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Abstract
This article is an extended version of the paper published in Korovina and Kudinov (2007, Lecture Notes in Computer Science,
Vol. 4497, pp. 416–425). The main goal of this research is to develop logical tools and techniques for effective reasoning about
continuous data based on�-definability. In this article we invent the Uniformity Principleand prove it for�-definability over
the real numbers extended by open predicates. Using the Uniformity Principle, we investigate different approaches to enrich
the language of �-formulas in such a way that simplifies reasoning about computable continuous data without enlarging the
class of �-definable sets. In order to do reasoning about computability of certain continuous data we have to pick up an
appropriate language of a structure representing these continuous data. We formulate several major conditions how to do that
in a right direction. We also employ the Uniformity Principleto argue that our logical approach is a good way for formalization
of computable continuous data in logical terms.

Keywords:�-Definability, Uniformity Principle, effective reasoning about continuous data, continuous data types, computable
analysis.

1 Introduction

This work is an significant impact to the logical approach to computability over continuous data
based on arguments from definability theory and developed in the papers [5–10]. This approach is
based on representations of continuous data by suitable structures without the equality test and �-
definability in extensions of the structures by hereditarily finite sets. In order to logically characterize
computable continuous data we have proposed the notion of majorant-computability. One of the
main features of the notion of majorant-computability is that on the one side it is independent from
concrete representations of the elements of structures on the other side it is flexible, i.e. we can
change the language of �-formulas to express appropriate computability properties. In this article
we investigate different approaches to enrich the language of�-formulas in such way that simplifies
reasoning about computable continuous data without enlarging the class of�-definable sets. The basic
idea behind these approaches is the Uniformity Principle for �-definability over the real numbers
extended by open sets. Informally the Uniformity Principle says that global quantifiers bounded by
compact intervals could be effectively reduced to local ones. In the case of �K -formulas over the
reals without equality the Uniformity Principle allows to eliminate both existential and universal
quantifiers bounded by computable compact sets.

In order to do reasoning about computability of certain continuous data we have to pick up an
appropriate language of a structure representing these continuous data. We formulate several major
necessary conditions how to do that in a right direction. One of them is topological, which says
that computable functions should be continuous. This condition provides correct approximating
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computation of continuous data. Another one is logical, which says that Th∃(M) should be
computably enumerable. This condition provides tools for effective reasoning about computable
continuous data based on �-definability. We illustrate our arguments by several examples.

The structure of this article is as follows.
In Section 2 we recall basic notions and introduce the language of�K -formulas that is an extension

of the language of �-formulas by universal and existential quantifiers bounded by computable
compact sets.

In Section 3 we prove the Uniformity Principle for�-definability over the real numbers extended
by open sets. To simplify reasoning about computability of continuous data we propose several ways
to enrich the�-language. We show that rational numbers, polynomials and computable functions as
well can be used in �-formulas without enlarging the class of �-definable sets. In other words, we
can extend the language of �-formulas by computable functions, e.g. cos,sin,exp and Uniformity
Principle allows eliminate them later. Then we employ the Uniformity Principle to prove that the
language of �K -formulas admits elimination of both existential and universal quantifiers bounded
by computable compact sets. It is also illustrated how the language of �K -formulas can be used to
make reasoning about computable subsets of IRn in an elegant way.

In Section 4 we show how the Uniformity Principle can be used to make reasoning about topological
properties of majorant-computable functionals of the type F :A→ IR. In order to do that we consider
an arbitrary structure A=〈A,σP, �=〉, where A contains more than one element, and σP is a finite
set of basic predicates. For the structure A, we introduce a topology, called τA

� , with the base
consisting of the subsets defined by existential formulas. Using the Uniformity Principle we prove
that every majorant-computable functional F :A→ IR is continuous. In the case of A=C[0,1] we
show how to pick up an appropriate language for the structure of C[0,1] in such a way that majorant-
computability of functionals F :Cn[0,1]×IRm→ IR coincides with computability in the sense of
computable analysis and the theory Th∃(C[0,1]∪IR) is computably enumerable.

2 Basic definitions and notions

In this article we consider the ordered structure of the real numbers in finite predicate languages
without equality, 〈IR,σP,<〉=〈IR,σIR〉, where σP satisfies the following assumption.

Assumption 1
The set σP is a finite set of open predicates, i.e. interpreted over the reals as open sets.

We extend the real numbers by the set of hereditarily finite sets HF(IR), which is rich enough for
information to be coded and stored. We construct the set of hereditarily finite sets, HF(IR) over the
reals, as follows [1, 3]:

1. HF0(IR)� IR,
2. HFn+1(IR)�Pω(HFn(IR))∪HFn(IR),where n∈ω and for every set B, Pω(B) is the set of all

finite subsets of B.
3. HF(IR)=⋃

m∈ωHFm(IR).

We define HF(IR) as the following model: HF(IR)�
(
HF(IR),U,σIR,∅,∈

)
�

(
HF(IR),σ

)
, where

the constant ∅ stands for the empty set and the binary predicate symbol ∈ has the set-theoretic
interpretation. We also add a primary predicate symbol U naming the set of urelements (the real
numbers). The natural numbers 0, 1,... are identified with the (finite) ordinals in HF(IR) i.e.
∅, {∅, {∅}},..., so in particular, n+1=n∪{n} and the set ω is a subset of HF(IR).
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Remark 2
For better understanding of the Uniformity Principle we slightly modify the definitions of atomic,
�0 and �-formulas from [5]. It is worth noting that these definitions do not contain negation as a
logical operation and give the same class of formulas as in [5].

The atomic formulas include U(x), ¬U(x), x<y, x∈s, x �∈s where s ranges over sets, and also, for
every Qi∈σP with the arity ni, Qi(x1,...,xni ), which has the following interpretation:

HF(IR) |=Qi(x1,...,xni ) if and only if

IR |=Qi(x1,...,xni ) and, for every 1≤ j≤ni, xj∈ IR.

The set of �0-formulas is the closure of the set of atomic formulas under ∧,∨, bounded quantifiers(∃x∈y
)

and
(∀x∈y

)
, where

(∃x∈y
)
� means the same as ∃x(x∈y∧ �) and

(∀x∈y
)
� as ∀x(x∈

y→�) where y ranges over sets.
The set of �-formulas is the closure of the set of �0-formulas under ∧,∨,

(∃x∈y
)
,
(∀x∈y

)
and

∃, where y ranges over sets.

Remark 3
It is worth noting that all predicates Qi∈σP and < occur only positively in �-formulas. Hence in
�-formulas we do not allow equality on the urelements (elements form IR).

Remark 4
Through this article we consider also existential formulas in the language σIR with positive
occurrences of predicate symbols from σIR without any further references to this restriction.

The set of �K -formulas is the closure of the set of �-formulas under ∧,∨, ∃, ∃x∈K and ∀x∈K ,
where K is a computable compact subset of IRn.

We define �-formulas as negations of �-formulas.

Definition 1
1. A relation B⊆HF(IR)n is �-definable, if there exists a �-formula 	 such that x∈B↔

HF(IR) |=	(x).

In a similar way, we define the notions of �K -definable and�-definable sets. The following theorem
reveals algorithmic properties of �-formulas over HF(IR).

Theorem 1 (Semantic characterization of �-definability)
A set B⊆ IRn is �-definable if and only if there exists an effective sequence of existential formulas
in the language σIR, {	s(x1,...,xn)}s∈ω, such that

(x1,...,xn)∈B↔ IR |=
∨
s∈ω

	s(x1,...,xn).

The proof of this theorem is based on Gandy’s theorem for abstract structures without equality [8]
and the technique developed in [7]. It is worth noting that both of the directions of this characterization
are important. The right direction gives us an effective procedure that generates existential formulas
approximating �-relations. The converse direction provides tools for descriptions of the results of
effective infinite approximating processes by finite formulas.
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3 Uniformity Principle and its applications to effective reasoning about
continuous data

In this section we prove the Uniformity Principle for �-definability over the reals without equality
and show several application of the Uniformity Principle.

It is worth noting that all propositions below do not hold over the reals with equality. Indeed,
validity of these propositions over the reals with equality leads to definability of π in Th(IR), which
does not hold by quantifier elimination.

3.1 Uniformity Principle for �-definability

Now we assume σP={M∗
E,M∗

H ,P+E ,P+H }, σ =σP∪{<,∅,∈}, where M∗
E,M∗

H are interpreted as an
open epigraph and an open hypograph of multiplication, respectively, and P+E ,P+H are interpreted as
an open epigraph and an open hypograph of addition, respectively. In sequel we will use the following
notations: x ·y<z for M∗

E(x,y,z), x ·y>z for M∗
H (x,y,z), x+y<z for P+E (x,y,z) and x+y>z for

P+H (x,y,z). It is worth noting that in �-formulas we can also use the expressions x>0, y<1 (and
similar) as notations of the formulas ∃y(

x>y ·y), ∃z>0
(
y ·z<z

)
, respectively. In sequel we assume

that ||·|| is the standard norm on IRn, [a,b] denotes a closed interval, and B̄(x,ε) denotes a closed
ball with a centre x and a radius ε. The following property of �-definable sets over the reals is a
straightforward corollary of Theorem 1.

Corollary 1
A set B⊆ IRn is �-definable if and only if B is c.e. open.

One of the main goals of this section is to prove that the language of�K -formulas admits elimination
of universal quantifiers bounded by computable compact sets. In other words, we are going to show
that if we have a formula with quantifier alternations where universal quantifiers are bounded by
computable compact sets then we can eliminate all universal quantifiers obtaining a �-formula
equivalent to the initial one. In order to do that, first we prove the Uniformity Principle for �-
definability. We extend the given language σ by new predicate symbols P and P′λ with the following
meaning

– P defines an open subset of IRn;
– P′λ(a,b,x2,...,xn)↔∀x1∈[a,b]P(x1λ,...,xnλ), where λ : {1,...,n}→{1,...,n}.

The following lemma shows that both languages σ ∪{P} and σ ∪{P′λ|λ : {1,...,n}→{1,...,n}} are
subject to Assumption 1.

Lemma 1
If P defines an open subset of IRn then P′λ defines an open subset of IRm, where m depends on λ.

Proof. We give the main idea of the proof for λ= id{1,...,n}. It is sufficient to show that for every
closed interval [c,d] the set

Bc,d =
{(

a,b,x2,...,xn
) ∈ [c,d]n+1|[a,b] = ∅ ∨ [a,b] ⊂ (c,d) ∧ P′λ(a,b,x2,...,xn)

}

is open. Let us consider Ac,d , the complement of Bc,d in [c,d], which is defined as follows.
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Ac,d=
{(

a,b,x2,...,xn
)∈[c,d]n+1|[a,b]⊆[c,d]∧

(
a=c∨b=d∨∃x1∈[a,b]¬P(x1,...,xn)

)}

Since Ac,d is a projection of the compact set

{(
a,b,x2,...,xn

)∈[c,d]n+1|[a,b]⊆[c,d]∧(
a=c∨b=d∨¬P(x1,...,xn)

)}
,

Ac,d is compact. So, P′λ is open as the union of all open sets Bc,d , where c∈ IR and d∈ IR. �

Let us consider particularly interesting corollaries of Lemma 1. If f ∈C(IR), then the sets P−f =
{(x,c)|f (x)>c} and P+f ={(x,c)|f (x)<c} are open. Choosing λ to be identical on {1,2} we get the
following corollary.

Corollary 2
For every f ∈C(IR), the sets

Ef (x1,x2,z)� f |[x1,x2]<z and Hf (x1,x2,z)� f |[x1,x2]>z are open.

If f ∈C([0,1]), then applying Corollary 1 to the function

g(x)=



f (0), if x<0
f (x), if x∈[0,1]
f (1), if x>1

we get straightforwardly the following.

Corollary 3
For f ∈C([0,1]), the sets Ef (x1,x2,z)� f |[x1,x2]∩[0,1]<z and Hf (x1,x2,z)� f |[x1,x2]∩[0,1]>z are
open.

Theorem 2 (Uniformity Principle)
For every �-formula ϕ in the language σ ∪{P} there exists �-formula ψ in the language σ ∪{P′λ|λ :{1,...,n}→{1,...,n}} such that

HF(IR) |=∀x∈[a,b]ϕ(x,x2,...,xn) iff HF(IR) |=ψ(a,b,x2,...,xn),

where free variables range over IR.

Proof. First we consider the case of ∃-formulas in the language σIR∪{P}. Using induction on the
structure of a ∃-formula ϕ, we show how to obtain a required formula ψ . Then, based on Theorem 1
we construct a required formula ψ for an arbitrary �-formula in the language σ ∪{P}.

Atomic case.

(1) If ϕ(x1,...,xn)�P(x1λ,...,xnλ) then ψ�P′λ.
(2) If ϕ does not contain the predicate symbol P, we have a finite number of subcases. We consider

non-trivial ones.
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(2.1) If ϕ(x,z)�x ·x>z then

ψ(a,b,z)�z<0∨a>b∨(
a>0∧b>0∧a ·a>z

)∨(
a<0∧b<0∧b ·b>z

)
.

(2.2) If ϕ(x,z)�x ·x<z then ψ(a,b,z)�a>b∨(
a ·a<z∧b ·b<z

)
.

(2.3) If ϕ(x,y)�x ·y>x then

ψ(a,b,z)�a>b∨(
a>0∧b>0∧y>1

)∨(
a<0∧b<0∧y<1

)
.

(2.4) If ϕ(x)�x ·x>x then ψ(a,b)�a>b∨(
a>1∧b>1

)∨(
a<0∧b<0

)
.

(2.5) If y ·z<x then ψ(a,b,y,z)�y ·z<a∨b<a. Other atomic subcases can be considered
by analogy.

Conjunction.
If ϕ�ϕ1∧ϕ2 and ψ1, ψ2 are already constructed for ϕ1, ϕ2 then ψ�ψ1∧ψ1.

Disjunction.
Suppose ϕ�ϕ1∨ϕ2 and ψ1, ψ2 are already constructed. Since [a,b] is compact, validity of
the formula ∀x∈[a,b](ϕ1∨ϕ2

)
is equivalent to existence of a finite family of open intervals

{(αi,βi)}i=1,...,r+s such that [a,b]⊆⋃r
i=1(αi,βi), for i=1,...,r IR |=ϕ1 and for i=r+1,...,s

IR |=ϕ2. Since ϕ1 and ϕ2 define open sets, this is equivalent to existence of a finite family of
closed intervals {[α′i,β ′i ]}i=1,...,r+s such that [a,b]⊆⋃r

i=1[α′i,β ′i ], for i=1,...,r IR |=ϕ1 and for
i=r+1,...,s IR |=ϕ2. It is represented by the following formula.

∨
r∈ω

∨
r∈ω
∃α′1 ...∃α′s+1∃β ′1 ...∃β ′s+1




r∧
i=1

∀x∈[α′i,β ′i ]ϕ1∧
s∧

j=r+1

∀x∈[α′j,β ′j ]ϕ2


.

By induction hypothesis and Theorem 1, this formula is equivalent to a �-formula ψ in the
language σ ∪{P′λ|λ : {1,...,n}→{1,...,n}}.
Existential case.
Suppose ϕ�∃zϕ1(z,x1,...,xn). As [a,b] is compact and

{{x1|IR |=ϕ1(z,x1,...,xn)}}z∈IR={Vz}z∈IR

is its cover, there exists a finite set J={z1,...,zs}⊂ IR such that [a,b]⊆⋃
z∈J Vz. So, validity of

the formula ∀x1∈[a,b]∃zϕ1(z,x1,...,xn) is equivalent to existence of the finite set J={z1,...,zs}
such that

IR |=∀x1∈[a,b]∃zϕ1(z,x1,...,xn)↔ IR |=∀x1∈[a,b]ϕs(z1,...,zs,x1,...,xn),

where ϕs(z1,...,zs,x1,...,xn)�ϕ1(z1,x1,...,xn)∨···∨ϕ1(zs,x1,...,xn). By induction hypoth-
eses, for every J={z1,...,zs} there exists a�-formulaψs(z1,...,zs,a,b,x2,...,xn) in the language σ ∪
{P′λ|λ : {1,...,n}→{1,...,n}}, which is equivalent to ∀x1∈[a,b]ϕs(z1,...,zs,x1,...,xn). Finally,

IR |=∀x1∈[a,b]∃zϕ1(z,x1,...,xn)↔
HF(IR) |=∨

s∈ω∃z1 ...∃zs
(
ψs(z1,...,zs,a,b,x2,...,xn)

)
.

A required �-formula ψ can be constructed using Theorem 1.



The Uniformity Principle for Σ-definability 165

Now we are ready to construct a required formula ψ for a �-formula. Suppose ϕ is a
�-formula. By Lemma 1 and Theorem 1, there exists an effective sequence of existential
formulas {ϕi}i∈ω such that HF(IR) |=ϕ↔HF(IR) |=∨

i∈ωϕi. As [a,b] is compact and
{{x1|IR |=ϕi(x1,...,xn)}}i∈ω={Ui}i∈ω is its cover, there exist k∈ω and a finite family {Ui}i≤k such
that [a,b]⊆⋃

i≤k Ui. So,

IR |=∀x1∈[a,b]ϕ(x1,...,xn)↔
HF(IR) |=∨

k∈ω∀x1∈[a,b]∨i≤kϕi(x1,...,xn).

By induction hypotheses, for every k∈ω there exists ψk(a,b,x2,...,xn) in the language
σ ∪{P′λ|λ : {1,...,n}→{1,...,n}} which is equivalent to ∀x1∈[a,b]∨i≤kϕi(x1,...,xn). A required
�-formula ψ can be constructed using Theorem 1. �
It is worth noting that the Uniformity Principle holds for any finite extension of σ by open predicates.

Corollary 4
For every �-formula ϕ in the language σ there exists a �-formula ψ in the language σ such that

HF(IR) |=∀x∈[a,b]ϕ(x,y1,...,yn) iff HF(IR) |=ψ(a,b,y1,...,yn),

where free variables range over IR.

3.2 Extension of �-language by computable functions

In this subsection we show that rational numbers, polynomials, computable real numbers and
computable real-valued functions as well can be used in �-formulas without enlarging the class of
�-definable sets. In other words we can extend the language of�-formulas by computable functions,
e.g. cos,sin,exp and Uniformity Principle allows eliminate them later.

Proposition 1
For every �-formula ϕ(ȳ,z̄) in the language σ and computable total real-valued func-
tions f1(x̄),...,fn(x̄) there exists a �-formula ψ in the language σ such that HF(IR) |=
ϕ(f1(x̄),...,fn(x̄),z̄) iff HF(IR) |=ψ(x̄,z̄).

Proof. Let ϕ(ȳ) be a �-formula and f1(x̄),...,fn(x̄) be computable functions. It is easy to note that

HF(IR) |=ϕ(f1(x̄),...,fn(x̄),z̄) iff HF(IR) |=∃a1 ...∃an∃b1 ...∃bn
∀y1∈[a1,b1]...∀yn∈[an,bn]

(∧
1≤i≤n

(
fi(x̄)<bi∧fi(x̄)>ai

)∧ϕ(ȳ,z̄)
)
.

In [10] we have shown that fi is computable if and only if fi(x̄)<z and fj(x̄)>z are �-definable. So,
we can construct a required formula ψ using Corollary 4. �
Corollary 5
For every�-formula ϕ(ȳ) in the language σ and rational numbers q1,...,qn there exists a�-formula
ψ in the language σ such that HF(IR) |=ϕ(q1,...,qn,z̄) iff HF(IR) |=ψ(x̄,z̄).

Corollary 6
For every�-formulaϕ(ȳ) in the languageσ and polynomials p1(x̄),...,pn(x̄) with rational coefficients
there exists a �-formula ψ in the language σ such that HF(IR) |=ϕ(p1(x̄),...,pn(x̄),z̄) iff HF(IR) |=
ψ(x̄,z̄).
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3.3 Elimination of quantifiers bounded by computable compact sets for
�K-language

In this subsection we prove than the�K -language over the reals without equality admits elimination
of both universal and existential quantifiers bounded by computable compact sets.

Proposition 2
Suppose B is�-definable and B⊆[−q,q]n for some rational q. For every�-formulaϕ in the language
σ there exists a�-formulaψ in the language σ such that HF(IR) |=∀x∈Bϕ(x,ȳ) iff HF(IR) |=ψ(ȳ),
where free variables range over IR.

Proof. Suppose B⊆[−q,q]n is definable by a �-formula η. It is easy to see that ∀x∈Bϕ(x,ȳ) is
equivalent to the formula

∀x∈[−q,q]n(¬η(x)∨ϕ(x,ȳ)
)
. (1)

By Corollary 4 and Corollary 6, the formula (1) is equivalent to a �-formula. �

Proposition 3
Suppose K is a co-semicomputable compact set. For every �-formula ϕ in the language σ there
exists a �-formula ψ in the language σ such that HF(IR) |=∀x∈Kϕ(x,ȳ) iff HF(IR) |=ψ(ȳ), where
free variables range over IR.

Proof. It is easy to see that ∀x∈Kϕ(x,ȳ) is equivalent to the formula

∀x∈[−q,q]n(
x �∈K∨ϕ(x,ȳ)

)
(2)

for some rational q, which can be find effectively by K . By properties of co-semicomputable closed
sets, the distance function dK is lower semicomputable [2], and, as a corollary, {x|x �∈K}={x|dK (x)>
0} is �-definable. By Corollary 2, the formula (2) is equivalent to a �-formula. �
Proposition 4
Suppose K is a semicomputable compact set. For every �-formula ϕ in the language σ there exists
a �-formula ψ in the language σ such that

HF(IR) |=∃x∈Kϕ(x,ȳ) iff HF(IR) |=ψ(ȳ),

where free variables range over IR.

Proof. Let us note that ∃x∈Kϕ(x,ȳ) is equivalent to the formula

∃x′∃ε > 0
(
ϕ(x′,ȳ) ∧ dK (x′) < ε ∧ ∀z ∈ B̄(x′,ε)ϕ(z,ȳ)

)
. (3)

By properties of semicomputable closed sets, the distance function dK is upper semicomputable
[2], and, as a corollary, the set {(x′,ε)|dK (x′)<ε} is �-definable. By the Uniformity Principle, the
formula (3) is equivalent to a �-formula. �
Theorem 3
For every �K -formula ϕ(x) in the language σ there exists �-formula ψ(x) such that HF(IR) |=
ϕ(x)↔HF(IR) |=ψ(x).
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3.4 Effective reasoning about computable subsets of IRn

Now we show how the Uniformity Principle can be used for reasoning about computable
subsets of IRn.

We start with investigation of the boundaries of computable compact sets. In [4] it has been proven
that the boundary operator defined on the closed sets over the reals is�0

2-complete in Borel hierarchy.
In contrast, the following theorem shows that in special cases it is possible to prove computability
of boundaries.

Theorem 4
Suppose K⊂ IRn is a computable regular compact set, D is its interior, � is its boundary and dK :
IRn→ IR is its distance function. Then the following assertions are equivalent:

1. � is �—definable.
2. D is �—definable.
3. � is computable.

Proof. We give only main ideas of the proof.
1→2. Suppose that � is �-definable. It is clear that the formula d�(x)>dK (x) defines D. By
properties of co-semicomputable closed sets, D is �-definable.

2→3. In order to show that � is computable it is sufficient to prove that the epigraph and the
hypograph of its distance function d� are �-definable. Indeed,

d�(x) < ε↔HF(IR) |= ∃y ∈ D∃z �∈K
(||x−y|| < ε ∧ ||x−z||<ε) and

d�(x) > ε↔HF(IR) |= B̄(x,ε)⊂ D ∨ B̄(x,ε)⊂ IRn\K .

So, � is computable.
3→1. Since � is computable, the distance function d� is upper and lower semicomputable. So,

�={x|d�(x)=0} is �-definable. �
Theorem 5
Suppose K⊂ IRn is a computable regular compact set, � is its boundary and every component of �
is a smooth variety of codimension 1. Then � is computable.

Proof. It is sufficient to show that � is �-definable. Since � is smooth variety of codimension 1,
for any z∈� the following statement holds:

∃y∈D∃x �∈K(x−z=z−y∧B(y,||y−z||)⊂D∧B(x,||x−z||)⊂ IRn\K).

So, ψ(z) � z∈K ∧∃y∈K∀t> 0
(
t≤ 1∨dK (z−t(y−z))≥ t||y−z||) defines �. Since K is co-

semicomputable, K is �-definable. So, � is �-definable by Theorem 3. �
Now using the Uniformity Principle we prove that computability of the closer of a regular open set
and its boundary follows form co-semicomputability of the boundary of this regular open set.

Theorem 6
Let D⊂ IRn be regular open set such that D and IRn\cl(D) have a finite number of connected
components. Then from co-semicomputability of �=∂D it follows that � and K=cl(D) are
computable.

First we need the following lemma.
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Lemma 2
If A⊂ IRn is �-definable then every connected component of A is also �-definable.

Proof. Suppose Ai is a connected component of A. Let us choose some x0∈Ai∩Qn. By properties
of connected sets, it follows that the meta-formula

∃m ∈ ω∃x1 ... ∃xm ∈ IRn
m−1∧
i=0

∀y ∈ [xi,xi+1]y ∈ A ∧ ∀y ∈ [xm,x] ∈ A

which is equivalent to the �-formula

∨
m∈ω
∃x1 ...∃xm−1∃r0 > 0...∃rm > 0


 ∧

i<m−1

ri+ri+1 > ||xi+1−xi|| ∧

rm−1+rm > ||x−xm−1|| ∧ ∀y ∈ �
∧

i≤m−1

||xi−y|| > ri ∧ ||x−y|| > rm




defines Ai. By Theorem 1 and Theorem 3, Ai is �-definable. �
Proof (Theorem 6). Since � is co-semicomputable, A= IRn\� is c.e. open, and hence it is �-
definable. By assumption, A has a finite number of connected components. Let A0,...,Am be all
connected components of A. By Lemma 2, D=⋃

i∈J Ai, where J⊆{0,...,m}, as well as IRn\K=⋃
i �∈J Ai are �-definable. In order to show that � is computable it is sufficient to prove that the

epigraph of its distance function dγ is �-definable. Indeed,

d�(x)<ε↔(∃y∈D
)(∃z∈ IRn\K)||x−y||<ε∧||x−z||<ε.

So, � is computable.
Now we show that K is computable. Since IRn\K is �-definable, K is semicomputable. Co-

semicomputability follows from �-definability of dK (x)<ε by the formula x∈D∨d�(x)<ε. So, K
is computable. �

4 The Uniformity Principle and majorant-computability

In order to do reasoning about computability of certain continuous data we have to pick up an
appropriate language of a structure representing these continuous data. There are two major conditions
how to do that in a right direction. The first one is topological, which states that computable functions
should be continuous. This condition provides correctness of approximating computation. The second
one is logical, which says that Th∃(M) should be computably enumerable. This condition provides
effectiveness of reasoning about continuous data based on�-definability. In this section we illustrate
how these conditions work.

4.1 Continuity of majorant-computable functionals

First we will employ the Uniformity Principle to make reasoning about topological properties of
majorant-computable functionals of the type f :A→ IR.



The Uniformity Principle for Σ-definability 169

Suppose we have an arbitrary model A=〈A,σA〉=〈A,σP, �=〉, where A contains more than one
element, σP is a finite set of basic predicates.

The topology τA
� is formed by the base consisting the subsets defined by existential formulas.

Let σIR∩σA=∅. In order to recall the notion of majorant-computability of functionals f :A→
IR we extend the structure R= IR∪A by the set of hereditarily finite sets HF(R) and consider
�-definability in HF(R)�

(
HF(R),U1,U2,σIR,σA,∈,∅

)
, where the predicate symbol U1 naming

the set of the real numbers and the predicate symbol U2 naming A.
It is worth noting some properties of �-definable sets in HF(R).

Proposition 5
If a set B⊆Rn is �-definable then there exists an effective sequence of existential formulas
in the language σIR∪σA, {	s(x)}s∈ω, such that

x∈B↔R |=
∨
s∈ω

	s(x).

Corollary 7
Every �-subset of R is open.

Proof. The claim follows from Proposition 5. �
Corollary 8
A set B⊆A is open in the topology τR

� if and only if A is open in the topology τA
� .

Proof. →). Suppose B⊆A and B∈τR
� . By the definition of τR

� , there exists an existential formula
ψ such that

b∈B↔R |=ψ(b).

Without loss of generality supposeψ(b)�∃a∃r(
ν(a,b)∧φ(r)∧U1(r)∧U2(a)

)
, where a ranges over

A and r ranges over IR. By quantifier elimination, we can effectively check validity of the formula
∃rφ(r). If IR |=∃rφ(r) then ψ(b)↔∃aν(a,b). If IR �|=∃rφ(r) then ψ(b)↔⊥. So, there exists an
existential formula ϕ such that

b∈B↔A |=ϕ(b).

Therefore B∈τA
� .

←). The claim follows from the inclusion τA
� ⊆τR

� . �
Definition 2
A functional F :A→ IR is called majorant-computable if there exists a �-formula 	(s,a,y) and
a �-formula �(s,a,y) such that the following conditions hold.

1. For all s∈ω, a∈A, the formulas	(s,a,·) and�(s,a,·) define non-empty intervals<αs,βs>

and [δs,γs].
2. For all a∈A, the sequences {<αs,βs>}s∈ω and {[δs,γs]}s∈ω decrease monotonically and
<αs,βs>⊆[δs,γs] for all s∈ω.

3. For all a∈dom(F), F(a)=y↔⋂
s∈ω<αs,βs>={y}↔⋂

s∈ω[δs,γs]={y} holds; for all
a �∈dom(F), ||∩s∈ω [δs,γs]||>1.
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The formulas 	(s,·,·) and �(s,·,·) define effective sequences {	s}s∈ω and sequences {�s}s∈ω. The
sequence {	s}s∈ω is called a sequence of �-approximations for F. The sequence {�s}s∈ω is called
a sequence of �-approximations for F. As we can see, the process which carries out the computation
is represented by two effective procedures. These procedures produce �-formulas and �-formulas
that define approximations closer and closer to the result.

Below we will write ϕ1(a,·)<ϕ2(a,·) if HF(R) |=ϕ1(a,y)∧ϕ2(a,z)→y<z for all real numbers
y,z.The following theorem connects a majorant-computable functional with validity of finite formulas
in the set of hereditarily finite sets, HF(R).

Theorem 7 [6]
For every functional F :A→ IR the following assertions are equivalent:.

1. The functional F is majorant-computable.
2. There exists �-formulas ϕ1(a,y), ϕ2(a,y) such that ϕ1(a,·)<ϕ2(a,·) and

F(a)=y↔∀z1∀z2
(
ϕ1(a,z1)<y<ϕ2(a,z2)

)∧
{z |ϕ1(a,z)}∪{z |ϕ2(a,z)}= IR\{y}.

Proof. →) Let F :A→ IR be majorant-computable. By Definition 2, there exists a sequence {Fs}s∈ω
of �-approximations for F and a sequence {�s}s∈ω of �-approximations for F. Let

ϕ1(a,y)�
(∃s∈ω)(

y �∈ [δs,γs]∧
(∃z∈<αs,βs>

)(
y<z

))

and
ϕ2(a,y)�

(∃s∈ω)(
y �∈ [δs,γs]∧

(∃z∈<αs,βs>
)(

y>z
))
.

By construction, ϕ1 and ϕ2 are the sought formulas.
←) Let ϕ1 and ϕ2 satisfy the requirements of the theorem. Let us construct approximations in the

following way:

	s(a,y) � ∃z∃v(
ϕ1(a,z)∧ ϕ2(a,v)∧ y ∈ (z,v)∧ v−z < 1/s

)
,

�s(a,y) � ∀z(ϕ1(a,z)→ z−y ≤ 1/s
)∧ ∀z(ϕ2(a,z)→ y−z ≤ 1/s

)
.

�
Theorem 8
If F : (A,τA

� )→ (IR,τ||·||) is majorant-computable then it is continuous.

Proof. It is sufficient to show that the preimage of an open interval with rational endpoints is open
in τA

� . It is easy to see that F−1((q1,q2)) is �-definable by the formula ψ(a,q1,q2)�ϕ1(a,q1)∧
ϕ2(a,q2), where ϕ1,ϕ2 are defined in the theorem above. Using Corollary 5, we can eliminate
the rational numbers q1,q2 from the formula ψ . By Corollary 7 and Corollary 8, F−1((a,b)) is
open in τA

� . �

4.2 Majorant-computability and computability

Now we illustrate on an example how we can prove computability of continuous data using the
language of �K -formulas, the Uniformity Principle for �-definability and majorant-computability.

Let f ∈C[0,1]. We extend the language σ by two predicates Q(x1,x2,z)� f |[x1,x2]<z and
P(x1,x2,z)� f |[x1,x2]>z.
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Proposition 6
For every λ : {1,2,3}→{1,2,3} there exist�-formulasψ− andψ+ in the language σ ∪{P,Q}, which
do not depend on the choice of f and

HF(IR) |=P′λ(a,b,x2,x3)↔ψ−(P,a,b,x2,x3) and
HF(IR) |=Q′λ(a,b,x2,x3)↔ψ+(Q,a,b,x2,x3).

Proof. We show how to construct the required formulas ψ− for some λ. If λ= id{1,2,3}
then ψ−(a,b,x2,x3)�b<a∨P(a,y,z). If λ={<1,1>,<2,1>,<3,3>} then ψ−(a,b,x2,x3)�
P(a,b,z). In the non-trivial case, where λ={<1,1>,<2,2>,<3,1>}, we have

HF(IR) |=∀x1∈[a,b]P(x1,x2,x1)↔
HF(IR) |=x2<a∨b<a∨(

P(a,x2,a)∧θ (a,b,x2)
)
,

where
θ (a,b,x2)�

(
x2<b∧(

P(a,x2,x2)∨∨
m∈ω∃t1 ...∃tm

(
a= t0<...

···< tm< tm+1=x2∧∧
i≤m P(ti,ti+1,ti+1)

)))∨(
P(b,x2,b)∧(

P(a,b,b)∨∨
m∈ω∃t1 ...∃tm

(
a= t0<...

···< tm< tm+1=b∧∧
i≤m P(ti,ti+1,ti+1)

)))
.

Using this equivalence and Theorem 1 we can effectively construct ψ−.
�

In [6] we have shown that a functional F :C[0,1]n→ IR is majorant-computable iff it is computable
in the sense of computable analysis [11]. Now we are going to generalize this result to functionals
F :C[0,1]n×IRm→ IR. It is worth noting that in the proof we essentially use the Uniformity Principle.

Theorem 9
For every functional F :C[0,1]n×IRm→ IR the following assertions are equivalent:

1. The functional F is majorant-computable.
2. The functional F is computable.

Proof. Without loss of generality let us consider the case n=m=1. For simplicity of notation,
we will give the construction only for that case, since the main ideas are already contained
here. Let F :C[0,1]×IR→ IR be a majorant-computable functional. For f ∈C[0,1] we denote
Ef (x1,x2,z)� f |[x1,x2]∩[0,1]<z and Hf (x1,x2,z)� f |[x1,x2]∩[0,1]>z. Let us define G :C[0,1]2→ IR
by the rule G(f ,g)=F(f ,g(½)). We show that G is also majorant-computable. It is easy to see that

G(f ,g) < y↔
HF(IR) |= ∃x1∃x2

(
x1 < x2 ∧ ∀x ∈ [x1,x2]F(f ,x) < y∧ x1<g( 1

2 ) < x2

)
,

G(f ,g) > y↔
HF(IR) |= ∃x1∃x2

(
x1 < x2 ∧ ∀x ∈ [x1,x2]F(f ,x) > y∧ x1 < g( 1

2 ) < x2

)
.

By the the Uniformity Principleand Theorem 1 [6], the formulas ∀x∈[x1,x2]F(f ,x)<y, ∀x∈
[x1,x2]F(f ,x)>y are equivalent to ∀x∈[x1,x2]ϕ−(Ef ,Hf ,x,y) and ∀x∈[x1,x2]ϕ+(Ef ,Hf ,x,y) for
some �-formulas ϕ−, ϕ+, and, by Proposition 6, to �-formulas ψ−, ψ+.

Since
x1<g( 1

2 )<x2↔HF(IR) |=∃u∃v
(

u< 1
2 <v∧Eg(u,v,x1)∧Hg(u,v,x1)

)
,

by Corollary 6, the formula x1<g(½)<x2 is equivalent to a�-formula in the language σ ∪{Eg,Hg}.
As we can see the relations G(f ,g)<y, G(f ,g)>y can be represented by�-formulas in the language
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σ ∪{Ef ,Hf ,Eg,Hg}. So, G is majorant-computable. In [6] we have shown that a functional H :
C[0,1]n→ IR is computable iff it is majorant-computable. Hence, G is computable. Since F(f ,x)=
G(f ,λz.x), F is computable as composition of computable functions.

If F is computable, then G is also computable. By Theorem 3 [6], there exist two �-formulas ϕ−
and ϕ+ such that

G(f ,g)<y↔HF(IR) |=ϕ+(Ef ,Hf ,Eg,Hg,y),
G(f ,g)>y↔HF(IR) |=ϕ−(Ef ,Hf ,Eg,Hg,y).

If we substitute Eg by U � [0,1]×(x,+∞) and Hg by U � [0,1]×(−∞,x) then we get

F(f ,x)<y↔HF(IR) |=ϕ+(Ef ,Hf ,U,V ,y),
F(f ,x)>y↔HF(IR) |=ϕ−(Ef ,Hf ,U,V ,y).

By Theorem 1 [6], F is majorant-computable. �

4.3 Computably enumerability of Th∃(C[0,1]∪IR)

For effective reasoning about computable continuous data based on�-definability we have to choose
an appropriate structure M representing these data that has the computable enumerable theory
Th∃(M).

In this subsection we show that computably enumerability of Th∃(C[0,1]∪IR) follows from
computably enumerability of Th(IR).

Let us denote σC[0,1] ={Ef (x1,x2,z),Hf (x1,x2,z)}, where Ef (x1,x2,z)� f |[x1,x2]∩[0,1]<z and
Hf (x1,x2,z)� f |[x1,x2]∩[0,1]>z. First we need the following proposition.

Proposition 7
If A⊆ IRn is �-definable in HF(C[0,1]∪IR) then A is �-definable in HF(IR).

Proof. Let A be�-definable in HF(C[0,1]∪IR). Using Proposition 5, without loss of generality, we
assume that there exists an effective sequence of existential formulas in the language σIR∪σC[0,1],
{	s(f ,x)}s∈ω, such that

x∈A↔(
IR∪C[0,1]) |=

∨
s∈ω
∃f	s(f ,x).

Since A is open and the set of piecewise linear functions with rational coefficients is dense in
C[0,1], the existence of the continuous function f is equivalent to the existence of a piecewise linear
function. So,

(C[0,1]∪IR) |=∃f	s(f ,x)↔
HF(IR) |=∨

r∈ω∃b0∃a1 ...br+1
(
0<a1< ···<1∧	r

s
)
,

where 	r
s is obtained from 	s by substitution of formulas Ef (c,d,z) by the following

∃k∃j
(

0<k< j<r+1∧ak<c∧d<aj∧∧j
s=k bs<z

)
∨

∃i<k+1
(

ai>d∧∧i
s=0bs<z

)
∨

∃k>0
(

ak<c∧∧r+1
s=1 bs<z

)
∨∧r+1

s=0 bs<z,
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and formulas Hf (c,d,z) by the following

∃k∃j
(

0<k< j<r+1∧ak<c∧d<aj∧∧j
s=k bs>z

)
∨

∃i<k+1
(

ai>d∧∧i
s=0bs>z

)
∨

∃k>0
(

ak<c∧∧r+1
s=1 bs>z

)
∨∧r+1

s=0 bs>z.

By Theorem 1 and Corollary 5, A is �-definable in HF(IR). �
Theorem 10
The theory Th∃(C[0,1]∪IR) is computably enumerable.

Proof. Since the procedure described in the theorem above is effective and uniform, computably
enumerability of Th∃(C[0,1]∪IR) can be reduced to computably enumerability of Th(IR). �
Remark 5
It is worth noting that the Uniformity Principleallows us to extend the language σC[0,1] by new
constant symbols for computable functions e.g. sin, cos, exp. We still have computably enumerability
of Th∃(C[0,1]∪IR). Indeed, for example, Esin(x,y,z)�∀a∈[x,y]sin(a)<z is�-definable in HF(IR)
by the Uniformity Principle and properties of computable real-valued functions.
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