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Abstract

NF-κB oscillations were suggested by Hoffmann et al from electro-mobility
shift assays (EMSA) in population studies of IκBα−/− embryonic fibroblasts
and simulated in a computational model. NF-κB oscillations were also observed
by Nelson et al at the single cell level. The Hoffmann model gave a fairly
good prediction of Nelson et al oscillatory experimental data using fluorescent
proteins. A common comment on the source of oscillations is the existence of
negative feedback loops. Just from the point of mathematics, we can set up
a simple system containing a negative feedback loop that possesses oscillating
behaviour resembling the ones observed in the experiments in the way of Fonslet
et al . However, in order to understand biological mechanisms, it is necessary to
work on models which are detailed enough to relate to biochemical processes and
variables measured experimentally even though such models may be very large.
In this paper, we are able to analyze the dynamical properties of Hoffmann’s
computational model (containing 24 variables and 64 parameters), by using a
combination of computational and analytical methods, and give an explanation
of the source of oscillations. We find that the computational model can be
treated as a fast-slow system where the level of total IκB Kinase (IKK) is
treated as a slow variable. If the actual variation of IKK is sufficiently slow,
then orbits in the true system trace attractors in a family of reduced models.
We find that for some range of the level of NF-κB (which is conserved in both
the full and reduced models), the reduced system experiences Hopf bifurcations
while varying the level of total IKK. The damped oscillations observed in the
computational system come from the existence of stable limit cycles and stable
spirals in the reduced system family.

1 Introduction

There is an important distinction between the modelling of physical and biological
systems which might be characterised in terms of the relevance of Occam’s Razor
to the modelling process. Consider, for example, the case of circadian clocks [24].
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Conceptually, it is easy to construct any one of a number of elegantly simple math-
ematical models which exhibit autonomous nonlinear oscillations, but in practise,
systems biological studies of naturally occurring circadian clocks do not reveal such
simplicity. On the contrary, complicated, apparently redundant structure is found,
much of which is seemingly irrelevant to the normal working of the organism. There
is, as yet, no clear explanation of this phenomenon, although Rand et al [24] make
an interesting case that such complexity allows for the evolutionary optimisation of
multiple objectives.

This phenomenon presents a fundamental—we are tempted to say “philosophical”—
difficulty to those who would like to understand the workings of biological systems.
The models that arise from experimental studies—which we shall think of as systems
of nonlinear, coupled ordinary differential equations—are generally sufficiently com-
plicated that simulation is considered to be the only way understand them. It might
reasonably be argued that the result of all the experimental and modelling effort has
been to replace one experimental system with another; one in which the role of initial
conditions of the system—as well as the uncertainties of a huge number of system
parameters—has to be explored and classified.

The intellectual thrust of systems biology is directed towards mathematising bi-
ology with the ultimate goal of turning biology into a quantitative science. However,
an undervalued virtue of good mathematical modelling is that it provides a rigourous
basis for the qualitative understanding of systems. In the well-developed quantitative
sciences these two views are provided side by side. Generally, good qualitative models
are found by wielding Occam’s Razor on the fundamental mathematical representa-
tion of a system to eliminate small or irrelevant terms and, thereby, produce smaller
model systems which capture the essential features of the processes of interest. Math-
ematicians have engaged in this enterprise by providing precise definitions of qualita-
tive equivalence (see, for example [13]), which allow rigourous conclusions to be drawn
as to whether different models exhibit the same qualitative behaviour. These results
can often be stated in a way that summarises the behaviour of systems for ranges
of initial conditions. Overall, the approach frees the modeller to focus on restricted
sets of system parameters at which bifurcations—changes in qualitative behaviour—
occur. Moreover, a range of mathematical techniques (for example, Liapunov-Schmidt
reduction [11, 12], centre manifold theory [6], a range of singular perturbation tech-
niques [21] as well as various semi-empirical methods which are based on finding
nice projections of high-dimensional dynamical systems [2, 9, 14, 4, 5]) have been
developed which provide rigourous tools for reducing the complexity of models while
still preserving the qualitative behaviour of the original system. From this point of
view, simulation need not be the only option when faced with an experimentally-
derived model of a biological system. Indeed, qualitative techniques provide synoptic
information which compliments and illuminates the results of simulations.

In this paper we will illustrate a way in which these qualitative techniques can be
applied to a realistically complicated model system derived from the biology. It will
be clear that we are well beyond the regime of back-of-the-envelope calculations here.
Applicability of these mathematical techniques requires that they be integrated with
computational tools. We have done this at an unsophisticated level, but, nevertheless,
we will demonstrate that it is possible to take a reasonably realistic model system

2



and develop a qualitative understanding of how it functions while retaining contact
with the original biologically meaningful representation.

The system we shall study is an oscillatory cell signalling pathway which appears—
mathematically at least—to have mechanistic similarities with circadian clocks. This
pathway involves nuclear factor (NF)-κB, which comprises of a family of structurally
related transcription factors that are involved in regulating numerous genes which
play important roles in inter- and intra-cellular signaling, cellular stress response, cell
growth, survival and apoptosis.[16]

The rest of the paper is organised as follows. In the next section we describe
the background of the NF-κB signalling system and motivate the analysis we use
to understand the origins of the observed oscillations. In Section 3, we study a toy
model to give a quantitative description of how orbits in a so-called fast-slow system

trace attractors of the family of systems corresponding to fixed values of the slow
variable. In the following sections we consider a model of the NF-kB system based
on the work of Hoffmann et al [15]. The particular form of this model that we shall
use is a reduced version (considering Ihekwaba et al. [18] and assumptions by Nelson
et al. [22]). In Section 4, we discuss how the dynamics of this system can be seen as
a fast-slow system where the total (complexed and free) level of IκB Kinase (IKK)
is treated as a slow variable. In this picture, transient oscillations are understood
in terms of a slow tracking through a region of parameter space in which there are
Hopf bifurcations. We also develop a simple idea which allows the estimation of
the number of observed pulses using information that is naturally obtained from the
computational bifurcation calculations. In Section 5, we explore the initial behaviour
of the orbits observed in our simulations. This analysis suggests one way in which
the phase space of a systems biology model might be structured so as to limit the
importance of initial conditions on the ultimate behaviour of the model. We suggest
that this is an important issue. The initial state of, for example, a daughter cell after
cell division has a random component, it would be surprising if the ultimate fate of the
cell were to depend sensitively on this, and yet as we shall show the signal produced
by the NF-κB signalling system has a strong dependence on initial condition (see the
plots shown in figures 6 and 8 which are for the same model parameter set and differ
only in the initial condition used in the integration).

2 The basic ideas about NF-κB signalling

2.1 biological background

In the absence of any stimulus, NF-κB is held within the cytoplasm in an inactive state
by association with IκB proteins including IκBα, IκBβ, and IκBε . In response to
stimulation, the activated IκB Kinase (IKK) phosphorylates IκB proteins, targeting
them for proteolysis through the ubiquitin-proteasome pathway [10]. Phosphorylated
IκB proteins are then ubiquitinated and degraded by the proteasome, liberating NF-
κB to translocate to the nucleus and regulate target gene transcription. It is of
particular interest here that one role of NF-κB is to upregulate the production of
IκBα. IκB proteins contain both nuclear localization and export sequences, enabling
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its nuclear-cytoplasmic (N-C) shuttling. Newly synthesized free IκB binds to nuclear
NF-κB, leading to export of the complex to the cytoplasm [3], becoming a target
for the exclusively cytoplasmic IKK [23, 27]. The induction of IκB synthesis by NF-
κB, which leads to enhanced export of NF-κB from the nucleus, clearly provides a
negative feedback process. More of this will be said below.

Damped oscillations in the temporal response of NF-κB activity (DNA bound
nuclear NF-κB) were observed using electromobility shift assay (EMSA) by Hoffmann
et al who also simulated the behaviour using a mathematical model [15]. Oscillations
in NFkB nuclear localisation were also observed by Nelson et al [22] at the single cell
level using fluorescence microscopy. Numerical integration of the Hoffmann model
gave a fairly good prediction of the oscillations observed by Nelson et al . However, it
would also be satisfying to have a qualitative understanding of how the oscillations
arise. For example, is the source of the oscillations associated with under-damped,
linear decay to a stable fixed point of the system? Or—since the observed oscillations
seem very anharmonic—do we see the effect of a fixed nonlinear transformation of
such a decay? Or is it the case that the oscillations are a truly dynamic nonlinear
phenomenon? And, if the latter is the case, can we use this knowledge to find a
natural way to characterise the observed oscillations?

2.2 modelling philosophy

It is commonly remarked that oscillatory behaviour can be accounted for by the
existence of negative feedback loops (under-damped linear decay to a stable fixed
point is an elementary example of this—see the illustrative example given in [15]).
As a mathematical exercise, it is certainly possible to set up a simple system with
a negative—possibly nonlinear—feedback loop which exhibits oscillatory behaviour
resembling single cell experimental observations. In a recent paper Fonslet et al [8]
have done just this. However, different models with different structures can show
similar dynamical behaviour. Moreover, our understanding of the mathematics of
nonlinear oscillators is such that it is possible for modelling to become a circular
exercise, whereby the modeller builds mathematical terms which will give the desired
behaviour into the model structure. In such cases it remains a moot point as to
whether these terms correspond in any meaningful way to biological mechanisms
which are active in the system of interest. We argue that in order to understand a
biological mechanism (of NF-κB signalling pathways in this case), it is necessary to
work on a model—such as the one considered here—which is based on experimental
data. Here we study the dynamical behaviour of the model using a combination of
computational and analytical methods. This work will enhance our understanding of
the nature of the oscillations manifest by this system. In particular, our approach
will provide answers to questions such as those posed at the end of the previous
subsection.

2.3 preliminary analysis

From the simulations and experimental results in [15], the system subjected to a
continuous stimulus (modelled in the simulation by a slow decay of IKK) exhibits
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damped oscillations. A simple explanation of this behaviour would be to suggest
that the system has an attracting fixed point when the total concentration of IKK
is zero1. Let us call this the quiescent fixed point for future reference. The damped
oscillations would then be understood in terms of the linearisation of the model about
the quiescent fixed point. Even though the model has such a fixed point at biologi-
cally reasonable values of the system parameters, the derivative (which can be found
numerically or by use of computer algebra) of the system of ODEs evaluated at this
point is found to have only real eigenvalues in the biologically reasonable parameter
range.

Figure 1 summarises the salient features of the eigenvalues of this derivative for
the case of the reduced Hoffmann model. We shall return to this figure later, but
here we are only interested in the axis total IKK = 0 (there are no fixed points of the
model when total IKK > 0). It is clear from the figure that the attracting fixed point
has only real eigenvalues when total NF-κB < 0.2 (in particular, the eigenvalues are
real when total NF-κB = 0.1, the value used for the simulations in [15]). This being
the case, the evolution of the system to the quiescent fixed point must ultimately be
non-oscillatory, and any oscillations that are observed must be intrinsically nonlinear
in nature.
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Figure 1: A representation of the important eigenvalues of the derivative of the model
evaluated at the quiescent fixed point in the limiting model where total IKK is con-
served. Solid green curve: the boundary of region where all eigenvalues are real. Solid
blue curve: the Hopf bifurcation line where the real part of the complex eigenvalues
change sign.

It appears to be possible that for sufficiently large values of total NF-κB the
attracting fixed point can have complex eigenvalues and, therefore, that the signalling
system will exhibit damped linear oscillations. However, this is clearly not the case
for most of the simulation results reported in the literature.

1The modelling will involve only active IKK. In the following ‘total IKK’ will be used to refer to
the overall concentration of active IKK both in its free form and in its complexes. Analogously, we
shall refer in this paper to ‘total NF-κB’ when we wish to account for all the complexed and free
NF-κB in the system.

5



2.4 the fast-slow approach

Horton et al [25] found that in SK-N-AS cells, the temporal response of NF-κB ex-
hibits undamped oscillations when the amount of total IKKremains at some constant
level. This suggests that within the state space of the model system, there exists a
limit cycle in the subspace corresponding to the fixed level of total IKK. Indeed, since
the actual level of IKK is to a degree arbitrary, it suggests that there may be a family
of such subspaces, parameterised by a range of values of IKK, in which there exist
limit cycles.

Figure 2 shows the result of running a computational bifurcation theory pro-
gramme on the model of the NF-κB signalling system due to Horton (the corre-
sponding calculation using the Hoffmann model gives closely similar results) taking
a limiting form of the model in which total IKK is conserved. What is shown is a
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Figure 2: The bifurcation diagram: the solid lines (black lines) represent the branch
of stable equilibria, the dashed (red) line represents the branch of unstable equilibria,
and the solid curve (green curve) represents the branch of stable limit cycles

projection of a one parameter bifurcation diagram of the system with the level of total
IKK as the parameter and with the level of total NF-κB being 0.12 The solid lines
(black lines) represent the branch of stable equilibria, the dashed (red) line represents
the branch of unstable equilibria, and the solid curve (green curve) represents the
branch of stable limit cycles (where two points on the same vertical line correspond
to the maximum and minimum values of nuclear NF-κB found in one period of the
limit cycle). The figure shows that, indeed, if the total IKK is held fixed anywhere in
the range ∼ 0.01 to ∼ 0.05 the system will settle to a stable (undamped) oscillation.

Now let us suppose that the system is initially in the attracting equilibrium state
represented by the origin of Figure 2, and assume that an external stimulus is applied
to the cell which causes a finite, discontinuous step in the amount of IKK, followed
by slow decay. We are interested in the system’s response to this input. Following

2Neither the Hoffmann nor the Horton models contain a mechanism for the creation or destruction
of the NF-κB dimer. Therefore, the total amount of NF-κB (the dimer and its complexes) is
conserved in both cases.
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the initial discontinuous change in the level of IKK, we expect, intuitively, that if the
decay in the amount of IKK is slow compared with the relevant time scales of the
rest of the system, the orbits of the true system will trace the limit cycles or fixed
points of the one parameter family of systems in which the total IKK is held fixed.
A numerical illustration of this in the case of the Horton model with an artificially
slow decay rate of IKK is shown in Figure 3 which also shows the original bifurcation
diagram (Figure 2) of the system with fixed IKK. In this rather extreme example,
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Figure 3: An orbit of the true system with the level of total IKK decaying very slowly
is superimposed over the bifurcation diagram.

we can see that orbits of the true system generally trace the attractors of the static
system very well.

There are four discernible stages to this behaviour: an initial transient as the
system approaches the amplitude predicted by the bifurcation diagram; a period
where the oscillation amplitude follows that predicted by the bifurcation diagram; a
period of decaying oscillation as the system overshoots the Hopf bifurcation (in this
stage, the bifurcation diagram would predict that the system would track the fixed
point behaviour); and a period where the system tracks the fixed point and does
not oscillate. If we were to plot the time series of, say, the concentration of nuclear
NF-κB corresponding to this calculation, the result would be a sequence of (many)
pulses whose height generally decays (but not monotonically since having reached
the second stage, the amplitude begins to grow in the case shown in Figure 3) until
eventually the oscillation disappears to be replaced by a smooth monotone decay to
zero.

More realistically, for both Hoffmann’s and Horton’s models, level of total IKK
decreases almost exponentially but not as slowly as was assumed when constructing
this illustrative example. For realistic parameter values, therefore, orbits of the true
system will not follow the attractors of the reduced system as well in the example.
This is illustrated in Figure 4 where we use realistic parameter values. The first peak
corresponds to the initial transient, the following three peaks roughly follow the bifur-
cation diagram, the remaining peak lies in the overshoot region and then the system
decays monotonically to the fixed point. Although far from perfect, the agreement is
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good enough to provide a reasonable explanation of the oscillating behaviour found
in the true system.
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Figure 4: An orbit of the original system is projected to the plane of nuclear NF-κB
against total IKK

3 Fast-slow systems

3.1 Hopf bifurcation normal form equations

Before we go on to look in more detail at the NF-κB system, let us pause here to
discuss a simple mathematical model which illustrates the properties that we wish
to exploit. Consider a system that undergoes a Hopf bifurcation when a parameter,
let’s say, µ, passes through the fixed value µh with nonzero speed. The normal form
equations which capture the qualitative behaviour of such a system when µ ≈ µh take
the form of a pair of ODEs which can be written in polar coordinates (roughly, think
of r(t) as giving the amplitude of an oscillating signal whose phase is θ(t)) as follows:

dr

dt
= (µ − µh − r2)r

dθ

dt
= ω + α(µ − µh) + βr2 (3.1)

Here ω is the frequency of small amplitude oscillations of the system at the point of
bifurcation. The constant α quantifies the effect on this frequency as µ is varied near
the point of bifurcation, and β quantifies the amplitude dependence of the oscillation
frequency.

This normal form equation has a skew product structure; we can solve the radial
equation separately and then substitute the solution into the angular equation which
can then be integrated. The radial equation has two qualitatively distinct types of
behaviour depending on the relative magnitudes of µ and µh:
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A: If µ < µh, then dr/dt = (µ − µh − r2)r < 0 for all r > 0. In this case, therefore,
the radial coordinate decreases monotonically in time and in the limit of long
times r(t) → 0. Therefore, the origin, r = 0, is an attracting fixed point in this
case.

B: If µ > µh, there is an attracting radius r∗ =
√

(µ − µh). If 0 < r < r∗, then
dr/dt > 0 and r(t) increases monotonically. Conversely, if r∗ < r then dr/dt < 0
and r(t) decreases monotonically. In the limit of long times r(t) → r∗, unless
initially r = 0. The origin is, in this case, an unstable fixed point.

Overall, we see two distinct types of behaviour corresponding to cases A and B. In
case A, all solutions of (3.1) with initial conditions r(0) 6= 0 are oscillations with am-
plitude which decays to zero. In case B, all solutions are oscillations with amplitudes
which evolve towards a stable amplitude, r∗. The resulting stable oscillation has fre-
quency ω + (α + β)(µ−µh). In both cases there is a fixed point solution r(t) = 0. In
case A this attracts all other solutions, and in case B it is repelling.

3.2 a toy fast-slow system

A simple example of a fast-slow system is obtained by augmenting equations (3.1)
with a third differential equation which turns the parameter µ into a (slowly varying)
dynamical quantity:

dr

dt
= (µ − µh − r2)r (3.2)

dθ

dt
= ω + α(µ − µh) + βr2 (3.3)

dµ

dt
= −ελµ (3.4)

Here ε will be taken to be a small positive number and λ is a decay rate (expressed
in units of time−1) which is assumed to have magnitude of order one.

an intuitive picture

Imagine that the original normal form equations evolve on a timescale of seconds.
For example, in the regime B the rate of contraction, λB, to the stable limit cycle is
given by the derivative of the right hand side of the radial equation evaluated at the
attracting radius

λB =
d

dr
(µ − µh − r2)r|r=r∗

= −2(µ − µh) (3.5)

Let us suppose that the time t is expressed in seconds. Then the units of λB are sec−1

and in these units we expect that the magnitude of λB is number of order one; in
other words, the half-life of the decay onto the attracting limit cycle is of the order of
one second. A similar argument can be made in case A about the decay towards the
stable fixed point at the origin. In this case λA = −|µ−µh|. (Note that in both cases
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we have to assume that we are far enough away from the Hopf bifurcation because
both λA and λB tend to zero as µ → µh.)

Now we suppose that µ evolves on the timescale of hours (say, ελ ∼ 3×10−4 sec−1).
This separation of timescales means that if we compare the half lives of, for example,
the convergence to the attracting limit cycle and the decay of µ, that r(t) converges
to the limit cycle for many of its half lives but over the same time very little has
happened to µ. It is reasonable, therefore, to assume that the radial equation has
always converged to the limit cycle at whatever value µ whenever λB >> ελ. A
similar intuitive argument can be made for regime A to establish that r(t) converges
to the fixed point at the origin whenever λA >> ελ.

This intuition is often used to justify steady-state approximations when simpli-
fying chemical kinetic systems. Famously, it provides the basis of the derivation of
Michaelis-Menten kinetics for enzyme catalysed transformation of a substrate to a
product. Perhaps less famously it has a rigourous mathematical basis due to work by
A.N. Tikhonov (see the review by Klonowski [20]).

Tikhonov’s theorem and a generalisation

Later we shall want to invoke (a generalisation of) Tikhonov’s results in the context
of the various models of NFκB activity. So here we describe his work in a slightly
more formal setting. (The review [20] provides more detail and even more generality
than we shall require here.) Consider a system of ordinary differential equations in
the following form:

ε
dx

dτ
= X(x, y) (3.6)

dy

dτ
= Y (y, x) (3.7)

where ε is a small parameter and the functions X : R
n×R

m → R
n and Y : R

m×R
n →

R
m (where n and m are integers specifying the dimensions of the vectors x and y

respectively) are such that the initial value problem consisting of equations (3.6) and
(3.7) together with the initial conditions x(0) = x0, y(0) = y0 has a unique solution.
Tikhonov studied the relationship between this solution and the solution of the system
obtained by setting ε to zero.

Imagine that we find the roots of the equations:

X(x, y) = 0 (3.8)

and let’s say that one of these is x = f(y), that is, X(f(y), y) = 0 for all values of
y. Then Tikhonov’s theorem tells us that when ε → 0 the solution of equations (3.6)
and (3.7) with initial conditions x(0) = x0, y(0) = y0 tends to the solution of the
following, so-called degenerate system

x∗ = f(y) (3.9)

dy

dτ
= Y (y, x∗); y(0) = y0 (3.10)

provided that the following two hypotheses hold:
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1. there is a bounded region of R
m such that for each y in this region, the root

x∗ = f(y) is an isolated asymptotically stable fixed point of the adjoined system

ε
dx

dτ
= X(x, y)

(here y is treated as a fixed parameter).

2. the initial condition x(0) = x0 lies in the basin of attraction of x∗ for all initial
values y0.

In the general setting of the models of NF-κB signalling which we shall consider
in this paper the adjoined system will have, rather than a stable fixed point, an
attracting limit cycle. In the case of our toy model, the skew product structure of
the equations implies that we can still reduce the problem to one of looking for a
fixed point. The toy model is valid when we are close to a Hopf bifurcation and
therefore we shall use it to illustrate our point. It is possible, however, to generalise
Tikhonov’s theorem to include the case where the attractor of the adjoined system
is more complicated, a limit cycle or even a chaotic attractor, for example. The
basic idea of this generalisation is that the dynamics on the attractor of the adjoined
system is fast. It is possible, therefore, to average out this rapid variation to give the
analogue of the degenerate system which gives the slow dynamics of the system. The
paper by Dvořák and Šǐska [7] contains a coherent description of this work as well as
giving a biologically inspired example.

Tikhonov’s theorem applied to the simple model

To apply Tikhonov’s theorem to our toy model, we focus on equations (3.2) and
(3.4). (The angular equation can be solved separately once we have solved these.)
We proceed by rescaling time τ = εt (think of τ being measured in hours and t in
seconds). It follows that d/dt = εd/dτ , and therefore that we can rewrite equations
(3.2) and (3.4) as follows:

ε
dr

dτ
= (µ − µh − r2)r (3.11)

dµ

dτ
= −λµ (3.12)

We are trying to solve these equations—which are in the form of equations (3.6) and
(3.7)—given initial conditions r(0) = r0 and µ(0) = µ0. A standard result from the
theory of ordinary differential equations tells us that there exists a unique solution
to this problem3. The basic prerequisite for Tikhonov’s theorem, therefore, holds.

Now, consider the following system of algebraic and differential equations—the
degenerate system—which is obtained formally from equations (3.11) and (3.12) by
setting ε to zero:

0 = (µ − µh − r2)r (3.13)

dµ

dτ
= −λµ; µ(0) = µ0 (3.14)

3Since the vector valued function (r, µ) 7→ ((µ − µh − r2)r,−λµ) is Lipschitz.
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In this very simple model the differential equation component (equation (3.14)) of
the degenerate system is independent of the algebraic component (given by the roots
of equation (3.13)), and can be solved once and for all:

µ(τ) = µ0e
−λτ

The solutions of equation (3.13) are just those given in Section 3.1 where we discussed
the Hopf bifurcation. If µ < µh (case A) there is just one relevant root, r∗ = 0. If
µ > µh (case B) there are two relevant roots: r∗ = 0 and r∗ =

√

(µ − µh).
In order to apply Tikhonov’s theorem we need to check if the two hypotheses

given in the previous section hold for these roots. The first hypothesis requires that
we can find a bounded interval such that for each µ in the interval the root is an
asymptotically attracting fixed point of the adjoined system

ε
dr

dτ
= (µ − µh − r2)r (3.15)

These facts have already been established in Section 3.1 where we discussed the Hopf
bifurcation.

In case A we can choose any bounded interval which lies within the open interval
µ < µh such that r∗ = 0 is the attracting fixed point of the adjoined system for any
initial condition r(0) = r0. This also establishes the validity of the second hypothesis
in this case. Therefore, according to Tikhonov’s theorem, if ε → 0 the solution of
equations (3.11) and (3.12) with initial conditions µ(0) = µ0 < µh and r(0) = r0

converges to (r(τ), µ(τ)) = (0, µ0e
−λτ ).

In case B we can choose any bounded interval which lies within the open interval
µ > µh such that r∗ =

√

(µ − µh) is the attracting fixed point of the adjoined system
for any initial condition r(0) = r0 > 0. Again, this also establishes the validity
of the second hypothesis and therefore, according to Tikhonov’s theorem, if ε → 0
the solution of equations (3.11) and (3.12) with initial conditions µ(0) = µ0 > µh

and r(0) = r0 > 0 converges to (r(τ), µ(τ)) = (
√

(µ0e−λτ − µh), µ0e
−λτ ) as long as

µ(τ) > µh.
We have established rigourously the result that was argued intuitively in Sec-

tions 3.2. The full system (equations (3.2), (3.3) and (3.4)), when ε → 0, tracks the
stable branches of the Hopf bifurcation as long as µ is not too close to µh. When
µ = µh, Tikhonov’s theorem does not hold because the only root of the algebraic
part of the degenerate system is r∗ = 0 and this, although it is a fixed point of the
adjoined system, is not asymptotically stable. In practise, when we look at small ε
but do not take the limit, there is a region around the Hopf bifurcation point µ = µh

which causes difficulty. We have argued that in this region the timescales of the sys-
tem are not well separated. In our system if we choose µ0 > µh the decay of µ(τ) will
naturally take the dynamics through this region, therefore we should investigate the
behaviour of our toy model to see what we might expect to happen.

the behaviour close to µ = µh

Our toy model is sufficiently simple that we can solve it exactly to establish what
happens in the neighbourhood of the bifurcation point µ = µh. Returning to equations
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(3.11) and (3.12), if we divide the first equation by the second, we get

dr

dµ
=

1

−ελµ
(µ − µh − r2)r. (3.16)

We can solve this equation given an initial value of µ, say µ0 > µh, and a value of

r(µ0) = r∗(µ0) =
√

µ0 − µh

which corresponds to the limit cycle tracking behaviour obtained from Tikhonov’s
theorem. The solution is then a function r(µ) which gives the extension of the tracking
solution into the neighbourhood of µ = µh.

The simplicity of the model resides in the fact that equation (3.16) is a Bernoulli
equation. Using the substitution r̃ = r−2, the Bernoulli equation can be transformed
into a linear, non-autonomous differential equation:

dr̃

dµ
= 2

1

εµ
[(µ − µh)r̃ − 1] (3.17)

If we choose a sufficiently large value of µ0—that is, if we start at a point sufficiently far
above the bifurcation point—we can write the solution of this transformed equation
in terms of the incomplete gamma function Γ(a, x) (see Appendix A for the definition
of Γ(a, x)):

r̃(µ) = e
2µ

ε µ−
2µh

ε (
2

ε
)

2µh
ε

−1Γ(
2µh

ε
,
2µ

ε
) (3.18)

The derivation of this result (given in Appendix A) demonstrates that for sufficiently
large µ0, the value of r(µ) (or r̃(µ)) is insensitive to the choice of µ0. In particular,
the value at the Hopf bifurcation point, µ = µh, is independent of the choice of µ0

and given by

r(µh) ≈ (
µhε

π
)

1

4 . (3.19)

if µh ≫ ε.
Next we consider how orbits approach the trivial equilibrium after µ passes the

Hopf bifurcation point. Since the trivial solution r = 0 is attracting, we ignore the
higher order term r2 in the system (3.17). Then we have

dr̃

dµ
= − 1

εµ
(µ − µh)r̃ (3.20)

Solving this ordinary differential equation we have

r̃(µ) = e−
1

ε
(µ−µ0)(

µ

µ0
)

µh
ε r̃(µ0) (3.21)

where r̃(µ0) is a constant of integration.
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the overall behaviour

We can now match the two halves of this calculation together—and thereby describe
what happens as µ decreases through the region of the Hopf bifurcation—by choosing
µ0 = µh in (3.21) and using equation (3.19) to set r(µ0) = (µhε

π
)

1

4 (that is, r̃(µ0) =

( π
µhε

)
1

2 ) in the above. Then

r̃(µ) = e−
1

ε
(µ−µh)(

µ

µh

)
µh
ε (

π

µhε
)

1

2 (3.22)

We can see from this expression that orbits approach zero as µ
µh
ε since e−

µ

ε → 1 as
µ → 0.

0 0.02 0.04 0.06 0.08 0.1
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rHmuL and sqrtHmu-u0L

Figure 5: Solid blue curve: plot of r(µ) found by solving equation (3.16) when µ >
µh = 0.1 and when µ ≤ µh and then matching the two solutions using equation (3.19).
Dashed pink curve: plot of attracting fixed points of the adjoined system equation
(3.15).

Figure 5 summarises these results and provides a comparison with the bifurcation
diagram of the adjoined system, equation (3.15). When µ is well away from the
Hopf bifurcation value (µh = 0.1 in the particular case shown), the trajectories trace
the path of the attractors of the system well as is predicted by Tikhonov’s Theorem.
However, when the parameter is near to the Hopf bifurcation point, the orbit deviates
from the path of the attractors and begins to decay towards the origin according to the
power law µ

µh
ε . It is clear from the above results that as ε is made smaller the exact

solution is approximated increasingly well by the bifurcation curve, nevertheless, for
any ε > 0 the power law decay ensures that the full system, equations (3.2), (3.3)
and (3.4), continues to oscillate for µ < µh. Our claim is that essentially the same
analysis can be used to understand the oscillations in the NF-κB system. From this
point of view, this toy model has provided an explicit example of the second and third
stages described in the discussion of figures 3 and 4.
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4 Dynamical properties of the reduced Hoffmann

model

In this section we return to more realistic representations of biological processes and
look to see how the abstractions that we have tried to exemplify in the above might
be used in practise. We begin by considering the simplification due to Horton [17]
of the mathematical model of the NF-κB signalling system proposed by Hoffmann
et al in [15]. The latter consists of 24 ordinary differential equations and requires
the specification of 64 parameters. There are two main points of difference between
this and that of Horton. First, the Hoffmann model includes the roles of three IκB
proteins: IκBα , IκBβ and IκBε . However, Horton claims that ignoring the effect of
IκBβ and IκBε in the model does not destroy the key correspondence of the model
output with the experimental data. Therefore, we consider the system (4.1) which
is obtained from the Hoffmann’s mathematical model with all terms related to IκBβ
or IκBε being set to zero. The second difference is that Horton’s model replaces the
quadratic term in the equation representing IκBα transcription by a linear term. This
substitution gives a better prediction of the effect of RelA overexpression. Horton’s
model is given by the following set of 10 coupled, nonlinear, ordinary differential
equations:

y′

1 = kd4 · y3 − ka4 · y2 · y1 − ka4 · y9 · y1 + (kr4 + kd4) · y10

+kdeg4 · y3 − k1 · y1 + k01 · y4

y′

2 = kd1 · y9 − ka1 · y8 · y2 − ka4 · y2 · y1 + kd4 · y3

+ktr1 · y7 − kdeg1 · y2 − ktp1 · y2 + ktp2 · y5

y′

3 = ka4 · y2 · y1 − kd4y3 − ka7 · y8y3 + kd1 · y10 + k2 · y6 − kdeg4 · y3

y′

4 = k1 · y1 − ka4 · y5y4 + kd4 · y6 − k01 · y4

y′

5 = ktp1 · y2 − ktp2 · y5 − ka4 · y5 · y4 + kd4 · y6

y′

6 = ka4 · y5 · y4 − kd4 · y6 − k2 · y6

y′

7 = ktr2a + ktr2 · y4 − ktr3 · y7

y′

8 = (kd1 + kr1) · y9 − k02 · y8 − ka1 · y8 · y2 − ka7 · y8y3 + (kd1 + kr4) · y10

y′

9 = ka1 · y8 · y2 − (kd1 + kr1) · y9 − ka4 · y9 · y1 + kd4 · y10

y′

10 = ka7 · y8 · y3 + ka4 · y9 · y1 − (kd1 + kd4 + kr4) · y10 (4.1)

where y1 = concentration of free cytoplasmic NF-κB ,
y2 = concentration of free cytoplasmic IκBα ,
y3 = concentration of cytoplasmic IκBα -NF-κB ,
y4 = concentration of nuclear NF-κB ,
y5 = concentration of nuclear IκBα ,
y6 = concentration of nuclear IκBα -NF-κB ,
y7 = concentration of IκBα transcript,
y8 = concentration of free active IKK,
y9 = concentration of IKK-IκBα ,
y10 = concentration of complex IKK-IκBα -NF-κB
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and all parameters are determined by measurement or by data fitting [15].

The state space of this model, S, is the closed, positive orthant of R
10. That

is, at any given time we can specify the state of the system as a 10-dimensional
vector whose components—being concentrations—are all greater or equal to zero. If
we choose any point in S as the initial state of the system and solve the system of
differential equations subject this initial data, we obtain an orbit in S. This is a
curve in S which depends continuously on the time. Each point in the orbit gives the
state of the system at some time following the beginning of the experiment. If, on
the other hand, we think of many simultaneous experiments corresponding to a range
of initial conditions we can imagine that S is filled with orbits which because of the
uniqueness properties of the differential equations do not intersect one another. As
time evolves the states of all the experiments flow as a cloud of points each following
its own orbit.

It turns out that there is some hidden simplifications which make the understand-
ing of this system a little easier. In particular, there are flow invariant subspaces.
These are regions of S such that if any orbit begins in one of these regions, it must
remain in the same region for all time.

4.1 Flow invariant subspaces

The induction of NF-κB activity is not involved in protein synthesis. So if we assume
that the volumes of cytoplasm and of nucleus are the same, the concentration of total
NF-κB (cytoplasmic and nuclear NF-κB and their complexes) stays constant in the
signaling pathway. This conservation law for NF-κB is reflected in the model by the
following simple property:

d(total NF-κB)

dt
= y′

1 + y′

3 + y′

4 + y′

6 + y′

10 = 0. (4.2)

It follows that if we choose a positive real number c, which can be thought of as the
total amount of NF-κB (cytoplasmic and nuclear NF-κB and their complexes) found
in the system, then the region of S which intersects the plane {y1+y3+y4+y6+y10 = c}
is a flow invariant subspace.

Such a flow invariant subspace exists for each choice of c. These are mutually
disjoint. Indeed, they are parallel (hyper-)planes, and foliate the whole of S (rather
as we might view a loaf of bread as being made up of its slices). A consequence
of this is that for each choice of c we can view the system (4.1) restricted to the
corresponding flow invariant subspace as being a different dynamical system. The
value of c—the total amount of NF-κB present in the particular system—can be used
as a bifurcation parameter of the system.

4.2 The evolution of IKK

The time dependence of total IKK can also be found by adding together the corre-
sponding components of system (4.1)

d(total IKK)

dt
= y′

8 + y′

9 + y′

10 = −k02 · y8 (4.3)
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This leads to the obvious conclusion that the total IKK is a non-increasing function
of time. Indeed, if there is any free IKK present the total amount is decreasing, and
the rate of this decay is governed by the constant k02.

In practice, the value used for this constant (k02 ≈ 0.007 min−1) will be assumed
to be small compared, for example, with the rate of contraction onto the limit cycle
solution at some typical fixed value of IKK. In practise, the actual values make this
a marginal assumption if are looking for accurate approximations. However, we are
interested in finding a qualitative explanation of the observed behaviour. According
to this assumption, everything appears to be a response to a slowly decaying input of
the IKK stimulus. This suggests that it would be profitable to consider the limiting
case where k02 = 0, where the total IKK is conserved

d(total IKK)

dt
= 0

Now we have the existence of a second family of flow invariant subspaces: {y8 + y9 +
y10 = c1}, which is parameterised by a new positive constant c1, the total IKK. As
with the total NF-κB discussed in the previous section, this quantity can be used as
a bifurcation parameter of the system when k02 = 0.

We are now in a position to invoke the fast-slow techniques described in Section 3.
Our small parameter—corresponding to ε there—is k02. We shall think of dividing
system (4.1) into two parts: equation (4.3); and the remaining part, when we have
eliminated one of the variables y9 and y10 in favour of c1 = y8 + y9 + y10. In the next
section we shall investigate the behaviour of this second part—our adjoined system—
when k02 = 0.

4.3 Bifurcations of the quiescent fixed point

The system given by equations (4.1), when restricted to a particular flow invariant
subspace P(c1,c) = {y ∈ S : y1 + y3 + y4 + y6 + y10 = c, y8 + y9 + y10 = c1} is an
eight-dimensional system. As such, it is beyond any calculation that could reasonably
be carried out by hand. The calculations that we report here were carried out using
XPPAUT(X-windows Phase Plane plus Auto) [26] which is a computational tool for
solving and analysing systems of differential equations combined with AUTO [1], a
package of computational bifurcation and continuation tools.

In the following we shall assume that, initially, the NF-κB and IKK exist only in
their uncomplexed forms and, therefore, that c and c1 are respectively these initial
concentrations. Since in the simulations of [15], the initial NF-κB is set to be 0.1, we
first consider Horton’s reduced system with c being 0.1.

If there is no stimulus, the system stays quiescent. Stimulus in the Hoffmann
model was indicated by the activity of IKK. So we begin with finding the equilibrium
corresponding to the quiescent state by setting the level of total IKK, c1, to zero. We
then trace the equilibrium while varying the parameter c1. The bifurcation diagram
related to this equilibrium—obtained using XPPAUT—is shown in Figure 2. The
equilibrium in the branch remains stable until c1 is near to 0.01 where it loses its
stability and gives way to a stable periodic orbit. The branch of stable periodic
orbits exists until c1 is near to 0.05. For c1 is greater than 0.05, the branch of
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periodic orbits disappears and the branch of equilibria becomes stable again. Figure 2
is the bifurcation diagram projected onto y4-c1 plane. Other projections are shown
in Appendix B.

4.4 Fast-slow analysis

We have now come full circle, to return to the numerical results shown in Figures 3 and
4. The results of the analysis of the toy model in Section 3 suggest that Tikhonov’s
Theorem, or its generalisation, can be applied to the Horton model for small values
of k02. With this in mind we show a more extensive series of numerical simulations of
the Horton model in Figures 6 and 7. These calculations were done to illustrate the
effect of changing the initial amount of IKK. (The initial amplitude of IKK would
seem to be the simplest possible input to the signalling pathway.) The initial data for
these solutions was obtained in the same way as described in the original Hoffmann
paper: the initial NF-κB is assumed to be uncomplexed, completely localised within
the cytoplasm and set to be 0.1; the system is allowed to converge to an attracting
fixed point, and then the value of IKK is reset to a chosen value ( 0.02, 0.03, · · · , 0.1
respectively).
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Figure 6: Trajectories with initial total IKK from 0.02 to 0.05, other initial conditions
follows Horton’s simulation(I)

In figure 6 we see a consistent pattern in which the envelope of limit cycle ampli-
tudes given by the static bifurcation diagram gives a good prediction of the shapes of
the pulses obtained by numerical integration of the model. It is worth emphasising
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Figure 7: Trajectories with initial total IKK from 0.06 to 0.1, other initial conditions
follows Horton’s simulation(II)

that this envelope gives both of the obvious characteristics of the pulse shape: the
variation in peak height and the level of the flat minimum between the pulses. We
have discussed earlier that the first pulse stands out as different, and how we can think
of this as being as the major excursion of a transient process as the orbit converges to
the form predicted by the fast-slow analysis. Figure 7 shows how this transient can
become more significant as the initial value of IKK is increased beyond the second
Hopf bifurcation point. All these pulse sequences begin in a region where there is an
attracting fixed point in the adjoined system. As the IKK is increased, the effect of
this appears to be to hold the orbit away from the bifurcation diagram envelope for
longer. In figure 8 we show an extreme example of this behaviour where the initial
condition is chosen to be close to the stable fixed point of the adjoined system. Here
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the orbit oscillates close to the branch of fixed points. In this case the envelope of
the limit cycle amplitudes gives little information about the pulse shapes.
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Figure 8: A solution projected to y4-c1 plane sticks to the branch of equilibria.

Clearly, this observation suggests that the actual shape, as well as the number
of the pulses observed must depend on the initial state of the system4. Our results
suggest that we can use the fast slow analysis to provide insight into the details of this
dependence. The fact that the analysis predicts rapid contraction onto the family of
limit cycles of the adjoined system suggests this dependence is more restricted than
it might otherwise have been. This would seem to be an important point and we will
return to it in the final section.

4.5 estimating the number of pulses

Earlier in this paper, we listed the possible ways that the observed oscillations of
the NF-κB system could arise. We have now established that they are intrinsically
nonlinear and—although transient—arise through a well-known mechanism which
generates autonomous oscillations in nonlinear dynamical systems. Can this insight
provide a useful characterisation of the observed oscillations that can be compared
with experiments? Of course, we have claimed that to a zeroth order approximation,
the shapes of individual pulses are described by the form of the limit cycle of the model
at an appropriately fixed value of the total IKK. This could be a useful observation
if our purpose is to fit parameters by comparison of experimental and model-derived
time series. However, in this section we consider a more basic characterisation: the
number of pulses observed.

The calculation we propose is rough-and-ready and should be understood as pro-
viding a simple estimate at very little cost. It is based on estimating the total increase
in the phase of the limit cycle oscillations as the system slowly tracks through the
oscillatory region. Let us call this change ∆θ. The number of pulses is then obtained
from ∆θ/2π by rounding or truncating to an adjacent integer value.

4It is worth remarking that this fact should be born in mind when trying to fit experimental
data, since generally there is uncertainty about the initial states represented in the experiment as
well as uncertainty in the parameters used to specify the model.
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The total change in phase, ∆θ
def

= θ(t1)−θ(t0), is the integral of the time derivative
of the phase over the time interval, [t0, t1], that it takes the system to track through
the oscillatory region:

∆θ =

∫ t1

t0

dθ

dt
dt (4.4)

(For our purposes we shall interpret the oscillatory region as being the range of total
IKK for which there is either a limit cycle solution or—given the observations on
overshooting the bifurcation in Section 3— a complex pair of eigenvalues associated
with an attracting fixed point of the system.)

Suppose that the adjoined system derived from the Horton model has converged
to an attracting limit cycle for some fixed value of c1. The state of the system on the
cycle can be parameterised by the phase angle, θ(t). The dynamical system restricted
to this limit cycle can now be specified by writing dθ/dt as a function of θ. Although
we do not know the explicit form of this function, it may be possible to find a usable
approximation because we are only interested in the evolution of θ on the slow time
scale associated with the decay of total IKK. The details of dθ/dt over times less than
a single period might, therefore, be considered irrelevant; rather, the average of dθ/dt
over a cycle should suffice.

Let us decompose the derivative, dθ/dt, restricted to the limit cycle, as follows:

dθ

dt
=

2π

T (c1)
+ g(θ) (4.5)

where g is a smooth, 2π-periodic function and T (c1) is the period of the limit cycle
at a given value of c1. We note that if we integrate this expression, assuming a fixed
value of c1, for a whole period then

∫ T (c1)

0

dθ

dt
dt =

∫ T (c1)

0

[

2π

T (c1)
+ g(θ)

]

dt (4.6)

⇒ θ(T (c1)) − θ(0) = 2π +

∫ T (c1)

0

g(θ)dt (4.7)

However, since we have integrated once around the limit cycle, it follows that θ(T (c1))−
θ(0) = 2π and, therefore, that the integral of g(θ) over a whole number of cycles must
vanish

∫ T (c1)

0

g(θ)dt = 0 (4.8)

The g(θ) component in equation (4.5) is, therefore, a rapidly oscillating term when
viewed on the slow time scale on which the total IKK concentration varies. This is a
useful result because we can obtain T (c1) at little cost when using the computational
bifurcation package. A plot of T (c1) versus c1 is shown in the central portion (between
the two Hopf bifurcation points where the slope is discontinous) of figure 9. The two
outer portions show the angular frequency associated with the complex eigenvalue of
the stable fixed point.

Returning now to equation (4.4), and allowing the slow variation of the total IKK,
we have

∆θ =

∫ t1

t0

2π

T (c1(t))
dt + oscillatory term (4.9)
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Figure 9: Plot of limit cycle period versus total IKK

We can rearrange this to give an integral with respect to c1 using the time derivative
given in equation (4.3):

∆θ =
2π

k02

∫ c1(t0)

c1(t1)

dc1

T (c1)y8

+ oscillatory term (4.10)

The rate of decay of the total IKK is governed by y8, the amount of free IKK.
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Figure 10: The relationship between total IKK and IKK for different initial conditions
but fixed total NFκB

Therefore, we need a relationship between these two quantities. Numerical plots of
the y8 against c1 obtained by numerical integration of the Horton model are shown
in figures 10 and 11. In the first of these, the effect of changing the initial concen-
tration of IKK while keeping all else fixed is demonstrated. We see that to a good
approximation:

y8 = αc1 + oscillatory terms (4.11)

where α ≈ 0.37, and the linear part of this relationship is independent of the initial
concentration of IKK. The main deviation from the linear approximation is the initial
transient followed by a damped oscillatory motion which we interpret as being due
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Figure 11: The effect on the relationship between total IKK and IKK for different
amounts of total NFκB

motion close to the limit cycle. The second plot shows the effect of changing the
total amount of NF-κB while fixing—in particular—the initial value of c1. Again,
we find for each run an approximately linear relationship—modulo the oscillatory
component—between c1 and y8. In addition, we find that the value of α is a decreasing
function of the total amount of NF-κB. Figure 12 shows a number of these runs
together with plots of the approximate linear relationship between free IKK and total
IKK.

If the oscillatory term is sufficiently small we can rewrite equation (4.10) as follows

∆θ =
2π

αk02

∫ c1(t0)

c1(t1)

dc1

T (c1)c1

+ oscillatory term (4.12)

We note that in this expression, c1(t0) is the initial value of IKK, while c1(t1) is the
fixed value of the total IKK (given the values of other control parameters such as the
total amount of NF-κB) at which the eigenvalue of the stable fixed point below the
Hopf bifurcation becomes real. Therefore, by simply varying the c1(t0) limit of this
integral we are able to estimate the dependence of the number of observed pulses on
the initial input of IKK. In figure 13 we show plots of ∆θ/2π estimated both by using
equation (4.10) with numerically obtained values of y8 and using equation (4.11) with
the linear approximation shown in figure 12. In both cases, the actual number of
pulses observed in the numerical integration of the full Horton model is plotted for
comparison. It is clear from these plots that the effect of using the linear approxima-
tion is to smooth out a small modulation of the graph of ∆θ/2π. In either case we
have an excellent agreement between the estimate and the actual number of pulses
counted from the numerical simulation.

The fact that the agreement seems to be essentially perfect if we use the floor
function—the greatest integer less than or equal to ∆θ/2π—requires the injection
of some harsh reality. This is an approximation which we expect to work for very
small values of k02. In practise, the value of k02 used in the simulations is too large
to expect dramatic agreement. In addition, we have no good argument for using the

23



0 0.02 0.04 0.06 0.08 0.1
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Total IKK

IK
K

Total NFkB =0.02

0 0.02 0.04 0.06 0.08 0.1
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Total IKK

IK
K

Total NFkB =0.05

0 0.02 0.04 0.06 0.08 0.1
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Total IKK

IK
K

Total NFkB =0.07

0 0.02 0.04 0.06 0.08 0.1
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Total IKK

IK
K

Total NFkB =0.1

Figure 12: The relationship between total IKK and IKK for different initial conditions,
together with the corresponding approximate linear relationship, showing the effect
of changing the total amount of NF-κB: Top row left – total NF-κB=0.02; Top row
right – total NF-κB=0.05; Bottom row left – total NF-κB=0.07; Bottom row right –
total NF-κB=0.1.

floor function to obtain the number of pulses. In fact, we could argue for the ceiling
function—the smallest integer greater than or equal to ∆θ/2π—since it is arguable
that any cycle begun as the total IKK leaves the oscillatory region will be completed
as the system simply decays to the fixed point.

5 Transients and the role of initial conditions

At various places in this paper, we have raised the issue of the role of initial data in
determining the behaviour of the model. From the point of view of a mathematician
this is such an obvious point that it might seem hardly worth the emphasis, but the
initial state of a cell is an extremely difficult idea for the experimentalist. In the first
place, it is hard to measure without destroying the cell. Moreover, initial conditions
are not tightly controlled as we move from cell to cell, since the detailed profiles of
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Figure 13: Solid curves: Continuous plots of ∆θ/2π versus initial value of IKK (Left:
estimate using numerical value of total IKK in equation (4.10). Right: estimate
using linear approximation for y8, equation (4.11), in equation (4.10)). Coloured
sqares: Actual number of pulses observed in simulation.

concentrations of various chemical species are dependent on the history of the cell;
the concentration profile of species present in daughter cells following cell division, for
example, appears to be a random sharing of the concentrations present in the parent
cell at the mitosis event. A priori this means that there will always be an extra
layer of uncertainty when trying to compare experimental data with experimentally
realistic models. Even with a perfect model—but without knowledge of the initial
state—there are likely to be distinct qualitative differences between the behaviour of
model and experiment.

The NF-κB signalling system that we have been studying in this paper provides
clear examples of this problem. Compare, for example, the responses shown in figure 8
and 7 (middle plot on the left). These represent the response of the system to the same
step in the level of IKK, both have the same initial total amount of NF-κB, but have
different initial concentrations of the other species. If we suppose that the ultimate
fate of the cell depends on the time evolution of the cytoplasm–nuclear shuttling of
the NF-κB, this suggests that the fate of the cell might depend on an uncontrolled
process associated with the distribution of various species between daughter cells at
mitosis. Thus, not only does initial data represent a problem when comparing models
with experiments, it also represents a source of variability that—presumably—must
at some stage be brought under the control of the cell’s systems.

One characteristic of dynamical systems that reduces the dependence on initial
conditions is contractivity. Thus, we see in the NF-κB signalling system, the shape
and amplitude of pulses shown in figure 6 and the first two figures of 7 are determined
by motion close to the envelope of attracting limit cycles of the family of adjoined
systems. This is a two-dimensional surface within the corresponding 9-dimensional,
flow invariant subspace of S. When near to this surface the only quantities that are
of significance are the phase of the oscillation and the current level of the total IKK.
Thus, we can argue that the pulses which are well described by motion on this surface
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have a shape and frequency which is largely independent of the initial conditions. On
the contrary, we have discussed in Section 4, how the first peak of the pulse sequence
following the initial stimulus represents a transient response during which the system
is far from the envelope of attracting limit cycles of the family of adjoined systems.
Thus, we expect that the shape and length of the initial pulse of the sequence is much
more dependent on the initial data.

We suggest that there is another way that contractivity can mitigate the effects
of variability of initial conditions on such features as the initial pulse of a sequence.

We know that a nonlinear system may have several different equilibria. For Hoff-
mann’s model, we found lots of equilibria by using Mathematica and most of them
are far from the region we are interested in. However, a couple of unstable equilib-
ria are near to the reasonable region. So it is possible that the peculiar transient
behaviour is caused by the existence of such nearby unstable equilibria. The phase
portrait for a two-dimensional nonlinear system in Figure 14 gives an example. In
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Figure 14: The phase portrait of the system: x′ = −x − 3y − 5xy + 2y2; y′ =
3y − y − xy + y2

this phase portrait, we can see that the flow of the system is roughly divided by the
stable and unstable manifolds of the saddle. Trajectories starting in the same region
have the similar dynamical behavior. Trajectories starting in different regions have
different behaviour. For orbits starting in the region 1, if the starting point near to
the stable manifold of the saddle, the trajectory traces the stable manifold until near
to the saddle, then it traces the unstable manifold and then run around the spiral.
When the initial point is far from the unstable or stable manifolds, the trajectory is
roughly shaped by the stable spiral.

In the NF-κB model, we find those branch of solutions near to the reasonable
region are saddle. Orbits starting near to such saddles can run eventually into the
reasonable region of the variables. See Figure 15 for an example. Moreover, the
Jacobian matrice of the system at the saddles have some very large negative and
positive eigenvalues. In the usual simulations, we first let the system converge to a
stable state, then set IKK to be some positive value, say 0.1. We argue that the initial
condition obtained in this way are near to stable manifold of the nearby saddle. So
the dynamical behaviour of the orbit is influenced significantly in the beginning by
the saddle.

26



0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

y4

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

Figure 15: A trajectory (projected to total IKK and nuclear NF-κB plane))runs from
an unreasonable region to the reasonable region.

6 Acknowledgement

We thanks the UK BBSRC for financial support.

Appendix A

In Section 3.2 we use the solution of the following Bernoulli equation

dr

dµ
=

1

−ελµ
(µ − µh − r2)r. (6.1)

given initial data µh > u0 and r(µh) =
√

µh − u0. In this appendix we show details
of the calculation leading to the results quoted in Section 3.2.

There is a well-known way to solve Bernoulli-type equations which employs a
simple substitution. Here we write r̃ = r−2, to obtain a linear, non-autonomous
differential equation:

dr̃

dµ
= 2

1

εµ
[(µ − u0)r̃ − 1] (6.2)

Corresponding to this we have a homogeneous equation

dr̃

dµ
= 2

1

εµ
(µ − u0)r̃ (6.3)

which can be solved exactly to give:

r̃h(µ) = e
2

ε
(µ−µh)(

µh

µ
)

2u0

ε r̃h(µh) (6.4)

where r̃h(µh) is a constant of integration.
We can find a particular integral for equation (6.2) as follows

r̃p(µ) = − exp(

∫ µ

µh

2
µ − u0

εµ
dµ)

∫ µ

µh

exp(

∫ µ′

µh

−2
µ − u0

εµ
dµ)

2

εµ′
dµ′ (6.5)

=
2

ε
e

2

ε
(µ−u0)µ−

2u0

ε

∫ µh

µ

e−
2

ε
(µ′

−u0)µ′
2u0

ε
−1dµ′ (6.6)
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The final integral in this expression is closely related to the incomplete gamma func-
tion:

Γ(a, x) =

∫

∞

x

e−tta−1dt

Therefore, we obtain the following explicit formula for the particular integral:

r̃p(µ) = e
2µ

ε µ−
2u0

ε (
2

ε
)1−

2u0

ε [Γ(
2u0

ε
,
2µ

ε
) − Γ(

2u0

ε
,
2µh

ε
)] (6.7)

The general solution to equation (6.2) is obtained by combining the particular
integral with the homogeneous solution

r̃(µ) = r̃h(µ) + r̃p(µ) (6.8)

Now, we would like to impose the initial data corresponding to the Tikhonov result.
Since it is apparent that r̃(µh) = r̃h(µh), we write r̃h(µh) = 1/(µh − u0). It then
follows that

r̃h(µ) =
e

2

ε
(µ−µh)

(µh − u0)
(
µh

µ
)

2u0

ε (6.9)

We take µh to be large and then consider the form of r̃(µ) (and hence r(µ)) as µ
approaches the bifurcation point, u0. In fact, choosing a large value for µh, en-
ables us to make equation (6.8) take a simple form. First we note that r̃h(µ) ∼
e

2

ε
µµ−

2u0

ε e−
2

ε
µhµ

2u0

ε
−1

h and, therefore, that for any finite value of µ we can choose µh

which is large enough to make r̃h(µ) as small as we wish. In the same spirit, as
x → ∞, the incomplete gamma function has the following asymptotic form:

Γ(a, x) = xa−1e−x(1 + O(x−1))

and, therefore, we can choose µh to be sufficiently large to make the term Γ(2u0

ε
, 2µh

ε
)

appearing in equation (6.7), the expression for the particular integral, as small as we
like:

Γ(
2u0

ε
,
2µh

ε
) ∼ (

2µh

ε
)

2u0

ε
−1e−

2µh
ε (6.10)

In conclusion, for large enough µh, we can write

r̃(µ) = e
2µ

ε µ−
2u0

ε (
2

ε
)1−

2u0

ε Γ(
2u0

ε
,
2µ

ε
) (6.11)

which is the first result used in Section 3.2.
Later in 3.2 we use this form of r̃(µ) (or, equivalently, r(µ)) at µ = u0. The

derivation of this result follows from the asymptotic form of Γ(x, x) as x → ∞

Γ(x, x) =
1

x
e−xxx(

√

π

2
x

1

2 − 1

3
+

√
2π

24

1

x
1

2

+ · · · ) (6.12)

Hence, as long as u0 ≫ ε

r̃(u0) ≈ e
2u0

ε u
−

2u0

ε

0 (
2

ε
)−

2u0

ε
+1Γ(

2u0

ε
,
2u0

ε
)

= e
2u0

ε u
−

2u0

ε

0 (
2

ε
)−

2u0

ε
+1 ε

2u0

e−
2u0

ε (
2u0

ε
)

2u0

ε (

√

π

2
(
2u0

ε
)

1

2 − 1

3
+

√
2π

24

1

(2u0

ε
)

1

2

+ · · · )

=

√

π

u0ε
+ o((

2u0

ε
)

1

2 )
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and, therefore,

r(u0) ≈ (
u0ε

π
)

1

4 (6.13)

Appendix B

The projections of a solution and the bifurcation diagram to c1-yi (i ∈ {2, 3, 4, 5, 6, 7, 9, 10})
plane are in Figure 16, Figure 17 and Figure 18.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

y2

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

y3

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

y4

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Figure 16: The bifurcation diagram and the solution (I)
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Figure 17: The bifurcation diagram and the solution (II)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

y9

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

y10

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Figure 18: The bifurcation diagram and the solution (III)
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