
The Scaling and Squaring Method for the Matrix
Exponential Revisited

Higham, Nicholas J.

2009

MIMS EPrint: 2009.86

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

The calculation of the matrix exponential eA may be one of the best known matrix
problems in numerical computation. It achieved folk status in our community from the
paper by Moler and Van Loan, “Nineteen Dubious Ways to Compute the Exponential
of a Matrix,” published in this journal in 1978 (and revisited in this journal in 2003).
The matrix exponential is utilized in a wide variety of numerical methods for solving
differential equations and many other areas.

It is somewhat amazing given the long history and extensive study of the matrix
exponential problem that one can improve upon the best existing methods in terms of
both accuracy and efficiency, but that is what the SIGEST selection in this issue does.
“The Scaling and Squaring Method for the Matrix Exponential Revisited” by N. Higham,
originally published in the SIAM Journal on Matrix Analysis and Applications in 2005, applies
a new backward error analysis to the commonly used scaling and squaring method, as
well as a new rounding error analysis of the Padé approximant of the scaled matrix.
The analysis shows, and the accompanying experimental results verify, that a Padé
approximant of a higher order than currently used actually results in a more accurate
and efficient algorithm, due to the need to perform fewer matrix multiplications and
fewer squarings.

SIGEST papers are expected to combine important research, broad applicability,
and excellent exposition. In addition to the first two qualities that are evident from
the comments above, it is no surprise that this paper exhibits the latter, since the
author literally wrote the book—that is, the popular SIAM book, Handbook of Writing
for the Mathematical Sciences. The paper is a true pleasure to read, and the author has
added an extensive preamble for the SIGEST version that makes the topic even more
accessible to new audiences as well as commenting upon subsequent work.

This paper should become an excellent choice in teaching numerical analysis as
well as essential reading for researchers in numerical linear algebra. Its combination
of practical algorithmic issues such as scaling, numerical analysis techniques such as
backward error analysis, and a carefully conducted and presented computational study
make it a true exemplar for our field. One question remains, however, after all these
years: should we still assert that all the methods for calculating the matrix exponential
are dubious?

The Editors

745

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM REVIEW c© 2009 Society for Industrial and Applied Mathematics
Vol. 51, No. 4, pp. 747–764

The Scaling and Squaring
Method for the Matrix
Exponential Revisited∗

Nicholas J. Higham†

Abstract. The scaling and squaring method is the most widely used method for computing the
matrix exponential, not least because it is the method implemented in the MATLAB
function expm. The method scales the matrix by a power of 2 to reduce the norm to
order 1, computes a Padé approximant to the matrix exponential, and then repeatedly
squares to undo the effect of the scaling. We give a new backward error analysis of the
method (in exact arithmetic) that employs sharp bounds for the truncation errors and
leads to an implementation of essentially optimal efficiency. We also give a new rounding
error analysis that shows the computed Padé approximant of the scaled matrix to be
highly accurate. For IEEE double precision arithmetic the best choice of degree of Padé
approximant turns out to be 13, rather than the 6 or 8 used by previous authors. Our
implementation of the scaling and squaring method always requires at least two fewer
matrix multiplications than the expm function in MATLAB 7.0 when the matrix norm
exceeds 1, which can amount to a 37% saving in the number of multiplications, and it
is typically more accurate, owing to the fewer required squarings. We also investigate
a different scaling and squaring algorithm proposed by Najfeld and Havel that employs
a Padé approximation to the function x coth(x). This method is found to be essentially a
variation of the standard one with weaker supporting error analysis.

Key words. matrix function, matrix exponential, Padé approximation, matrix polynomial evaluation,
scaling and squaring method, MATLAB, expm, backward error analysis, performance
profile

AMS subject classification. 65F30

DOI. 10.1137/090768539

Preamble to SIGEST Article. I remember, as a graduate student in the early
1980s, queuing up in the university library to photocopy Moler and Van Loan’s “Nine-
teen Dubious Ways to Compute the Exponential of a Matrix” [28]. I was attracted by
the intriguing title, having already had my interest in the exponential piqued by Van
Loan’s earlier notes [35]. The paper more than lived up to its title, and it remains
for me one of the classics in numerical analysis. When I started to write Functions of
Matrices [21] in 2003 the chapter on the exponential was one of the first I attempted.
As I drafted a section on the scaling and squaring method, for which the basic algo-
rithm had remained unchanged through to the 2003 update of Moler and Van Loan’s
paper [29], I had some difficulty in justifying the choice of parameters used in existing

∗Published electronically November 6, 2009. This paper originally appeared in SIAM Journal on
Matrix Analysis and Applications, Volume 26, Number 4, 2005, pages 1179–1193. This work was
supported by Engineering and Physical Sciences Research Council grant GR/T08739 and by a Royal
Society-Wolfson Research Merit Award.

http://www.siam.org/journals/sirev/51-4/76853.html
†School of Mathematics, The University of Manchester, Manchester, M13 9PL, UK (higham@ma.

man.ac.uk, http://www.ma.man.ac.uk/∼higham/).

747

http://www.ma.man.ac.uk/~higham/
mailto:higham@ma.man.ac.uk
mailto:higham@ma.man.ac.uk

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

748 NICHOLAS J. HIGHAM

implementations. It was through studying and reworking the analysis in [28] that I
developed the ideas that led to this SIMAX article.

But what is the matrix exponential and why is it so important? The exponential
of a matrix was first introduced by Laguerre [26] in 1867, who gave the now standard
power series definition: for A ∈ C

n×n,

(0.1) eA = I +A+
A2

2!
+

A3

3!
+ · · · .

One of the first references to emphasize the important role of the matrix exponential
in solving differential equations was the 1938 book Elementary Matrices and Some
Applications to Dynamics and Differential Equations [13] by Frazer, Duncan, and
Collar, who were in the Aerodynamics Department at the National Physical Labora-
tory in England. The use of eA in the practical solution of all kinds of differential
equations is of course now ubiquitous, but other applications have come along that
have no immediate connection with differential equations. I will mention just one,
which is very recent.

Consider a network representing interactions between pairs of entities in a system.
In recent years much work has focused on identifying computable measures that quan-
tify characteristics of the network. Many measures are available in the literature, and
they are typically expressed in terms of the network’s associated undirected graph G
with n nodes. The adjacency matrix A ∈ R

n×n of the graph has (i, j) element equal
to 1 if nodes i and j are connected and 0 otherwise. Assume aii ≡ 0, so that there are
no loops in the graph. A walk of lengthm between two nodes i and j is an ordered list
of nodes i, k1, k2, . . . , km−1, j such that successive nodes in the list are connected; the
nodes need not be distinct and any of them may be i or j. When i = j the walk starts
and ends at the same node and is called closed. The walk is a path if all the nodes
in the walk are distinct. Assume that the graph is connected, so that a path exists
between any two distinct nodes. It is a standard fact in graph theory that the (i, j)
element of Am is the number of different walks, if i �= j, or closed walks, if i = j, of
length m between nodes i and j. A variety of measures have been built by combining
different walk lengths into a single number. Estrada and Rodŕıguez-Velázquez [11]
define the subgraph centrality of node i—a measure of its “well-connectedness”—by

SCi =
(
I +A+

A2

2!
+

A3

3!
+ · · ·

)
ii
= (eA)ii.

By combining walks of all possible lengths connecting node i to itself, and applying a
weighting that decreases rapidly with the walk length, the subgraph centrality aims
to capture the participation of the node in question in all subgraphs in the network.
The subgraph centrality has become known as the Estrada index. Based on similar
reasoning, Estrada and Hatano [8] define the communicability between nodes i and
j—a measure of how easy it is for “information” to pass from node i to node j—by

Cij =
(
I +A+

A2

2!
+

A3

3!
+ · · ·

)
ij
= (eA)ij .

Finally, the betweenness of node r is defined by Estrada, D. J. Higham, and Hatano
[10] by

1
(n− 1)2 − (n− 1)

∑
i,j

i�=j,i�=r,j �=r

(eA − eA−Er)ij
(eA)ij

,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATRIX EXPONENTIAL REVISITED 749

Table 0.1 Some formulae for eA.

Power series Limit Scaling and squaring

I + A+
A2

2!
+

A3

3!
+ · · · lim

s→∞(I + A/s)s (eA/2s
)2

s

Cauchy integral Jordan form Interpolation

1

2πi

∫
Γ

ez(zI − A)−1 dz Zdiag(eJk)Z−1
n∑

i=1

f [λ1, . . . , λi]

i−1∏
j=1

(A − λjI)

Differential system Schur form Padé approximation

Y ′(t) = AY (t), Y (0) = I QeT Q∗ pkm(A)qkm(A)
−1

where Er is zero except in row and column r, where it agrees with A. The betweenness
measures the relative change in communicability when node r is removed from the
network. Experiments in the papers cited above show that these three measures can
provide useful information about practically occurring networks that is not revealed
by most other measures. In this description A is symmetric, but these concepts can
be extended to directed graphs, for which the adjacency matrix is unsymmetric. Of
course, the matrix exponential owes its appearance to the choice of weights in the
sums over walk lengths. Other weights could be chosen, resulting in different matrix
functions in the definitions; see Estrada and D. J. Higham [9].

Table 0.1, taken from [21], summarizes a variety of formulae for eA, all of which
have been tried in the literature as the basis of a numerical method. The scaling and
squaring method, which combines scaling and squaring with Padé approximation, has
proved to be the most popular and generally applicable method.

The idea employed in this paper of adaptively choosing the degree of the Padé
approximant and the amount of scaling has been taken up in subsequent work on
other matrix functions, including the cosine and sine [16], [21, sect. 12.4] and the
logarithm [21, sect. 11.5]. Related to the exponential are the ψ functions, defined
explicitly as ψk(z) =

∑∞
j=0 z

j/(j + k)!, k = 0, 1, 2, . . . , or via the recurrence

ψk+1(z) =
ψk(z)− 1/k!

z
, ψ0(z) = ez.

They feature in exponential integrators—a broad class of numerical methods for solv-
ing an ordinary differential equation initial value problem in which the linear part of
the equation is treated exactly and the remaining nonlinear part is integrated numer-
ically. The algorithm here has been adapted for computation of the ψ functions by
Koikari [25] and Skaflestad and Wright [33].

Al-Mohy and Higham have extended this work in two recent papers. The first is
concerned with the Fréchet derivative L at A in the direction E, which for a general
function f is defined by the condition that f(A+ E)− f(A)− L(A,E) = o(‖E‖) for
all E. For the exponential, the Fréchet derivative has the explicit representation

L(A,E) =
∫ 1

0

eA(1−s)EeAs ds.

Al-Mohy and Higham [1] show how the algorithm in this paper can be “differentiated”
in order to obtain an algorithm that simultaneously computes eA and L(A,E) at a
cost about three times that of computing eA alone.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

750 NICHOLAS J. HIGHAM

A weakness of the scaling and squaring method that was first pointed out by
Kenney and Laub [24] is that a choice of scaling based on ‖A‖ sometimes produces a
much stronger scaling than is necessary in order to achieve the desired accuracy—with
potentially detrimental consequences for numerical stability. Al-Mohy and Higham [2]
show that this problem can largely be overcome by exploiting some of the information
in the sequence {‖Ak‖}, using powers of A that must be computed anyway within the
algorithm along with norm estimates for a few additional choices of k. In some sense
this is a way to deal with the effects of nonnormality of A. It is also shown in [2] how
to exploit triangularity of A to achieve better accuracy in floating point arithmetic.

Software implementing the algorithm described here is available in the function
expm in MATLAB (Version 7.2, R2006a, onwards), the function MatrixExp in Math-
ematica (Version 5.1 onwards), and routine F01ECF in the NAG Library (from Mark
22).

Finally, it is worth emphasizing the relevance of this work for large, sparse matri-
ces. Here, eA will usually be dense and it is typically eAb that is required in practice,
for some vector b. Of the available methods the most developed are Krylov methods,
and these require the evaluation of eH for a much smaller Hessenberg matrix H re-
lated to A, for which the scaling and squaring method is well suited. For details and
further references see [21, Chap. 13].

The only substantive change to this SIGEST version of the SIMAX paper was to
expand slightly the description of Padé approximants and move it from section 2 to
section 1.

1. Introduction. The matrix exponential is a much-studied matrix function, ow-
ing to its key role in the solution of differential equations. Computation of eA is
required in applications such as nuclear magnetic resonance spectroscopy [17], [30],
control theory [12], and Markov chain analysis [32]. Motivated by the applications,
mathematicians and engineers have produced a large amount of literature on methods
for computing eA.

A wide variety of methods for computing eA were analyzed in the classic paper of
Moler and Van Loan [28], which was reprinted with an update in [29]. The conclusion
of the paper was that there are three or four candidates for best method. One of
these, the scaling and squaring method, has become by far the most widely used, not
least because it is the method implemented in MATLAB.

In this work we take a fresh look at the scaling and squaring method, giving a
sharp analysis of truncation errors and a careful treatment of computational cost. We
derive a new implementation that has essentially optimal efficiency and show that it
requires at least one less matrix multiplication than existing implementations, includ-
ing that in MATLAB 7.0 (R14). Our analysis and implementation are presented in
section 2. Section 3 contains a comparison with existing implementations and numeri-
cal experiments. The new implementation is found to be typically more accurate than
the existing ones, owing to the fact that it usually requires fewer matrix squarings.
This work therefore provides another example of the phenomenon, illustrated in the
work of Dhillon and Parlett [5], for example, that speed and accuracy are not always
conflicting goals in matrix computations.

The scaling and squaring method employs Padé approximants to ex. For a given
scalar function f(x) the rational function rkm(x) = pkm(x)/qkm(x) is a [k/m] Padé
approximant of f [3] if pkm and qkm are polynomials of degree at most k and m,
respectively, qkm(0) = 1, and

(1.1) f(x)− rkm(x) = O(xk+m+1).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATRIX EXPONENTIAL REVISITED 751

If a [k/m] Padé approximant exists then it is unique. The [k/m] Padé approximants
to the exponential function are known explicitly for all k and m:

(1.2) pkm(x) =
k∑

j=0

(k +m− j)!k!
(k +m)!(k − j)!

xj

j!
, qkm(x) =

m∑
j=0

(k +m− j)!m!
(k +m)!(m− j)!

(−x)j
j!

.

That rkm satisfies the definition of Padé approximant is demonstrated by the error
expression [14, Thm. 5.5.1]

(1.3) ex − rkm(x) = (−1)m k!m!
(k +m)!(k +m+ 1)!

xk+m+1 +O(xk+m+2).

Najfeld and Havel [30] propose a variation of the scaling and squaring method using
Padé approximants to the function x coth(x), and they argue that this approach is
more efficient than using direct Padé approximation of ex. In section 4 we show
that the proposed method is essentially a variation of the standard method, but
with weaker supporting error analysis, both in exact arithmetic and in floating point
arithmetic.

For other recent work on the scaling and squaring method, concerned particularly
with arbitrary precision computations, see Sofroniou and Spaletta [34].

Throughout this paper, ‖ · ‖ denotes any subordinate matrix norm. We use the
standard model of floating point arithmetic with unit roundoff u [20, sect. 2.2]. Our
rounding error bounds are expressed in terms of the constants

(1.4) γk =
ku

1− ku
, γ̃k =

cku

1− cku
,

where c denotes a small integer constant whose exact value is unimportant.

2. The Scaling and Squaring Method. The scaling and squaring method ex-
ploits the relation eA = (eA/σ)σ, for A ∈ Cn×n and σ ∈ C, together with the fact
that eA can be well approximated by a Padé approximant near the origin, that is,
for small ‖A‖. The idea is to choose σ an integral power of 2, σ = 2s say, so that
A/σ has norm of order 1; approximate eA/2s ≈ rkm(A/2s), where rkm is a [k/m]
Padé approximant to the exponential; and then take eA ≈ rkm(A/2s)2

s

, where the
approximation is formed by s repeated squarings. The scaling and squaring method
method goes back at least to Lawson [27].

The mathematical elegance of the scaling and squaring method is enhanced by
the explicit formulae (1.2). Note that pkm(x) = qmk(−x), which reflects the property
1/ex = e−x of the exponential function. Later we will exploit the fact that pmm(x)
and qmm(x) approximate ex/2 and e−x/2, respectively, though they do so much less
accurately than rmm = pmm/qmm approximates ex. Diagonal approximants (k = m)
are preferred, since rkm with k �= m is less accurate than rjj , where j = max(k,m),
but rjj can be evaluated at a matrix argument at the same cost. Moreover, the
diagonal approximants have the property that if the eigenvalues of A lie in the open
left half-plane then the eigenvalues of rmm(A) have modulus less than 1 (that is,
the spectral radius ρ(rmm(A)) < 1), which is an important property in applications
to differential equations [37, Chap. 8]. We will write the diagonal approximants as
rm(x) = pm(x)/qm(x).

Our aim is to choose s, in the initial scaling A← A/2s, so that the exponential is
computed with backward error bounded by the unit roundoff and with minimal cost.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

752 NICHOLAS J. HIGHAM

In bounding the backward error we assume exact arithmetic and examine solely the
effects of the approximation errors in the Padé approximant.

We begin by considering errors. The choice of s will be based on ‖A‖, where
the norm can be any subordinate matrix norm. Our aim is therefore to bound the
backward error in terms of ‖2−sA‖ and then to determine, for each degree m, the
maximum ‖2−sA‖ for which rm can be guaranteed to deliver the desired backward
error. Moler and Van Loan [28] give a very elegant backward error analysis, from
which they obtain a criterion for choosing m; see also Golub and Van Loan [15,
sect. 11.3]. Their analysis has two weaknesses. First, it makes an initial assumption
that ‖A‖ ≤ 1/2, whereas, as we will see, there are good reasons for allowing ‖A‖ to be
much larger. Second, it is designed to provide an explicit and easily computable error
bound, and the resulting bound is far from being sharp. We now adapt the ideas of
Moler and Van Loan in order to obtain a bound that makes no a priori assumption on
‖A‖ and is as sharp as possible. The tradeoff is that the bound is hard to evaluate,
but this is a minor inconvenience because the evaluation need only be done during
the design of the algorithm.

Let

(2.1) e−Arm(A) = I +G = eH ,

where we assume that ‖G‖ < 1, so that H = log(I+G) is guaranteed to exist. (Here,
log denotes the principal logarithm.) From log(I +G) =

∑∞
j=1(−1)j+1Gj/j, we have

‖H‖ = ‖ log(I +G)‖ ≤
∞∑

j=1

‖G‖j/j = − log(1 − ‖G‖).

Now G is clearly a function of A (in the sense of matrix functions [21], [22, Chap. 6]),
hence so is H , and therefore H commutes with A. It follows that

rm(A) = eAeH = eA+H .

Now we replace A by A/2s, where s is a nonnegative integer, and raise both sides of
this equation to the power 2s to obtain

rm(A/2s)2
s

= eA+E ,

where E = 2sH satisfies

‖E‖ ≤ −2s log(1− ‖G‖)
and G satisfies (2.1) with A replaced by 2−sA. We summarize our findings in the
following theorem.

Theorem 2.1. Let the diagonal Padé approximant rm satisfy

(2.2) e−2−sA rm(2−sA) = I +G,

where ‖G‖ < 1. Then
rm(2−sA)2

s

= eA+E ,

where E commutes with A and

(2.3)
‖E‖
‖A‖ ≤

− log(1− ‖G‖)
‖2−sA‖ .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATRIX EXPONENTIAL REVISITED 753

Theorem 2.1 is a backward error result: it interprets the truncation errors in the
Padé approximant as equivalent to a perturbation in the original matrix A. (The
result holds, in fact, for any rational approximation rm, as we have not yet used
specific properties of a Padé approximant.) The advantage of the backward error
viewpoint is that it automatically takes into account the effect of the squaring phase
on the error in the Padé approximant and, compared with a forward error bound,
avoids the need to consider the conditioning of the problem.

Our task now is to bound the norm of G in (2.2) in terms of ‖2−sA‖. Define the
function

ρ(x) = e−xrm(x)− 1.
In view of the Padé approximation property (1.3), ρ has a power series expansion

(2.4) ρ(x) =
∞∑

i=2m+1

cix
i,

and this series will converge absolutely for |x| < min{ |t| : qm(t) = 0 } =: νm. Hence

(2.5) ‖G‖ = ‖ρ(2−sA)‖ ≤
∞∑

i=2m+1

|ci|θi =: f(θ),

where θ := ‖2−sA‖ < νm. It is clear that if A is a general matrix and only ‖A‖ is
known then (2.5) provides the smallest possible bound on ‖G‖. The corresponding
bound of Moler and Van Loan [28, Appx. 1, Lem. 4] is easily seen to be less sharp,
and a refined analysis of Dieci and Papini [6, sect. 2], which bounds a different error,
is also weaker when adapted to bound ‖G‖.

Combining (2.5) with (2.3) we have

(2.6)
‖E‖
‖A‖ ≤

− log(1− f(θ))
θ

.

Evaluation of f(θ) in (2.5) would be easy if the coefficients ci were one-signed, for
then we would have f(θ) = |ρ(θ)|. Experimentally, the ci are one-signed for some,
but not all, m. Using MATLAB with the Symbolic Math Toolbox we have evaluated
f(θ), and hence the bound (2.6), in 250 decimal digit arithmetic, summing the first
150 terms of the series, where the ci in (2.4) are obtained symbolically. For m = 1: 21
we have used a zero-finder to determine the largest value of θ, denoted by θm, such
that the backward error bound (2.6) does not exceed u = 2−53 ≈ 1.1 × 10−16, the
unit roundoff in IEEE double precision arithmetic. The results are shown to two
significant figures in Table 2.1.

The second row of the table shows the values of νm, and we see that θm < νm

in each case, confirming that the bound (2.5) is valid. The inequalities θm < νm also
confirm the important fact that qm(A) is nonsingular for ‖A‖ ≤ θm (which is in any
case implicitly enforced by our analysis).

Next we need to determine the cost of evaluating rm(A). Because of the relation
qm(x) = pm(−x) between the numerator and denominator polynomials, an efficient
scheme can be based on explicitly computing the even powers ofA, forming pm and qm,
and then solving the matrix equation qmrm = pm [36]. If pm(x) =

∑m
i=0 bix

i, we have,
for the even-degree case,

p2m(A) = b2mA2m + · · ·+ b2A
2 + b0I +A(b2m−1A

2m−2 + · · ·+ b3A
2 + b1I)(2.7)

=: U + V ,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

754 NICHOLAS J. HIGHAM

Table 2.1 Maximal values θm of ‖2−sA‖ such that the backward error bound (2.6) does not exceed
u = 2−53, values of νm = min{ |x| : qm(x) = 0}, and upper bound ξm for ‖qm(A)−1‖.

m 1 2 3 4 5 6 7 8 9 10

θm 3.7e-8 5.3e-4 1.5e-2 8.5e-2 2.5e-1 5.4e-1 9.5e-1 1.5e0 2.1e0 2.8e0
νm 2.0e0 3.5e0 4.6e0 6.0e0 7.3e0 8.7e0 9.9e0 1.1e1 1.3e1 1.4e1
ξm 1.0e0 1.0e0 1.0e0 1.0e0 1.1e0 1.3e0 1.6e0 2.1e0 3.0e0 4.3e0

m 11 12 13 14 15 16 17 18 19 20 21

θm 3.6e0 4.5e0 5.4e0 6.3e0 7.3e0 8.4e0 9.4e0 1.1e1 1.2e1 1.3e1 1.4e1
νm 1.5e1 1.7e1 1.8e1 1.9e1 2.1e1 2.2e1 2.3e1 2.5e1 2.6e1 2.7e1 2.8e1
ξm 6.6e0 1.0e1 1.7e1 3.0e1 5.3e1 9.8e1 1.9e2 3.8e2 8.3e2 2.0e3 6.2e3

Table 2.2 Number of matrix multiplications, πm, required to evaluate pm(A) and qm(A), and the
measure of overall cost Cm in (2.10).

m 1 2 3 4 5 6 7 8 9 10

πm 0 1 2 3 3 4 4 5 5 6
Cm 25 12 8.1 6.6 5.0 4.9 4.1 4.4 3.9 4.5

m 11 12 13 14 15 16 17 18 19 20 21

πm 6 6 6 7 7 7 7 8 8 8 8
Cm 4.2 3.8 3.6 4.3 4.1 3.9 3.8 4.6 4.5 4.3 4.2

which can be evaluated with m + 1 matrix multiplications by forming A2, A4, . . . ,
A2m. Then

q2m(A) = U − V

is available at no extra cost. For odd degrees,

p2m+1(A) = A(b2m+1A
2m + · · ·+ b3A

2 + b1I) + b2mA2m + · · ·+ b2A
2 + b0I(2.8)

=: U + V ,

and so p2m+1 and q2m+1 = −U +V can be evaluated at exactly the same cost as p2m

and q2m. However, for m ≥ 12 this scheme can be improved upon. For example, we
can write

p12(A) = A6(b12A6 + b10A
4 + b8A

2 + b6I) + b4A
4 + b2A

2 + b0I(2.9)

+A
[
A6(b11A4 + b9A

2 + b7I) + b5A
4 + b3A

2 + b1I
]

=: U + V ,

and q12(A) = U −V . Thus p12 and q12 can be evaluated in just six matrix multiplica-
tions (for A2, A4, A6, and three additional multiplications). For m = 13 an analogous
formula holds with the outer multiplication by A transferred to the U term. Similar
formulae hold form ≥ 14. Table 2.2 summarizes the number of matrix multiplications
required to evaluate pm and qm, which we denote by πm, for m = 1: 21.

The information in Tables 2.1 and 2.2 enables us to determine the optimal algo-
rithm when ‖A‖ ≥ θ21. From Table 2.2, we see that the choice is between m = 1, 2, 3,
5, 7, 9, 13, 17, and 21. (There is no reason to usem = 6, for example, since the cost of
evaluating the more accurate q7 is the same as the cost of evaluating q6.) Increasing
from one of these values of m to the next requires an extra matrix multiplication to

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATRIX EXPONENTIAL REVISITED 755

evaluate rm, but this is offset by the larger allowed θm = ‖2−sA‖ if θm jumps by
more than a factor 2, since decreasing s by 1 saves one multiplication in the final
squaring stage. Table 2.1 therefore shows that m = 13 is the best choice. Another
way to arrive at this conclusion is to observe that the cost of the algorithm in matrix
multiplications is, since s = �log2 ‖A‖/θm� if ‖A‖ ≥ θm and s = 0 otherwise,

πm + s = πm +max (�log2 ‖A‖ − log2 θm�, 0) .

(We ignore the required matrix equation solution, which is common to all m.) We
wish to determine which m minimizes this quantity. For ‖A‖ ≥ θm we can remove
the max and ignore the ‖A‖ term, which is essentially a constant shift, and so we
minimize

(2.10) Cm = πm − log2 θm.

The Cm values are shown in the second line of Table 2.2. Again, m = 13 is clearly
the best choice. We repeated the computations with u = 2−24 ≈ 6.0× 10−8, which is
the unit roundoff in IEEE single precision arithmetic, and u = 2−105 ≈ 2.5 × 10−32,
which corresponds to quadruple precision arithmetic; the optimal m are now m = 7
and m = 17, respectively.

Now we consider the effects of rounding errors on the evaluation of rm(A). We
immediately rule out m = 1 and m = 2 because r1 and r2 can suffer from loss
of significance in floating point arithmetic. For example, r1 requires ‖A‖ to be of
order 10−8 after scaling, and then the expression r1(A) = (I + A/2)(I − A/2)−1

loses about half the significant digits in A in double precision arithmetic; yet if the
original A has norm of order at least 1 then all the significant digits of some of the
elements of A should contribute to the result.

The effect of rounding errors on the evaluation of the numerator and denominator
of rm(A) is described by the following result, which can be proved using techniques
from [20].

Theorem 2.2. Let gm(x) =
∑m

k=0 bkx
k. The computed polynomial ĝm obtained

by evaluating gm at X ∈ Cn×n using explicit formation of matrix powers as in the
methods above satisfies

|gm − ĝm| ≤ γ̃mn g̃m(|X |),

where g̃m(X) =
∑m

i=0 |bk|Xk. Hence ‖gm − ĝm‖1 ≤ γ̃mn g̃m(‖X‖1).
Applying the theorem to pm(A), where ‖A‖1 ≤ θm, and noting that pm has all

positive coefficients, we deduce that

‖pm(A) − p̂m(A)‖1 ≤ γ̃mn pm(‖A‖1)
≈ γ̃mn e

‖A‖1/2

≤ γ̃mn‖eA/2‖1 e‖A‖1

≈ γ̃mn‖pm(A)‖1 e‖A‖1 ≤ γ̃mn‖pm(A)‖1 eθm .

Hence the relative error is bounded approximately by γ̃mne
θm , which is a very satis-

factory bound, given the values of θm in Table 2.1. Replacing A by −A in the latter
bound we obtain

‖qm(A) − q̂m(A)‖1 � γ̃mn‖qm(A)‖1 eθm .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

756 NICHOLAS J. HIGHAM

Table 2.3 Constants θm needed in Algorithm 2.3.

m θm

3 1.495585217958292e-2
5 2.539398330063230e-1
7 9.504178996162932e-1
9 2.097847961257068e0
13 5.371920351148152e0

In summary, the errors in the evaluation of pm and qm are nicely bounded. This
analysis improves that of Ward [38, eq. (3.5)], who assumes ‖A‖ ≤ 1 and obtains
absolute error bounds.

To obtain rm we solve a multiple right-hand side linear system with qm(A) as
coefficient matrix, so to be sure that this system is solved accurately we need to check
that qm(A) is well conditioned. It is possible to obtain a priori bounds for ‖qm(A)−1‖
under assumptions such as ‖A‖ ≤ 1/2 [28, Appx. 1, Lem. 2], ‖A‖ ≤ 1 [38, Thm. 1],
or qm(−‖A‖) < 2 [6, Lem. 2.1], but these assumptions are not satisfied for all the m
and ‖A‖ of interest to us. Therefore we take a similar approach to the way we derived
the constants θm. With ‖A‖ ≤ θm and by writing

qm(A) = e−A/2
(
I + eA/2qm(A)− I)

) ≡ e−A/2(I + F),

we have, if ‖F‖ < 1,

‖qm(A)−1‖ ≤ ‖eA/2‖ ‖(I + F)−1‖ ≤ eθm/2

1− ‖F‖ .

We can expand ex/2qm(x) − 1 =
∑∞

i=2 dix
i, from which ‖F‖ ≤ ∑∞

i=2 |di|θi
m follows.

Our overall bound is

‖qm(A)−1‖ ≤ eθm/2

1−∑∞
i=2 |di|θi

m

.

By determining the di symbolically and summing the first 150 terms of the sum in
250 decimal digit arithmetic, we obtained the bounds in the last row of Table 2.1,
which confirm that qm is very well conditioned for m up to about 13 when ‖A‖ ≤ θm.

Our algorithm is as follows. It first checks whether ‖A‖ ≤ θm for m ∈ {3, 5, 7,
9, 13} and, if so, evaluates rm for the smallest such m. Otherwise it uses the scaling
and squaring method with m = 13.

Algorithm 2.3. This algorithm evaluates the matrix exponential of A ∈ Cn×n

using the scaling and squaring method. It uses the constants θm given in Table 2.3.
1 % Coefficients of degree 13 Padé approximant.
2 b(0: 13) = [64764752532480000, 32382376266240000, 7771770303897600,
3 1187353796428800, 129060195264000, 10559470521600,
4 670442572800, 33522128640, 1323241920,
5 40840800, 960960, 16380, 182, 1]

6 % Preprocessing to reduce the norm.
7 A← A− µI, where µ = trace(A)/n.
8 A← D−1AD, where D is a balancing transformation (or set D = I if

balancing does not reduce the 1-norm of A).

9 for m = [3 5 7 9 13]

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATRIX EXPONENTIAL REVISITED 757

10 if ‖A‖1 ≤ θm

11 X = rm(A) % rm(A) = [m/m] Padé approximant to A.
12 X = eµDXD−1 % Undo preprocessing.
13 end
14 end
15 A← A/2s with s a minimal integer such that ‖A/2s‖1 ≤ θ13

(i.e., s = �log2(‖A‖1/θ13)�).
16 % Form [13/13] Padé approximant to eA.
17 A2 = A2, A4 = A2

2, A6 = A2A4

18 U = A
[
A6(b13A6 + b11A4 + b9A2) + b7A6 + b5A4 + b3A2 + b1I

]
19 V = A6(b12A6 + b10A4 + b8A2) + b6A6 + b4A4 + b2A2 + b0I
20 Solve (−U + V)r13 = U + V for r13.

21 X = r13
2s

by repeated squaring.
22 X = eµDXD−1 % Undo preprocessing.
The cost of Algorithm 2.3 is πm+ �log2(‖A‖1/θm)� matrix multiplications, where

m is the degree of Padé approximant used, and πm is tabulated in Table 2.2, plus the
solution of one matrix equation.

It is readily checked that the sequences θ2k
13b2k and θ2k+1

13 b2k+1 are approximately
monotonically decreasing with k, and hence the ordering given in Algorithm 2.3 for
evaluating U and V takes the terms in approximately increasing order of norm. This
ordering is certainly preferable when A has nonnegative elements, and since there
cannot be much cancellation in the sums it cannot be a bad ordering [20, Chap. 4].

The Padé approximant rm at line 11 is intended to be evaluated using (2.8) for
m ≤ 9, or as in lines 17–19 for m = 13.

The preprocessing in Algorithm 2.3 is precisely that suggested by Ward [38] and
attempts to reduce the norm by a shift and a similarity transformation.

The use of the [13/13] Padé approximation in Algorithm 2.3 gives optimal effi-
ciency. However, Table 2.1 reports a bound of 3.0 for ‖q9(A)−1‖, which is somewhat
smaller than the bound of 17 for ‖q13(A)−1‖, and C9 is only slightly larger than C13;
therefore the best compromise between numerical stability and efficiency could con-
ceivably be obtained by limiting to maximum degree m = 9. We will compare these
two degrees experimentally in the next section.

3. Comparison with Existing Algorithms. We now compare Algorithm 2.3 with
existing implementations of the scaling and squaring method that also employ Padé
approximations to ex.

The function expm in MATLAB 7.0 (R14) uses m = 6 with ‖2−sA‖∞ ≤ 0.5 as
the scaling criterion and does not employ preprocessing. (expm is a built-in function,
but expmdemo11 is an M-file implementation of the same algorithm, and in all our
tests expm and expmdemo1 produced exactly the same results.) Sidje [31] uses the
same parameters in his function padm. Surprisingly, neither expm nor padm evalu-
ates r6 optimally: whereas (2.7) requires just 4 multiplications, expm uses 5, because
it evaluates all the powers A2, A3, . . . , A6, while padm expends 7 multiplications in
using Horner’s method with a variant of (2.7). We note that in padm, pm and qm

are evaluated in increasing order of norms of the terms, as in Algorithm 2.3, whereas
expm uses the reverse ordering.

Ward [38] uses m = 8 with ‖2−sA‖1 ≤ 1 and carries out the same preprocessing
as Algorithm 2.3.

1As of MATLAB 7.8 (R2009a), expmdemo1 remains unchanged.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

758 NICHOLAS J. HIGHAM

In the following discussion we will assume that all the algorithms use the same
norm and ignore the preprocessing.

Since Ward’s value of θ is twice that used in expm and padm, and the [8/8] Padé
approximant can be evaluated with just one more matrix multiplication than the
[6/6] one, Ward’s algorithm would have exactly the same cost as expm and padm for
‖A‖ ≥ 0.5, were the latter algorithms to evaluate r6 efficiently.

It is clear from our analysis that the three algorithms under discussion are not
of optimal efficiency. If the [6/6] or [8/8] Padé approximants are to be used, then
one can take larger values of θ, as shown by Table 2.1. Moreover, as we have argued,
there is no reason to use the degree 6 or 8 approximants because the degree 7 and 9
approximants have the same cost, respectively.

By considering Tables 2.1 and 2.2 it is easy to see the following:
• When ‖A‖1 > 1, Algorithm 2.3 requires one or two fewer matrix multiplica-
tions than Ward’s implementation, two or three fewer than expm, and four
or five fewer than padm. For example, when ‖A‖1 ∈ (2, 2.1), the number of
matrix multiplications reduces from 8 for expm and 7 for Ward’s implementa-
tion to 5 for Algorithm 2.3 (which takes m = 9)—a saving of 37% and 29%,
respectively.
• When ‖A‖1 ≤ 1, Algorithm 2.3 requires no more matrix multiplications than
expm, padm, and Ward’s algorithm, and up to 3, 5, and 3 fewer, respectively.

Our analysis shows that all these algorithms have a backward error no larger
than u, ignoring roundoff. However, it is well known that rounding errors can sig-
nificantly affect the scaling and squaring method, because the squaring phase can
suffer from severe numerical cancellation. The fundamental problem can be seen in
the result [20, sect. 3.5]

‖A2 − fl(A2)‖1 ≤ γn‖A‖21,

which shows that the errors in the computed squared matrix are small compared with
the square of the norm of the original matrix but not necessarily small compared with
the matrix being computed. By using standard error analysis techniques it is possible
to derive a forward error bound for the scaling and squaring method, as has been
done by Ward [38]. However, with our current knowledge of the eA problem it is not
easy to determine whether a large value for the bound signals potential instability of
the method or an ill-conditioned problem.

Since the matrix squarings in the scaling and squaring method are potentially
dangerous it seems desirable to minimize the number of them. Algorithm 2.3 uses
one to three fewer squarings than the algorithms with which we have compared it,
and hence it has a potential advantage in accuracy.

We now present some numerical experiments, carried out in MATLAB 7.0 (R14),
that provide some insight into the accuracy of the scaling and squaring method and
of Algorithm 2.3. We took 66 8 × 8 test matrices: 53 obtained from the function
matrix in the Matrix Computation Toolbox [19] (which include test matrices from
MATLAB itself), together with 13 further test matrices of dimension 2–10 from [4,
Ex. 3], [6, Ex. 3.10], [24, Ex. 2 and p. 655], [30, p. 370], and [38, Test Cases 1–4]. We
evaluated the relative error in the 1-norm of the computed matrices from expm, from
Algorithm 2.3, and from a modified version of Algorithm 2.3 in which the maximal
degree of the Padé approximant is a parameter, mmax. The latter algorithm, denoted
by Exp(mmax), allows us to study the dependence of the error on mmax. We did
not use any preprocessing in this experiment, although we found that turning on

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATRIX EXPONENTIAL REVISITED 759

0 10 20 30 40 50 60
10

–18

10
 –16

10
 –14

10
 –12

10
 –10

10
 – 8

10
– 6

Exp(3)
Exp(5)
Exp(7)
Exp(9)
Exp(13)
cond*u

Fig. 3.1 Normwise relative errors for Algorithm 2.3 (Exp(13)) and variants with mmax restricted
to 3, 5, 7, and 9.

preprocessing in Algorithm 2.3 makes essentially no difference to the results. The
“exact” eA is obtained at 100-digit precision using the Symbolic Math Toolbox.

Figure 3.1 compares the errors for the different maximal Padé degrees. It shows
a clear trend that the smaller the mmax, the larger the error. The solid line is the
unit roundoff multiplied by the (relative) condition number

cond(A) = lim
ε→0

max
‖E‖2≤ε‖A‖2

‖eA+E − eA‖2
ε‖eA‖2 ,

which we estimate using the finite-difference power method of Kenney and Laub [23],
[21, sect. 3.4]. For a method to perform in a backward stable, and hence forward
stable, manner, its error should lie not far above this line on the graph. In all our
figures the results are sorted by decreasing condition number cond(A). We see that
Algorithm 2.3 (mmax = 13) performs in a numerically stable way on this experiment,
even though two of the test matrices were chosen to cause the scaling and squaring
method to “overscale”—a phenomenon investigated in [6] and [24]. Some instability
is apparent for the smaller mmax. The numerical results therefore concur with the
theory in suggesting that the fewer the number of squarings, the smaller the error.

Figure 3.2 compares Algorithm 2.3 with expm, Sidje’s function padm, and the
MATLAB function funm, which implements the Schur–Parlett method of Davies and
Higham [4], [21, Chap. 9], which is designed for general f . The figure shows that expm
exhibits minor instability on many of the test matrices.

Finally, Figure 3.3 plots a performance profile [7], [18, sect. 22.4] for the experi-
ment. Each of the methods is represented by a curve on the plot. For a given α on
the x-axis, the y-coordinate of the corresponding point on the curve is the probability
that the method in question has an error within a factor α of the smallest error over all

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

760 NICHOLAS J. HIGHAM

0 10 20 30 40 50 60

10
–18

10
 –16

10
 –14

10
 –12

10
 –10

10
 – 8

10
 – 6

expm
padm
funm
Exp(13)
cond*u

Fig. 3.2 Normwise relative errors for expm, padm (Sidje), funm, and Algorithm 2.3 (Exp(13)).

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Exp(13)

Exp(9)

padm

funm

expm

α

p

Fig. 3.3 Performance profile: α is plotted against the probability p that a method has error within
a factor α of the smallest error over all methods.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATRIX EXPONENTIAL REVISITED 761

the methods, where probabilities are defined over the set of test problems. For α = 1,
the Exp(13) curve is the highest: it intersects the y-axis at p = 0.52, which means
that this method has the smallest error in 52% of the examples—more often than
any other method. For α � 1.6, Exp(9) is more likely than Exp(13) to be within a
factor α of the smallest error. Since the curve for expm lies below all the other curves,
expm is the least accurate method on this set of test matrices, as measured by the
performance profile. Recall that the functions expm and padm both use m = 6 and
differ only in how they evaluate r6, as described at the start of this section.

In interpreting the results it is worth noting that the actual errors the methods
produce are sensitive to the details of the arithmetic. The version of Figure 3.3
produced by a prerelease version of MATLAB 7.0 was different, though qualitatively
similar. (For example, the Exp(13) and Exp(9) curves touched at α = 3, though they
did not cross.)

This experiment shows that in terms of accuracy in floating point arithmetic there
is no clear reason to favor Exp(13) over Exp(9) or vice versa. Our choice of Exp(13)
in Algorithm 2.3 on the grounds of its lower cost is therefore justified.

4. Indirect Padé Approximation. Najfeld and Havel [30, sect. 2] suggest an
interesting variation of the standard scaling and squaring method that they claim is
more efficient. Instead of approximating the exponential directly, they use a Padé
approximation to the even function

τ(x) = x coth(x) = x(e2x + 1)(e2x − 1)−1

= 1 +
x2

3 +
x2

5 +
x2

7 + · · ·

,(4.1)

in terms of which the exponential can be written

(4.2) e2x =
τ(x) + x

τ(x) − x
.

The Padé approximants to τ can be obtained by truncating the continued fraction
expansion (4.1). For example, using r̃2m to denote the diagonal [2m/2m] Padé ap-
proximant to τ ,

r̃8(x) =
1

765765x
8 + 4

9945x
6 + 7

255x
4 + 8

17x
2 + 1

1
34459425x

8 + 2
69615x

6 + 1
255x

4 + 7
51x

2 + 1
.

The numerators and denominators of r̃2m comprise only even powers of x, and so they
can be evaluated at a matrix argument A in m matrix multiplications by explicitly
forming the required even powers.

The error in r2m has the form

(4.3) τ(x) − r̃2m(x) =
∞∑

k=1

dkx
4m+2k =

∞∑
k=1

dk(x2)2m+k.

(The error is one order in x higher than the definition of Padé approximant requires,
due to the fact that τ is even.) Hence the error in the matrix approximation satisfies

(4.4) ‖τ(A) − r̃2m(A)‖ ≤
∞∑

k=1

dk‖A2‖2m+k =: ω2m(‖A2‖).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

762 NICHOLAS J. HIGHAM

Let θ2m be the largest θ such that ω2m(θ) ≤ u. The algorithm of Najfeld and Havel
scales Ã ← A/2s+1 with s ≥ 0 chosen so that ‖Ã2‖ = ‖A2‖/22s+2 ≤ θ2m. Padé ap-
proximation is applied to the scaled matrix, Ã. The final stage consists of s squarings,
just as in the standard scaling and squaring method. Note that there are s squarings
rather than s + 1, because the underlying approximation (4.2) is to e2x and not ex.
Computation of the θ2m and analysis of computational cost in [30] leads Najfeld and
Havel to conclude that the choice m = 8 of Padé approximant degree leads to the
most efficient algorithm.

Detailed study of this algorithm shows that it is competitive in cost with Algo-
rithm 2.3. The following result reveals a close connection with Algorithm 2.3.

Theorem 4.1. The [2m/2m] Padé approximant r̃2m(x) to x coth(x) is related
to the [2m+ 1/2m+ 1] Padé approximant r2m+1(x) to ex by

r2m+1(x) =
r̃2m(x/2) + x/2
r̃2m(x/2)− x/2

.

Proof. By (4.3),

e2m(x) := τ(x) − r̃2m(x) = O(x4m+2).

Then

g(x) :=
r̃2m(x) + x

r̃2m(x) − x
=

τ(x) + x− e2m(x)
τ(x) − x− e2m(x)

=
τ(x) + x

τ(x) − x

[
1− e2m(x)/(τ(x) + x)
1− e2m(x)/(τ(x) − x)

]

= e2x

[
1− e2m(x)

τ(x) + x
+

e2m(x)
τ(x) − x

+O(e2m(x)2)
]

= e2x

[
1 +

2xe2m(x)
(τ(x) + x)(τ(x) − x)

+O(e2m(x)2)
]

= e2x(1 + xO(e2m(x)) = e2x +O(x4m+3).

Now g(x) is a rational function with numerator and denominator both of degree at
most 2m+1, and g(x/2) = ex+O(x4m+3). By the uniqueness of Padé approximants
to the exponential, g(x/2) ≡ r2m+1(x).

Hence the algorithm of Najfeld and Havel, which takes m = 8, is implicitly using
the same Padé approximant to ex as Algorithm 2.3 when the latter takes m = 9.
The difference is essentially in how A is scaled prior to forming the approximant
and in the precise formulae from which the approximant is computed. While the
derivation of Najfeld and Havel’s algorithm ensures that the error ‖τ(A)− r̃2m(A)‖ is
sufficiently small for the scaled A, what this implies about the error e2A − (r̃2m(A) +
A)(r̃2m(A)−A)−1 is unclear, particularly since the matrix r̃2m(A)−A that is inverted
can be arbitrarily ill conditioned. Moreover, it is unclear how to derive an analogue
of Theorem 2.1 that expresses the truncation errors in the Padé approximant to τ as
backward errors in the original data.

We conclude that the algorithm suggested by Najfeld and Havel is essentially a
variation of the standard scaling and squaring method with direct Padé approximation
but with weaker guarantees concerning its behavior both in exact arithmetic (since
a backward error result is lacking) and in floating point arithmetic (since a possibly
ill-conditioned matrix must be inverted). Without stronger supporting analysis the
method cannot therefore be recommended.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATRIX EXPONENTIAL REVISITED 763

5. Conclusions. The scaling and squaring method has long been the most pop-
ular method for computing the matrix exponential. By analyzing it afresh we have
found that existing implementations of Sidje [31] and Ward [38], and in the function
expm in MATLAB 7.0, are not optimal. While they do guarantee a backward error
of order the unit roundoff in the absence of roundoff (that is, solely considering trun-
cation errors in the Padé approximation), they use more matrix multiplications than
necessary. By developing an essentially optimal backward error bound for the scal-
ing and squaring method in exact arithmetic that depends on A only through ‖A‖,
we have identified the most efficient choice of degree m of Padé approximation and
initial scaling for IEEE double precision arithmetic: m = 13, as opposed to m = 6
for expm and Sidje’s algorithm and m = 8 for Ward’s algorithm, with scaling to en-
sure ‖A‖ ≤ 5.4. A welcome side effect has been to reduce the amount of scaling,
and hence the number of squarings in the final stage. This reduction, together with
a careful evaluation of the Padé approximation, makes the new algorithm typically
more accurate than the old ones (see Figures 3.2 and 3.3).

With the aid of some new error analysis we have shown that all but one part of
Algorithm 2.3 is numerically stable. The effect of rounding errors on the final squaring
phase remains an open question, but in our experiments the overall algorithm has
performed in a numerically stable way throughout.

Acknowledgments. I am grateful to Philip Davies for insightful comments on
section 4 and Roy Mathias for suggesting evaluation schemes of the form (2.9).

REFERENCES

[1] A. H. Al-Mohy and N. J. Higham, Computing the Fréchet derivative of the matrix exponen-
tial, with an application to condition number estimation, SIAM J. Matrix Anal. Appl., 30
(2009), pp. 1639–1657.

[2] A. H. Al-Mohy and N. J. Higham, A new scaling and squaring algorithm for the matrix
exponential, SIAM J. Matrix Anal. Appl., 30 (2009), pp. 970–989.

[3] C. Brezinski and J. Van Iseghem, A taste of Padé approximation, Acta Numerica, 4 (1995),
pp. 53–103.

[4] P. I. Davies and N. J. Higham, A Schur–Parlett algorithm for computing matrix functions,
SIAM J. Matrix Anal. Appl., 25 (2003), pp. 464–485.

[5] I. S. Dhillon and B. N. Parlett, Orthogonal eigenvectors and relative gaps, SIAM J. Matrix
Anal. Appl., 25 (2004), pp. 858–899.

[6] L. Dieci and A. Papini, Padé approximation for the exponential of a block triangular matrix,
Linear Algebra Appl., 308 (2000), pp. 183–202.

[7] E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles,
Math. Program., 91 (2002), pp. 201–213.

[8] E. Estrada and N. Hatano, Communicability in complex networks, Phys. Rev. E, 77 (2008),
article 036111.

[9] E. Estrada and D. J. Higham, Network Properties Revealed through Matrix Functions, Math-
ematics Research Report 17, University of Strathclyde, Scotland, UK, 2008.

[10] E. Estrada, D. J. Higham, and N. Hatano, Communicability betweenness in complex net-
works, Phys. A, 388 (2009), pp. 764–774.

[11] E. Estrada and J. A. Rodŕıguez-Velázquez, Subgraph centrality in complex networks, Phys.
Rev. E, 71 (2005), article 056103.

[12] G. F. Franklin, J. D. Powell, and M. L. Workman, Digital Control of Dynamic Systems,
3rd ed., Addison-Wesley, Reading, MA, 1998.

[13] R. A. Frazer, W. J. Duncan, and A. R. Collar, Elementary Matrices and Some Applica-
tions to Dynamics and Differential Equations, Cambridge University Press, Cambridge,
UK, 1963.

[14] W. Gautschi, Numerical Analysis: An Introduction, Birkhäuser Boston, Boston, MA, 1997.
[15] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., The Johns Hopkins Uni-

versity Press, Baltimore, MD, 1996.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

764 NICHOLAS J. HIGHAM

[16] G. I. Hargreaves and N. J. Higham, Efficient algorithms for the matrix cosine and sine,
Numer. Algorithms, 40 (2005), pp. 383–400.

[17] T. F. Havel, I. Najfeld, and J. Yang, Matrix decompositions of two-dimensional nuclear
magnetic resonance spectra, Proc. Natl. Acad. Sci. USA, 91 (1994), pp. 7962–7966.

[18] D. J. Higham and N. J. Higham, MATLAB Guide, 2nd ed., SIAM, Philadelphia, PA, 2005.
[19] N. J. Higham, The Matrix Computation Toolbox, http://www.ma.man.ac.uk/˜higham/

mctoolbox.
[20] N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed., SIAM, Philadelphia,

PA, 2002.
[21] N. J. Higham, Functions of Matrices: Theory and Computation, SIAM, Philadelphia, PA,

2008.
[22] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press,

Cambridge, UK, 1991.
[23] C. S. Kenney and A. J. Laub, Condition estimates for matrix functions, SIAM J. Matrix

Anal. Appl., 10 (1989), pp. 191–209.
[24] C. S. Kenney and A. J. Laub, A Schur–Fréchet algorithm for computing the logarithm and

exponential of a matrix, SIAM J. Matrix Anal. Appl., 19 (1998), pp. 640–663.
[25] S. Koikari, An error analysis of the modified scaling and squaring method, Comput. Math.

Appl., 53 (2007), pp. 1293–1305.
[26] E. N. Laguerre, Le calcul des systèmes linéaires, extrait d’une lettre adressé à M. Hermite,

in Oeuvres de Laguerre, Vol. 1, C. Hermite, H. Poincaré, and E. Rouché, eds., Gauthier–
Villars, Paris, 1898, pp. 221–267. The article is dated 1867 and is “Extrait du Journal de
l’École Polytechnique, LXIIe Cahier.”

[27] J. D. Lawson, Generalized Runge-Kutta processes for stable systems with large Lipschitz con-
stants, SIAM J. Numer. Anal., 4 (1967), pp. 372–380.

[28] C. B. Moler and C. F. Van Loan, Nineteen dubious ways to compute the exponential of a
matrix, SIAM Rev., 20 (1978), pp. 801–836.

[29] C. B. Moler and C. F. Van Loan, Nineteen dubious ways to compute the exponential of a
matrix, twenty-five years later, SIAM Rev., 45 (2003), pp. 3–49.

[30] I. Najfeld and T. F. Havel, Derivatives of the matrix exponential and their computation,
Adv. in Appl. Math., 16 (1995), pp. 321–375.

[31] R. B. Sidje, Expokit: A software package for computing matrix exponentials, ACM Trans.
Math. Software, 24 (1998), pp. 130–156.

[32] R. B. Sidje and W. J. Stewart, A numerical study of large sparse matrix exponentials arising
in Markov chains, Comput. Statist. Data Anal., 29 (1999), pp. 345–368.

[33] B. Skaflestad and W. M. Wright, The scaling and modified squaring method for matrix
functions related to the exponential, Appl. Numer. Math., 59 (2009), pp. 783–799.

[34] M. Sofroniou and G. Spaletta, Efficient matrix polynomial computation and application
to the matrix exponential, talk given at the workshop on Dynamical Systems on Matrix
Manifolds: Numerical Methods and Applications, Bari, Italy, 2004.

[35] C. F. Van Loan, A Study of the Matrix Exponential, Numerical Analysis Report 10, The Uni-
versity of Manchester, Manchester, UK, 1975. Reissued as MIMS EPrint 2006.397, Manch-
ester Institute for Mathematical Sciences, The University of Manchester, Manchester, UK,
2006.

[36] C. F. Van Loan, On the limitation and application of Padé approximation to the matrix
exponential, in Padé and Rational Approximation: Theory and Applications, E. B. Saff
and R. S. Varga, eds., Academic Press, New York, 1977, pp. 439–448.

[37] R. S. Varga, Matrix Iterative Analysis, 2nd ed., Springer-Verlag, Berlin, 2000.
[38] R. C. Ward, Numerical computation of the matrix exponential with accuracy estimate, SIAM

J. Numer. Anal., 14 (1977), pp. 600–610.

http://www.ma.man.ac.uk/~higham/mctoolbox
http://www.ma.man.ac.uk/~higham/mctoolbox

