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Abstract

This paper describes a novel mechanism leading to the sudden onset of chaos that
may occur in Filippov type systems when the switching decision is made at discrete
times. Such systems can be thought of as models of switched digital control systems.
Our findings are explained in detail using a representative planar example. Results
are then extended to more general planar switched systems with digital sampling. It
is conjectured that this mechanism is also typical of n-dimensional switched systems
with digital sampling, and numerical investigations of a third order relay feedback
system are presented to support this; the onset of chaos is triggered in the way
which is equivalent to that revealed for the planar case.
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1 Introduction

The use of a digital computer as a controller device grown in the past decades leading
to a widespread application of digital control systems [1,2]. Nowadays digital control
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systems occur in a plethora of applications ranging from chemical processes, aircraft
and traffic control to process control in industries such as machine tools production[3–
5]. The control, design and analysis of these control systems involves understanding
the interaction between continuous and discrete dynamics. For example, the auto-
mated control of a car moving on a road is implemented by digital computer but the
motion of a car is continuous in time [6]. Computers that are used in such a system
send a digital signal which is then converted to an analogue signal and can be fed into
the actuator. The digital signal which corresponds to a finite sequence of numbers
leaves or enters the computer at some time intervals, say τ , which we will term a
sampling time. In this paper we will consider τ as a constant, so the sampling times
are at integer multiples of a fixed τ > 0, but in general τ could be a function of time.
Since the digital signal has to be converted into a continuous time signal, and vice
versa, the design of the control of such a system needs to take into account the effects
of the interaction between the continuous and discrete dynamics.

These types of control systems are often referred to in the control literature as hybrid
control systems [7]. In [3,4] it has been shown that the digitization of the spatial
structure by the controller can induce micro-chaotic transient dynamics. Effects of
digitization on the stability of the solutions have been considered in [8,9], and in [10]
the existence of different types of attractors in a simple model of a delta-modulated
control system has been shown. Here we consider another aspect of digitization in
hybrid systems. We assume that the input to the controller is delivered at discrete
times, separated by a constant τ > 0, and show that for arbitrarily small τ the system
can exhibit chaotic dynamics. Moreover, there are scaling laws relating the maximum
distance of the chaotic attractor due to digital sampling from the simple periodic
attractor of the continuously sampled system. It is linear for sufficiently small values of
τ but at larger τ there is a change in the properties of the boundedness of the chaotic
attractor and the scaling becomes nonlinear. Our findings will be illustrated and
explained using general planar hybrid systems of Filippov type with digital sampling.
That is we consider systems with discontinuous vector fields where the control input
is digitized; it is available at discrete time intervals. We will then argue that our
findings generalize to n−dimensional systems. This conjecture will be motivated by
presenting numerical findings of a general third-order piecewise linear relay feedback
system with digital sampling.

This paper is arranged as follows. In Sec. 2 planar Filippov type systems with digital
sampling are introduced. In Sec. 3 the complex dynamics pertaining to these types
of systems will be presented using a simple planar example. The observed dynamics
will be explained in detail in the same section and the existence of an attractor with
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positive Lyapunov exponents for arbitrarily small τ will be proven, even though the
sliding orbit for τ = 0 is stable. Theoretical arguments will be presented showing how
these results extend to more general planar systems. This extension will be given in
Sec. 4. There we will also show that Filippov’s construction that determines the
vector field that gives so-called sliding flow is a natural limit when the sampling time
τ → 0 for a flow that gives zig-zag trajectory evolving along the surface where the
switchings between different vector fields occur. This provides further justification
for Filippov’s construction of the sliding flow. In Sec. 5 we will show numerically
that similar results hold for a third order relay feedback system. In particular, the
sudden onset of chaos as a result of the introduction of digital sampling is observed.
We will argue that the mechanism leading to the onset of chaos is the same as that
described for the planar case. Therefore the analysis of the planar systems is relevant
to n-dimensional systems of Filippov type with digital sampling.

2 Filippov type systems with digital sampling

We start our investigations by considering Filippov systems for which the evolution
of a variable x in some region D ⊆ R

2 is determined by the equations

ẋ(t) =







F1(x(t), µ) if H(x(t), µ) > 0

F2(x(t), µ) if H(x(t), µ) < 0,
(1)

where F1, F2 are sufficiently smooth vector functions, F1, F2 : R
2 × R

m 7→ R
2 and

H(x(t), µ) : R
2 × R

m 7→ R is some smooth scalar function depending on the system
states x ∈ R

2, and parameter µ ∈ R
m; t ∈ R is the time variable. We leave the

description of the switching behaviour when H(x, µ) = 0 to a little later, above
equation (3). Let us define the boundary Σ as

Σ := {x ∈ R
2 : H(x(t), µ) = 0} (2)

which divides the region D into two subspaces,

G1 := {x ∈ R
2 : H(x, µ) > 0},

and
G1 := {x ∈ R

2 : H(x, µ) < 0},
in which the dynamics is smooth. Depending on the direction of the vector fields
with respect to Σ those trajectories starting in G1 and G2 that reach Σ in finite
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time will either cross it or evolve along Σ (the so-called sliding motion). Let σ(x) =
〈Hx, F1〉〈Hx, F2〉, where 〈, 〉 denotes the dot product and Hx the vector normal to Σ.
The switching surface Σ can be divided into subsets, say Σc and Σ̂ defined as

Σc := {x ∈ Σ : σ(x) > 0}, Σ̂ := {x ∈ Σ : σ(x) ≤ 0}.

Trajectories generated by F1 or F2 that reach Σc switch between each other upon the
evolution across Σc. Note that the trajectories so obtained are continuous, and are
built of segments generated by F1 and F2. If on the other hand Σ̂ is reached from
G1 or G2, then the motion follows so called sliding flow along Σ̂, and the vector field
that generates this motion is defined as

Fs = αsF1 + (1 − αs)F2, (3)

where αs = αs(x) =
〈Hx, F2〉

〈Hx, (F2 − F1)〉 , and 0 ≤ αs(x) ≤ 1.

In (1) the control of the switching between the two systems across Σ is instantaneous.
The modified hybrid Filippov systems we study are obtained by assuming that the
control function H is evaluated at discrete times kτ , k = 0, 1, 2, . . . , for some constant
τ > 0, and so the decision to change evolution equation can only occur at these
discrete times. Thus for k = 0, 1, 2, 3, . . . we define a discrete variable ik by

ik+1 =















1 if H(x(kτ), µ) > 0

2 if H(x(kτ), µ) < 0

ik if H(x(kτ), µ) = 0,

(4)

with i0 = 1 if H(x(0), µ) = 0 (arbitrarily chosen) so that i1 is always well defined,
and replace the evolution (1) by

ẋ(t) = Fik(x(t), µ) if (k − 1)τ ≤ t < kτ. (5)

Note that this system excludes the possibility of sliding motion, that is a motion
within the discontinuity set Σ.
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3 A simple example

3.1 Complex non-periodic motion

To highlight the main features of our findings we will investigate in detail a simple
planar example for which F1 is based on the normal form of the subcritical Hopf
bifurcation and F2 is constant. Set

F1 =







−αx − ωy + x(x2 + y2)

ωx− αy + y(x2 + y2)





 , F2 =







a

b





 , (6)

H(x) = x − µ, with H given at times kτ (k = 0, 1, 2, · · · ), where α, ω, a, b, µ
and τ are some chosen constants (system parameters), and x = (x, y)T is the state
vector. We will note here that the sliding segment of the Filippov system (6) with no
sampling applied terminates at the point xg = (µ, yg) which is where the solution of
F1 is tangential to the surface Σ (yg is close to 0 for α close to µ2). This implies that
ẋ = 0 at xg.

The vector field F1 is the normal form for a simple subcritical Hopf bifurcation, with
a stable focus at the origin and an unstable periodic orbit with radius

√
α if α > 0.

For appropriate choices of µ, a and b the vector field F2 can be used to create a stable
periodic orbit for the Filippov system (1) as shown in Figure 1(a). The stability is
derived from the fact that part of the cycle lies on Σ, and this segment of the orbit
is called a sliding segment [11]. This stable cycle may coexist with the unstable cycle
of the vector field F1.

Let x = ρ cos θ and y = ρ sin θ. We can then express vector field F1 in polar form as

F P
1 =







ρ(ρ2 − α)

ω





 .

Thus, we can obtain the closed form solution for the flow generated by F P
1 , say

φP
1 = φP

1 (ρ, θ). This closed form solution is given by

ρ(t) =

√

α

1 − (1 − αρ−2
0 ) exp 2αt

, θ(t) = θ0 + ωt, (7)
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(a)

−1 0 1

−1

0

1

x

y

(b)
−1 0 1

−1

0

1

x

y

Fig. 1. Asymptotic trajectories in Filippov system (6) without digital sampling (a), and
with digital sampling τ = 0.01 (b). Other parameters are set to ω = 15, α = 1, µ = 1.1.

where (ρ0, θ0) are the initial conditions. Note that for α > 0 there is a finite time
blow-up of the system, hence ω must be sufficiently large so that the system switches
before ρ diverges.

For all the following numerical computations we set ω = 15, α = 1. In this case
the vector field unstable limit cycle of F1 is centered at the origin and has radius
1. The vector field F2 is assumed constant; we set a = −1 and b = 1. Finally let
us set µ = 1.1 so that Σ does not intersect the unstable limit cycle of F1. For these
parameters (1) with vector fields given by (6) admits two limit cycles: the stable limit
cycle with sliding already referred to and the unstable cycle of F1.

Let us now increase the sampling time τ from 0 and investigate the dynamics of
(6) further. As Fig. 1(b) shows, there is an apparent thickening of the attractor:
the stable limit cycle no longer exists and we observe an onset of more complex
asymptotic dynamics. It turns out that this complex dynamics is chaotic and so
there is a transition from a stable orbit to a chaotic attractor due to an introduction
of the sampling process. This will be proven in the theoretical part of this section.

Let us determine the size of the attractor, measured as the distance from the largest
to smallest values which the attractor attains on a Poincaré section defined on a set
{y = 0,−1.3 < x < −1}.

3.2 Scaling

In Fig. 2 using the logarithmic scales we are depicting how the size of the attractor
scales against the sampling time τ. The dashed diagonal line refers to the linear
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Fig. 2. Size of the attractor versus the sampling time τ. The dashed line refers to theoretical
predictions of the size of the attractor.

(a)
1.099 1.1

0.01

0.02

0.03

x

y

(b)
1.08 1.1 1.12

0

0.04

0.08

x

y

Fig. 3. Zoom into the region where the flow φ1 leaves Σ tangentially, (a) for τ = 0.001 and
(b) for τ = 0.02. Other parameters are set to ω = 15, α = 1, µ = 1.1.

scaling proportional to τ times a coefficient. We can see that for small values of τ the
size of the attractor is proportional to τ but the increase in the value of the sampling
time τ above τ = 0.01 results in the growing discrepancy between the numerical curve
and the linear scaling. As it will be shown later for small values of τ the attractor is
bounded by the trajectory leaving Σ at xg which is not the case for larger values of
τ . This implies further that if we choose for a Poincaré section on which we measure
the width of the attractor a line segment that crosses Σ at xg along the x−coordinate
then the scaling should be directly proportional to τ for sufficiently small values of τ
i.e. the coefficient of proportionality would be 1.

However, the size of the attractor is measured on section {y = 0,−1.3 < x < −1}.
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Therefore, we have to determine the expansion of the attractor along the flow after
time π/ω which is the time required to map points from the neighborhood of point
xg onto our chosen Poincaré section. This expansion is captured by the non-trivial
Floquet multiplier of the fundamental solution matrix[12]. To find this multiplier we
use the explicit solutions of the differential equations that define F P

1 , namely we use
equation (7). After differentiating ρ(t) with respect to ρ0 we get

dρ

dρ0
=

exp(2t)ρ0

(
√

−ρ2
0/(exp(2t)ρ2

0 − exp(2t) − ρ2
0)(exp(2t)ρ2

0 − exp(2t) − ρ2
0)

2)
. (8)

We then substitute our numerical values of t and ρ0 into (8). Namely we set for

t = π/ω = π/15, and for ρ0 = 1.1. We find that dρ
dρ0

= 1.8084.

We should remark here that the choice of the Poincaré section along the x-axis implies
that the expansion along the radius ρ corresponds to the expansion along the x-axis
and we do not need to consider any corrections implied by the fact that we obtained
our multiplier using polar coordinates. However we should note that for our numerical
values the y component of xg is yg ≈ 0.0154 which implies that the angular distance
from the x-axis to reach x = yg-axis is arctan(0.0154/1.1) ≈ 0.014 ≪ π/ω ≈ 0.21.

Therefore, the error in dρ
dρ0

implied by the fact that we have to measure the expansion

from the x-axis back to the x-axis so that dρ
dρ0

= dx
dx0

is negligible. The dashed line in

Fig. 2 that corresponds to linear scaling has been obtained using this prediction. As
we mentioned before there is a good agreement between this graph and the numerical
scaling for small values of τ (τ < 0.01).

The numerical graph captures other effects such as resonances between the sampling
time τ and the rotation ω of the flow φ1 which produce local variations in the scaling
law visible in Fig. 2.

Before explaining where does the linear scaling come from and when does it fail let
us focus on Fig. 3. In Fig. 3(a) we zoom into the region in the neighborhood of point
xg for τ = 0.001. The dashed line in the figure denotes the trajectory generated by
F1 that starts at xg. Apparently this trajectory bounds the attractor to the right.
Moreover we note that furthest to the left where a trajectory generated by F2 can
reach along the x-coordinate on the level line y = yg is equal to µ − τ which in our
case is 1.099, and this is markedly visible in the figure. Increasing the value of τ leads
to the case that the trajectory starting at xg no longer bounds the attractor to the
right as it is visible in Fig. 3(b) (see the dashed trajectory). This suggests that it is
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G1 G2

τ xb

xg

xc

xp

Σ

Στ
F1

XB

Fig. 4. Schematic representation of the bounding region XB for small values of the sampling
time τ .

the bounding of the attractor to the right by the trajectory starting at xg that allows
for the linear scaling and when this fails also the linear scaling fails. Note that the
left bound µ − τ is directly proportional to τ . To see if this could be the mechanism
behind the observed scaling we consider a sufficiently small τ . Define Στ

F1
as the image

of Σ under the action of φ1 for time τ. Let xp ∈ Σ be the pre-image of the point at
which Στ

F1
crosses Σ in the neighborhood of xg as shown in Fig. 4. Define XB to

be the set of initial points x in the neighborhood of xg such that for any x ∈ XB a
trajectory generated by F1 evolves through xg.

For τ sufficiently small Στ
F1

is nearly tangent to Σ and there exists a point on Στ
F1

, say
xb, such that the trajectory starting at xb crosses Σ at some point xc below xp, and
the time of evolution from xb ∈ Στ

F1
to XB is τ (see Fig. 4). Therefore a trajectory

starting at xb must switch to φ1 on XB. It then follows that all trajectories rooted in
G1 below the line joining xb to Xb, after a finite number of switchings between flow
φ1 and φ2 must reach the region bounded by Σ, Στ

F1
, and the line segment joining xb

with XB.

Note that since xp lies above xc no trajectory generated solely by F1 can lie to the
right of XB – penetrate G2 and return to G1 without switching to φ2. Finally any
trajectory rooted at any point within the region bounded by Σ, Στ

F1
, and the line

segment joining xb with XB switches to the vector field F1 in a region to the left of
XB – the time of evolution from any point in this region to reach some point in G1

to the left of XB is less than τ. Hence the trajectories that reach this region must
leave it without being able to cross Στ

F1
. It then follows that for sufficiently small

τ, XB is a bounding set for the attractor. To find the bounding set to the left of Σ
we note that the set of points furthest to the left of Σ, which can be reached by a
trajectory generated by F2, has co-ordinates (µ − τ, y). This implies that along the
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x co-ordinate, in the neighborhood of xg, the difference between the largest and the
smallest values of x on the attractor is τ.

For larger values of the sampling time τ point xp might no longer lie above xc, and
there exist trajectories in the neighborhood of xg solely generated by F1 that lie to
the right of XB. In this case the difference between the largest and the smallest values
of x on the attractor is different from τ. Boundedness in the latter case will be proven
in the next section.

3.3 Boundedness

We will prove this in two parts. First we show that if τ > 0 is sufficiently small then
there is a compact set which solutions cannot leave, and hence which contains at least
one attractor. This part of the proof is based on showing monotonic crossing of the
local transversal by a trajectory, similarly as in the Poincaré- Bendixson Theorem
[13]. We present this argument in fairly general terms below so that the extension to
similar systems is clear. Second we show that any solution in this compact set (and
hence the attractor itself) has a positive Lyapunov exponent.

The compact invariant region is annular, and its inner boundary is the unstable cycle
of F1 with radius one. To begin the construction of the outer boundary, note that the
sliding segment of the (true) Filippov system terminates at the point xg = (µ, yg).
Now, let φt

1(u, v) denote the flow generated by F1, i.e. solutions of F1 at time t with
initial conditions (u, v). Define V to be the set of points (x, y) which can be reached
from a point (u, v) ∈ G1 ∪ Σ, with v ≥ −R within time τ, and whose trajectory
intersects G2 in time τ , namely

V = {(x1, x2) | (x1, x2) ∈ φτ
1(u, v) for some (u, v) ∈ G1 ∪ Σ

with v ≥ −R and φτ
1(u, v) ∩ G2 6= ∅}

(9)

where φt
i(u, v) is the solution at time t of the differential equation defined by Fi,

i = 1, 2, with initial condition (u, v).

Finally, let VR be the right hand boundary of V , i.e. (u, v) ∈ VR such that if (u′, v) ∈ V
then u ≥ u′. VR is the time τ image of points on Σ but close to xg this might not be
the case. VR therefore represents a boundary which no orbit which starts in G1 above
−R can cross within time τ under the flow φ1. The choice of R is determined by later
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(a)
x̂

x̄

µ − τ

(u, −R)

Σ

x̃

xg

VR UR

(b)

x̂
x′

x̄

µ − τ

(u, −R)

Σ
x̃

xg

VR
UR

Fig. 5. Schematic representation of the bounding regions along Σ and the boundaries UR

and VR in the case (a) when ŷ > ỹ, and (b) ŷ < ỹ.

considerations, it needs to be large enough to allow the argument to close up below
– numerical experiments show that R = 2 is sufficiently large here.

Now consider the effect of the flow generated by F2 to points in G2 to the left of VR.
The trajectories are straight lines with slope −1, and as ẏ = −1 the furthest to the
left that an orbit from G2 can reach in time τ has x = µ − τ . Let U be the union of
VR and the set of points on straight lines of slope −1 from (u, v) ∈ VR with u > µ− τ
to µ − τ . Finally let UR be the right hand boundary of U . Note that UR must be
connected.

To summarise: by construction, in time τ , no solution of F1 above the line y = −R
can move to the right of VR (which is on the left of UR or equal to it at places), and
under F2 all such orbits remain to the left of UR until they return to G1.

Let ȳ be the highest point in UR with x̄ = µ and ỹ the highest point in UR with
x̃ = µ − τ . Let x̂ be the first intersection of the solution of F1 through x̄ with
x̂ = µ − τ .

If ŷ > ỹ then the outer boundary of the bounding region is the trajectory through x̂

under F1 until it hits VR for the first time (see Figure 5(a)), a vertical line segment
from VR to UR, and then UR back to x̄. Note that this requires R to be large enough
so that the trajectory does hit VR. If not then a larger R needs to be chosen.

If ŷ < ỹ let x′ be the first preimage of x̃ on Σ under F1, and note that y′ will lie
above ȳ. Then the outer boundary of the bounding region is the trajectory through
x′ under F1 until it hits VR for the first time, a vertical line segment from VR to UR,
and then UR back to x̃ (see Figure 5(b)). As before R needs to be large enough for
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the connections to work.

In either case we will have created a compact region which no trajectory can exit
from, and hence the annular region contains at least one attractor. Note that in the
current case we are not able to predict how the size of the attractor scales with respect
to the sampling time τ .

3.4 Positive Lyapunov exponent

In the following section we will show that, in the situation when the trajectories
around the sliding cycle (the sliding cycle existing for τ = 0) are bounded for τ > 0,
the Lyapunov exponent along the flow is positive. Let us assume α > 0. We then
consider trajectories evolving in a bounded region, say D, where D is a set of points
in some sufficiently small neighbourhood of xg. We define D as an interior of a region
bounded by {x − µ + τ = 0}, and {(x, y) ∈ R

2, t ∈ (−t1, t2) : φ1(xg, t)}, where ti
(i = 1, 2) are positive and are the times required to reach {x−µ+ τ = 0} from xg in
forward and backward time by following flow φ1, which is the flow generated by F1,
see Fig. 6. Note that D is the region that must be visited by the chaotic trajectory
every time it leaves the zig-zag part of the motion along Σ when τ is sufficiently small,
as we explained in Sec. 3.2. Each return of the trajectory from D back to D is made
up of a section from (x0, y0) at lift-off with x < µ back to (x1, y1) at x = µ and on for
time t ∈ (0, τ ] to (x2, y2) with x2 > µ, then a zig-zag of sections each generated for a
length of time O(τ), with points with even indices to the right of Σ and odd indices
on the left, until we get back on the left for a further lift-off at (x′

0, y
′

0). The time to
get from any point in D to the first intersection with Σ at (x1, y1) is t0 ≈ O(π/ω) (t0
is large comparatively to the time spent by the flow to follow each zig-zag segment).
Let us suppose that the number of switchings between φ1 and φ2, and vice versa, to
reach (x′

0, y′

0) from (x0, y0) is an odd number.

We wish to determine the average behavior of state vectors from region D in the
tangent space of the phase space, under the action of (6). This can be done by
obtaining the linearized map that maps all points in D back to itself. The logarithms
of the eigenvalues of the linear map so obtained correspond to Lyapunov exponents.
We will show that one of these Lyapunov exponents is positive.

To obtain the linearized map we can solve for the flow φP
1 (solution of F1 given in polar

co-ordinates) and expand the solution for ρ(t) about ρ0 where ρ0 is the initial radius
from the origin to some point in D. We should note here that we consider cartesian
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τ Σ

D

Στ
F1

xg

(x0, y0)

(x1, y1)
(x2, y2)

(x3, y3)

(x4, y4)

(x′

0
, y′

0
)

Fig. 6. Schematic representation of the segments of trajectories which built a map that
maps region D onto itself

and polar coordinate sets. Therefore we need to consider how vectors (xT , yT ) which
live in the tangent space of vectors (x, y) transform onto vectors (ρT , θT ) which live
in the tangent space of vectors (ρ, θ). Namely







xT

yT





 =







cos θ −ρ sin θ

sin θ ρ cos θ













ρT

θT





 , (10)







ρT

θT





 =











x
√

x2 + y2

y
√

x2 + y2

− y
x2 + y2

x
x2 + y2

















xT

yT





 . (11)

Let PC be the transformation matrix of (10) and CP the transformation matrix of
(11). Namely

PC =







cos θ −ρ sin θ

sin θ ρ cos θ





 , CP =











x
√

x2 + y2

y
√

x2 + y2

− y
x2 + y2

x
x2 + y2











.

Therefore, as we consider map D 7→ D, and D is given in the cartesian setting,
we first have to use (11) to account for the transformation of the tangent space at
(x0, y0) to the corresponding tangent space at (ρ0, θ0). We then consider a map
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(ρ0, θ0) 7→ (ρ1, θ1) which linearization is given by the linear term of the expansions
for ρ(t) and θ(t) about (ρ0, θ0) for the initial segment of the trajectory. Using (7) we
can show that the ρ component of this linearization is given by

f0(t0, ρ0) exp(2αt0) (12)

with f0(0, ρ0) = 1; f0 is monotonically increasing for increasing time t0 and it is given
by

fo =
α2

√

α(1 − (1 − αρ−2
0 )exp(2αt0))−1(1 − (1 − αρ−2

0 )exp(2αt0))2ρ3
0

. (13)

Similarly we can obtain the linearized coefficient for the expansion of θ(t) about the
initial angle θ0. This coefficient is 1. Since in polar coordinates both state variables
are decoupled we can now write the transformation matrix for the linearized map
(ρ0, θ0) 7→ (ρ1, θ1), which is equivalent to finding the monodromy matrix, say M0,
corresponding to the action of flow φP

1 for time t0. It has the diagonal form, and it is
given by

M0 =







f0(t0, ρ0) exp(2αt0) 0

0 1





 .

In the next step we map (ρ1, θ1) 7→ (ρ2, θ2). Since we follow φP
1 the new monodromy

matrix, say M1, is given by

M1 =







f1(t1, ρ1) exp(2αt1) 0

0 1





 .

Similarly as for f0, f1(0, ρ1) = 1 and f1 is monotonically increasing in t1. The func-
tional expression for f1 is the same as for f0 (see equation (13)) with ρ0 replaced by
ρ1, and t0 replaced by t1.

At this point, that is at (ρ2, θ2) a switching to F2 occurs. Hence we have to obtain
the monodromy matrix for the flow generated by vector field F2. Considering the
cartesian coordinate set (x2, y2) 7→ (x3, y3) is pure translation. Thus, the identity
matrix corresponds to the linear part of the map. In other words the monodromy
matrix corresponding to flow φ2 is given by

MF2
=







1 0

0 1





 .
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Note, however, that MF2
corresponds to the monodromy matrix of φ2 in the carte-

sian coordinates. Thus we have to map (ρ2, θ2) 7→ (x2, y2) to be able to use MF2
.

This transformation is given by (10). After the application of the translation map
(x2, y2) 7→ (x3, y3) we have to return to polar coordinates by means of transforma-
tion (11). To obtain the final map we have to proceed with applications of linear
transformation corresponding to the evolution using flow φP

1 , then apply transforma-
tion (10) following by the translation (which corresponds to the action of φ2 for some
small time O(miτ) where mi is a positive integer depending on the segment index i),
and then again apply transformation (11). This sequence has to be repeated until we
get mapped onto D.

To show that the linearized map is indeed characterized by a positive Lyapunov
exponent what we need is the determinant of the product of Mi (i = 0, 1, 2, 3, · · · )
and of the transformation matrices CP and PC. Let us call this matrix product by
M .

Consider now the segment from (x0, y0) to (x2, y2). Let M01 be the monodromy
matrix referring to this segment. Then det(M01) is given by the product of the de-
terminant of (11) which is 1/ρ0, multiplied by (13) and ρ2, where ρ2 is given by (7).
Taking this product and simplifying the resulting expression gives

det(M01) =
α2exp(2αt)

(ρ2
0 − exp(2αt)(ρ2

0 − α))2
, (14)

where t = t0 + t1. Note that M01 is a matrix product of PCM1MOCP . To obtain the
determinant of the full matrix M we calculate the products of Mi (that correspond to
segments generated by φP

1 ) together with the transformation matrices. Assume that
the number of segments generated by F1 to map (x0, y0) 7→ (x′

0, y′

0) is N1. Then we
use (14) with ρi and ti for i = 3, 5, 7 · · ·2N1−1 for the remaining segments generated
by φP

1 . Thus

det(M) =
α2exp(2αt0 + t1)

(ρ2
0 − exp(2αt0 + t1)(ρ2

0 − α))2
Π2N1−1

i=2k+1

α2exp(2αti)

(ρ2
i − exp(2αti)(ρ2

i − α))2
, (15)

for k = 1, 2, 3 · · · .

We now need to determine if det(M) > 1. We can write

α2

(ρ2
0 − exp(2αt0 + t1)(ρ2

0 − α))2
=

1

(ρ2
0/α − exp(2αt0 + t1)(ρ2

0/α − 1))2
≥ 1.

Note that if t0 + t1 = 0 the above coefficient is 1 and for increasing times it is
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monotonically increasing. Since we assumed ω large enough and hence t0 + t1 must
be such that this coefficient is bounded. Similarly

α2

(ρ2
i − exp(2αti)(ρ

2
i − α))2

=
1

(ρ2
i /α − exp(2αti)(ρ

2
i /α − 1))2

≥ 1

for i = 3, 5, 7 · · ·2N1 − 1. Therefore det(M) > 1 since t0 + t1 and ti (for i =
3, 5, 7 · · ·2N1 − 1) are positive. Now, let λ1, and λ2 be the eigenvalues of M. Then,
det(M) = λ1λ2 > 1, and both λ1, λ2 must be either positive or negative, and the
modulus of at least one of the eigenvalues must be greater than 1. Let λ1 be the
eigenvalue with the larger modulus. Then the Lyapunov exponent that corresponds
to this eigenvalue is given by

λExp
1 =

1

t0 +
2N1−1
∑

i=2k−1

ti + t̄

ln|λ1| > 0,

for k = 1, 2, 3, · · · where t̄ is the total time of evolution following φ2 and t̄ ≈ O(m̃τ)
where m̃ is a positive integer corresponding to the total number of segments generated
by F2 along the zig-zag motion.
Remark

We should remark here that to obtain the Lyapunov exponents we should evaluate
the flow for the time t → ∞. However, in the current case, for sufficiently small τ the
variations of the affine map D 7→ D, and hence the variations of monodromy matrix
M can be considered negligible for all points in D.

3.5 Alternative calculation of the determinant

From standard theory the determinant of a monodromy matrix, say Φ, along the flow
f is given by

det(Φ) = exp
(∫ t

0
∇.f ds

)

. (16)

Of course, the divergence of the constant vector field is zero, so in our case the only
contribution is from the vector field to the left of Σ. Applying the nabla operator to
F1 given by (6) yields

∇.f = −2α + 4(x2 + y2) = −2α + 4ρ2 (17)
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where ρ =
√

x2 + y2. Indeed, as we have mentioned before, in polar coordinates (6)
becomes

ρ̇ = −αρ + ρ3

θ̇ = ω
(18)

These equations are easily integrated with initial conditions (ρ0, θ0): θ = θ0 + ωt and

ρ2 =
α

1 − Ae2αt
= α

(

1 +
A exp(2αt)

1 − A exp(2at)

)

(19)

for ρ2
0 > α with A =

ρ2
0 − α
ρ2

0

< 1. From (19) and (17), whilst ρ remains finite and to

the left of Σ

∫ t

0
∇.f ds = 2 (αt − ln(1 − A exp(2αt)))+2 ln(1−A) = 2αt+2 ln

(

1 − A

1 − A exp(2αt)

)

.

(20)
The assumption that ρ does not blow up implies A exp(2αt) < 1, and so there is a
positive contribution from the logarithmic term and hence

∫ t

0
∇.f ds > 2αt. (21)

Let us rewrite (20) using (16), thus we obtain

det(Φ) =
α2

(ρ2
0 − (ρ2

0 − α) exp(2αt))2
exp(2αt)

which is the same functional expression as (14).

Now suppose that a total time T is taken from (x0, y0) to (x′

0, y
′

0), with a passage
of time t0 + t1 from (x0, y0) to (x2, y2) and then N1 − 1 segments each for the time
ti = niτ (with ni being a positive integer depending on the index i of the short
segment) using (6) in the zig-zag part. Then the determinant along the flow from D
back to D, say det(Φ)T , is the product

det(Φ)T =
α2exp(2αt0 + t1)

(ρ2
0 − (ρ2

0 − α) exp(2αt0 + t1))2
Π2N1−1

i=2k+1

α2exp(2αti)

(ρ2
i − (ρ2 − α) exp(2αti))2

where k = 1, 2, 3, · · · . Therefore, we obtained precisely the same functional expres-
sion for the full determinant as in the previous case (cf equation (15)).
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Using (15) we calculated the determinant det(Φ)T of system (6) using parameter
values as set in Sec. 3, with τ = 0.001. Setting the initial conditions to x0 =
[1.0999; 0.01542] we find det(Φ)T = 4.1016. Variations of the initial conditions in the
neighborhood of the grazing point xg = [1.1; 0.01542], implies variations of det(Φ)T .
For instance for x0 = [1.0995; 0] we find det(Φ)T = 4.1052, and for x0 = [1.0999; 0.001]
det(Φ)T = 4.1158. Clearly, variations in the initial conditions of the order even greater
than τ = 0.001 do not significantly change the determinant and hence the existence
of positive Lyapunov exponent is confirmed by our simple numerical experiment.

4 Generalisation: planar case

4.1 Boundedness

In this section we will consider general conditions on (1) defined by vector fields
Fi : R

2 → R
2 (we suppress parameter dependance for the clarity of notation), i = 1, 2,

with switching surface

H(x) = xg − x (22)

for some constant xg, which ensure that the digitally sampled system (6) has bounded
solutions. So F1 applies if x < xg and F2 applies if x > xg; a more general switching
surface can be considered by change of variable. We are interested in the existence of a
bounded region for sufficiently small τ > 0. We begin by making a number of assump-
tions to specify the properties of the system we require, with the notation that πx is
the projection onto the x−coordinate and πy the projection onto the y−coordinate,
so πx(X, Y ) = X and πy(X, Y ) = Y . As usual φi(x, y, t) denotes the solution at time
t of the differential equation with vector field Fi and initial conditions (x, y).

(A1) There exist M ′, N ′ > 0 such that if −M ′ < y < N ′ then

πxF1(xg, y)



























> 0 if y < 0

= 0 if y = 0

< 0 if y > 0

, (23)

and

πxF2(xg, y) < 0, πyF2(xg, y) > 0, and πyF1(xg, y) > 0. (24)
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This has the immediate consequence (by continuity) that for all ǫ > 0 sufficiently
small, there exist strictly positive numbers M and N , mi and ni (i = 0, 1, 2) depending
on ǫ such that for all points in the closed strip

Lǫ = {(x, y) | − M ≤ y ≤ N, |x − xg| < ǫ} (25)

we have
−m0 < πxF1(x, y) < m2, n0 < πyF1(x, y) < n1 (26)

and
m1 < −πxF2(x, y) < m2, n3 < πyF2(x, y) < n2. (27)

Moreover,
πxF1(x, N) < 0, |x − xg| < ǫ. (28)

(A2) There exists T > 0 such that

πxφ1(xg, 0, T ) = xg, πyφ1(xg, 0, T ) < 0 (29)

with πxφ1(xg, 0, t) < xg for 0 < t < T . Moreover, for all ǫ > 0 sufficiently small,
there exist η1 and η2 such that πxφ1(xg, 0, η1) = πxφ1(xg, 0, T − η2) = xg − ǫ and
πxφ1(xg, 0, t) < xg − ǫ for the non-empty set η1 < t < T − η2.

Note that assumptions (A1) and (A2) imply that there is a sliding orbit for the
switched system (1) consisting of φ1(xg, 0, t), 0 ≤ t < T and the passage along x = xg

from φ1(xg, 0, T ) back to (xg, 0).

Once again continuity has some simple consequences: there exists ǫc > 0 such that
for all ǫ ∈ (0, ǫc] and all y in a sufficiently small neighbourhood Vǫ of zero, if |ǫi| ≤ ǫ,
i = 1, 2, then there exist positive functions T0(y, ǫ1, ǫ2) taking values close to T such
that

πxφ1(xg + ǫ1, y, T0) = xg + ǫ2. (30)

The specification that T0 is close to T is a somewhat informal way of specifying that
the solution φ1(xg + ǫi, y, t) with 0 ≤ t ≤ T0 leaves a strip close to x = xg and then
re-enters it having gone once round a loop close to the orbit of (A2).

Combining this remark with the consequences of (A1) we see that there is ǫ0 > 0
such that Lǫ0 can be chosen, reducing N if necessary, so that

Lǫ0 ∩ {y ≥ 0} ⊂ Vǫ0, (31)
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i.e. all trajectories started in Lǫ0 close to (xg, 0) with y ≥ 0 eventually return to Lǫ0

below y = 0. Clearly, if 0 < ǫ < ǫ0 then Lǫ will also satisfy (31).

Our final assumption ensures that the surface with πxF1(x, y) = 0 is well behaved
near (xg, 0).

(A3) The partial derivative of πxF1(x, y) with respect to y is non-vanishing at
(xg, 0):

∂(πxF1)

∂y
(xg, 0) = A 6= 0. (32)

An immediate consequence of the Implicit Function Theorem is that if

B =
∂(πxF1)

∂x
(xg, 0)

then there is a unique continuously differentiable local solution y = g(x) to the
equation πxF1(x, y) = 0 with g(xg) = 0, and

y ∼ −B

A
(x − xg).

The geometry established by the arguments above is shown in Figure 7, which is
enough to prove bounded motion close to the sliding orbit in the digitally sampled
system of our interest for all sufficiently small τ > 0. The region is constructed as
follows.

For ǫ > 0 sufficiently small, and τ > 0 sufficiently small let

g1 = ym, g2 = g(xg − ǫ), (33)

where ym is defined by the right hand side of (34), and define D to be the annular
region bounded by the curves (in the notation of the discussion above, in particular
(30))

φ1(xg + ǫ, g1, t), 0 ≤ t ≤ T0(g1, ǫ, ǫ),

φ1(xg − ǫ, g2, t), 0 ≤ t ≤ T0(g2,−ǫ,−ǫ),

x = xg + ǫ, πyφ1(xg + ǫ, g1, T0(g1, ǫ, ǫ)) ≤ y ≤ g1,

x = xg − ǫ, πyφ1(xg − ǫ, g2, T0(g2,−ǫ,−ǫ)) ≤ y ≤ g2.
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Fig. 7. Bounded annular region in general planar Filippov type systems with digital sampling

Proposition 1 Suppose that a digitally sampled system (6) satisfies (A1)-(A3). Then
there exist ǫ > 0 such that for all τ > 0 sufficiently small, if a solution starts in D
with x < xg − ǫ, then it will stay in D for all future times.

Proof: Fix ǫ0 so that Lǫ0 satisfies (31) and the constants of (26) and (27) are fixed.
For ǫ < ǫ0, consider a solution started in Lǫ with y < 0 and xg − ǫ < x < xg. After
time τ (A1) implies using (26) that y < n1τ . If the solution is then in x > xg, it will
have returned to x < xg after at most a further ⌈ǫ/(m1τ)⌉ τ -time steps by (27), i.e.
it will have

y < ym = n1τ + n2

⌈

ǫ

m1τ

⌉

τ. (34)

Choose ǫ such that for all τ > 0 sufficiently small the points (x, ym) with |x−xg| < ǫ
are in Lǫ0 and

m2τ < ǫ (35)

with m2 defined in (26) and (27).

If a solution starts in D with x < xg − ǫ then it will move around the annulus until
it enters x > xg and starts moving up inside the cylinder |x − xg| < ǫ. Note that by
(35) it overshoots x = xg by at most ǫ in either direction.

Now suppose that at time nτ a solution is at (x0, y0) inside the annular region D with
y0 < 0 and |x − xg| < ǫ. Then since the defining equations are time independent, we
may reset time to t = 0.

If x0 ≥ xg and the flow is defined by F2, it will be upwards and to the left. Let m1τ be
the first time φ2(x0, y0, kτ) lies in x < xg for integer k > 0. By (35) πxφ2(x0, y0, m1τ) >
xg − ǫ, and the solution curve φ2(x0, y0, t), 0 < t < kτ , certainly enters x < xg after
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no greater than ⌈ǫ/m1τ⌉τ−time steps and hence has y < n2⌈ǫ/m1τ⌉τ , cf (34). Thus
it lies below the upper boundary of D. Thus either φ2(x0, y0, kτ) is in D with x < xg

and y < 0, or it is in D with x < xg and y ≥ 0. In both cases the next part of the
flow is under F1.

Let us focus first on the latter case and consider a trajectory starting in D with xg−ǫ <
x < xg and y ≥ 0 but below φ1(xg + ǫ, g1, t). The solution is thus trapped either
between φ1(xg − ǫ, g2, t) and φ1(xg, 0, t) or φ1(xg, 0, t) and φ1(xg + ǫ, g1, t) (together,
possibly, with part of the line x = xg − ǫ in x > 0 which trajectories cross in the
direction of decreasing x) until such time as it re-enters x > xg with y < g(x) and
x < xg + ǫ by (35) again. For the whole of this passage it is, by definition, in D and
hence at the end of this passage (an integer multiple of τ later), we have x ≥ xg,
y < 0, and the flow defined by F2 again.

Now suppose the solution starts at (x0, y0) in x ≤ xg with y < 0. Let n be the smallest
positive integer such that either φ1(x0, y0, nτ, ) has x ≤ xg − ǫ or x > xg (note that n
exists by the geometry of D). There are three cases.

If φ1(x0, y0, nτ, ) has x > xg and y < 0 then since x < xg + ǫ by (35) and y > y0 it
lies in D. Hence after relabelling the origin of time it is a case discussed earlier.

If (x′, y′) = φ1(x0, y0, nτ) has x′ > xg and y′ > 0 then note that φ1(x0, y0, (n−1)τ) still
has x ≤ xg, as if this were not the case, the trajectory would leave the strip without
entering x > xg. Hence y′ < n1τ and so by (34) the next portion of trajectory under
F1 will lie below φ1(xg + ǫ, g1, t) with xg − ǫ ≤ x ≤ xg, and this has already been
discussed.

The final possibility is that φ1(x0, y0, nτ, ) has x ≤ xg−ǫ, in which case it lies between
φ1(xg + ǫ, g1, t) and φ1(xg − ǫ, g2, t) and the argument already made ensures that the
solution remains in D and eventually has x > xg with y < 0 at an integer multiple of
τ .

4.2 The estimate of the time of evolution along the switching line Σ

In the following section we will estimate the times of evolution of the zig-zag part
of the trajectory along the switching line Σ assuming that the discretization time
τ is sufficiently small. Thus, we will approximate F1 and F2 using constant vector
fields for x living in some sufficiently small neighborhood of a point on Σ. Using two-
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segments zig-zag part of the trajectory, one segment generated by F1 and the second
one by F2 we will obtain a vector field, say F̄ , that we will use to approximate the
evolution of the system ignoring the presence of switchings. Let us first denote the
constant approximations of F1 and F2 by F̄1 and F̄2 respectively. Let

F̄1 =







a1

b1





 , F̄2 =







a2

b2





 ,

where a1, b1, a2 and b2 are constants depending on x. In our case, on Σ, within the
region of interest a1 > 0, and a2 < 0.

Let t1 = nτ , t2 = mτ be the times of evolution of a segment generated by F̄1 and
F̄2 respectively, and n, m be positive integers. Then the approximate position vector
that gives the position of a trajectory ignoring the presence of a switch can be given
by s̄ = F̄1t1 + F̄2t2, and the velocity vector corresponding to s̄, say F̄ , is then given
by

F̄ =
s̄

t1 + t2
= F̄1

t1
t1 + t2

+ F̄2
t2

t1 + t2
.

Given α = t1
t1 + t2

we can write F̄ = F̄1α+ F̄2(1−α). Let (x0, y0) be the initial point

of the two-segment zig-zag trajectory which we are considering. Define (xL
0 , yL

0 ) as
a point sufficiently close to (x0, y0) such that xΣ

0 = a1nτ + xL
0 ∈ Σ, and (xU

0 , yU
0 )

as a point sufficiently close to (x0, y0) such that x̃Σ
0 = a1(n − 1)τ + xU

0 ∈ Σ. Thus
any point in a sufficiently small neighborhood of (x0, y0) with x0 ∈ (xL

0 , xU
0 ) crosses

Σ within time τ . Let us assume without loss of generality that |a1| > |a2| (we will
treat the case |a2| > |a1| later, in the equivalent fashion). This implies that n = 1
since the furthest distance from the switching surface along the x-axis which can be
reached be vector field F̄2 has the magnitude |a2|τ and this distance is covered by a
trajectory generated by F̄1 within time τ (considering sufficiently small neighborhood
of (x0, y0)). Therefore, we can assume without loss of generality that t1 = τ , t2 = mτ ,
and hence

α =
τ

τ + mτ
. (36)

We now need to estimate m. Note that the distance covered by the trajectory following
φ1 within time τ is |a1|τ which is approximately equal to the distance covered by the
trajectory following F2 in m steps. Therefore, we can write

|a1|τ + ∆x = mτ |a2|, (37)

where ∆x ∈ [0, τ |a2|], and m =
⌈ |a1|
|a2|

⌉

. In view of (37) we can approximate the integer
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m in (36) by a number |a1|/|a2|. This is justifiable for sufficiently small τ since then
∆x is small. This gives

α̂ =
1

1 + |a1|/|a2|
, (38)

and the vector field F̂ which approximates F̄ can be given as

F̂ = α̂F̄1 + (1 − α̂)F̄2.

Note that in the current case the point furthest to the left of Σ is |a2|τ distance away
from Σ.

Let us now consider the case when |a2| > |a1|. In this case m = 1 and

n|a1|τ = τ |a2| + ∆x

with ∆x ∈ [0, τ |a1|], n =
⌈ |a2|
|a1|

⌉

. Again, approximating n by n̂ = |a2|/|a1| gives

α̂ =
|a2|/|a1|τ

|a2|/|a1|τ + τ
=

1

1 + |a1|/|a2|

which is the same expression as (38). Note that in either case for τ → 0 ∆x → 0 and
the error of our approximation tends to 0. Moreover the relative error between α and
α̂ is small provided that a1 and a2 are of different orders.

Let us now compare expression (38) with an expression for α obtained in the case
when τ = 0 and the system follows sliding motion. In that case the sliding vec-
tor field is given by (3) and the parameter corresponding to α is αs ∈ [0, 1], and

αs =
〈HxF2〉

〈Hx(F2 − F1)〉 , where Hx is the vector normal to Σ. Clearly in our case

αs = a2
a2 − a1

= 1
1 − a1/a2

. Throughout sliding region, where Fs applies, a1 > 0

and a2 < 0, thus we obtain αs = 1
1 + |a1|/|a2| which is the same expression as (38).

Therefore, the sliding vector field is a natural approximation of the zig-zag evolution
along Σ and in the limit τ → 0 both vector field Fs and F̂ coincide.

We can then approximate the time of evolution following the zig-zag paths along Σ
ignoring the switching by the integral

T S =
∫ y2

y1

〈F̄ds〉,
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where 〈, 〉 denotes the dot product, ds is a vector along Σ, and the integral is pa-
rameterized by the y component of the state vector x. The boundaries of integration
are values of the y component of the state vector at the first crossing with Σ, when
the zig-zag trajectory starts, and the last crossing with Σ when the zig-zag trajectory
ends.

We can further approximate the time of evolution along the zig-zag part of the tra-
jectory spend by following vector field F2 using (38). If |a1| is in average twice as
large as |a2| along Σ then α̂ = 1/3. This implies further that 2/3 of the time T s is
generated by vector field F2. Thus by considering different relations between a1 and
a2 we can estimate the maximum time of evolution along the zig-zag part of the tra-
jectory generated by F2. Let us call by RF the coefficient that describes the average
ratio of |a1|/|a2| for x ∈ Σ. Therefore, the time spend evolving along Σ using vector
field F2 can be approximated by

tF2
= RF

∫ y2

y1

〈F̄ds〉. (39)

where RF ∈ (0, 1). Using (16) we can then determine, in the case of general vector
fields F1 and F2, if the determinant along the two flows can be greater than one and
hence determine if a general switched planar system is characterized by a positive
Lyapunov exponent. Namely, assuming that vector field F1 is characterized by a
positive expansion rate, the amount of contraction that can be introduced into the
system that allows to preserve the existence of chaotic behavior depends on the time of
evolution using contracting flow which would be flow φ2. The contraction is measured
by the determinant

exp
(∫ tF2

0
∇.F2dt

)

.

Therefore, if the product

exp
(∫ t

0
∇.F1dt

)

exp
(∫ tF2

0
∇.F2dt

)

is greater than 1 the existence of a positive Lyapunov exponent along the trajectory is
guaranteed (t is the average time of evolution using the expanding vector field under
the recurring motion).
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5 Higher-dimensional systems

We believe that the behaviour observed in our two dimensional example is typical not
only for planar systems, but also for n-dimensional Filippov type systems with sliding
motion and digital sampling. In this section we will present numerical investigations
of a third order-relay feedback system without and with the digital sampling. We
will describe numerical findings for two cases. In the first case the self-sustained
periodic oscillations are preserved under the introduction of the digital sampling and
in the second case the introduction of the digital sampling induces chaotic oscillations.
Detailed analysis of this system will be presented elsewhere. Here, we only wish to
stress that the mechanism leading to the onset of chaos from periodic orbits due to an
introduction of digitization, uncovered for planar systems, is also observed in higher-
dimensions and applies to a wide range of systems in relevance to applications. The
relay feedback system under investigation that we consider has the following state
space representation

ẋ = Ax + Bu, y = Cx, u = −sgny, (40)

where

A =















−(2ζω + λ) 1 0

−(2ζωλ + ω2) 0 1

−λω2 0 0















, B =















k

2kσρ

kρ2















, x =















x1

x2

x2















, C =















1

0

0















T

.

(41)
The switching surface is given by {y = Cx = x1 = 0} and vector field F1 = Ax − B,
and F2 = Ax+B. System (40) is given in so-called observer canonical form [14]. The
dynamics of (40) has been extensively studied in [15]. There, stable self-sustained
oscillations as well as chaotic dynamics have been observed.

We will modify (40) by introducing the digital sampling of the control variable y
similarly to the planar case. Namely the switchings between vector fields F1 and F2

will occur at nτ time instances when y(nτ) changes its sign (n is a positive integer).
Let us consider the following parameters: ζ = 0.1, ω = 1, k = 1, σ = −1, and
ρ = 0.4. As depicted in Fig. 8(a) at these parameter values the system exhibits
symmetric limit cycles with a segment of sliding motion (see Fig. 9(a) for a zoom
into the region along the switching surface Σ where sliding takes place). We will then
introduce the sampling time τ to the output variable y. Introduction of the positive
sampling, in this case, does not appear to lead to the onset of chaotic dynamics. As
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Fig. 8. Periodic orbit of system (40) (a) with a segment of sliding when no digital sampling
is applied to the system, and (b) with digital sampling τ = 0.005. Other parameters are set
to ζ = 0.1, ω = 1, k = 1, σ = −1, and ρ = 0.4.

depicted in Fig. 8(b), for τ = 0.005, a periodic orbit is preserved with the difference
being the destruction of the sliding segment. Instead of sliding the system exhibits a
switching along Σ (compare figures Fig. 9 (a) and (b)).

Let us now decrease ζ , and ρ in system (40), when no digital sampling is applied. As
depicted in Fig. 10(a) for ζ = −0.07, ω = 1, k = 1, σ = −1, and ρ = 0.05 the system
still exhibits stable periodic oscillations with sliding. Let us now introduce digital
sampling. This time we observe apparent thickening of the attractor. The observed
attractor is a chaotic attractor. In Fig. 10(b) we depict the attractor born under after
we increased τ to τ = 0.005. Notice that the eigenvalues of the characteristic equation
of matrix A are µ1, 2 = −ζω±√

ζ2 − 1, µ3 = −λ. Therefore, for ζ negative we observe
an expansion of a volume of phase space along the flow. This will lead to the existence
of a positive Lyapunov exponent along the attractor which can be shown using the
method presented in Sec. 3.4 and by considering the cartesian setting.

A more detailed description of the multi-dimensional case will be presented elsewhere,
but the important message from this example is that if the F1 component of a stable
sliding orbit is sufficiently unstable then we appear to observe the same effect as was
detailed for the planar case earlier.
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Fig. 9. Zoom into the segment of periodic orbit from figure 8 along the switching line when
no sampling is applied (a), and with digital sampling τ = 0.005 (b). Note that the sliding
part of the trajectory is destroyed.
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Fig. 10. Periodic orbit of system (40) (a) with a segment of sliding when no digital sampling
is applied to the system, and (b) with digital sampling τ = 0.005. Other parameters are set
to ζ = −0.07, ω = 1, k = 1, σ = −1, and ρ = 0.05.

6 Conclusions

In the paper we study Filippov type systems with digital sampling. It is shown that
digital sampling may lead to the onset of chaotic dynamics. A simple example is
studied in detail to reveal the mechanism leading to chaotic dynamics. The existence
of at least one chaotic attractor is proved rigorously, but we have not excluded the
possibility that other attractors exist. Thus uniqueness (or topological transitivity)
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of the attractor in the bounded region is still an open problem. We conjecture that
the chaotic attractor is indeed unique.

It is shown that the size of the chaotic attractor, measured as the distance between
the chaotic attractor and a stable cycle of continuously sampled orbit is linear for
sufficiently small values of the sampling time τ . The results are generalized to planar
Filippov type systems with digital sampling. Using planar systems we also show
that in the limit when the sampling time τ → 0, the Filippov’s method that gives
the sliding flow of continuously sampled system, converges to the vector field of the
discretely sampled system. This result can then be used to approximate the time of
evolution along the switching surface which in turn can be utilized to determine if
the expansion/contruction due to the zig-zag evolution along the switching surface
can qualitatively alter system dynamics.

Based on our finding we believe that analyzed dynamics will also occur in n-dimensional
Filippov type systems when the variable that determines switching between differ-
ent vector fields is sampled at discrete time intervals. To justify this conjecture we
investigate a third order relay feedback system and introduce digital sampling to
continuously sampled control variable. It turns out that, indeed, in certain instances
we observe a transition from a stable orbit with a segment of sliding motion, existing
in a continuously sampled system, to a chaotic attractor of digitally sampled system.
Two scenarios are considered. In the first case the introduction of digital sampling
destroys the sliding segment – instead of the sliding flow the system switches along
the switching surface until it leaves off the switching plane. In the second case the
introduction of digital sampling leads to the creation of chaotic dynamics.

It was shown in [16] that discrete control typically creates a chaotic attractor in the
vicinity of unstable equilibrium. There are certain similarities that lead to the onset
of chaos in our case and in the case investigated in [16]. In our case we deal with
periodic orbits and if we wish to stabilize an unstable orbit that might correspond
to some desired oscillatory behavior of a control system the application of the digital
control may quite likely lead to the creation of chaotic orbit whereas control provided
in continuous time will lead to a stable orbit with a segment of sliding. In [16] it is
claimed that artificial neural networks with reinforcement learning are known to be
able to learn such a control scheme. It would be interesting to investigate further
the link between our findings and neural networks with reinforcement learning. We
should also mention that the onset of chaotic dynamics triggered by this mechanism is
similar to an abrupt transition from a stable periodic orbit with sliding to a small scale
chaotic dynamics that might occur in Filippov type systems under an introduction
of an arbitrarily small time delay in the switching function [17].
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