whereS1
.
=

(
Aopt I
Copt 0

)
, S2

.
=

(
Aopt Bopt

I 0

)
.

Proof. DefiningEr
.
= πr −X , andEl

.
= πl − Y , we have‖Er‖ ≤ ǫ and‖El‖ ≤ ǫ. For

EA
.
= Aopt − Â, EB

.
= Bopt − B̂, EC

.
= Copt − Ĉ, we have

EA = π∗
l Aπr − Y ∗AX = π∗

l A(πr −X) + (πl − Y )∗AX = π∗
l AEr − E∗

l AX,

EB = π∗
l B − Y ∗B = E∗

l B, EC = Cπr − CX = CEr .

ThusEA, EB andEC satisfy

‖EA‖ ≤ ǫ‖A‖ (‖πl‖+ ‖πr‖) + ǫ2‖A‖, ‖EB‖ ≤ ǫ‖B‖, ‖EC‖ ≤ ǫ‖C‖.

We have(ejωIn − Â)−1 ≈ (ejωIn −Aopt)
−1 + ÊA for everyω ∈ R whereÊA = (ejωIn −

Aopt)
−1EA(e

jωIn − Â)−1 satisfies the same upper bound asEA, i.e.,

(3.1) ‖ÊA‖ ≤ ǫ‖A‖ (‖πl‖+ ‖πr‖) + ǫ2‖A‖.

Now, if we consider theH∞ norm of the error systemSopt − Ŝ we have

Tfopt(e
jω)− T̂f(e

jω) = Copt

(
ejωI −Aopt

)−1
Bopt − Ĉ

(
ejωI − Â

)−1

B̂
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Using (3.1) and the definitions ofEA, EB andEC we obtain

‖Sopt − Ŝ‖H∞
= ‖CoptTABopt − (Copt − EC)

[
TA + ÊA

]
(Bopt − EB)‖2

= ‖ECTABopt + CoptTAEB − (Copt−EC)ÊA(Bopt−EB)‖2

whereTA =
(
ejωI−Aopt

)−1
. Finally, using

S1
.
=

(
Aopt I
Copt 0

)
, and S2

.
=

(
Aopt Bopt

I 0

)
,

it is easy to deduce the final result

‖Sopt−Ŝ‖∞ ≤ ǫ (‖C‖‖B‖‖A‖ (‖πl‖+ ‖πr‖) + ‖S1‖∞‖B‖+ ‖S2‖∞‖C‖)+O(ǫ2).

Hence for smallǫ, i.e., whenX andY are, respectively, close toπr andπl, we expectŜ
to be close toSopt. This result says that the quality of a reduced order model depends on the
distance between the projection matrices and those of balanced truncation and the normality
of the matrixA. In [20], this result was given informally without proof for the continuous-
time case. Here we gave a proof for the discrete-time case, but this may not say much about
the quality of approximations ifA is far from normal. In that case the norms‖A‖, ‖S1‖∞
and‖S2‖∞ will be very large and can destroy the sharpness of this bound. In general, the
choice of coordinate system for̂A, B̂ andĈ plays an important role as well. Below, we will
show two new methods that propose two possible choices for a goodŜ.

Almost all methods proposed for approximate balanced truncation are based on the fact
that one obvious way to build a factorization of the Gramian (say e.g. the controllability
GramianGc) is iteratively using

(3.2) C1 = B Ci+1 =
[
Ci AiB

]
.

This is for example the case for all Smith like methods [1, 8, 20, 26, 28]. But, this factor
can also be constructed in two different ways [16]. The formula3.2 leads to the idea of the
modified low-rank Smith algorithm. A second approach is to write it as

Ci+1 =
[
B

[
AB . . . Ai−1B AiB

] ]

=
[
B A

[
B . . . Ai−2B Ai−1B

] ]
=

[
B ACi

]
.

If one has a good low-rank approximation ofCi we will have also a good low-rank approxi-
mation ofCi+1 using this formula. This formulation leads to two new algorithms to compute
good low-rank approximations of the Cholesky factor of the Gramians. Both methods are it-
erative low-rank Gramian methods, and can be included in thelow-rank square Smith method
family. These approaches have the important property that they can be generalized to time-
varying systems as well, unlike the other methods. Actually, these approaches have already
been used for the time-varying case, and periodic linear systems [8, 12]. In these papers,
however, only a result for the time invariant case was presented and no proof or discussion of
the convergence was given. Here we shall give a full proof/discussion of the convergence, the
fixed points, the quality of the Gramians approximations, and show some attractive properties
of the corresponding reduced model.
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4. Recursive low-rank Gramian (RLRG) approximation. As mentioned earlier, in
practice the eigenvalues of the Gramians or the eigenvaluesof their product present a sharp
early cutoff [2, 29], which suggests approximating the Gramians at each step bya low-rank
factorization. We show below how to obtain such approximations cheaply and exploit the
sparsity of the model{A,B,C}. The Gramians can be obtained from the Stein iterations

(4.1) Gc(i+ 1) = AGc(i)A
T +BBT , and Go(i) = ATGo(i+ 1)A+ CTC,

for which the iteratesGc(i) andGo(i) are always symmetric positive semi-definite, so we can
substitute them by Cholesky-like factorizations

Gc(i) = CiC
T
i , and Go(i) = O

T
i Oi.

The key idea of the low-rank method is to approximate the factorsCi andOi by their rankni

approximationsS(i) andR(i), respectively, at each iteration. Typicallyni is constant, i.e.,
ni = n. We will show, later in this paper (Subsection7.2), how to let the algorithm choose
an appropriateni given some user criteria. The algorithm is as follows.

Algorithm 2 Recursive low-rank Gramian (RLRG).
1: procedure RLRG(A,B,C, n, tol)
2: S(0)← 0 ∈ R

N×n ⊲ Initialize S
3: R(0)← 0 ∈ R

N×n ⊲ InitializeR
4: repeat
5: Compute the singular value decompositions[

B AS(i− 1)
]
= UcΣcV

T
c ,

[
CT ATR(i− 1)

]
= UoΣoV

T
o .

6: Let

Σc =

[
Σc1

Σc2

]
, Σo =

[
Σo1

Σo2

]
, Σc1,Σo1 ∈ R

n×n,

Uc =
[
Uc1 Uc2

]
, Uo =

[
Uo1 Uo2

]
, Uc1, Uo1 ∈ R

N×n.

7: Construct
S(i)←Uc1Σc1, R(i)←Uo1Σo1, Ec(i)←Uc2Σc2, Eo(i)←Uo2Σo2.

8: until The stopping criterion is verified. ⊲ See Subsection7.1
9: end procedure

The cost of this algorithm is linear in the largest dimensionN . At each iteration, we need
to multiplyAS(i) andR(i)TA, which requires4Nnα flops, whereα is the average number
of nonzero elements in each row or column of the sparse matrixA. We needO(N(n+m)2)
flops to formVc and anotherO(N(n + p)2) flops to formVo [18]. Notice that we have
N ≫ n > m, p, α.

Using the EckartYoung theorem [18], it is immediate from the previous algorithm that:

Pi
.
= S(i)S(i)T , Qi

.
= R(i)R(i)T

are the best rank-n approximations toCiCTi andOT
i Oi, respectively. But this is not sufficient

since we want to comparePi andQi with Gc(i) andGc(i), respectively. This is analyzed
below.

THEOREM 4.1. At each iteration, there exist unitary matricesV (i)
c ∈ R

(n+im)×(n+im),
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V
(i)
o ∈ R

(n+ip)×(n+ip), satisfying

CiV
(i)
c =

[
S(i) Ec(i) AEc(i− 1) . . . Ai−1Ec(0)

]
,

OT
i V

(i)
o =

[
R(i) Eo(i) ATEo(i − 1) . . . (Ai−1)TEc(0)

]
,

whereEc(i) andEo(i) are the neglected parts at iterationi.

Proof. We just show the proof forV (i)
c ; that forV (i)

o is similar. At each step, the orthog-
onal matrixVc is such that

[
B AS(i − 1)

]
Vc =

[
S(i) Ec(i)

]
.

For i = 1 we haveC0 =
[
S(0) Ec(0)

]
. We prove the general result by induction.

Suppose that there exists an orthogonal matrixV
(i)
c such that

CiV
(i)
c =

[
S(i) Ec(i) AEc(i− 1) . . . Ai−1Ec(0)

]
.

SinceCi+1 can be obtained fromCi by Ci+1 =
[
B ACi

]
, we choose

V (i)
c =

[
Im 0

0 V
(i)
c

] [
Vc 0
0 I(i+1)m

]
,

from which it follows that

Ci+1V
(i+1)
c =

[
B ACi

] [ Im 0

0 V
(i)
c

] [
Vc 0
0 I(i+1)m

]

=
[
B ACiV

(i)
c

] [ Vc 0
0 I(i+1)m

]

=
[
B AS(i) AEc(i) . . . AiEc(0)

] [ Vc 0
0 I(i+1)m

]

=
[
S(i+ 1) Ec(i+ 1) AEc(i) . . . AiEc(0)

]
.

We can use this result to compareGc(i) andGo(i) with Pi andQi, respectively. Note
first that using the previous theorem we have

Gc(i) = CiC
T
i = CiV

(i)
c (V (i)

c )T CTi

= S(i)S(i)T︸ ︷︷ ︸
Pi

+Ec(i)Ec(i)
T +

i−1∑

j=0

(
Ai−jEc(j)

) (
Ai−jEc(j)

)T
.

It follows that

(4.2) Gc(i) = Pi +
i∑

j=0

(
Ai−jEc(j)

) (
Ai−jEc(j)

)T
.

Similarly we have

(4.3) Go(i) = Qi +

i∑

j=0

(
Eo(j)A

i−j
)T (

Eo(j)A
i−j

)
.
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As our original system is supposed to be stable, we can bound the differences betweenPi and
Gc(i) and betweenQi andGo(i) for all i,

Ec(i)
.
= Gc(i)− Pi, Eo(i)

.
= Go(i)−Qi,

in terms of the “noise” levels as follows.
THEOREM 4.2. LetP andQ be the solutions of

P = APAT + I, Q = ATQA+ I.

Define the noise levels byηc = max
0≤i≤∞

‖Ec(i)‖2, ηo = max
0≤i≤∞

‖Eo(i)‖2. Then

(4.4) ‖Ec(i)‖2 ≤ η2c‖P‖2 ≤ η2c
κ(A)2

1− ρ(A)2
, ‖Eo(i)‖2 ≤ η2o‖Q‖2 ≤ η2o

κ(A)2

1− ρ(A)2
,

whereκ(A) = ‖A‖‖A−1‖ is the condition number ofA andρ(A) is the spectral radius of
A.

Proof. Here also we show only the bound forEc(i); the second bound can be shown
similarly. It follows from (4.2) that

Ec(i + 1) = AEc(i)A
T + Ec(i)Ec(i)

T .

With ηc = max
0≤i≤∞

‖Ec(i)‖2, we can consider the equation:

Xi+1 = AXiA
T + (η2c IN − Ec(i)Ec(i)

T ), X0 = 0.

Its iteratesXi are clearly positive semidefinite and hence converge to a solutionX which is
also positive semidefinite. Moreover by linearity we have

Ec(i+ 1) + Xi+1 = A(Ec(i) + Xi)A
T + η2cIN .

It then follows that lim
i→∞

(Ec(i) + Xi) = η2cP , and we obtain‖Ec(i)‖2 ≤ η2c‖P‖2. The

second bound follows from the eigen-decomposition ofA.

We also have the following result on the quality of the approximation of the product of
the Gramians.

THEOREM 4.3. LetP andQ be the solutions of

P = APAT + I, Q = ATQA+ I.

Defineηc = max
0≤i≤∞

‖Ec(i)‖2, ηo = max
0≤i≤∞

‖Eo(i)‖2 whereEc(i) andEo(i) are the ne-

glected parts in line7 of the Algorithm2. Then

(4.5) ‖GcGo − PQ‖2 ≤
κ(A)2

1− ρ(A)2
(
η2c‖Go‖2 + η2o‖Gc‖2

)
.

Proof. Consider the identityGcGo − PQ = (Gc − P)Go + P(Go − Q). Taking norms
yields

‖GcGo − PQ‖2 ≤ ‖Gc − P‖2.‖Go‖2 + ‖P‖2.‖Go −Q‖2.
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Finally, using the previous theorem we have

‖Gc − P‖2 ≤
η2cκ(A)

2

1− ρ(A)2
, ‖Go −Q‖2 ≤

η2oκ(A)
2

1− ρ(A)2
,

and from the fact that‖P‖2 is always bounded above by‖Gc‖2, we obtain by linearity

‖GcGo − PQ‖2 ≤
κ(A)2

1− ρ(A)2
(
η2c‖Go‖2 + η2o‖Gc‖2

)
.

This result says that if one Gramian is not well approximated, then the product of the
Gramians, which is related to the Hankel singular values (the Hankel singular values are the
square roots of the eigenvalues of the product of the Gramians), may not be well approxi-
mated.

One should remark that the previous bounds are not explicitly functions of the reduced
ordern. Both ηc andηo are functions ofn. They will be smaller for a good choice ofn or
generally for largern. The termκ(A)2/(1− ρ(A)2) will be very small whenρ(A)≪ 1 and
κ(A) is reasonable. Moreover,ηc andηo can be taken equal to the maximum of‖Ec(i)‖2
and‖Eo(i)‖2, respectively, fork ≤ i ≤ ∞, since we can interpret the previous theorems
as starting with any initial values. This is particulary useful if after stepk the errors have
converged to their minimal value, i.e., the convergence thresholdǫm. In fact,ηc andηo are
functions of the initial choice and one can write

ηc(k) = max
k≤i≤∞

‖Ec(i)‖2, ηo(k) = max
k≤i≤∞

‖Eo(i)‖2.

Sinceηc(k) andηo(k) are typically decreasing we can replace them by the maximum over
the last iteration steps. We will discuss different strategies for the stopping criterion later in
Section7.1.

4.1. Convergence of the RLRG algorithm.In this subsection we analyze the conver-
gence of the recursive low-rank Gramian (RLRG) algorithm for a linear time invariant system
{A,B,C}. The convergence will allow us to deduce important results about the fixed point
of the algorithm RLRG. Although all material below applies to both approximationsS and
R, we focus on the controllability version only,S.

First, note that the updating transformation forS is nonlinear and implicit. Thus to prove
convergence of the RLRG algorithm, we will use a generalization of thefixed point theorem,
due to Ortega and Reinboldt [25], called thecontraction mapping theorem.

DEFINITION 4.4. A linear operatorΥ is nonexpansive ifρ(Υ) ≤ 1, and contractive if
ρ(Υ) < 1.

THEOREM 4.5. The nonlinear iterationSi+1 = f(Si), Si ∈ R
N×n admits a fixed point

Sf iff there exists a contractive linear operator∇f so that for allS we have

f(Sf + tS) = f(Sf ) + t∇fS +O(t2).

∇f is calledGâteaux-derivativeof f or the Fréchet derivative [21, 25]. For the RLRG
algorithm, it is obvious that the differentiability depends on the differentiability of the SVD
which is guaranteed if there is a gap between the part that we keep and the part that we neglect
in the algorithm [18], and this is supposed to be the case. To prove the convergence we thus
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have to prove that the updating mapping is contractive. For this, let us consider a perturbation
of S, namelyS +∆. We can define the SVD

[
AS B

]
= U




Σ1 0
0 Σ2

0 0


V T , whereΣ1 ∈ R

n×n,

and using theseU andV matrices, we have

(4.6)
[
A∆ 0

]
= U∆̂V T where ∆̂ =




∆̂11 ∆̂12

∆̂21 ∆̂22

∆̂31 ∆̂32




is partitioned conformably withΣ. Let us consider the partitioned transformations

(4.7) V =
[
V1 V2

]
=

[
V11 V12

V21 V22

]
, U =

[
U1 U2 U3

]
,

and definẽΣ1
.
= Σ1 +∆11 andΣ̃2

.
= Σ2 +∆22. To analyze the fixed point iteration we can

distinguish two cases:V constant andV varying. If V is still constant then the new version
Si+1 is given by

Si+1 =
[
ASi B

]
V1 = U




Σ1

0
0


 ,

and the perturbed version ofSi+1 is given by

Si+1 +∆1 =
[
A(Si +∆) B

]
V1 = U




Σ̃1

∆̂21

∆̂31


 ,

and thus∆1 =
[
A∆ 0

]
V1 = A∆V11. Using thevec formulation we obtain

vec(∆1) = (V T
11 ⊗A)vec(∆).

Here, the termV T
11⊗A corresponds to the linear operator∇f of the last theorem. Asρ(V T

11⊗
A) = ρ(V11)ρ(A) < 1 (ρ(V11) ≤ 1 becauseV11 is a submatrix of the orthogonal matrixV )
the mapping∆→ ∆1 is a contraction.

Let nowV be varying as well. The new iteratesSi+1 is still given by

Si+1 =
[
ASi B

]
V1 = U1Σ1,

and the perturbed version is given by

Si+1 +∆1 =
[
A(Si +∆) B

]
V1(∆) = U1(∆)Σ̂1,

and so∆1 = U1(∆)Σ̂1 − U1Σ1. If we write the transformationU(∆) as

U(∆) = U

[
I −QT

Q I

]
+O(‖∆‖22),
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then a first order approximation toQ can be obtained from [33, p.359], [34, p.206], [35]

K




Σ̃1Σ̃
T
1 Σ̃1∆̂

T
21 + ∆̂12Σ̃2 Σ̃1∆̂

T
31

∆̂21Σ̃1 + Σ̃−∆̂
T
12 Σ̃2Σ̃

T
2 Σ2∆̂

T
32

∆̂31Σ̃1 ∆̂32Σ̃2 0


K+O(‖∆‖22) =




Σ̂2
1 0 0

0 Σ̂2
2 0

0 0 0


 ,

whereK =

[
I QT

−Q I

]
. Now, if we consider the(2 : 3, 1) blocks, we have

[
0
0

]
= −Q(Σ̃1Σ̃

T
1 ) +

[
Σ̃2Σ̃

T
2 Σ̃2∆̂

T
32

∆̂32Σ̃2 0

]
Q+

[
∆̂21Σ̃1 + Σ̃2∆̂

T
12

∆̂31Σ̃1

]
+O(‖∆‖22).

This equation can be solved to first order [33, p.359], [34, p.206], and if we neglectΣ2 versus
Σ1 (i.e. ‖Σ−1

1 ‖2.‖Σ2‖2 ≃ O(‖∆‖2))1, we obtain

(4.8) ‖Q−

[
∆̂21Σ̃

−1
1

∆̂31Σ̃
−1
1

]
‖2 ≤ ‖Q‖2

‖Σ̃−1
1 ‖

2
2.‖Σ̃2‖

2
2

1− ‖Σ̃−1
1 ‖

2
2.‖Σ̃2‖22︸ ︷︷ ︸

c

.

And thus one obtains

∆1 = U




I

∆̂21Σ̃
−1
1

∆̂31Σ̃
−1
1


 Σ̃1 − U1Σ1 +O(c)

= U1(Σ1 + ∆̂11) + U2∆̂21 + U3∆̂31 − U1Σ1 +O(c)

= U1∆̂11 + U2∆̂21 + U3∆̂31 +O(c).

From (4.6) we have

(4.9)




∆̂11

∆̂21

∆̂31


 =




UT
1

UT
2

UT
3


 [

A∆ 0
]
V1

so

∆1 = U1U
T
1 A∆V11 + U2U

T
2 A∆V11 + U3U

T
3 A∆V11 +O(c)

= (U1U
T
1 + U2U

T
2 + U3U

T
3 )︸ ︷︷ ︸

I

A∆V11 +O(c).

Therefore we have∆1 ≃ A∆V11 + O(c). Furthermore from (4.8) and (4.9) we have
‖Q‖2 ≈ ‖A∆‖2‖Σ

−1
1 ‖2, and so

c = ‖Q‖2
‖Σ̃−1

1 ‖
2
2‖Σ̃2‖

2
2

1− ‖Σ̃−1
1 ‖

2
2‖Σ̃2‖22

≈ ‖A∆‖2
‖Σ̃−1

1 ‖
3
2‖Σ̃2‖

2
2

1− ‖Σ̃−1
1 ‖

2
2‖Σ̃2‖22

.

Using thevec formulation we obtain finallyvec(∆1) = (V T
11⊗A)vec(∆)+O(c). Asρ(V T

11⊗
A) = ρ(V11)ρ(A) < 1 the mapping∆ → ∆1 is a contraction provided‖Σ̃−1

1 ‖2‖Σ̃2‖2

1Note that in this case

‖(Σ̃1Σ̃
T

1
)−1O(‖∆‖2

2
)‖ ≪ O(‖∆‖2

2
)
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is sufficiently small i.e., the gap is sufficiently large. Under these conditions, the RLRG
algorithm admits a fixed point. Furthermore, this fixed pointhas a very desirable property
given by the theorem below. First we introduce the{A,B}-invariance.

DEFINITION 4.6. A subspaceV of RN is said to be an{A,B}-invariant subspace
if V is invariant underA and contains the image space ofB (denotedImB). We denote
V = ΓAImB.

We have the following equivalences.
LEMMA 4.7. [24]

V = ΓAImB ⇔ AV ⊂ ImB + V ⇔ (A−BK)V ⊂ V .

THEOREM 4.8. The fixed point of the RLRG algorithm is an{A,B}-invariant subspace
provided that the matrixV11 (4.7) is nonsingular.

Proof. Let i be the iteration where we reach the fixed point, i.e.,ImS(i) = ImS(i + 1),
which is equivalent to say that there exists a square nonsingular matrixX s.t. S(i)X =
S(i+ 1). Then, if we put ourselves in a coordinate system where

S(i) =

[
R
0

]
, R ∈ R

n×n,

(this can be obtained using for example a QR decomposition ofS(i) followed by a pre-
multiplication of the matrixS(i) by Q), the fixed singular subspace implies that we must
have

S(i+ 1) =

[
R̂
0

]
, R̂ ∈ R

n×n.

The two matricesR andR̂ are related using (4.7) as follows
[ [

A11 A12

A21 A22

] [
R
0

] [
B1

B2

] ] [
V11

V21

]
=

[
A11R B1

A21R B2

] [
V11

V21

]
=

[
R̂
0

]
.

And so, we have

(4.10) A11RV11 +B1V21 = R̂, A21RV11 +B2V21 = 0.

If V11 is invertible it follows thatImS(i) =

[
I
0

]
must be an{A,B}-invariant subspace

since forK =
[
K1 0

]
=

[
−V21V

−1
11 R−1 0

]
, we have

A−BK =

[
A11 −B1K1 A12

A211 −B2K1 A22

]
=

[
A11 −B1K1 A12

0 A22

]
.

which concludes our proof.

For the observability, we speak about{AT , CT } invariance instead of{A,B} invariance.
Moreover we have the following corollary of the Theorem4.1.

COROLLARY 4.9. At each iteration, there exists orthogonal matrixV (i) ∈ R
(n+im)×n,

satisfyingCiV (i) = S(i).

Proof. For i = 0 we haveC0

[
In
0

]
= S(0). We prove the general result by induction.

Suppose that there exists an orthogonal matrixV (i) such thatCiV (i) = S(i). SinceCi+1 and
S(i+ 1) can be obtained fromCi andS(i) (Theorem4.1and its proof), respectively, as

Ci+1 =
[
B ACi

]
and S(i+1) =

[
B AS(i)

]
V +
c , where V +

c = Vc(:, 1 : n),
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it follows that

S(i+ 1) =
[
B AS(i)

]
V +
c =

[
B ACiV

(i)
]
V +
c

=
[
B ACi

] [ Im 0
0 V (i)

]
V +
c = Ci+1V

(i+1),(4.11)

whereV (i+1) =

[
Im 0

0 V (i)

]
V +
c .

Now we can characterize the fixed point.
THEOREM 4.10. The RLRG algorithm has as a fixed pointS = S(∞) = UΣ

1

2 , where
the columns ofU are then dominant eigenvectors of the corresponding Gramian (also singu-
lar vectors, as the Gramian is a Hermitian positive semidefinite matrix) andΣ is a diagonal
matrix of the corresponding singular values of the Gramian.

Proof. We show the proof only for the controllability case, the other case being similar.
Let σ(i)

j , j = 1, . . . , n, be then first singular values ofCi andσ̂(i)
j , j = 1, . . . , n, those of

S(i). We haveCi+1 =
[
B ACi

]
=

[
Ci AiB

]
, which means thatCi is a submatrix of

Ci+1, and so

σ
(i)
j ≤ σ

(i+1)
j , j = 1, . . . , n.

Then according to the Theorem4.1, there exists a unitary matrixV (i) ∈ R(n+im)×(n+im)

such that

CiV
(i) =

[
S(i) E(i)

]
, where E(i) =

[
E(i) AE(i − 1) . . . A(i−1)E(0)

]
,

andE(j) the neglected part of
[
AS(j − 1) B

]
at the iterationj. Then using the relation

Ci+1 =
[
Ci AiB

]
we can write

[
S(i+ 1) E(i+ 1)

]
V (i+1)T =

[ [
S(i) E(i)

]
V (i)T AiB

]
.

We can see easily that

σj

([
S(i+ 1) E(i + 1)

]
V (i+1)T

)
≥ σj

([
S(i) E(i)

]
V (i)T

)
,

and asV (i) are unitary matrices, we have

σj

([
S(i+ 1) E(i + 1)

])
≥ σj

([
S(i) E(i)

])
,

and finally, by constructionS(i) is the dominant part of
[
S(i) E(i)

]
then

σj(S(i+ 1)) ≥ σj(S(i)).

The n singular values ofS(i) are nondecreasing from one iteration to another, and as we
have shown before that the fixed point is{A,B}-invariant, the space spanned by the columns
of S(i) converges to a maximal (in term of these singular values) subspace of dimensionn.
This maximal subspace is known as then-maximal{A,B} invariant subspace (see [24] for
more details), and can proved to be the rank-n dominant approximation of the controllability
matrixC

.
= C∞ and so of the controllability GramianGc = Gc(∞).

Formally, the RLRG algorithm is based on the fact thatCi+1 =
[
B ACi

]
. Taking the

limit wheni −→∞ in both sides we getC∞ =
[
B AC∞

]
, so then dominant left singular



Two algorithms for approximate balanced truncation 15

vectors (called also then left fundamental subspace [33]) of C = C∞ are the corresponding
fixed point. All this discussion leads to the conclusion thatthe RLRG algorithm has one fixed
point corresponding to then dominant singular subspace of the corresponding Gramian.

Actually, we have a double convergence: one for the singularvalues and the other for
the subspace. Recall thatS(i) = Uc(i)Σc(i), whereUc(i) are then dominant left singular
vectors of

[
AS(i− 1) B

]
, andΣc(i) contains then corresponding singular values (see

algorithm2).
Numerically, the convergence for the subspace should be checked by computing the

canonical angle [7] (or its cosine) betweenUc(i) and the dominant subspace of dimension
n of the controllability GramianGc (∡ (Uc(i),Gc)). But, as the Gramian is not available
we can check this convergence using the canonical angle betweenUc(i) andUc(i − 1)
(∡(Uc(i), Uc(i − 1))). This convergence occurs very quickly as soon asImB is enclosed
in the subspace, then the algorithm takes a few iterations toreach the fixed point (for the
subspace). The convergence rate of this iteration seems to be a function only of the number
min(m,n) (respectively,min(p, n) for the observability Gramian) and not a function of the
size ofA or its spectral radius. On the other hand, the convergence for the singular values is
mainly function of the spectral radius ofA.

The previous theorem has an important hidden outcome. It makes the link with Krylov
subspace methods. We haveIm C = K∞(A,B). So then fundamental left subspace ofC,
which is the fixed point iterations of the RLRG algorithm, is also then dominant subspace of
K∞(A,B). This is the reason why approximated balanced truncation iscalled a SVD/Krylov
method.

4.2. Numerical illustration. We illustrate all this discussion using the following nu-
merical example. We generate five random stable systems{Ai, B, C} of orderN = 400,
with m = 6 inputs,p = 4 outputs (we keep the sameB andC for all five systems), and
the spectral radiusρ(A1) = 0.95, ρ(A2) = 0.9, ρ(A3) = 0.8, ρ(A4) = 0.6, ρ(A5) = 0.4.
We taken = 30. In the first two figures, we show the canonical angle betweenUc(i) and
Uc(i− 1) (∡(Uc(i), Uc(i− 1))) (Figure4.1), and the canonical angle betweenUc(i) and the
dominant subspace of dimensionn of the controllability GramianGc (∡ (Uc(i),Gc)) (Figure
4.2). Figure4.1shows that there is a fixed point iteration, and Figure4.2shows that this fixed
point is the dominant subspace of dimensionn of the controllability GramianGc. One should
notice that we would like to avoid computing the exact dominant subspace of dimensionn of
the controllability GramianGc as it is expensive.

From these figures, it is very easy to see the effect of the spectral radiusρ(A) on the con-
vergence rate. The smaller the spectral radius the faster the convergence to the fixed subspace,
but at the end, in general the quality of the approximation, measured by the canonical angle
between subspaces, is of the same order. In Figure4.2, we verify that the fixed subspace is
effectively the dominant subspace of the Gramian of dimensionn. In Figure4.3, we can see
that after a few iterations the noise level is converging also to a constant value, which is also
function of the spectral radius ofA, i.e. smaller is this spectral radius smaller will be the noise
level. Actually, we could use this convergence in the noise level to restart the algorithm in
order to get a good approximation. This takes in general veryfew iterations. The convergence
of the singular values is considered in the last two figures. Figure4.5 shows the number of
the Gramian singular values matched at each iteration, and in Figure4.4 the corresponding
distance between the two sets of the singular values. Here also the convergence is function of
the spectral radius ofA. But the effect is more evident, and the slope is more significant as
this spectral radius become smaller. In general, these numerical results confirm our previous
results about the relationship between the spectral radiusof A and the convergence rate and
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the quality of the approximation. Whenρ(A) is close to 1 (but still smaller than 1), we need
many more iterations to get the same quality than whenρ(A) is much smaller than 1. This
will be very useful, if one has a continuous system on hand, wecould choose a bilinear dis-
cretization in order to get the spectral radius of the resulting matrixA much smaller than 1 in
order to get a very fast good approximation.
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FIG. 4.1.∡ (Uc(i), Uc(i− 1)).
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FIG. 4.2.∡ (Uc(i), Gc).

This convergence result will allow us later to deduce some useful properties for the re-
duced model, especially about the stability and balancing.

Unfortunately, the RLRG algorithm produces an independentapproximation of the two
Gramians. So to obtain a reduced model we have to “balance” the projection matrices ob-
tained from these two approximations. The quality of the approximation and indeed of the
reduced model depends on the two “noise” level parametersµc andµo which determine if
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FIG. 4.3.Noise levelη

FIG. 4.4.max
i

|σ2

i (S(i)) − σi(Gc)|.

the two Gramians are well approximated or not. These parameters are independent as we
approximate Gramians independently from one another, and so one can imagine the case
where one Gramian is well approximated and the other not. So,this affects the quality of
the approximation of the reduced model. For instance, if anybilinear transformationT is ap-
plied to the system{A,B,C} to get a new system{T−1AT, T−1B,CT }, the corresponding
controllability, observability, matrices and Gramians, respectivelly, will be

C̃ = T−1C, Ô = OT, Ĝc = T−1GcT
−T , Ĝo = T TGoT.

This transformation will also affect the product of the Gramians (which is taken in account
for the balancing) as followŝGcĜo = T−1GcGoT . We can see very easily that to have good
approximations of the Gramians, one has to choose good realizations of the system, which
means the choice of the matricesA, B, andC. This is not obvious, and could lead to a very
bad result. In the following section we present an algorithmwhich avoids this problem.
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FIG. 4.5.Number ofσi(Gc) matched at each iteration.

5. Recursive low-rank Hankel (RLRH) approximation. The key idea of this ap-
proach is to use the underlying recurrences defining the so-called Hankel matrices. Because
the system order at each instant is given by the rank of the Hankel matrix at that instant, one
can approximate the system by approximating the Hankel matrix. This is the idea of the exact
Hankel norm approximation methods [16]. In this case, the norm approximation problem is

(5.1) min
rankĤ≤n

‖H − Ĥ‖,

whereH is the Hankel map which makes the correspondence between inputs and outputs (see
Section2). The problem (5.1) has many solutions, since only the largest singular valuesof
the differenceE = H − Ĥ is minimized, andn − 1 others are free as long as they remain
smaller. In general, to solve this problem, one has to selectan appropriate representation of
the desired high-order model that can be used computationally. A simple but high-complexity
realization is given by the generalized companion form. Now, given this realization one can
solve the problem (5.1) for a given precision which is measured using a Hermitian, strictly
positive diagonal operatorΓ (in fact it could be taken asΓ = ǫI for some small value ofǫ),
by solving

sup
k
‖
(
(H− Ĥ)Γ−1

)
k
‖ ≤ 1

i.e., Ĥ approximatesH up to a precision given byΓ. This problem can be solved using
the Schur-Takagi algorithm [16]. Indeed, Hankel norm approximation theory originates as
a special case of the solution to the Schur-Takagi interpolation problem in the context of
complex function theory. Several techniques were presented to find the optimal solution, see
e.g. the work of Dewilde and van der Veen [16, 36], and Chandrasekaran and Gu [13, 14, 15].
The complexity of these techniques are normally of the orderof O(N2) but can be made
“fast” or “super fast” to be just of the order ofO(N). But in order to obtain this speed up,
the matrices involved must have a special structure called the sequentially semi-separable
matrix structure. This structure involves some rank conditions for optimality which cause
some minor complications. This whole procedure has to be repeated forΓ = ckI, where
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ck eventually converges to a small optimal value. The principal idea of these algorithms is
to use the SVD to approximate the Hankel matrices by matriceshaving a Hankel structure.
Our algorithm follows the same line. It has the particularity that it approximates the Hankel
matrices at each instant by a low rank approximation in a finite window. Let us now formulate
this in more detail.

5.1. The RLRH algorithm. The key idea of this algorithm is to use the Hankel matrices
Hi = OiCi representing the Hankel mapH = OC. As the system order is given by the rank
of the Hankel map, it is a good idea to approximate the system by approximating the Hankel
matrices via a recursive SVD performed at each step. The technique is very similar to the pre-
vious algorithm, RLRG, but now we perform at each step the singular values decomposition
of a product similar to the productOC. Consider indeed the SVD of the matrix

(5.2)

[
C

R̂(i)TA

]
[
B AŜ(i)

]
= UΣV T ,

and partitionU :=
[
U1 U2

]
, V :=

[
V1 V2

]
whereU1 ∈ R

(n+p)×n andV1 ∈

R
(n+m)×n. Define then

[
Ŝ(i+ 1) Êc(i+ 1)

]
:=

[
B AŜ(i)

] [
V1 V2

]
,

[
R̂(i+ 1) Êo(i+ 1)

]
:=

[
CT AT R̂(i)

] [
U1 U2

]
.

It follows that
[

R̂(i + 1)T

Êo(i + 1)T

] [
Ŝ(i+ 1) Êc(i+ 1)

]
=

[
Σ1 0
0 Σ2

]
,

whereΣ2 contains the neglected singular values at this step. For theinitialization at step
i = 0 we use again̂S(i) = 0, andR̂(i) = 0. We summarize this algorithm as follows.

Algorithm 3 Recursive Low-Rank Hankel (RLRH).
1: procedure RLRH(A,B,C, n, tol)
2: Ŝ(0)← 0 ∈ R

N×n ⊲ Initialize Ŝ
3: R̂(0)← 0 ∈ R

N×n ⊲ Initialize R̂
4: repeat
5: Compute the singular value decomposition[

C

R̂(i)TA

]
[
B AŜ(i)

]
= UΣV T .

6: Let U =
[
U1 U2

]
, V =

[
V1 V2

]
, U1 ∈ R

(n+p)×n, V1 ∈ R
(n+m)×n.

7: Construct
Ŝ(i + 1)←

[
B AŜ(i)

]
V1, R̂(i+ 1)←

[
CT AT R̂(i)

]
U1,

Êc(i + 1)←
[
B AŜ(i)

]
V2, Êo(i+ 1)←

[
CT AT R̂(i)

]
U2.

8: until The stopping criterion is verified. ⊲ See Subsection7.1
9: end procedure

Let us investigate the amount of work involved in our algorithm. First we need to form
products of the typeAŜ(i) andR̂T (i)A. If we assume the matrixA to be sparse and letα
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the number of non-zero elements per row or column ofA, then the amount of work needed
for this isO(αNn) [18]. The construction of the left hand side of (5.2) requires an additional
2N(n+m)(n+p) flops and the application of the transformationsU andV requiresO((p+
n)(m+n)(2n+p+m)) flops, and so the complexity of this algorithm isO(N(p+n)(m+n))
for each iteration. Which is comparable to the work involvedin the RLRG algorihm.

As before we have some results linking the intermediate error matrices and the control-
lability and observability matrices.

THEOREM 5.1. At each iteration, there exist unitary matricesV (i) ∈ R
(n+im)×(n+im)

andU (i) ∈ R
(n+ip)×(n+ip) satisfying:

CiV
(i) =

[
Ŝ(i) Êc(i) ACe(i)

]
, OT

i U
(i) =

[
R̂(i) Êo(i) ATOe(i)

]
,

whereÊc(i) andÊo(i) are the neglected parts at iterationi in the algorithm, and the matrices
Ce(i) andOe(i) are defined as follows:

Ce(i)
.
=

[
Êc(i−1) . . . Ai−1Êc(0)

]
,Oe(i)

T .
=

[
Êo(i−1) . . .

(
AT

)i−1
Êo(0)

]
.

Proof. We just show the proof forV (i), the other being similar. At each step, there exists
an orthogonal matrixV =

[
V1 V2

]
such that

[
B AŜ(i)

]
V =

[
Ŝ(i+ 1) Êc(i + 1)

]
.

For i = 0 we haveC0 =
[
Ŝ(0) Êc(0)

]
, and soV (0) = I. We prove the general result by

induction. Suppose that there exists an orthogonal matrixV (i) such that

CiV
(i) =

[
Ŝ(i) Êc(i) AÊc(i− 1) . . . Ai−1Êc(0)

]
.

SinceCi+1 =
[
B ACi

]
, we choose

V (i+1) =

[
Im 0
0 V (i)

] [
V 0
0 Iim

]
,

from which it follows that

Ci+1V
(i+1) =

[
B ACi

] [ Im 0

0 V (i)

] [
V 0
0 Iim

]

=
[
B ACiV

(i)
] [ V 0

0 Iim

]

=
[
B AŜ(i) AÊc(i) . . . Ai−1Êc(0)

] [ V 0
0 Iim

]

=
[
Ŝ(i+ 1) Êc(i + 1) AÊc(i) . . . AiÊc(0)

]

=
[
Ŝ(i+ 1) Êc(i + 1) ACe(i+ 1)

]
.

As a consequence of this theorem we have the following resultwhich give us an approx-
imation of the original Hankel matrixHi.

THEOREM 5.2. At each iterationi, there exist unitary matricesV (i) ∈ R
(n+im)×(n+im)

andU (i) ∈ R
(n+ip)×(n+ip) such that

(5.3)
(
U (i)

)T

HiV
(i) =




R̂(i)T Ŝ(i) 0 R̂(i)TACe(i)

0 Êo(i)
T Êc(i) Êo(i)

TACe(i)

Oe(i)AŜ(i) Oe(i)AÊc(i) Oe(i)A
2Ce(i)


 .
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Proof. First we have the relationship between the Hankel matrices, the controllability
and the observability matricesHi

.
= OiCi, and from the previous theorem, there exist two

unitary matricesV (i) ∈ R
(n+im)×(n+im) andU (i) ∈ R

(n+ip)×(n+ip) such that:

(
U (i)

)T

HiV
(i) .

=
(
U (i)

)T

OiCiV
(i) =




R̂(i)T

Êo(i)
T

Oe(i)A


 [

Ŝ(i) Êc(i) ACe(i)
]
.

The final result then follows easily.

This result enables us to evaluate the quality of our approximations by using the Hankel ma-
trices (and so the Hankel map) without having to pass by Gramians, which can be very unsuit-
able in some cases (especially when the original system is poorly balanced). The procedure
yields two matriceŝS(n) andR̂(n) of full rank n. Using those matrices we can approximate
the GramiansGc andGo of the original model bŷS(n)Ŝ(n)T andR̂(n)R̂(n)T , respectively.
The differences between the approximate low-rank Gramiansand the exact Gramians

Ec(i)
.
= Gc(i)− P̂i, Eo(i)

.
= Go(i)− Q̂i

remains bounded for largei, as indicated in the following theorem.
THEOREM 5.3. LetP andQ be respectively the solutions of

P = APAT + I, Q = ATQA+ I.

Then

‖Ec(i)‖2 ≤ η2c‖P‖2 ≤ η2c
κ(A)2

1− ρ(A)2
, ‖Eo(i)‖2 ≤ η2o‖Q‖2 ≤ η2o

κ(A)2

1− ρ(A)2
,

whereηc
.
= max

i
‖Êc(i)‖2 andηo

.
= max

i
‖Êo(i)‖2.

Proof. It follows from Theorem5.1that

Ec(i+ 1) = AEc(i)A
T + Êc(i)Êc(i)

T , Eo(i + 1) = AT Eo(i)A+ Êo(i)Êo(i)
T .

We can also consider the equations:

Xc(i + 1) = AXc(i)A
T + (η2c I − Êc(i)Êc(i)

T ), Xc(0) = 0,

Xo(i+ 1) = ATXo(i)A+ (η2oI − Êo(i)Êo(i)
T ), Xo(0) = 0.

Their iteratesXc(i) andXo(i) are clearly positive semi-definite and hence converge to a
solutionXc andXo which are also positive semi-definite. Moreover by linearity we have

Ec(i + 1) + Xc(i+ 1) = A(Ec(i) + Xc(i))A
T + η2c I,

Eo(i+ 1) + Xo(i + 1) = AT (Eo(i) + Xo(i))A+ η2oI.

It then follows that

lim
i→∞

Ec(i) + Xc(i) = η2cP , lim
i→∞

Eo(i) + Xo(i) = η2oQ,

and we obtain‖Ec(i)‖2 ≤ η2c‖P‖2, and‖Eo(i)‖2 ≤ η2o‖Q‖2. The second bound follows
from the eigendecomposition ofA.
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THEOREM 5.4. Using the firstn columnsU (i)
1 ofU (i) andV (i)

1 ofV (i), we obtain a rank
n approximation of the Hankel map

H− U
(i)
1 R̂(i)T Ŝ(i)

(
V

(i)
1

)T

= EH(i),

for which we have the error bound

‖EH(i)‖2 ≤
κ(A)√

1− ρ(A)2
max{ηc‖R̂

TA‖2, ηo‖AŜ‖2}+
κ(A)2

1− ρ(A)2
ηoηc.

Proof. This follows directly from the bounds of Theorem5.2 that can be used to bound
the blocks in the form in (5.3) different from the(1, 1) block. More explicitly, from (5.3) we
have

Hi = U (i)




R̂(i)T Ŝ(i) 0 R̂(i)TACe(i)
0 Eo(i)

TEc(i) Eo(i)
TACe(i)

Oe(i)AŜ(i) Oe(i)AEc(i) Oe(i)A
2Ce(i)



(
V (i)

)T

and soEH(i) = E
(1)
H (i) + E

(2)
H (i) where

E
(1)
H (i) = U (i)




0 0 R̂(i)TACe(i)
0 0 0

Oe(i)AŜ(i) 0 0



(
V (i)

)T

andE(2)H (i) = U (i)

[
0 0
0 Ee

] (
V (i)

)T
, Ee =

[
Eo(i)

TEc(i) Eo(i)
TACe(i)

Oe(i)AEc(i) Oe(i)A
2Ce(i)

]
and thus

‖EH(i)‖2 ≤ max{‖R̂(i)TACe(i)‖2, ‖Oe(i)AŜ(i)‖2}+ ‖Ee‖2.

We make the following remarks.
– One obtains an approximate rank factorization of a Hankel map with i block columns

and rows at each instanti. The bounds obtained in Theorem5.3 and5.4 are moreover
independent ofi. As i grows larger one can expect that reasonable approximationsof ηc
andηo are in fact given by the neglected parts of the last iteration, i.e., ηc ≈ ‖Ec(i)‖2
andηo ≈ ‖Ec(i)‖2 which will give much tighter bounds in these theorems. In fact, as we
remarked before,ηc andηo are function of the initialization instant and one can write

ηc(k) = max
k≤i≤∞

‖Ec(i)‖2, ηo(k) = max
k≤i≤∞

‖Eo(i)‖2.

Sinceηc(i) andηo(i) are typically decreasing we can replace it by the maximum over the
last iteration steps.

– We can make the same convergence study, as for the RLRG algorithm, to conclude that the
RLRH algorithm has a unique fixed point which is{A,B} invariant and{A,C} invariant
in the same time. This leads to the conclusion that the fixed point in this case is the domi-
nant part of the commune “balanced” Gramian. This property will also imply a very nice
result for the reduced model that we show in the following section.
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– If any bilinear transformationT is applied to the system{A,B,C} to get a new system
{T−1AT, T−1B,CT }, the corresponding controllability, observability, matrices and the
Hankel map, respectively, will be

Ĉ = T−1C, Ô = OT, Ĥ = ÔĈ = OC = H.

This transformation will not affect the Hankel map (which istaken in account for the
balancing). This means that for any realization of the system, RLRH-ABT will do as good
as for a balanced realization. And so it is a powerful very cheap method to produce a good
balanced approximation to a linear system.

6. Approximate balanced truncation using RLRG and RLRH algorithms. Using
the two previous algorithms: RLRG and RLRH, we can use the idea of approximate balanced
truncation (see Section3) to obtain a reduced order model. The idea, here, is to use low-
rank approximations of the Gramians, obtained via RLRG or RLRH, instead of the original
Cholesky factors of the Gramians in the balanced truncationalgorithm. The implemented
algorithms are given by Algorithms4 and5.

Algorithm 4 RLRG Approximate Balanced Truncation (RLRGABT).
1: procedure RLRG ABT(A,B,C, n, tol)
2: Run RLRG (Algorithm2) to get low-rank approximationsS,R ∈ R

N×n of the
Cholesky factors of the GramiansGc andGo, respectively.

3: Calculate the singular value decompositionSTR = UΣV T .
4: LetX = SUΣ−1/2, andY = RV Σ−1/2.
5: The ordern approximate truncated balanced realization is given by

Ã = Y ∗AX, B̃ = Y ∗B, C̃ = CX.

6: end procedure

Algorithm 5 RLRH Approximate Balanced Truncation (RLRHABT).
1: procedure RLRH ABT(A,B,C, n, tol)
2: Run RLRH (Algorithm3) to get low-rank approximationŝS, R̂ ∈ R

N×n of the
Cholesky factors of the GramiansGc andGo, respectively.

3: LetX = SΣ−1/2, andY = RΣ−1/2.
4: The ordern approximate truncated balanced realization is given by

Â = Y ∗AX, B̂ = Y ∗B, Ĉ = CX.

5: end procedure

In Algorithm 4, we use theSVD in Line 3 to “balance” the projection matrices. This is
crucial because we approximate independently the Gramians. In practice, if the system has
poles close to the unit circle, one or both Gramians are not well approximated. This is not
needed in Algorithm5, because the product of the two low-rank approximations is already
equal to a diagonal matrix of nonnegative values. This is thefirst advantageous property of
the RLRH approximate balanced truncation method.

These two approximate balanced truncation algorithms havesome very desirable prop-
erties that we show below.

THEOREM 6.1. Both algorithms, RLRGABT and RLRHABT lead to a balanced stable
reduced model.
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Before giving the proof of this result, we will need to show the following lemma.
LEMMA 6.2. LetX,Y ∈ R

k×l andZ ∈ R
k×r. If XTZ = 0 andXTY is full rank then

Y TZ = 0.
Proof. Firstly, asXTY is full rank, the columns ofX and those ofY span the same

subspace ofRk×l. Secondly, asXTZ = 0, the columns ofZ span a subspace ofRk×r that
is orthogonal complementary to the subspace spanned by the columns ofX into R

k×(l+r).
Then the subspace spanned by the columns ofY is also orthogonal to the subspace spanned
by the columns ofZ, i.e.,Y TZ = 0.

Proof. [Proof of Theorem6.1] We will prove the theorem for the RLRGABT algorithm;
the proof for the other algorithm is similar. Let consider thatS andR are the fixed points of
the RLRG algorithm applied to the system{A,B,C} (2.1). i.e.,

(6.1)
[
S Ec

]
=

[
AS B

]
Vc

[
R Eo

]
=

[
ATR CT

]
Vo,

whereVc ∈ R
(n+m)×(n+m), andVo ∈ R

(n+p)×(n+p) are unitary matrices. It follows that

(6.2) SST + EcE
T
c = ASSTAT +BBT RRT + EoE

T
o = ATRRTA+ CTC.

Recall that the projection matrices are

πl = RV Σ− 1

2 , πr = SUΣ− 1

2 , STR = UΣV T , where U,Σ, V ∈ R
n×n.

Now, using these projection matrices we can project both equations (6.2), and we obtain
respectively.

πT
l

(
SST + EcE

T
c

)
πl = πT

l ASS
TATπT

l + πT
l BBTπl,(6.3)

πr
l

(
RRT + EoE

T
o

)
πr = πT

r A
TRRTAπr + πT

r C
TCπr.(6.4)

By definition we haveπT
l πr = In, and by construction we haveSTEc = 0 andRTEo = 0.

Moreover, we have

πT
l S = Σ− 1

2V TRTS = Σ
1

2U, πT
r R = Σ− 1

2UTSTR = Σ
1

2V T .

And applying the previous lemma will yields thatπT
l Ec = 0 andπT

r Eo = 0. Then equations
(6.3) and (6.4) become

πT
l SS

Tπl = πT
l ASS

TATπT
l + πT

l BBTπl,

πT
r RRTπr = πT

r A
TRRTAπr + πT

r C
TCπr.

We can check easily that (asU andV are unitary matrices)

πT
l SS

Tπl = πT
r RRTπr = Σ, SST = πrΣπ

T
r , and RRT = πlΣπ

T
l .

Finally we obtain the Stein equations

Σ = πT
l AπrΣπ

T
r A

TπT
l + πT

l BBTπl and Σ = πT
r A

TπlΣπ
T
l Aπr + πT

r C
TCπr .

These two equations prove that the reduced model{πT
l Aπr, π

T
l B,Cπr} has a balanced

GramianΣ. This Gramian is by construction positive definite and the solution of the last
two Stein equations from which we conclude that the reduced system is stable.
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The next result concerns the convergence of the computed Hankel singular values.
THEOREM 6.3. Letσi and σ̂i denote Hankel singular values of the original model and

the reduced model via either RLRGABT or RLRH ABT respectively:σ2
i = λ(GcGo) and

σ2
i = λ(SSTRRT ). Then

n∑

i=1

σ2
i −

n∑

i=1

σ̂2
i ≤

κ(A)2

1− ρ(A)2
(
mη2c trace(Go) + pη2otrace(Gc)

)
,

wherem is the input number,p is the output number, andηc andηo are the corresponding
noise levels.

Proof. We have

n∑

i=1

σ2
i −

n∑

i=1

σ̂2
i = trace(GcGo)− trace(SSTRRT )

= trace(GcGo − SSTRRT )

= trace
(
(Gc − SST )Go + SST (Go −RRT )

)

≤ trace(Gc − SST )trace(Go) + trace(SST )trace(Go −RRT ).

And using previous results in this paper we obtain finally

n∑

i=1

σ2
i −

n∑

i=1

σ̂2
i ≤

κ(A)2

1− ρ(A)2
(
mη2c trace(Go) + pη2otrace(Gc)

)
.

Here, it should be mentioned that for RLRGABT the noise levelsηc andηo could be
not of the same order as the Gramians are approximated independently. This could affect the
quality of the previous bound. On the other hand, for the RLRHABT, we haveη = ηc ≃ ηo,
which yields

n∑

i=1

σ2
i −

n∑

i=1

σ̂2
i ≤

κ(A)2η2

1− ρ(A)2
(m trace(Go) + p trace(Gc)) .

Another result for the Hankel singular values is obtained using the perturbation theory
for the singular values [18, p. 449] and Theorem 4.14.

THEOREM 6.4. Letσi and σ̂i denote Hankel singular values of the original model and
the reduced model via RLRHABT. Then fori = 1, . . . , n

|σi − σ̂i| ≤
κ(A)√

1− ρ(A)2
ησ̂1‖A‖2 +

κ(A)2

1− ρ(A)2
η2,

whereη is the noise level.
Proof. We apply Corollary 8.6.2 [18, p. 449] and Theorem 4.14. We also use the fact

thatη = ηc ≃ ηo, ‖R̂‖2 = ‖R̂‖2 = σ̂1.

7. Further discussion.

7.1. Stopping criterion. Since our iterative method computes successive approxima-
tions to the solution of a Lyapunov equation, a practical test is needed to determine when
to stop the iteration. Ideally this test would measure the distance of the last iterate to the
true solution (the Gramian), but this is not possible as the true solution is unknown. Instead,
various other metrics are used, typically involving the residual (noise level) or reached fixed
point. The following stopping criteria could be considered:
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– Maximal number of iteration steps. The iteration is stopped after a certain numberimax of
iterations steps. Obviously, no additional computations need to be performed to evaluate
it. The drawback of this stopping criterion is that it is not related to the attainable accuracy
of the delivered low-rank Gramian.

– Stagnation of the canonical angles. The iteration is stopped when stagnation of∢(S(i −
1), S(i)) is detected. Roughly speaking, these angles are consideredas “stagnating” when
no noticeable decrease is observed in consecutive iteration steps. This criterion works well
in practice. It requires the computation of an SVD, which gives the cosines of these angles.

– Stagnation ofΣc. We predefine a toleranceǫm and test if‖Σc(i) − Σc(i − 1)‖ ≤ ǫm for
several iterations, in the 2-norm or the Frobenius norm.

– Smallness of the noiseηc. We predefine a toleranceǫm and test ifηc ≤ ǫm for sev-
eral iterations. Loosely speaking, this means the following. Whenηc and consequently
‖Ec(i)‖ become smaller thanǫm , then the “contribution” from the following iterations is
not needed as it will not ameliorate the quality of the approximation.

In general, the three last criteria are affected by round-off errors, which is why we should wait
a few more steps before stopping of the algorithm. Note that the delay between stagnation
and stopping of the algorithm can be changed; in our algorithms we consider a delay of 10
steps. In practice, the second and third stopping criteria are combined to have a good low-
rank approximation of the Gramians (see the discussion following Theorem4.10). The two
last stopping criteria could be considered as equivalent, as a stagnation ofΣc means that the
noise levels are very small and negligible.

7.2. The choice ofn. So far we have only considered the case where the reduced order
n is constant and fixed from the beginning by the user. But actually, if one wants to choose
a convenient value forn one has to do an explicit thorough analysis of the whole Hankel
operator (or matrix) involved and strive for some sort of singular value ranking. For large-
scale dimensions this pre-treatment is prohibitive.

The current situation is that we can choose dynamically the reduced order by choosing
the number of vectors kept during the iterations of the algorithm (i.e.,n = ni is variable).
This is very cheap as we already pass through the whole matrixwith a kind of a sliding
window which sorts locally the singular values. And so one can adaptni as soon as the
information “unveiled” by the sliding window is relevant tothe approximation. One should
notice that as we are using SVD-based algorithms, the quality of the approximations will be
a function of the existence and the importance of the gap between what we keep and what we
neglect [18]. Here, one can adopt many strategies using some ad-hoc specification. e.g.
– Absolute tolerance strategy. In this case, one has to predefine a tolerance valueςa and

ask the algorithm to neglect all singular values which are smaller than this tolerance, i.e.,
ni = min{j : σj(S) < ςa}.

– Relative tolerance strategy. This strategy is more dynamic and suitable. Typically, theuser
can define an interval[nmin, nmax] ⊂ N, the algorithm has to find the optimal value forni

such thatnmin ≤ ni ≤ nmax. By optimal, we mean the smallestni such that the quality
of the approximations is acceptable. Letςr be a pre-specified tolerance value. At each
iteration we apply our algorithm and we check for all computed singular valuesσj(S),
j = 1 : ni +m, the quotientσj(S)/σ1(S), for j = 1 : ni +m. The firstj for which we
will have σj(S)/σ1(S) ≤ ςr, is compared toni, if this j is smaller thanni we take the
nextni+1 equal toni (i.e.,ni+1 = ni), if not we takeni+1 = j, and so on.

– Another strategy can be adopted for the choice ofni. It is based on the fact that the quality
of the approximation depends on the gap between the retainedvalues and the neglected
ones. So one can detect the gaps between singular values in each window, and adaptn as
for the relative tolerance strategy.
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In the strategies above, becausenmin ≤ n1 ≤ n2 ≤ · · · ≤ nmax, if one keeps in memory
all values ofni, we can choose at the end the low-rank approximation only from then-
rank approximation, which will embed all otherni-rank approximations. Of course, the
pre-specification ofςa or ςr will be crucial.

8. Numerical examples.In this section we apply our algorithms to four different dy-
namical systems: a building model, a CD player model, and twoInternational Space Station
models. These benchmarks are described in more detail in [10, 11, 19]. These models are con-
tinuous, so we discretize each system using a bilinear transformation with parameterξ = 2
[3]. In Table8.1we give the order of the system (N ), the number of inputs (m), and outputs
(p), the order of reduced system (n), and the corresponding tolerance value. We show also in
this table the spectral radius and the condition number of the matrixA.

TABLE 8.1
Summary of data of the benchmark models.

N m p n tol.value ρ(A) κ(A)
build model 48 1 1 10 0.16 0.4997 8.0478.103

CDplayer model 120 2 2 24 2.8.10−7 0.5266 1.7793.104

ISS 1R model 270 3 3 32 2.10−3 0.7338 9.6802.103

ISS 12A model 1412 3 3 195 65.10−4 0.8310 5.7728.103

The first remark is that because we work directly on the Hankelmap (with RLRH
method) we do not need to “balance” (using an SVD) the projection matrices to obtain a
convenient reduced-order model.

For each example, the relativeH∞ norms of the full systemS and the error systems are
tabulated in Table8.2, and theσmax-plot of the full order and the corresponding error system
are shown in Figures8.1, 8.3, 8.5, and8.7. We use the notationsSopt for the reduced order
model by balanced truncation,̂S1 for the reduced order model by RLRGABT algorithm,
andŜ2 for the reduced order model by RLRHABT algorithm.

It can be seen from Figures8.1, 8.3, 8.5, and8.7that we obtain, with RLRH approxima-
tion, results which are close to those obtained via BT. Theseresults are also close of those
of RLRG approximation, but we have applied the RLRG algorithm to the controllability and
observability matrices with ân, wheren̂ > n, and we have balanced the projection matrices
using an SVD to keep onlyn projection matrices. These operations make the RLRG more
expensive, and so the RLRH algorithm is less expensive and the results are as good as those
obtained using the RLRG approximation.

Figures8.2, 8.4, 8.6, and8.8 show the noise levelsηc andηo. Notice that these noise
levels shown must be interpreted also in a special way as it was done for the RLRG algorithm.
The noise levels must be multiplied by the corresponding power of the spectral radius ofA
to obtain the real values of the noise level at the end, i.e., the real noise level̃µ• is obtained
as µ̃•(i)

.
= ρ(A)τ−iµ•(i), whereτ is the number of iteration. And so the values of noise

levels considered in the previous theorems will be taken in the last obtained values which
will be very small. We notice here also that for poorly balanced systems the resulting noise
levels are not of the same order as for well balanced systems.This is still the case for the CD
player model. We remark also that for “close balanced” systems, like the CD player model
(κ(T ) = 40.7341 whereT is the balancing transformation) RLRG yields better results. But,
RLRH is as least better for “poorly balanced” systems. This is the case for the Building
model (κ(T ) = 347.0781) and more clearly for the International space station (κ(T ) =
7.4018.105). Of course, RLRH is always faster and cheaper as we do not need to balance the
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approximations at the end of the algorithm (by computing theSVD of a product of two tall
and skinny matrices).

TABLE 8.2
H∞ norm of benchmark models, and the error systems.

model ‖S‖∞
‖S − Sopt‖∞
‖S‖∞

‖S − Ŝ1‖∞
‖S‖∞

‖S − Ŝ2‖∞
‖S‖∞

Building 0.0053 0.1143 0.4301 0.4320
CDplayer 2.3198.106 8.0704.10−8 6.8931.10−6 1.7.10−6

ISS 1R 0.1159 0.0013 0.1023 0.0979
ISS 12A 0.0107 0.0071 0.9697 0.9390

TABLE 8.3
Noise levelsµ• for benchmark models.

model µRLRG
c µRLRG

o µRLRH
c µRLRH

o

Building 6.5063.10−15 4.3799.10−12 7.7292.10−15 3.2445.10−11

CDplayer 4.0575.10−20 6.0341.10−20 1.6867.10−14 2.8846.10−13

ISS 1R 1.5063.10−8 1.1641.10−10 6.2550.10−8 1.6270.10−9

ISS 12A 7.1973.10−25 1.1751.10−27 7.5093.10−22 4.7292.10−25

TABLE 8.4
CPU time for different algorithms.

model BT RLRG ABT RLRH ABT
Building 0.3750 0.3380 0.0810
CDplayer 0.7970 0.7340 0.7030
ISS 1R 11.6720 4.7350 2.5470
ISS 12A 1.1327.103 0.1029.103 0.0282.103

9. Concluding remarks. In this paper, we proposed two recursive approximate bal-
anced truncation model reduction methods based on the Gramians and the Hankel map.
Subsequently the approaches for computing approximate Gramians and Hankel map were
derived. These approaches provide closer results to those obtained by balanced truncation,
considered to be optimal, with lower computational cost. Unlike all other methods in the
literature, the reduced order model produced by our methodsare guaranteed to be stable and
balanced. Bounds on the quality of the approximation are given with some numerical exam-
ples. The RLRH algorithm is the best algorithm for approximating the balanced truncation
in terms of accuracy and computational cost. Its cost isO(N(n+m)(n+ p)), which is only
linear in the large dimension N, unlike balanced truncationwhich has a cost which is cubic in
the large dimension (i.e.,O(N3)). The numerical examples show that this algorithm has very
good properties in term of stability, convergence rate and the quality of the approximation.

Despite the obviously desirable features of the Hankel map approach proposed here,
many open questions remain. There are a number of refinementswith respect to performance,
convergence, and accuracy which require more theoretical and algorithmic analysis. There is
one particularly interesting feature concerning the comparison between the original Hankel
map and the Hankel map of the reduced order model. For instance, we just compared the
original Hankel map and its dominant block approximation. To compare the two Hankel
maps we still need an advanced understanding of the algorithm and its features.
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FIG. 8.1.σmax-plot of the frequency responses for the building model.

FIG. 8.2.Evolution of the values of the noise levels for the building model.
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