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In [5] (1982) it has been shown that for first-order definability over the reals there exists an effective procedure
which by a finite formula with equality defining an open set produces a finite formula without equality that de-
fines the same set. In this paper we prove that there exists no such procedure for Σ-definability over the reals.
We also show that there exists even no uniform effective transformation of the definitions of Σ-definable sets
(i. e., Σ-formulas) into new definitions of Σ-definable sets in such a way that the results will define open sets,
and if a definition defines an open set, then the result of this transformation will define the same set. These re-
sults highlight the important differences between Σ-definability with equality and Σ-definability without equa-
lity.

c© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

Some of the significant results in first-order definability over the reals are quantifier elimination [14], which can
be considered as a semantic characterisation of definable sets, and existence of an effective procedure which by
a finite formula with equality defining an open set produces a finite formula without equality defining the same
set [5].

One of the most interesting and practically important types of definability is Σ-definability. The concept of
Σ-definability is closely related to the generalised computability on abstract structures [1, 7, 13], in particular on
the real numbers [9, 10, 12]. Notions of Σ-definable sets or relations generalise those of computably enumerable
sets of natural numbers and play a leading role in the specification theory that is used in the higher order compu-
tation theory on abstract structures [8].

There are known semantic characterisations of sets over the reals which are Σ-definable with equality [7] and
Σ-definable without equality [10]. It is natural to ask whether there is an effective procedure which by a Σ-for-
mula with equality defining an open subset of Rn produces a Σ-formula without equality defining the same set.
In the present paper we give a negative answer to this question. We also show that there is no uniform effective
transformation of the definitions of Σ-definable sets (i. e., Σ-formulas) into new definitions of Σ-definable sets
in such a way that the results will define open sets, and if a definition defines an open set, then the result of this
transformation will define the same set. For related results we refer to [3, 4, 15, 16, 17], where computability of
the interior of a given set was studied in different frameworks.

2 Basic definitions and notions

In this paper we consider the ordered structure of the real numbers,

〈R, 0, 1, +, ·, <,=〉 � 〈R, σ0〉.
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We extend the real numbers by the set of hereditarily finite sets HF(R) which is rich enough for information
to be coded and stored. We construct the set HF(R) of hereditarily finite sets over the reals as follows:

1. HF0(R) � R.
2. HFn+1(R) � Pω(HFn(R)) ∪ HFn(R), where n ∈ ω and for every set B, Pω(B) is the set of finite sub-

sets of B.
3. HF(R) �

⋃
m∈ω HFm(R).

We define HF(R) as the following model:

HF(R) � 〈HF(R), U, σ0, ∅,∈〉 � 〈HF(R), σ〉,

where the constant ∅ stands for the empty set and the binary predicate symbol ∈ has the set-theoretic interpreta-
tion. We also add a 1-ary predicate symbol U naming the set of urelements (the real numbers).

The natural numbers 0, 1, . . . are identified with the (finite) ordinals in HF(R), i. e., ∅, {∅, {∅}}, . . . , so in
particular, n + 1 = n ∪ {n} and the set ω is a subset of HF(R).

The atomic formulas are U(x), p(x̄) = q(ȳ), p(x̄) < q(ȳ), z ∈ s, where s ranges over sets and p, q are poly-
nomials with integer coefficients.

The set of ∆0-formulas is the closure of the set of atomic formulas under operators ∧,∨,¬, bounded quanti-
fiers (∃x ∈ y) and (∀x ∈ y), with (∃x ∈ y)Ψ meaning the same as ∃x(x ∈ y ∧ Ψ) and (∀x ∈ y)Ψ meaning the
same as ∀x(x ∈ y → Ψ), where y ranges over sets.

The set of Σ-formulas is the closure of the set of ∆0-formulas under ∧, ∨, (∃x ∈ y), (∀x ∈ y), where y ran-
ges over sets, and ∃.

The set of Σ<-formulas is the subset of Σ-formulas that have positive occurrences of the predicate “<” and
do not have occurrences of the predicate “=”.

Definition 2.1
1. A relation B ⊆ HF(R)n is ∆0-definable (Σ-definable) if there exists a ∆0-formula (Σ-formula) Φ(ā) with

b̄ ∈ B ⇔ HF(R) � Φ(b̄).

2. A function f : HF(R)n −→ HF(R)m is ∆0-definable (Σ-definable) if there exists a ∆0-formula (Σ-for-
mula) Φ(c̄, d̄) such that

f(ā) = b̄ ⇔ HF(R) � Φ(ā, b̄).

In sequel we say that a relation is Σ-definable without equality if it is definable by a Σ<-formula. The follo-
wing theorems reveal algorithmic properties of Σ-formulas over HF(R).

Theorem 2.2 (Semantic characterisation of Σ-definability [7]) A set A ⊆ Rn is Σ-definable if and only if
there exists an effective sequence of quantifier-free formulas in the language σ0, {Φs(x)}s∈ω, such that

x ∈ A ⇔ HF(R) �
∨

s∈ω Φs(x).

Remark 2.3 The semantic characterisation of Σ-definability reveals correspondence between Σ-definability
and BSS-semidecidability [2, 3]. It is easy to see that for the real numbers with equality these concepts coincide.

Theorem 2.2 implies the following.
Corollary 2.4 The set of pairs 〈
ϕ(x)�, n〉, where 
ϕ(x)� denotes the codes of a formula ϕ with at most one

free variable x, n is a natural number, and HF(R) � ϕ(n), is computably enumerable.

Theorem 2.5 (Semantic characterisation of Σ-definability without equality [10]) A set B ⊆ Rn is Σ-defin-
able without equality if and only if there is an effective sequence of quantifier-free formulas in the language σ0

with positive occurrences of “<” and without occurrences of “=”, {Ψs(x)}s∈ω, such that

x ∈ B ⇔ HF(R) �
∨

s∈ω Ψs(x).
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Remark 2.6 It is worth noting that Theorem 2.2 and Theorem 2.5 give us effective procedures which gene-
rate formulas approximating Σ-relations and provide tools for descriptions of the results of effective infinite ap-
proximating processes by finite formulas.

For ā ∈ Rn and ε ∈ R, let B(ā, ε) = {x̄ ∈ Rn | ‖x̄ − ā‖ < ε}.
Definition 2.7 A set S ⊆ Rn is said to be computably enumerable (c. e.) open if there are computable fami-

lies (āi)i∈ω ∈ (Qn)ω and (εi)i∈ω ∈ Qω such that S =
⋃

i∈ω B(āi, εi).
Now we give a different view to the sets which are Σ-definable without equality. We consider

HF(Q) � (HF(Q), U,∈, σQ) � (HF(Q), U,∈, 0, 1, +, ·, <,=).

Define the predicate P r(p, q) ⊆ R × Q2 as follows:

P r(p, q) � U(p) ∧ U(q) ∧ (p < r < q).

As variables for upper indices in the predicates PX(x, y), we here use capital letters X, Y, . . . , maybe with
indices, and small letters, maybe with indices, for the rest cases. We assume the set of capital variables and the
set of small variables to be disjoint.

Define the class of ∆R
0 -formulas as the smallest class of formulas that contains all atomic formulas of the

signature σQ, all formulas PX(y, z), and is closed under conjunctions, disjunctions, negations, and bounded
quantifications with small variables (∀x ∈ y) and (∃x ∈ y).

The class of ΣR-formulas is defined as the smallest class of formulas which is closed under conjunctions,
disjunctions, bounded quantifications with small variables (∀x ∈ y), (∃x ∈ y), and existential quantifications.

A ΣR-formula ϕ is called a positive ΣR-formula if all the occurrences of predicates PX(x, y) in this formula
are positive. Such formulas are referred to as ΣR

+-formulas.
For each ΣR

+-formula ϕ(X1, . . . , Xm, y1, . . . , yn) and for each r1, . . . , rm ∈ R, q1, . . . , qn ∈ HF(Q), the re-
lation HF(Q) � ϕ(r1, . . . , rm, q1, . . . , qn) is defined in a natural way by induction.

A set S ⊆ Rn is ΣR
+-definable if there are a ΣR

+-formula ϕ(X̄, ȳ) and a tuple of parameters q̄ ∈ HF(Q) such
that

S = {r̄ ∈ R | HF(Q) � ϕ(r̄, q̄)}.

Taking into account that all elements of HF(Q) are Σ-definable over HF(Q), we may assume that the tuple q̄
is empty.

Let q̄ = 〈q′0, q′′0 , q′1, q
′′
1 , . . . , q′m, q′′m〉 ∈ Q2m. We define B(q̄) to be the set

B(q̄) � {r̄ = 〈r1, . . . , rm〉 ∈ Rm | ∧m
i=1(q

′
i < ri < q′′i )}.

Lemma 2.8 If B ⊆ HF(Q) is Σ-definable, then B is ΣR
+-definable.

P r o o f. The claim is straightforward from definitions.

Theorem 2.9 A set S ⊆ Rm is ΣR
+-definable if and only if there exists a Σ-definable function f : ω −→ Q2m

such that S =
⋃

i∈ω B(f(i)). Moreover, given a ΣR
+-formula, we can effectively construct an algorithm to com-

pute this function f .

P r o o f.
(⇒) First let us note that if S ⊆ Rm is ΣR

+-definable, then there exists an effective sequence of existential
formulas which defines the set S (see [7]). We fix a Σ-definable numbering ν : ω −→ Q. In order to illustrate
how to construct f we consider the following example. We suppose S ⊆ R is definable by the formula

ϕ(X) �
∨

n∈ω ∃q1
1∃q1

2∃q2
1∃q2

2(PX(q1
1 , q1

2) ∧ PX(q2
1 , q2

2) ∧ p1
1(νn) = q1

1 ∧ p1
2(νn) = q1

2

∧ p2
1(νn) = q2

1 ∧ p2
2(νn) = q2

2),
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where pi
j(x) is a polynomial with integer coefficients. Define

f(n) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(νn, νn) if p1
2(νn) < p2

1(νn) ∨ p2
2(νn) < p1

1(νn),
(p2

1(νn), p1
2(νn)) if p2

1(νn) < p1
2(νn),

(p2
1(νn), p2

2(νn)) if p1
1(νn) < p2

1(νn) ∧ p2
2(νn) < p1

2(νn),
(p1

1(νn), p2
2(νn)) if p1

1(νn) < p2
2(νn),

(p1
1(νn), p1

2(νn)) if p2
1(νn) < p1

1(νn) ∧ p1
2(νn) < p2

2(νn).

It is easy to see that f is Σ-definable. In the general case, the proof is routine based on the same ideas.
(⇐) Suppose that there exists a Σ-definable function f : ω −→ Q2m such that S =

⋃
i∈ω B(f(i)). By Lem-

ma 2.8, the ΣR
+-formula

ϕ(X) � ∃n∃q1
1∃q1

2 . . .∃qm
1 ∃qm

2 (n ∈ ω ∧ f(n) = (q1
1 , q1

2 , . . . , qm
1 , qm

2 ) ∧ ∧
i≤m PX(qi

1, q
i
2))

defines the set S.

The following proposition shows that the concept of ΣR
+-definability corresponds to Σ-definability without

equality.
Theorem 2.10 A set S ⊆ Rn is ΣR

+-definable if and only if it is Σ-definable without equality.

P r o o f.
(⇒) By Theorem 2.9 and Theorem 2.2, it follows that each ΣR

+-definable set is Σ-definable without equality.
(⇐) If a set is Σ-definable without equality, it is definable by a computable infinite disjunction

∨
i∈ω ψi(x̄)

of finite conjunctions of formulas of the kind f(x̄) < g(x̄). By using decidability of the elementary theory of R,
we can, for each such formula ψi(x̄), effectively enumerate the set Si of all q̄ ∈ Q2m such that

(∀x̄ ∈ B)(q̄)ψi(x̄),

moreover, it could be easily verified that ψi(x̄) is equivalent to
∨

q̄∈Si
(x̄ ∈ B(q̄)).

Corollary 2.11 A set S ⊆ Rn is Σ-definable without equality if and only if S is c. e. open.

The following result shows that openness of a Σ-definable set is necessary but not sufficient to be Σ-definable
without equality. It is worth noting that this claim can be shown using Remark 2.3 and [3, Theorem 3]. In order
to stay in the framework of Σ-definability, we prove the following proposition.

Proposition 2.12 There exists an open set S ⊆ R such that
1. S is Σ-definable;
2. S is not c. e. open.

P r o o f. Fix some computable one-one onto mapping q : ω −→ Q (we denote q(m) = qm). For n ∈ ω, let

Sn =
⋃

i∈Wn
B(q�(i), qr(i)),

where Wn is the nth c. e. set. Denote by W t
n a finite part of Wn enumerated at the first t steps. Let

St
n =

⋃
i∈W t

n
B(q�(i), qr(i)).

Note that each Sn is c. e. open and for each c. e. open set S there exists n such that S = Sn. Moreover, the rela-
tion a ∈ St

n, a ∈ Q, n, t ∈ ω, is computable.
Now we simultaneously run ω processes. A process with number n is assigned to its own interval (n, n + 1).

At each step, it may generate subintervals of (n, n + 1). Namely, at step t, it first generates open intervals

I−n,t = (n, n +
1
2
− 1

t + 4
) and I+

n,t = (n +
1
2

+
1

t + 4
, n + 1).

c© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mlq-journal.org
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Next, if n +
1
2
∈ St

n, then we take the minimal i ∈ W t
n such that n +

1
2
∈ B(q�(i), qr(i)) ⊆ St

n and generate a

new interval B(n +
1
2
, ε) so that there exists cn ∈ Q such that

cn ∈ B(q�(i), qr(i)) ⊆ Sn \ (B(n +
1
2
, ε) ∪ ⋃

t′�t(I
−
n,t′ ∪ I+

n,t′)).

We can effectively select such an ε = qk and cn = ql with minimal possible numbers k and l. If cn was defined
at this step, then we stop the nth process forever. Otherwise we pass to the next step.

Now define the set S as union of all intervals generated by all these processes and single-point sets {n +
1
2
},

n ∈ ω. Clearly, S is Σ-definable over HF(R).
We claim that S is open and does not coincide with each Sn, n ∈ ω, thus S is not effectively open. The only

points which are not evidently internal points of S are points of the kind n +
1
2

, n ∈ ω. If n +
1
2

/∈ Sn, then the

nth process generates infinitely many intervals I−n,t and I+
n,t. One can easily see that in this case,

{n +
1
2
} ∪ ⋃

t∈ω(I−n,t ∪ I+
n,t) = (n, n + 1)

and thus n +
1
2

is an internal point of S. If n +
1
2
∈ Sn, then at some step an open interval containing this point

is generated and thus it is an internal point of S again.

Assume S to coincide with some Sn. If n +
1
2
∈ Sn, then by construction cn ∈ Sn \ S. If n +

1
2

/∈ Sn, it re-

mains to note that by definition of S, we have n +
1
2
∈ S. It follows that S �= Sn.

3 The main results

The following theorem shows that there is no reasonable effective transformation of Σ-formulas such that the
result of this transformation extracts an open subset of the set defined by the initial formula and does not change
this subset in case the initial formula already defines an open subset of R. First we need a lemma.

Lemma 3.1 For every a < b, there exist Σ-definable functions α+
i (a, b), α−

i (a, b), β+
i (a, b), β−

i (a, b) defined
on ω × R2 such that

a = α−
0 (a, b) < β−

0 (a, b) < α−
1 (a, b) < β−

1 (a, b) < · · ·
<

a + b

2
< · · · < β+

1 (a, b) < α+
1 (a, b) < β+

0 (a, b) < α+
0 (a, b) = b

and limi→∞ α+
i (a, b) = limi→∞ α−

i (a, b) = limi→∞ β+
i (a, b) = limi→∞ β−

i (a, b) =
a + b

2
.

We leave the proof to the reader.
Let us denote ϕ(x)HF(R)[x] � {x | HF(R) � ϕ(x)}.
Theorem 3.2 There is no effective transformation ϕ �−→ ϕ◦ of Σ-formulas with at most one free variable

such that the following hold.

1. For every Σ-formula ϕ(x), the set ϕ◦(x)HF(R)[x] is open and ϕ◦(x)HF(R)[x] ⊆ ϕ(x)HF(R)[x].

2. For every Σ-formula ϕ(x), if the set ϕ(x)HF(R)[x] is open, then ϕ◦(x)HF(R)[x] = ϕ(x)HF(R)[x].

P r o o f. Let f : ω −→ ω be a computable function whose range is not computable. Let

An = {1} ∪ ⋃
t∈ω,n/∈{f(0),...,f(t)}((α

−
t (0, 2), α−

t+1(0, 2)] ∪ [α+
t+1(0, 2), α+

t (0, 2))),

where α±
t (0, 2) are taken from Lemma 3.1. Then clearly An is open if and only if n /∈ range(f). One easily as-

certains that there is a computable family ϕn(x) of Σ-formulas such that ϕn(x)HF(R)[x] = An for all n ∈ ω.
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The following condition could be easily verified:

1 ∈ Int(An) ⇔ n /∈ range(f) ⇔ An is open.

Suppose now that there exists an effective transformation ◦ satisfying the condition of the theorem. Then

n /∈ range(f) ⇔ HF(R) � ϕ◦
n(1),

which by Corollary 2.4 implies that the set range(f) is computable, which is a contradiction.

Consider an example. Let ϕ(x) be a Σ-formula saying that (x ∈ (0, 2) ∧ x �= 1) ∨ (x ∈ (0, 2) ∧ x = 1).
If we try to satisfy this formula in a direct way by some x ∈ (0, 1), then we should first examine the first part,

namely x ∈ (0, 2) ∧ x �= 1. This check will be successful for x ∈ (0, 1) ∪ (1, 2). Next, we should satisfy the se-
cond part, x ∈ (0, 2) ∧ x = 1, which either will be unsuccessful for x �= 1 or gets stuck when x = 1. However,
we could satisfy this formula with elements of the set (0, 1) ∪ (1, 2) only. But it is evident that ϕ(x) is logically
equivalent to the formula x ∈ (0, 2), which also defines an open set.

Thus, we can propose the following uniform way to extract open parts of the formulas, which, as we believe,
should work more or less reasonably. First we present a Σ-formula ϕ(x) as infinite disjunction

∨
i∈ω ψi(x) of a

computably enumerable family (ψi(x))i∈ω of a quantifier-free formulas; the algorithm enumerating members of
this disjunction could be found uniformly in ϕ(x). Then we enumerate all pairs 〈a, b〉 of rationals such that

(∀x ∈ (a, b))
∨

i<t ψi(x)

for some t. Show it to be possible. The last condition could be reduced to an equivalent quantifier-free formula
with no free variables uniformly in a, b, t, that is, this formula could be effectively checked uniformly in t, a, b.
This yields an algorithm to enumerate all such pairs 〈a, b〉. Let (〈ai, bi〉)i∈ω be such an enumeration. The result
of the transformation of ϕ is the infinite c. e. disjunction

∨
i∈ω(ai < x < bi), whose algorithm enumerating its

members could be found uniformly in ϕ(x). By the remarks on the uniformity, this infinite disjunction could be
presented as an equivalent Σ-formula if needed.

Of course, if we consider the following definition of the set (0, 2),

x = 1 ∨ ∨
n∈ω((0 < x < 1 − 1

n + 1
) ∨ (1 +

1
n + 1

< x < 2)),

then the above algorithm will produce a formula that defines the set (0, 1) ∪ (1, 2), but intuitively, the above de-
finition does not give us an opportunity to ascertain that 1 ∈ (0, 2) as well. As a corollary, we get the following
result.

Theorem 3.3 There is no effective transformation ϕ �−→ ϕ◦ of Σ-formulas with at most one free variable
such that, for every Σ-formula ϕ(x), if the set ϕ(x)HF(R)[x] is open, then

1. ϕ◦ is a Σ<-formula;

2. ϕ◦(x)HF(R)[x] = ϕ(x)HF(R)[x].
To formulate the further results, we need to recall some definitions from the theory of numberings [6]. Infor-

mally, in the theory of numberings, we simultaneously consider objects and their codes, which are natural num-
bers. Let S be an arbitrary set. Any onto mapping ν : ω −→ S is called its numbering. The pair (S, ν) is called
a numbered set. Assume that (S0, ν0) and (S1, ν1) are numbered sets and p : S0 −→ S1 is a mapping. Then p is
called a morphism from (S0, ν0) to (S1, ν1) if it is is computable on the codes of objects, i. e., if there is a com-
putable function f such that pν0 = ν1f . A morphism p from (S, ν) to (S, ν) is called a retraction if p2 = p. In-
formally, a retraction transforms all objects into objects of the set p(S) ⊆ S in such a way that each object in the
set p(S) remains unchanged.

Define a numbering of the class Σ(R) of all Σ-definable sets over HF(R) as follows. First we consider some
Gödel numbering γ of Σ-formulas with at most one free variable x, i. e., an arbitrary mapping γ from ω onto the
set of all such formulas such that, given a formula, one can effectively write down its Gödel number, and given
an arbitrary n ∈ ω, one can effectively write down γn (the formula with the number n). All the numberings with
this property are equivalent.
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Define the numbering ν in a natural way as ν(m) = (γm)HF(R)[x].
Now we investigate if it is possible to uniformly algorithmically transform the definitions of Σ-definable sub-

sets (i. e., Σ-formulas) into new definitions of Σ-definable subsets such that the results will define open sets, and
if a definition defines an open set, the result of this transformation will define the same set. Clearly, this question
could be reformulated as follows: “does there exist a retraction p : (Σ(R), ν) −→ (Σ(R), ν) whose image is the
set of all open Σ-definable sets?”

The answer turns out to be negative.
Theorem 3.4 For all retractions p : (Σ(R), ν) −→ (Σ(R), ν), the set of all open Σ-definable sets does not

coincide with the set p(Σ(R)).

P r o o f. Assume that such a retraction exists. One can easily see that in this situation there exists an effective
transformation ϕ �−→ ϕλ of Σ-formulas with at most one free variable x and a mapping X �−→ Xλ on Σ-defin-
able subsets of R such that

1. for all Σ-formulas ϕ(x), (ϕλ)HF(R)[x] is an open subset of R;
2. for all Σ-formulas ϕ(x), (ϕHF(R)[x])λ = (ϕλ)HF(R)[x];
3. for all Σ-definable open sets X , Xλ = X .
Lemma 3.5 If X ⊆ Y are Σ-definable subsets of R, then the set Xλ \ Y λ contains no algebraic reals.

P r o o f. Assume the contrary, i. e., that there are sets X and Y defined by Σ-formulas ϕX(x) and ϕY (x), re-
spectively, such that the set Xλ \ Y λ contains an algebraic point α.

Fix a c. e. non-computable set S of natural numbers and consider a Σ-formula θn(x) equivalent to

ϕX(x) ∨ (ϕY (x) ∧ n ∈ S).

Since the membership in S could be expressed by a Σ-formula, the formula θn could be written down effective-
ly uniformly in n. Obviously,

θHF(R)
n [x] =

{
X if n /∈ S,

Y if n ∈ S.

It follows from the properties of λ that

(θλ
n)HF(R)[x] =

{
Xλ if n /∈ S,

Y λ if n ∈ S.

Thus, we have

HF(R) � (θn)λ(α) ⇔ n /∈ S.

Inasmuch as the left-hand condition is a c. e. condition on n, we obtain that ω \ S is c. e., which is a contradic-
tion. The proof of the lemma is complete.

Lemma 3.6 Assume that a0, b0, c, a1, b1 ∈ Q and that a0 < b0 < c < a1 < b1. Then

[(a0, b0) ∪ {c} ∪ (a1, b1)]λ ⊆ (a0, b0) ∪ (a1, b1).

P r o o f. Take an arbitrary ε ∈ Q so that

b0 < c − ε < c + ε < a1.

Since λ preserves open sets, we have

[(a0, b0) ∪ (c − ε, c + ε) ∪ (a1, b1)]λ = (a0, b0) ∪ (c − ε, c + ε) ∪ (a1, b1).
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Inasmuch as

(a0, b0) ∪ {c} ∪ (a1, b1) ⊆ (a0, b0) ∪ (c − ε, c + ε) ∪ (a1, b1),

by Lemma 3.5 the set

(1)
[(a0, b0) ∪ {c} ∪ (a1, b1)]λ \ [(a0, b0) ∪ (c − ε, c + ε) ∪ (a1, b1)]λ

= [(a0, b0) ∪ {c} ∪ (a1, b1)]λ \ ((a0, b0) ∪ (c − ε, c + ε) ∪ (a1, b1))

does not contain algebraic points. Show that this set (1) is empty. Indeed, if it is nonempty, then since the set

[(a0, b0) ∪ {c} ∪ (a1, b1)]λ

is open, the set (1) contains an open interval, which implies that it contains an algebraic real, and this contradicts
Lemma 3.5.

Thus, for any small enough rational ε,

[(a0, b0) ∪ {c} ∪ (a1, b1)]λ ⊆ (a0, b0) ∪ (c − ε, c + ε) ∪ (a1, b1).

From this we derive that

[(a0, b0) ∪ {c} ∪ (a1, b1)]λ ⊆ (a0, b0) ∪ {c} ∪ (a1, b1).

Since the left-hand part of this inclusion is open, it follows that the right-hand part of it cannot contain c, i. e.,

[(a0, b0) ∪ {c} ∪ (a1, b1)]λ ⊆ (a0, b0) ∪ (a1, b1).

The proof of the lemma is complete.

Let f be a computable function with non-computable range. Denote by ϕn(u) a Σ-formula expressing that

(u = 1) ∨ (∃t ∈ ω)[n /∈ {f(0), . . . , f(t − 1)} ∧ (0 < u < 1 − 1
t
) ∧ (1 +

1
t

< u < 2)].

Note that one can choose these formulas ϕn in such a way that the mapping n �−→ ϕn will be computable.
One can easily see that if n /∈ range(f), then (ϕn)HF(R)[u] = (0, 2), and that if n ∈ range(f), then

(ϕn)HF(R)[u] = (0, r0) ∪ {1} ∪ (r1, 2),

for appropriate r0, r1 ∈ Q such that 0 < r0 < 1 < r1 < 2.
Now with Lemma 3.6 we obtain that if n /∈ range(f), then (ϕλ

n)HF(R)[u] = (0, 2), and that if n ∈ range(f),
then (ϕλ

n)HF(R)[u] ⊆ (0, 1) ∪ (1, 2).
Thus, for all n ∈ ω,

1 ∈ (ϕλ
n)HF(R)[u] ⇔ n /∈ range(f),

which means that for all n ∈ ω,

HF(R) � ϕλ
n(1) ⇔ n /∈ range(f).

Since the left-hand part of this equivalence is c. e., the set ω \ range(f) is c. e. It follows that range(f) is com-
putable, which is a contradiction. The proof of Theorem 3.4 is complete.

Actually, we have simultaneously proven the following.
Theorem 3.7 For all retractions p : (Σ(R), ν) −→ (Σ(R), ν), the set of all Σ-definable without equality sets

does not coincide with the set p(Σ(R)).
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The following result shows that, in the general case, we cannot even hope for the existence of an internal part
of a Σ-definable set which is maximal by inclusion among its Σ-subsets.

Theorem 3.8 There exists a set S ⊆ R such that the following hold.
1. S is ∆-definable.
2. Neither the closures nor the inner parts of the sets S, R \ S are Σ-definable.
3. If V is either S or R \ S, then the class

{X ⊆ V | X is Σ-definable without equality}
has no maximal element by inclusion.

4. If V is either S or R \ S, then the class

{X ⊇ V | (X is closed) ∧ (X is Σ-definable)}
has no minimal element by inclusion.

P r o o f. Fix a computable function f : ω −→ ω whose range is not computable.
First we show how for any two real numbers a, b, a < b, and n ∈ ω, we could separate the interval [a, b) into

two Σ-definable sets An(a, b) and Bn(a, b) so that

An(a, b) ∩ Bn(a, b) = ∅, An(a, b) ∪ Bn(a, b) = [a, b), and
a + b

2
∈ Int(An(a, b)) ⇔ n /∈ range(f).

Denote c =
a + b

2
. Let

An(a, b) = {c} ∪ ⋃
t∈ω,n/∈{f(0),...,f(t)}([α

−
t (a, b), α−

t+1(a, b)) ∪ [α+
t+1(a, b), α+

t (a, b))),
Bn(a, b) =

⋃
t∈ω,n∈{f(0),...,f(t)}[α

−
t (a, b), α+

t (a, b)) \ {c}.

Clearly, both sets are Σ-definable, they are disjoint, and their union equals to [a, b). Moreover, there exist Σ-for-
mulas ϕA(n, a, b, x) and ϕB(n, a, b, x) such that

An(a, b) = ϕA(n, a, b, x)HF(R)[x] and Bn(a, b) = ϕB(n, a, b, x)HF(R)[x].

Obviously,

a + b

2
∈ Int(An(a, b)) ⇔ n /∈ range(f).

Next we show how given any two real numbers a, b, a < b, and n ∈ ω, we could uniformly construct Σ-sub-
sets Cn(a, b) and Dn(a, b) so that

Cn(a, b) ∪ Dn(a, b) = [a, b), Cn(a, b) ∩ Dn(a, b) = ∅, and
a + b

2
∈ cl(Cn(a, b)) ⇔ n /∈ range(f).

Let

Cn(a, b) =
⋃

t<ω,n/∈{f(0),...,f(t)}([α
−
t (a, b), β−

t (a, b)) ∪ [β+
t (a, b), α+

t (a, b)))
Dn(a, b) =

⋃
t<ω,n∈{f(0),...,f(t)}[β

−
t (a, b), β+

t (a, b)).

Clearly, both sets are Σ-definable, they are disjoint, and their union equals to [a, b). Moreover, there exist Σ-for-
mulas ϕC(n, a, b, x) and ϕD(n, a, b, x) such that

Cn(a, b) = ϕC(n, a, b, x)HF(R)[x] and Dn(a, b) = ϕD(n, a, b, x)HF(R)[x].
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Obviously,

a + b

2
∈ cl(Cn(a, b)) ⇔ n /∈ range(f).

Now define the set S as follows:

S =
⋃

i∈ω Ai(8i, 8i + 2) ∪ ⋃
i∈ω Bi(8i + 2, 8i + 4) ∪ ⋃

i∈ω Ci(8i + 4, 8i + 6)
∪ ⋃

i∈ω Di(8i + 6, 8i + 8).

Suppose that the interior of S is Σ-definable. Then we have

8i + 1 ∈ S ⇔ i /∈ range(f),

which contradicts Corollary 2.4. Similarly, the assumption that the closure of S is Σ-definable leads to the con-
dition

8i + 5 ∈ S ⇔ i /∈ range(f),

which contradicts Corollary 2.4. The proofs that the sets Int(R \ S) and cl(R \ S) are not Σ-definable could be
done in a similar way. The rest statements of the theorem are easily verified.
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