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FIEDLER COMPANION LINEARIZATIONS AND
THE RECOVERY OF MINIMAL INDICES ∗

FERNANDO DE TERÁN† , FROILÁN M. DOPICO‡ , AND D. STEVEN MACKEY §

Abstract. A standard way of dealing with a matrix polynomial P (λ) is to convert it into an
equivalent matrix pencil – a process known as linearization. For any regular matrix polynomial, a
new family of linearizations generalizing the classical first and second Frobenius companion forms has
recently been introduced by Antoniou and Vologiannidis, extending some linearizations previously
defined by Fiedler for scalar polynomials. We prove that these pencils are linearizations even when
P (λ) is a singular square matrix polynomial, and show explicitly how to recover the left and right
minimal indices and minimal bases of the polynomial P (λ) from the minimal indices and bases of
these linearizations. In addition, we provide a simple way to recover the eigenvectors of a regular
polynomial from those of any of these linearizations, without any computational cost. The existence
of an eigenvector recovery procedure is essential for a linearization to be relevant for applications.

Key words. singular matrix polynomials, matrix pencils, minimal indices, minimal bases,
linearization, recovery of eigenvectors, Fiedler pencils, companion forms
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1. Introduction. Throughout this work we consider n× n matrix polynomials
with degree k ≥ 2 of the form

P (λ) =
k∑

i=0

λiAi , A0, . . . , Ak ∈ Fn×n, Ak 6= 0 , (1.1)

where F is the field of real or complex numbers and λ is a scalar variable in F. Our
main focus is on singular matrix polynomials, although new results are also obtained
for regular polynomials. An n × n matrix polynomial P (λ) is said to be singular if
detP (λ) is identically zero, and it is said to be regular otherwise. Square singular
polynomials appear in practice, although not as frequently as regular polynomials.
One well-known example is the study of differential-algebraic equations (see for in-
stance [7] and the references therein). Other sources of problems involving singular
matrix polynomials are control and linear systems theory [27], where the problem
of computing minimal polynomial bases of null spaces of singular matrix polynomi-
als continues to be the subject of intense research (see [3] and the references therein
for an updated bibliography). In this context, it should be noted that the matrix
polynomials arising in control problems are often full-rank rectangular polynomials.
However, square singular polynomials are also present in applications connected with
linear systems [36].
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2 F. DE TERÁN, F. M. DOPICO AND D. S. MACKEY

The standard way to numerically solve polynomial eigenvalue problems for regular
polynomials P (λ) is to first linearize P (λ) into a matrix pencil L(λ) = λX + Y with
X, Y ∈ Fnk×nk, and then compute the eigenvalues and eigenvectors of L(λ) using well-
established algorithms for matrix pencils [20]. The classical approach uses the first and
second companion forms [19], sometimes known as the Frobenius companion forms of
P (λ), as linearizations. However, these companion forms usually do not share any
algebraic structure that P (λ) might have. For example, if P (λ) is symmetric, Hermi-
tian, alternating, or palindromic, then the companion forms won’t retain any of these
structures. Consequently, the rounding errors inherent to numerical computations
may destroy qualitative aspects of the spectrum. This has motivated intense activity
towards the development of new classes of linearizations. Several classes have been
introduced in [4, 5] and [30], generalizing the Frobenius companion forms in a num-
ber of different ways. Other classes of linearizations were introduced and studied in
[1, 2], motivated by the use of non-monomial bases for the space of polynomials. The
numerical properties of the linearizations in [30] have been analyzed in [22, 23, 26],
while the exploitation of these linearizations for the preservation of structure in a wide
variety of contexts has been extensively developed in [14, 24, 25, 29, 31].

The linearizations introduced in [2, 4, 30] were originally studied only for regular
matrix polynomials. Very recently, though, linearizations of square singular matrix
polynomials have been considered in [11]. It has been shown in [11] that for any
square matrix polynomial P (λ), singular or regular, almost all the elements in the
vector spaces of pencils L1(P ) and L2(P ) defined in [30] are linearizations for P (λ).
Furthermore, these linearizations allow us to easily recover the complete eigenstructure
of P (λ), i.e., the finite and infinite elementary divisors together with the left and right
minimal indices [16, 27], and also to recover the corresponding minimal bases. We
remark that the results in [11] can be applied to the important cases of the first and
second companion forms of P (λ), since these pencils belong to L1(P ) and L2(P ),
respectively. Moreover, [11] includes similar results for those pencils in [2, Sections 2
and 3] that are defined in terms of degree-graded polynomial bases, because each of
these pencils is strictly equivalent to some pencil in L2(P ).

There are three main results in this work. The first is to show that the family of
linearizations introduced in [4] for regular matrix polynomials P (λ) are still lineariza-
tions when P (λ) is a singular square matrix polynomial. This requires very different
techniques from those used in [4] for the regular case. Second we show how these lin-
earizations can be used to immediately recover the complete eigenstructure of P (λ).
Finally, we develop simple procedures to recover the eigenvectors of a regular poly-
nomial P (λ) from those of any linearization in [4], without any computational cost.
Recovery procedures for eigenvectors were not addressed in [4], but are very impor-
tant for practical applications, as well as in any numerical algorithm for polynomial
eigenvalue problems based on linearizations.

It will be convenient to have a simple name for the pencils introduced in [4], since
they play such a central role in this paper. Note that these pencils arise from the
companion matrices for scalar polynomials introduced by Fiedler [15], in the same
way that the classical first and second companion forms arise from the companion
matrices of Frobenius. Hence we will refer to the pencils introduced in [4] as the
Fiedler companion pencils, or Fiedler pencils for short.

The results in this work expand the arena in which to look for linearizations of
singular square matrix polynomials with additional useful properties. In particular,
for finding structured linearizations of structured singular polynomials, this expan-



FIEDLER LINEARIZATIONS 3

sion is essential. Indeed, for singular polynomials P that are symmetric, Hermitian,
alternating, or palindromic, it was shown in [11] that none of the pencils in L1(P ) or
L2(P ) with structure corresponding to that of P (see [25, 31]) is ever a linearization
when P (λ) is singular. However, using pencils closely related to the Fiedler pencils,
it is possible to develop structured linearizations for at least some large classes of
structured singular matrix polynomials [12, 32].

Apart from the preservation of structure, there is another property that may
be potentially useful; some Fiedler pencils have a much smaller bandwidth than the
classical Frobenius companion forms [15] (see also an example in Section 3 below). It
may be possible to exploit this band structure to develop fast algorithms to compute
the complete eigenstructure of high degree matrix polynomials. As far as we know,
though, this has not yet been addressed either for regular or for singular polynomials.

As we have already mentioned, minimal indices and bases arise in many problems
in control [16, 27], and their numerical computation is a difficult problem that can
be addressed in several different ways [3]. Among them, the Frobenius companion
linearization approach is one of the most reliable methods from a numerical point of
view [6, 35]. This method has only been considered in the case of rectangular matrix
polynomials with full row (or column) rank. The results in this paper, together with
those in [11], open up the possibility of dealing with non-full rank matrix polynomials,
as well as of using linearizations different from the classical Frobenius companion forms
in the numerical computation of minimal indices and bases of matrix polynomials.

We begin in Section 2 by recalling some basic concepts that are used throughout
the paper, followed in Section 3 by the fundamental definitions and notation needed
for working effectively with Fiedler pencils. Section 4 then proves that Fiedler pencils
are always strong linearizations, even for singular matrix polynomials. In Section 5
we show how to recover the minimal indices and bases of a singular square matrix
polynomial from those of any Fiedler pencil; as a consequence, we are then able to
characterize which Fiedler pencils are strictly equivalent and which are not. Section 6
provides a very simple recipe for recovering, without any computational cost, the
eigenvectors of a regular matrix polynomial from the eigenvectors of any of its Fiedler
companion linearizations. Finally, we wrap up in Section 7 with some conclusions and
discussion of ongoing related work.

2. Basic concepts. We present some basic concepts related to matrix polyno-
mials (singular or not), referring the reader to [11, Section 2] for a more complete
treatment. We adopt the following notation: 0d is the d× d zero matrix and Id is the
d× d identity matrix.

We denote by F(λ) the field of rational functions with coefficients in F, and by
F(λ)n the vector space of column n-tuples with entries in F(λ). The normal rank of
a matrix polynomial P (λ), denoted nrankP (λ) , is the rank of P (λ) considered as a
matrix with entries in F(λ), or, equivalently, the size of the largest non-identically
zero minor of P (λ) [17]. A finite eigenvalue of P (λ) is a complex number λ0 such
that

rank P (λ0) < nrank P (λ) .

We say that P (λ) with degree k has an infinite eigenvalue if the reversal polynomial

revP (λ) := λkP (1/λ) =
k∑

i=0

λiAk−i (2.1)

has zero as eigenvalue.
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An n× n singular matrix polynomial P (λ) has right (column) and left (row) null
vectors, that is, vectors x(λ) ∈ F(λ)n×1 and y(λ)T ∈ F(λ)1×n such that P (λ)x(λ) ≡ 0
and y(λ)T P (λ) ≡ 0, where y(λ)T denotes the transpose of y(λ). This leads to the
following definition.

Definition 2.1. The right and left nullspaces of the n × n matrix polynomial
P (λ), denoted by Nr(P ) and N`(P ) respectively, are the following subspaces:

Nr(P ) :=
{
x(λ) ∈ F(λ)n×1 : P (λ)x(λ) ≡ 0

}
,

N`(P ) :=
{
y(λ)T ∈ F(λ)1×n : y(λ)T P (λ) ≡ 0T

}
.

Note that we have the identity

nrank(P ) = n− dimNr(P ) = n− dimN`(P ), (2.2)

and, in particular, dimNr(P ) = dimN`(P ).
It is well known that the elementary divisors of P (λ) (see definition in [17])

corresponding to its finite eigenvalues, as well as the dimensions of Nr(P ) and N`(P ),
are invariant under equivalence with respect to unimodular matrices, i.e., under pre-
and post-multiplication by matrix polynomials with nonzero constant determinant
[17]. The elementary divisors of P (λ) corresponding to the infinite eigenvalue are
defined as the elementary divisors corresponding to the zero eigenvalue of the reversal
polynomial [21, Definition 1].

Next we recall the definition of linearization as introduced in [19], and also the
related notion of strong linearization introduced in [18] and named in [28].

Definition 2.2. A matrix pencil L(λ) = λX + Y with X, Y ∈ Fnk×nk is a lin-
earization of an n×n matrix polynomial P (λ) of degree k if there exist two unimodular
nk × nk matrices U(λ) and V (λ) such that

U(λ)L(λ)V (λ) =
[

I(k−1)n 0
0 P (λ)

]
, (2.3)

or, in other words, if L(λ) is equivalent to diag(I(k−1)n, P (λ)). A linearization L(λ)
is called a strong linearization if revL(λ) is also a linearization of revP (λ).

These definitions were introduced in [18, 19] only for regular polynomials, and
were extended in [11, Section 2] to square singular matrix polynomials. Lemma 2.3
shows why linearizations and strong linearizations are relevant in the study of both
regular and singular matrix polynomials.

Lemma 2.3. [11, Lemma 2.3] Let P (λ) be an n× n matrix polynomial of degree
k and L(λ) an nk × nk matrix pencil, and consider the following conditions on L(λ)
and P (λ):

(a) dimNr(L) = dimNr(P ) ,
(b) the finite elementary divisors of L(λ) and P (λ) are identical ,
(c) the infinite elementary divisors of L(λ) and P (λ) are identical .

Then L(λ) is
• a linearization of P (λ) if and only if conditions (a) and (b) hold,
• a strong linearization of P (λ) if and only if conditions (a), (b) and (c) hold.

We mention briefly that linearizations with smaller size than the ones in Definition
2.2 have been introduced recently in [7], and that their minimal possible size has been
determined in [10].

A vector polynomial is a vector whose entries are polynomials in the variable λ.
For any subspace of F(λ)n, it is always possible to find a basis consisting entirely of
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vector polynomials; simply take an arbitrary basis and multiply each vector by the
denominators of its entries. The degree of a vector polynomial is the greatest degree
of its components, and the order of a polynomial basis is defined as the sum of the
degrees of its vectors [16, p. 494]. Then the following definition makes sense.

Definition 2.4. [16] Let V be a subspace of F(λ)n. A minimal basis of V is
any polynomial basis of V with least order among all polynomial bases of V.

It can be shown [16] that for any given subspace V of F(λ)n, the ordered list of
degrees of the vector polynomials in any minimal basis of V is always the same. These
degrees are then called the minimal indices of V. Specializing V to be the left and
right nullspaces of a singular matrix polynomial gives Definition 2.5; here deg(p(λ))
denotes the degree of the vector polynomial p(λ).

Definition 2.5. Let P (λ) be a square singular matrix polynomial, and let the sets{
y1(λ)T , . . . , yp(λ)T

}
and {x1(λ), . . . , xp(λ)} be minimal bases of, respectively, the left

and right nullspaces of P (λ), ordered such that deg(y1) ≤ deg(y2) ≤ · · · ≤ deg(yp)
and deg(x1) ≤ deg(x2) ≤ · · · ≤ deg(xp). Let ηi = deg(yi) and εi = deg(xi) for
i = 1, . . . , p. Then η1 ≤ η2 ≤ · · · ≤ ηp and ε1 ≤ ε2 ≤ · · · ≤ εp are, respectively, the
left and right minimal indices of P (λ).

For the sake of brevity, we will call minimal bases of the left and right nullspaces
of P (λ) simply left and right minimal bases of P (λ).

In the case of matrix pencils, the left (right) minimal indices can be read off from
the sizes of the left (right) singular blocks of the Kronecker canonical form of the
pencil [17, Chap. XII]. Due to this fact, the minimal indices of a pencil can be stably
computed through unitary transformations that lead to the GUPTRI form [33, 8, 9,
13]. Therefore it is natural to look for relationships between the minimal indices of a
singular matrix polynomial P and the minimal indices of a given linearization of P ,
since this would provide a numerical method for computing the minimal indices of P .
This was done in [11] for the pencils introduced in [30] and will be accomplished in this
work for the Fiedler Companion Pencils introduced in [4]. Note in this context that
Lemma 2.3 only implies that linearizations of P have the same number of minimal
indices as P , but this lemma does not provide the values of the minimal indices of
P in terms of the minimal indices of a linearization. In fact, it is known [11] that
different linearizations of the same polynomial P may have different minimal indices.
This is the reason why each different family of potential linearizations of singular
polynomials requires a separate study to establish the relationships (if any) between
the minimal indices of the polynomial and those of the linearizations in that family.

In this paper, we adopt the following definition, which was introduced in [11,
Section 2] as an extension to matrix polynomials of the one introduced in [34] for
pencils.

Definition 2.6. The complete eigenstructure of a matrix polynomial P (λ) con-
sists of

1. its finite and infinite elementary divisors, and
2. its left and right minimal indices.

3. Definition of Fiedler companion pencils. Let P (λ) be the matrix poly-
nomial in (1.1). By using P (λ), we define first the following nk × nk matrices

Mk :=
[

Ak

I(k−1)n

]
, M0 :=

[
I(k−1)n

−A0

]
(3.1)



6 F. DE TERÁN, F. M. DOPICO AND D. S. MACKEY

and

Mi :=




I(k−i−1)n

−Ai In

In 0
I(i−1)n


 , i = 1, . . . , k − 1 , (3.2)

that are the building factors needed to define the Fiedler pencils. These are con-
structed in [4] as the pencils

λMk −Mi0Mi1 · · ·Mik−1 ,

where (i0, i1 . . . , ik−1) is any possible permutation of the n-tuple (0, 1, . . . , k− 1). We
will use very often in this paper some properties of the permutations above. These
properties are better expressed if we introduce Definition 3.1.

Definition 3.1 (Fiedler Pencils). Let P (λ) be the matrix polynomial in (1.1)
and Mi, i = 0, . . . , k, be the matrices defined in (3.1) and (3.2). Given any bijection
σ : {0, 1, . . . , k − 1} → {1, . . . , k} , the Fiedler pencil of P (λ) associated with σ is the
nk × nk matrix pencil

Fσ(λ) := λMk −Mσ−1(1) · · ·Mσ−1(k) . (3.3)

Note that σ(i) is the position of the factor Mi in the product Mσ−1(1) · · ·Mσ−1(k) giving
the zero-degree term in (3.3). For brevity, we will denote this zero-degree term by Mσ,
that is

Mσ := Mσ−1(1) · · ·Mσ−1(k) . (3.4)

Sometimes we will write the bijection σ using the array notation
σ = (σ(0), σ(1), . . . , σ(k− 1)). Unless otherwise stated, the matrices Mi, i = 0, . . . , k,
Mσ and the Fiedler pencil Fσ(λ) refer to the matrix polynomial P (λ) in (1.1). When
necessary, we will indicate explicitly the dependence of these matrices on a certain
matrix polynomial Q(λ) as follows: Mi(Q), Mσ(Q) and Fσ(Q). In this situation, the
dependence on λ is dropped in the Fiedler pencil Fσ(Q) for simplicity. Since matrix
polynomials will be always denoted by capital letters, there is no risk of confusion
between Fσ(λ) and Fσ(Q).

The set of Fiedler pencils includes the well-known first and second companion
forms [19] of the polynomial in (1.1). They are

C1(λ) := λ




Ak

In

. . .

In


 +




Ak−1 Ak−2 · · · A0

−In 0 · · · 0
...

. . .
. . .

...
0 · · · −In 0




and

C2(λ) := λ




Ak

In

. . .

In


 +




Ak−1 −In · · · 0

Ak−2 0
. . .

...
...

...
. . . −In

A0 0 · · · 0




.
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More precisely, C1(λ) = Fσ1(λ) and C2(λ) = Fσ2(λ), where σ1 = (k, k − 1, . . . , 2, 1)
and σ2 = (1, 2, . . . , k− 1, k). These companion forms are always strong linearizations
of P (λ) [18, Prop. 1.1].

The set of Fiedler pencils also includes block pentadiagonal pencils [15] that,
so, have a much smaller bandwidth than the first and second companion forms if
the degree k of the polynomial is high. For these pencils the Mσ matrix (3.4) is
constructed as follows: let B = M1M3 · · · be the product of the odd Mi factors and
let C = M2M4 · · · be the product of the even Mi factors with the exception of M0.
Then, it is immediate to check that the product of M0, B and C in any order yields
a pentadiagonal Mσ. For instance for degree k = 6, Mσ = M0BC is

Mσ =




−A5 −A4 In 0 0 0
In 0 0 0 0 0
0 −A3 0 −A2 In 0
0 In 0 0 0 0
0 0 0 −A1 0 In

0 0 0 −A0 0 0




.

Note that the matrices B and C previously described are nonsingular and that their
inverses are block tridiagonal matrices, so pre or post-multiplying a block pentadiag-
onal Fiedler pencil by B−1 or C−1 we get block tridiagonal pencils strictly equivalent
to some Fiedler pencils. For instance: Fσ(λ) = λMk−M0BC is strictly equivalent to
the block tridiagonal pencil λMkC−1 −M0B.

The commutativity relations

MiMj = MjMi, for |i− j| > 1, (3.5)

can be easily checked. They imply that some Fiedler pencils associated with different
bijections σ are equal. For instance, for k = 3, the Fiedler pencils λM3 −M0M2M1

and λM3−M2M0M1 are equal. These relations suggest that the relative positions of
the matrices Mi and Mi+1, for i = 0, . . . , k−2, in the product Mσ are of fundamental
interest in studying Fiedler pencils. This motivates Definition 3.2.

Definition 3.2. Let σ : {0, 1, . . . , k − 1} → {1, . . . , k} be a bijection.
(a) For i = 0, . . . , k − 2, we say that σ has a consecution at i if σ(i) < σ(i + 1)

and that σ has an inversion at i if σ(i) > σ(i + 1).
We denote by c(σ) (resp. i(σ)) the number of consecutions (resp. inversions)
of σ.

(b) The consecution-inversion structure sequence of σ, denoted by CISS(σ), is
the tuple (c1, i1, c2, i2, . . . , c`, i`), where σ has c1 consecutive consecutions at
0, 1, . . . , c1 − 1; i1 consecutive inversions at c1, c1 + 1, . . . , c1 + i1 − 1 and so
on, up to i` inversions at k − 1− i`, . . . , k − 2.

Remark 1. We will often use the following simple observations on the concepts
introduced in Definition 3.2 without being explicitly referred to.

1. Part (a) is related to the matrix Mσ in (3.4) as follows: σ has a consecution
at i if and only if Mi is to the left of Mi+1 in Mσ, and σ has an inversion at
i if and only if Mi is to the right of Mi+1 in Mσ.

2. Note that c1 and i` in CISS(σ) may be zero (in the first case, σ has an
inversion at 0 and in the second one it has a consecution at k − 2) but
i1, c2, i2, . . . , i`−1, c` are strictly positive. These conditions uniquely deter-
mine CISS(σ) and, in particular, the parameter `.
Note also that c(σ) =

∑`
j=1 cj , i(σ) =

∑`
j=1 ij , and c(σ) + i(σ) = k − 1.
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In Section 5 we will use the concept of reversal bijection: the reversal bijection
of a given bijection σ : {0, 1, . . . , k − 1} → {1, 2, . . . , k} is another bijection from
{0, 1, . . . , k− 1} into {1, 2, . . . , k} that is denoted by revσ and is defined as revσ(i) =
k+1−σ(i), for 0 ≤ i ≤ k−1. Note that revσ reverses the order of the building factors
Mj in the zero degree term Mσ of the Fiedler pencil (3.3) of P (λ). More precisely,
the pencil of P (λ)

Frevσ(λ) = λMk −Mrevσ

satisfies

Mrevσ = Mσ−1(k)Mσ−1(k−1) · · ·Mσ−1(1) .

In Section 5 we will also use the block-transpose operation. More information on
this operation can be found in [29, Chapter 3]. Here, we simply recall the definition.

Definition 3.3. Let A = (Aij) be a block r × s matrix with m × n blocks Aij.
The block transpose of A is the block s × r matrix AB with m × n blocks defined by(
AB

)
ij

= Aji.

4. Fiedler pencils are strong linearizations. We prove in this section that
every Fiedler pencil Fσ(λ) of a square matrix polynomial P (λ) (regular or singular)
is a strong linearization for P (λ). This fact was proved only for regular polynomials
in [4]. A general proof including the singular case requires different techniques, in
particular, the use of the Horner shifts of P (λ) introduced in Definition 4.1. The
Horner shifts are fundamental in the rest of the paper.

Definition 4.1. Let P (λ) = A0 + λA1 + · · · + λkAk be a matrix polynomial of
degree k. For d = 0, . . . , k, the degree d Horner shift of P (λ) is the matrix polynomial
Pd(λ) := Ak−d + λAk−d+1 + · · ·+ λdAk .

Observe that the Horner shifts of P (λ) satisfy the following recurrence relation

P0(λ) = Ak, Pd+1(λ) = λPd(λ) + Ak−d−1, for 0 ≤ d ≤ k − 1, and Pk(λ) = P (λ).

4.1. Auxiliary matrices and equivalences. In Definition 4.2 some unimod-
ular matrices are defined based on Horner shifts. They will be used to construct the
matrices U(λ) and V (λ) in the linearization transformation (2.3).

Definition 4.2. Let P (λ) =
∑k

i=0 λiAi be an n × n matrix polynomial and
Pi(λ) the degree i Horner shift of P (λ). We define the following unimodular matrix
polynomials of dimension nk × nk. For i = 1, . . . , k − 1,

Qi :=




I(i−1)n

In 0
λIn In

I(k−i−1)n


 , Ri :=




I(i−1)n

0 In

−In Pi(λ)
I(k−i−1)n


 ,

Si :=




I(i−1)n

0 −In

In Pi(λ)
I(k−i−1)n


 , Ti :=




I(i−1)n

In λIn

0 In

I(k−i−1)n


 .
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For brevity, we have omitted the dependence on λ in the matrices Qi, Ri, Si and
Ti. Associated with the matrix polynomial (1.1), we will also use the matrices

M̃0 :=
[−I(k−1)n

−A0

]
and M̃i :=




−I(k−i−1)n

−Ai In

In 0
I(i−1)n


 , (4.1)

for i = 1, . . . , k−1. Note that the only difference between these matrices M̃ ′
is and the

matrices M ′
is defined in (3.1) and (3.2) are the minus signs in the upper-left identity

blocks. In particular, M̃k−1 = Mk−1.
The matrices Qi, Ri, Si and Ti induce the unimodular equivalences established in

Lemma 4.3. The proof is immediate and is omitted.
Lemma 4.3. Let Qi, Ri, Si and Ti, for i = 1, . . . , k−1, be the matrices introduced

in Definition 4.2. Then

(a) Qi




0(i−1)n

λPi−1(λ) 0
0 λIn

λI(k−i−1)n


Ri =

=




0(i−1)n

0n

λPi(λ)
λI(k−i−1)n


+




0(i−1)n

0 λPi−1(λ)
−λIn λ2Pi−1(λ)

0(k−i−1)n


 .

(b) QiMk−(i+1)M̃k−iRi = M̃k−(i+1)+




0(i−1)n

0 λPi−1(λ)
−λIn λ2Pi−1(λ)

0(k−i−1)n


 .

(c) Si




0(i−1)n

λPi−1(λ) 0
0 λIn

λI(k−i−1)n


 Ti =

=




0(i−1)n

0n

λPi(λ)
λI(k−i−1)n


+




0(i−1)n

0 −λIn

λPi−1(λ) λ2Pi−1(λ)
0(k−i−1)n


 .

(d) SiM̃k−iMk−(i+1)Ti = M̃k−(i+1)+




0(i−1)n

0 −λIn

λPi−1(λ) λ2Pi−1(λ)
0(k−i−1)n


 .

Lemma 4.4 is the key technical result that allows us to prove the main results in
this section, i.e., Theorem 4.5 and Corollary 4.6.

Lemma 4.4. Let P (λ) be the matrix polynomial in (1.1), let Fσ(λ) = λMk −Mσ

be given by (3.3), i.e., it is the Fiedler pencil of P (λ) associated with the bijection σ,
and let M̃0, . . . , M̃k−1 be the matrices in (4.1). For i = 1, . . . , k, define M

(k)
σ := M̃0
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and if i 6= k

M (i)
σ :=





(∏
σ−1(j)<k−i Mσ−1(j)

)
· M̃k−i , if σ has a consecution at k − i− 1

M̃k−i ·
(∏

σ−1(j)<k−i Mσ−1(j)

)
, if σ has an inversion at k − i− 1

,

where the relative order of the Mj’s factors is the same as in Mσ, and

F (i)
σ (λ) :=




0(i−1)n

λPi−1(λ)
λI(k−i)n


−M (i)

σ .

Observe that F
(1)
σ (λ) = Fσ(λ) and F

(k)
σ (λ) = diag(I(k−1)n, P (λ)). Then:

(a) If σ has a consecution at k − i − 1 then F
(i+1)
σ (λ) = QiF

(i)
σ (λ)Ri, where Qi

and Ri are the matrices introduced in Definition 4.2.
(b) If σ has an inversion at k− i− 1 then F

(i+1)
σ (λ) = SiF

(i)
σ (λ)Ti, where Si and

Ti are the matrices introduced in Definition 4.2.
Proof. We will only prove part (a) because part (b) is similar. So, let us assume

that σ has a consecution at k − i− 1. Then, by using trivial commutativity relations
of the type (3.5), the factors of M

(i)
σ can be rearranged until M̃k−i is adjacent to

Mk−i−1, that is M
(i)
σ = · · ·Mk−i−1M̃k−i · · · . Now, since Qi and Ri commute with

Ms, for s < k − i− 1, we have

QiM
(i)
σ Ri = · · · (QiMk−i−1M̃k−iRi) · · ·

= · · ·


M̃k−i−1 +




0(i−1)n

0 λPi−1(λ)
−λIn λ2Pi−1(λ)

0(k−i−1)n





 · · ·

= M (i+1)
σ +




0(i−1)n

0 λPi−1(λ)
−λIn λ2Pi−1(λ)

0(k−i−1)n


 , (4.2)

where we have used Lemma 4.3 (b) and the fact that a multiplication of the matrix
in the second term of the second line by Ms, with s ≤ k − i − 2, keeps this matrix
unchanged. Observe that if i = k− 1 then M

(i+1)
σ = M̃0. The result is obtained from

equation (4.2) and Lemma 4.3 (a) as follows:

QiF
(i)
σ (λ)Ri =




0(i−1)n

0n

λPi

λI(k−i−1)n


 +




0(i−1)n

0 λPi−1

−λIn λ2Pi−1

0(k−i−1)n




−M (i+1)
σ −




0(i−1)n

0 λPi−1

−λIn λ2Pi−1

0(k−i−1)n


 = F (i+1)

σ (λ) ,

where, for brevity, we have dropped the dependence on λ in the Horner shifts.
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4.2. Strong linearizations and transforming unimodular matrices. We
finally prove in Theorem 4.5 that every Fiedler pencil of a square matrix polyno-
mial (regular or singular) is a strong linearization for this polynomial. In the proof,
the unimodular matrices transforming a Fiedler pencil into diag(I(k−1)n, P (λ)) are
constructed as products of the matrices introduced in Definition 4.2. These construc-
tions are presented in Corollary 4.6 and will be used to deduce the minimal bases and
eigenvector recovery formulas.

Theorem 4.5. Let P (λ) be an n×n matrix polynomial (singular or regular) with
degree k ≥ 2 and let Fσ(λ) be any Fiedler companion pencil of P (λ). Then Fσ(λ) is
a strong linearization for P (λ).

Proof. We will first show that Fσ(λ) is a linearization of P (λ) and after that we
will prove that it is also a strong linearization.

Assume that P (λ) is the polynomial in (1.1) and that Fσ(λ) is given by (3.3). To
prove that Fσ(λ) is a linearization of P (λ) we use Lemma 4.4 to construct a sequence
of k − 1 unimodular equivalences

Fσ(λ) = F (1)
σ (λ) −→ F (2)

σ (λ) −→ · · · −→ F (k)
σ (λ) = diag(I(k−1)n, P (λ)), (4.3)

where F
(i+1)
σ (λ) = QiF

(i)
σ (λ)Ri if σ has a consecution at k − i − 1 and F

(i+1)
σ (λ) =

SiF
(i)
σ (λ)Ti if σ has an inversion at k − i − 1. The product of several unimodular

matrices is again unimodular, which completes the proof that Fσ(λ) is a linearization
for P (λ).

To prove that Fσ(λ) is a strong linearization of P (λ), it remains to prove that
revFσ(λ) is a linearization for revP (λ). For this purpose we will use the following
strategy: we will prove that −revFσ(λ) is strictly equivalent to one of the Fiedler pen-
cils of −revP (λ), i.e., equivalent in the sense of Definition 2.2 but with nonsingular
constant matrices U and V . We have already proved that each of these pencils is a lin-
earization of −revP (λ) and, so, unimodularly equivalent to diag(I(k−1)n,−revP (λ)).
Hence revFσ(λ) is unimodularly equivalent to diag(I(k−1)n, revP (λ)), and thus is a
linearization for revP (λ).

Let us prove that −revFσ(λ) is strictly equivalent to one of the Fiedler pencils of
−revP (λ). If Fσ(λ) is given by (3.3) then

−revFσ(λ) = λ(Mσ−1(1) · · ·Mσ−1(s−1)M0Mσ−1(s+1) · · ·Mσ−1(k))−Mk,

where s = σ(0). Pre and post-multiplying in the appropriate order by the inverses of
M1,M2, . . . , Mk−1, we get that −revFσ(λ) is strictly equivalent to

λM0 − (M−1
σ−1(s−1) · · ·M−1

σ−1(1)MkM−1
σ−1(k) · · ·M−1

σ−1(s+1)) ,

which in turn is strictly equivalent to

λ(RM0R)−R(M−1
σ−1(s−1) · · ·M−1

σ−1(1)MkM−1
σ−1(k) · · ·M−1

σ−1(s+1))R , (4.4)

where

R :=




In

. .
.

In




is the k × k block backwards “identity” matrix. Now define

M̂0 := RM0R =
[ −A0

I(k−1)n

]
, M̂k := RMkR =

[
I(k−1)n

Ak

]
,
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and

M̂i := RM−1
i R =




I(i−1)n

Ai In

In 0
I(k−i−1)n


 , i = 1, . . . , k − 1 .

With these definitions, the pencil (4.4), that is strictly equivalent to −revFσ(λ), can
be written as

λM̂0 − (M̂σ−1(s−1) · · · M̂σ−1(1)M̂kM̂σ−1(k) · · · M̂σ−1(s+1)) ,

which is a Fiedler pencil for the polynomial −revP (λ). This completes the proof.
Corollary 4.6 is an immediate consequence of the first part of the proof of Theorem

4.5.
Corollary 4.6. Let P (λ) be the matrix polynomial in (1.1), let Fσ(λ) be the

Fiedler pencil of P (λ) associated with the bijection σ, and let Qi, Ri, Si and Ti, for
i = 1, . . . , k − 1, be the matrices introduced in Definition 4.2. Then

U(λ)Fσ(λ)V (λ) =
[

I(k−1)n 0
0 P (λ)

]
,

where V (λ) and U(λ) are the following nk × nk unimodular matrix polynomials:

V (λ) := Vk−2Vk−3 · · ·V1V0 , with Vi =
{

Rk−(i+1) , if σ has a consecution at i
Tk−(i+1) , if σ has an inversion at i

and

U(λ) := U0U1 · · ·Uk−3Uk−2 , with Ui =
{

Qk−(i+1) , if σ has a consecution at i
Sk−(i+1) , if σ has an inversion at i

5. The recovery of minimal indices and bases. In this section, we deal with
singular square matrix polynomials because regular polynomials do not have minimal
indices and bases. The recovery of the minimal indices and bases of a polynomial from
those of a Fiedler pencil is based on Lemma 5.1, which is valid for any linearization
and not only for Fiedler pencils.

Lemma 5.1. Let the nk × nk pencil L(λ) be a linearization of an n × n matrix
polynomial P (λ) of degree k ≥ 2, and let U(λ) and V (λ) be two unimodular matrix
polynomials such that

U(λ)L(λ)V (λ) =
[

I(k−1)n 0
0 P (λ)

]
. (5.1)

Consider U(λ) and V (λ) as block k×k matrices with n×n blocks, and let UL and V R

be, respectively, the last block-row of U(λ) and the last block-column of V (λ). Then:
(a) The linear map

R : Nr(P ) −→ Nr(L)
v 7−→ V Rv

is an isomorphism of F(λ)-vector spaces.
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(b) The linear map

L : N`(P ) −→ N`(L)
wT 7−→ wT UL

is an isomorphism of F(λ)-vector spaces.
Proof. We only prove part (a) because part (b) is similar. Assume that v ∈

Nr(P ), i.e., P (λ)v = 0. By multiplying on the right both sides of (5.1) by [0T vT ]T ,
where the 0T vector has (k − 1)n entries, we get U(λ)L(λ)(V Rv) = 0, that implies
L(λ)(V Rv) = 0 because U(λ) is nonsingular as an F(λ)-matrix. Therefore we have
proved that v ∈ Nr(P ) ⇒ R(v) = V Rv ∈ Nr(L) and that the linear map in part
(a) is well defined. To prove that R is an isomorphism it suffices to prove that
R is injective because dimNr(P ) = dimNr(L) from (5.1). To this purpose simply
note that R(v) = V Rv = 0 implies v = 0, because the columns of V R are linearly
independent in F(λ)nk×1 since V (λ) is unimodular.

Lemma 5.1 implies that every basis ofNr(L) is of the form Br = {V Rv1, . . . , V
Rvp},

where Er = {v1, . . . , vp} is a basis of Nr(P ) that is uniquely determined by Br. How-
ever, this does not mean that Er may be easily obtained from Br, that Er is a minimal
basis of P (λ) whenever Br is a minimal basis of L(λ), or that the minimal indices of
P (λ) are simply related to those of L(λ). In the particular case of Fiedler lineariza-
tions, we will see that Er is immediately recovered from Br because one of the blocks
of V R will always be equal to In, we will prove that Er is a minimal basis whenever Br

is, and we will show that the minimal indices of P (λ) are obtained from the ones of
Fσ(λ) by substraction of a constant quantity easily determined by σ. This will require
a careful analysis of the last block column of the matrix V (λ) we have determined in
Corollary 4.6. Analogous results hold for left minimal indices and bases.

5.1. The last block column of V (λ) and other technical results. In this
section In and 0n blocks of size precisely n × n are simply denoted by I and 0. The
expression of V (λ) in Corollary 4.6 indicates that products of Ti’s and Ri’s matrices
have to be used to get the last block column of V (λ). Lemma 5.2 is a first step in
this direction. The proof is omitted because it is a simple induction on the number
of factors.

Lemma 5.2. Let Pd(λ), for d = 0, . . . , k, be the Horner shifts of the matrix
polynomial P (λ) in (1.1) and let Ri and Ti, for i = 1, . . . , k − 1, be the matrices
introduced in Definition 4.2. Then, for each i = 1, . . . , k − 1 and j = 1, . . . , k − i− 1:

(a) TiTi+1 · · ·Ti+j =




I(i−1)n

I λI . . . λj+1I
. . .

. . .
...

. . . λI
I

I(k−(i+j+1))n




.

(b) RiRi+1 · · ·Ri+j =




I(i−1)n

0 0 . . . 0 I
−I 0 . . . 0 Pi(λ)

. . .
. . .

...
...

. . . 0 Pi+j−1(λ)
−I Pi+j(λ)

I(k−(i+j+1))n




.
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Given a bijection σ : {0, 1, . . . , k − 1} → {1, . . . , k}, we will use frequently in this
section the consecution-inversion structure sequence introduced in Definition 3.2, in
particular, the entries of CISS(σ) = (c1, i1, . . . , c`, i`) and the summations

s0 := 0, sj :=
j∑

p=1

(cp + ip) for j = 1, . . . , `.

Recall also that s` = k − 1. We still need to introduce the following additional
quantities:

m0 := 0, mj := i1 + i2 + · · ·+ ij , for j = 1, . . . , ` , (5.2)

so m` = i(σ) , that is, the number of inversions of σ.
In order to write down in Lemma 5.3 a reasonably simple formula for the last

block column of the matrix V (λ) in Corollary 4.6, we need to define some block
column matrices associated with the matrix polynomial P (λ) in (1.1) and the bijection
σ. These matrices are denoted as Λσ,j(P ), for j = 1, . . . , `, and Λ̂σ,j(P ), for j =
1, . . . , `−1, and they are defined in terms of the Horner shifts of P (λ) and CISS(σ) =
(c1, i1, . . . , c`, i`) as follows

Λσ,j(P ) :=




λij I
...

λI
I

Pk−sj−1−cj

...
Pk−sj−1−2

Pk−sj−1−1




and Λ̂σ,j(P ) :=




λij−1I
...

λI
I

Pk−sj−1−cj

...
Pk−sj−1−2

Pk−sj−1−1




, (5.3)

where for simplicity we omit the dependence on λ of the Horner shifts Pd. Note that
Λσ,j(P ) and Λ̂σ,j(P ) are associated with the pair (cj , ij) of entries of CISS(σ), and
that Λ̂σ,j(P ) is just a “truncated” version of Λσ,j(P ), with one less block at the top.
Note also that Λ̂σ,j(P ) is defined only if j < `, so that ij > 0 and ij − 1 ≥ 0, and that
if c1 = 0 then Λσ,1(P ) = [λi1I, . . . , λI, I]T .

Lemma 5.3. Let P (λ) be the matrix polynomial in (1.1), let Fσ(λ) be the Fiedler
pencil of P (λ) associated with the bijection σ, and let V (λ) be the nk×nk unimodular
matrix polynomial in Corollary 4.6. Consider V (λ) as a k×k block matrix with n×n
blocks. If CISS(σ) = (c1, i1, . . . , c`, i`) then the last block-column of V (λ) is

ΛR
σ (P ) :=




λm`−1Λσ,`(P )
λm`−2Λ̂σ,`−1(P )

...

λm1Λ̂σ,2(P )
Λ̂σ,1(P )




if ` > 1, (5.4)

and ΛR
σ (P ) := Λσ,1(P ) if ` = 1.
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Proof. Note, in the first place, that, according to CISS(σ) = (c1, i1, . . . , c`, i`),
the factors defining V (λ) in Corollary 4.6 can be grouped in the form

V (λ) = Ṽ` · · · Ṽ2Ṽ1 , with Ṽj = Ṽ inv
j Ṽ con

j , for j = 1, . . . , `,

where Ṽ inv
j is the product of the following ij matrices

Ṽ inv
j = Tk−sj Tk−sj+1 · · ·Tk−sj+(ij−1)

defined in Definition 4.2, and Ṽ con
j is the product of the following cj matrices

Ṽ con
j = Rk−sj−1−cj

Rk−sj−1−cj+1 · · ·Rk−sj−1−1 ,

also defined in Definition 4.2. By Lemma 5.2, these matrices are given by

Ṽ inv
j =




I(k−sj−1)n

I λI . . . λij I
. . .

. . .
...

. . . λI
I

I(sj−1+cj)n




and

Ṽ con
j =




I(k−sj−1−cj−1)n

0 . . . . . . 0 I

−I
. . . 0 Pk−sj−1−cj (λ)
. . .

. . .
...

...
. . . 0 Pk−sj−1−2(λ)

−I Pk−sj−1−1(λ)
Isj−1 n




.

A direct multiplication gives

Ṽj = Ṽ inv
j Ṽ con

j =




I(k−sj−1)n

∗ ∗ · · · ∗ Λσ,j(P )
Isj−1 n


 , (5.5)

where the central diagonal block is a (cj +ij +1)×(cj +ij +1) block matrix with n×n
blocks whose first cj + ij block-columns are denoted by ∗ and are of no interest in our
argument. Now, note that the central diagonal nonidentity block of Ṽj in (5.5), i.e.,
[∗ ∗ · · · ∗ Λσ,j(P )], overlaps the central diagonal nonidentity block of the adjacent
factor Ṽj+1 (resp. Ṽj−1) in the upper-left (resp. lower-right) n×n block of the central
diagonal nonidentity block of Ṽj . In particular, the last block row and the last block
column of the central diagonal nonidentity block of Ṽj have the same block index as
the first block row and the first block column of the central diagonal nonidentity block
of Ṽj−1. This overlap causes some nontrivial interaction when multiplying all the Ṽj



16 F. DE TERÁN, F. M. DOPICO AND D. S. MACKEY

factors together to get the last block column of V (λ). If we multiply out this product
from right to left, i.e.,

V (λ) = (Ṽ`(Ṽ`−1 · · · (Ṽ3(Ṽ2Ṽ1)) · · · )) ,

use (5.5) and take into account the discussed overlap, it is easy to see (inductively)
that, for j = 1, . . . , `,

Ṽj Ṽj−1 · · · Ṽ1 =




I(k−sj−1)n

∗ . . . ∗ λmj−1Λσ,j(P )
∗ . . . ∗ λmj−2Λ̂σ,j−1(P )
...

...
...

∗ . . . ∗ λm1Λ̂σ,2(P )
∗ . . . ∗ Λ̂σ,1(P )




,

where the blocks with ∗ have no relevance in our argument. Now the result follows
by taking j = ` in the previous identity.

We want to point out two key features of the matrix ΛR
σ (P ) in (5.4) that will be

used in the rest of the paper and that are essential to recover right minimal bases of
P (λ) from the ones of Fσ(λ):

(a) ΛR
σ (P ) has exactly one block equal to In residing in Λ̂σ,1(P ) at block index

k − c1, i.e., In is the (c1 + 1)th block of ΛR
σ (P ) from the bottom.

(b) The topmost block of ΛR
σ (P ) is the topmost block of λm`−1Λσ,`(P ), which is

equal to λm`−1λi`In = λm`In = λi(σ)In .
The last result in this subsection is Lemma 5.4. It has nothing to do with lin-

earizations and is valid for any singular matrix polynomial. This lemma will be used to
establish the shift relationship between the right minimal indices of P (λ) and Fσ(λ).

Lemma 5.4. Let P (λ) be an n × n matrix polynomial with degree k ≥ 2 and let
Pj(λ), for j = 0, . . . , k − 1, be its degree j Horner shift. Let v(λ) ∈ F(λ)n be a vector
polynomial such that v(λ) ∈ Nr(P ). If Pj(λ)v(λ) 6= 0, then

deg (Pj(λ)v(λ)) ≤ −1 + deg (v(λ)) . (5.6)

Proof. Assume that P (λ) is the matrix polynomial in (1.1). First observe that
Pj(λ)v(λ) 6= 0 implies that deg (v(λ)) ≥ 1, because otherwise, since v(λ) ∈ Nr(P ),
we should have v ∈ Nr(Ai), for all 0 ≤ i ≤ k, and then Pj(λ)v = 0 for all 0 ≤ j ≤ k.
Hence the right-hand side of (5.6) is non-negative.

By definition of the Horner shift Pj(λ) we have

Pj(λ)v(λ) =
(
λjAk + λj−1Ak−1 + · · ·+ Ak−j

)
v(λ) ,

and so

λk−jPj(λ)v(λ) =
(
λk−jPj(λ)− P (λ)

)
v(λ) = − (

λk−j−1Ak−j−1 + · · ·+ λA1 + A0

)
v(λ) .

Thus, taking into account that Pj(λ)v(λ) 6= 0,

(k − j) + deg (Pj(λ)v(λ)) = deg
(
λk−jPj(λ)v(λ)

)

= deg
(
(λk−j−1Ak−j−1 + · · ·+ λA1 + A0)v(λ)

)

≤ (k − j − 1) + deg (v(λ)) ,

and hence deg (Pj(λ)v(λ)) ≤ −1 + deg (v(λ)) .
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5.2. The recovery of right minimal indices and bases. We define first
a degree-shift isomorphism between Nr(P ) and Nr(Fσ) in Theorem 5.5 and, as an
immediate consequence, the recovery of right minimal indices and bases is established
in Corollary 5.6, which is one of the main results in this paper.

Theorem 5.5. Let P (λ) be an n× n matrix polynomial as in (1.1), let Fσ(λ) be
the Fiedler pencil of P (λ) associated with the bijection σ, let i(σ) be the number of
inversions of σ, and let ΛR

σ (P ) be the nk× n matrix defined in Lemma 5.3. Then the
linear map

Rσ : Nr(P ) −→ Nr(Fσ)
v 7−→ ΛR

σ (P )v

is an isomorphism of F(λ)-vector spaces with degree shift i(σ) on the vector poly-
nomials in Nr(P ). In other words, Rσ is a bijection between the subsets of vector
polynomials in Nr(P ) and Nr(Fσ) with the property that

degRσ(v) = i(σ) + deg v (5.7)

for every nonzero vector polynomial v ∈ Nr(P ). Furthermore, for any nonzero vector
polynomial v, degRσ(v) is attained only in the topmost n× 1 block of Rσ(v).

Proof. The fact that Rσ is an isomorphism follows from Lemma 5.1, because
ΛR

σ (P ) is the last block-column of the unimodular matrix polynomial V (λ) in Corol-
lary 4.6.

The form of ΛR
σ (P ) guarantees that Rσ(v) is a vector polynomial whenever v is,

and, because of the identity block in ΛR
σ (P ) at block index k − c1, that Rσ(v) is a

vector rational (non-polynomial) function whenever v is non-polynomial. Thus Rσ

also establishes a bijection between the vector polynomials in Nr(P ) and those in
Nr(Fσ).

To see why the degree shifting property (5.7) holds, first observe that there are
only two different types of blocks in ΛR

σ (P ):

λpI with 0 ≤ p ≤ i(σ), and λqPj(λ) with
{

k − s`−1 − c` ≤ j ≤ k − 1
0 ≤ q ≤ m`−1 ≤ i(σ) .

Thus Rσ(v) is made up of blocks of the form λpv and λqPj(λ)v. Clearly for a nonzero
vector polynomial v ∈ Nr(P ) the maximum degree among all the blocks λpv is i(σ)+
deg v, attained only in the topmost block of Rσ(v). Blocks of the form λqPj(λ)v are
either 0 (if Pj(λ)v = 0) or, by Lemma 5.4, have degree bounded by

deg (λqPj(λ)v) ≤ m`−1 − 1 + deg v < i(σ) + deg v .

Thus degRσ(v) = i(σ) + deg v, with equality attained only in the topmost block of
Rσ(v).

We stress the fact that the recovery procedure for right minimal indices and bases
that we present in Corollary 5.6 below is very simple and does not use at all the rather
complicated structure of ΛR

σ (P ). In plain words, one could say that a hard work is
needed to get and prove the final “recovery recipe”, but that this recipe can be used
without effort, except that of determining c1 and i(σ).

Corollary 5.6 (Right minimal indices and bases recovery from Fiedler
pencils). Let P (λ) be an n × n singular matrix polynomial with degree k ≥ 2, let
Fσ(λ) ∈ F(λ)nk×nk be the Fiedler pencil of P (λ) associated with the bijection σ, and
let i(σ) be the number of inversions of σ and CISS(σ) = (c1, i1, . . . , c`, i`). Suppose
that nk × 1 vectors are partitioned as k × 1 block vectors with n× 1 blocks.
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(a) If z(λ) ∈ F(λ)nk×1 is a right null vector of Fσ(λ) and x(λ) is the (k − c1)th
block of z(λ), then x(λ) is a right null vector of P (λ).

(b) If {z1(λ), . . . , zp(λ)} is a right minimal basis of Fσ(λ) and xj(λ) is the (k −
c1)th block of zj(λ), for j = 1, . . . , p, then {x1(λ), . . . , xp(λ)} is a right min-
imal basis of P (λ).

(c) If 0 ≤ ε1 ≤ ε2 ≤ · · · ≤ εp are the right minimal indices of P (λ), then

ε1 + i(σ) ≤ ε2 + i(σ) ≤ · · · ≤ εp + i(σ) ,

are the right minimal indices of Fσ(λ).
Note that these results hold for the first (resp. second) companion form of P (λ) by
taking c1 = 0 (resp. c1 = k − 1) and i(σ) = k − 1 (resp. i(σ) = 0).

Proof. Part (a) follows from the fact that the linear map Rσ in Theorem 5.5
is an isomorphism and that x(λ) = R−1

σ (z(λ)), because the (k − c1)th block of
ΛR

σ (P ) is In. To prove part (b), note first that isomorphisms transform any basis
into another basis, so the fact that {z1(λ), . . . , zp(λ)} is a basis of Nr(Fσ) implies
directly that {x1(λ), . . . , xp(λ)} is a basis of Nr(P ). To see that {x1(λ), . . . , xp(λ)}
is minimal, we proceed by contradiction: assume that there exists another polyno-
mial basis {x̃1(λ), . . . , x̃p(λ)} of Nr(P ) with less order, then the degree shift property
(5.7) implies that the basis {Rσ(x̃1(λ)), . . . ,Rσ(x̃p(λ))} of Nr(Fσ) has less order than
{Rσ(x1(λ)), . . . ,Rσ(xp(λ))} = {z1(λ), . . . , zp(λ)}, which is a contradiction. Part (c)
follows from part (b) and equation (5.7).

5.3. The recovery of left minimal indices and bases. For the recovery
of the left minimal indices and bases of P (λ), we will develop in Theorem 5.7 and
Corollary 5.9 analogous results to Theorem 5.5 and Corollary 5.6. A possible strategy
to prove Theorem 5.7 is based on part (b) of Lemma 5.1 and consists in finding directly
an expression for the last block-row of the unimodular matrix U(λ) in Corollary 4.6,
according to the spirit of Lemma 5.3 for the last block-column of V (λ). We adopt
here a different strategy that requires less algebraic effort and is based on applying
Theorem 5.5 to the Fiedler pencil Frevσ(PT ) of the polynomial P (λ)T , where revσ
is the reversal bijection of σ introduced in Section 3. Note that the block-transpose
operation introduced in Definition 3.3 is used in Theorem 5.7.

Theorem 5.7. Let P (λ) be an n × n matrix polynomial as in (1.1), let Fσ(λ)
be the Fiedler pencil of P (λ) associated to the bijection σ, let c(σ) be the number of
consecutions of σ, and let ΛR

revσ(P ) be, for the reversal bijection of σ, the nk × n
matrix defined in Lemma 5.3. Then the linear map

Lσ : N`(P ) −→ N`(Fσ)
uT 7−→ uT ΛL

σ (P ) ,

where ΛL
σ (P ) :=

[
ΛR

revσ(P )
]B

, is an isomorphism of F(λ)-vector spaces with degree
shift c(σ) on the vector polynomials in N`(P ). In other words, Lσ is a bijection
between the subsets of vector polynomials in N`(P ) and N`(Fσ) with the property that

degLσ(uT ) = c(σ) + deg(uT ) (5.8)

for every nonzero vector polynomial uT ∈ N`(P ). Furthermore, for any nonzero vector
polynomial uT , degLσ(uT ) is attained only in the leftmost 1× n block of Lσ(uT ).

Proof. We will obtain the linear map Lσ as a composition of three linear maps,
each of which is a F(λ)-vector space isomorphism inducing a bijection with specific
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degree shift properties on vector polynomial elements; the second of these three maps
will come from the one in Theorem 5.5 between right null spaces. The three maps are
the following.

(a) The first map is

Ψ1 : N`(P ) −→ Nr(PT )
uT 7−→ u

.

That this is a vector space isomorphism follows immediately from the fact that
uT P (λ) = 0T if and only if P (λ)T u = 0. It is also clear that this map induces a
degree-preserving bijection between the vector polynomials in N`(P ) and Nr(PT ).

(b) The second map is obtained from the one in Theorem 5.5 applied to the
transpose polynomial P (λ)T and the reversal bijection, revσ, of σ:

Ψ2 : Nr(PT ) −→ Nr(Frevσ(PT ))
v 7−→ ΛR

revσ(PT )v .

This linear map is an isomorphism by Theorem 5.5 with degree shift i(revσ) = c(σ) on
the vector polynomials in Nr(PT ), and such that, for any nonzero vector polynomial
v, deg Ψ2(v) is attained only in the topmost block of Ψ2(v).

(c) The third map is Ψ−1
3 , where

Ψ3 : N`(Fσ(P )) −→ Nr(Frevσ(PT ))
uT 7−→ u

.

To see that this is well-defined, note, in the first place, that uT ∈ N`(Fσ(P )) if and
only if uT Fσ(P ) = 0T , and this is equivalent to [Fσ(P )]T u = 0. On the other hand,
by (3.3),

Fσ(P ) = λMk(P )−Mσ−1(1)(P ) Mσ−1(2)(P ) · · ·Mσ−1(k)(P ) ,

so

[Fσ(P )]T = λ [Mk(P )]T − [
Mσ−1(k)(P )

]T · · · [Mσ−1(2)(P )
]T [

Mσ−1(1)(P )
]T

= λMk(PT )−Mσ−1(k)(PT ) · · ·Mσ−1(2)(PT ) Mσ−1(1)(PT ) = Frevσ(PT ) .

Thus uT ∈ N`(Fσ(P )) if and only if u ∈ Nr(Frevσ(PT )), so Ψ3 is a well-defined
bijection, and clearly linear, hence a vector space isomorphism. That this map induces
a degree-preserving bijection on vector polynomials is again obvious.

Now, the composition (Ψ−1
3 )Ψ2Ψ1 gives

(Ψ−1
3 )Ψ2Ψ1 : N`(P ) −→ N`(Fσ)

uT 7−→ [
ΛR

revσ(PT )u
]T = uT

[
ΛR

revσ(PT )
]T

,

and this is the desired isomorphism Lσ, because
[
ΛR

revσ(PT )
]T =

[
ΛR

revσ(P )
]B.

To establish Corollary 5.9, i.e., the counterpart for left minimal indices and
bases of Corollary 5.6, we need first to find the position of the unique In block in
ΛL

σ (P ) :=
[
ΛR

revσ(P )
]B . This is elementary but simultaneously requires some care. It

is accomplished in Lemma 5.8.
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Lemma 5.8. Let ΛL
σ (P ) =

[
ΛR

revσ(P )
]B be the n × nk matrix in Theorem 5.7,

and consider it as a block 1 × k matrix with n × n blocks. Then ΛL
σ (P ) has exactly

one block equal to In residing at block index
{

k if c1 > 0
(k − i1) if c1 = 0 .

Proof. Let CISS(σ) = (c1, i1, . . . , c`, i`) and recall that ΛR
σ (P ) has exactly one

block equal to In at block index k − c1. Note that σ has a consecution (resp. an
inversion) at i if and only if revσ has an inversion (resp. a consecution) at i for
i = 0, . . . , k − 2. Therefore, if c1 > 0 then the c1 initial consecutions of σ correspond
to c1 initial inversions in revσ, which implies CISS(revσ) = (0, c1, . . .) and that
ΛR

revσ(P ) has exactly one block equal to In at block index k. On the other hand, if
c1 = 0 then the i1 initial inversions of σ correspond to i1 initial consecutions in revσ,
which implies CISS(revσ) = (i1, . . .) and that ΛR

revσ(P ) has exactly one block equal
to In at block index k − i1.

Theorem 5.7 combined with Lemma 5.8 allow us to state Corollary 5.9, whose
proof is similar to that of Corollary 5.6 and is omitted.

Corollary 5.9 (Left minimal indices and bases recovery from Fiedler
pencils). Let P (λ) be an n × n singular matrix polynomial with degree k ≥ 2, let
Fσ(λ) ∈ F(λ)nk×nk be the Fiedler pencil of P (λ) associated with the bijection σ, and
let c(σ) be the number of consecutions of σ and CISS(σ) = (c1, i1, . . . , c`, i`). Suppose
that 1× nk vectors are partitioned as 1× k block vectors with 1× n blocks.

(a) If z(λ)T ∈ F(λ)1×nk is a left null vector of Fσ(λ) and

y(λ)T is the
{

kth block of z(λ)T if c1 > 0
(k − i1)th block of z(λ)T if c1 = 0 ,

then y(λ)T is a left null vector of P (λ).
(b) If {z1(λ)T , . . . , zp(λ)T } is a left minimal basis of Fσ(λ) and

yj(λ)T is the
{

kth block of zj(λ)T if c1 > 0
(k − i1)th block of zj(λ)T if c1 = 0 ,

for j = 1, . . . , p, then {y1(λ)T , . . . , yp(λ)T } is a left minimal basis of P (λ).
(c) If 0 ≤ η1 ≤ η2 ≤ · · · ≤ ηp are the left minimal indices of P (λ), then

η1 + c(σ) ≤ η2 + c(σ) ≤ · · · ≤ ηp + c(σ) ,

are the left minimal indices of Fσ(λ).
Note that these results hold for the first (resp. second) companion form of P (λ) by
taking (c1, i1) = (0, k−1) (resp. (c1, i1) = (k−1, 0)) and c(σ) = 0 (resp. c(σ) = k−1).

5.4. Strictly equivalent Fiedler pencils. It is very simple to determine which
Fiedler pencils of the same square singular matrix polynomial are strictly equivalent1

and which are not, as a consequence of the recovery formulas we have established for
the right and left minimal indices of a polynomial from its Fiedler pencils.

Corollary 5.10. Let P (λ) be a singular square matrix polynomial of degree
k ≥ 2. Then two Fiedler pencils Fσ1(λ) and Fσ2(λ) of P (λ) are strictly equivalent if
and only if c(σ1) = c(σ2) (or, equivalently, i(σ1) = i(σ2)).

1Recall that two matrix pencils L1(λ) and L2(λ) are strictly equivalent if L1(λ) = WL2(λ)Z,
where W and Z are constant square nonsingular matrices [17, Chapter XII].
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Proof. It is well known [17, Chapter XII, Th. 5] that two pencils are strictly
equivalent if and only if they have the same finite and infinite elementary divisors
and the same left and right minimal indices. By Corollary 5.6 (resp. Corollary 5.9)
the right (resp. left) minimal indices of Fσ1(λ) and Fσ2(λ) are equal if and only if
i(σ1) = i(σ2) (resp. c(σ1) = c(σ2)). But c(σ1)+i(σ1) = k−1 and c(σ2)+i(σ2) = k−1,
and, so, c(σ1) = c(σ2) is a necessary and sufficient condition for the equality of both
the left and the right minimal indices of Fσ1(λ) and Fσ2(λ). In addition, since any
Fiedler pencil is a strong linearization of P (λ) by Theorem 4.5, Fσ1(λ) and Fσ2(λ)
have the same finite and infinite elementary divisors (see Lemma 2.3). Therefore,
c(σ1) = c(σ2) is a necessary and sufficient condition for the strict equivalence of
Fσ1(λ) and Fσ2(λ).

Obviously, there are Fiedler pencils of the same singular square matrix polynomial
P (λ) that are not strictly equivalent, which is in stark contrast with the case of P (λ)
being regular. In this case, any two strong linearizations (not necessarily Fiedler
pencils) of P (λ) are always strictly equivalent because they are regular pencils and
have the same finite and infinite elementary divisors as the polynomial [17, Chapter
XII, Th. 2] (see also [18, Prop. 1.2]).

We finish this section by showing that there are no Fiedler pencils strictly equiva-
lent to the first (or the second) companion form of a square singular matrix polynomial
other than itself.

Corollary 5.11. For a singular square matrix polynomial P (λ) of degree k ≥ 2,
the first companion form is never strictly equivalent to any other Fiedler pencil of
P (λ). The same holds for the second companion form. In particular, the first and
second companion forms of P (λ) are never strictly equivalent.

Proof. We only prove the result for the first companion form C1(λ). Recall from
Section 3 that C1(λ) = Fσ1(λ), with σ1 = (k, k−1, . . . , 2, 1). Note that c(σ1) = 0. So,
from Corollary 5.10, we know that a Fiedler pencil Fσ(λ) of P (λ) is strictly equivalent
to C1(λ) if and only if c(σ) = 0, and this happens if and only if σ = (k, k − 1, . . . , 1).
So Fσ(λ) = C1(λ).

Note that Corollary 5.11 shows that the proof presented in [4, Theorem 2.3] that
Fiedler pencils are strong linearizations of any regular matrix polynomial cannot be
extended to singular polynomials. Another proof that the first and second companion
forms of square singular matrix polynomials are never strictly equivalent was presented
in [11, Corollary 5.11].

6. Recovery of eigenvectors of regular matrix polynomials. If the poly-
nomial P (λ) in (1.1) is regular then it does have neither minimal indices nor minimal
bases, and eigenvalues and eigenvectors are the most interesting spectral magnitudes
associated with P (λ). In the regular case, the characterization of a finite eigenvalue
reduces to the classical one, i.e., a number λ0 ∈ C is a finite eigenvalue of P (λ) if
and only if detP (λ0) = 0. Besides, 0 6= x0 ∈ Cn×1 (resp. 0T 6= yT

0 ∈ C1×n) is
a right (resp. left) eigenvector of P (λ) corresponding to λ0 if P (λ0)x0 = 0 (resp.
yT
0 P (λ0) = 0), i.e., right (resp. left) eigenvectors are the nonzero vectors in the right

(resp. left) null space Nr(P (λ0)) ⊂ Cn×1 (resp. N`(P (λ0)) ⊂ C1×n). The definition
of the infinite eigenvalue and its corresponding eigenvectors of P (λ) is based on the
one in Section 2, i.e., P (λ) has an infinite eigenvalue with left eigenvector yT

∞ ∈ C1×n

and right eigenvector x∞ ∈ Cn×1 if revP (λ) has the eigenvalue 0 with left eigenvector
yT
∞ ∈ C1×n and right eigenvector x∞ ∈ Cn×1.

In this section, we show how to recover the eigenvectors of a regular polynomial
from those of its Fiedler pencils. These recovery procedures are direct consequences of
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the results presented in Sections 4 and 5, that are valid both for regular and singular
polynomials2. Therefore, for brevity, we do not provide the proofs of the presented
results and only sketch the main ideas and state the results. The reader can easily
complete the details.

The first key idea is that if equation (2.3), i.e., the unimodular transformation
defining linearization, is evaluated at a finite eigenvalue λ0 of P (λ), then the matrices
U(λ0) and V (λ0) are nonsingular, and a counterpart of Lemma 5.1 can be proved
in exactly the same way by replacing F(λ)-vector spaces by C-vector spaces. This is
Lemma 6.1, that is valid for any linearization and not only for Fiedler pencils.

Lemma 6.1. Let the nk × nk pencil L(λ) be a linearization of an n × n regular
matrix polynomial P (λ) of degree k ≥ 2 and U(λ) and V (λ) be two unimodular matrix
polynomials such that

U(λ)L(λ)V (λ) =
[

I(k−1)n 0
0 P (λ)

]
. (6.1)

Suppose that λ0 ∈ C is a finite eigenvalue of P (λ), consider U(λ0) and V (λ0) as block
k×k matrices with n×n blocks, and let UL

0 and V R
0 be, respectively, the last block-row

of U(λ0) and the last block-column of V (λ0). Then:
(a) The linear map

R0 : Nr(P (λ0)) −→ Nr(L(λ0))
v 7−→ V R

0 v

is an isomorphism of C-vector spaces.
(b) The linear map

L0 : N`(P (λ0)) −→ N`(L(λ0))
wT 7−→ wT UL

0

is an isomorphism of C-vector spaces.
Lemma 6.1 (a) can be applied to Fiedler pencils by using as V (λ) the matrix

appearing in Corollary 4.6 and, therefore, taking as V R
0 the matrix ΛR

σ (P ) in Lemma
5.3 evaluated at λ0. The point to be remarked is that the unique In block of ΛR

σ (P )
is also a In block in ΛR

σ (P ) evaluated at λ0. Therefore, we can state an analogous of
Corollary 5.6 for the recovery of right eigenvectors.

Corollary 6.2 (Right eigenvector recovery from Fiedler pencils for finite eigen-
values). Let P (λ) be an n × n regular matrix polynomial with degree k ≥ 2, let
Fσ(λ) ∈ F(λ)nk×nk be the Fiedler pencil of P (λ) associated with the bijection σ, and
let CISS(σ) = (c1, i1, . . . , c`, i`). Suppose that λ0 is a finite eigenvalue of P (λ) and
that nk × 1 vectors are partitioned as k × 1 block vectors with n× 1 blocks.

(a) If z ∈ Cnk×1 is a right eigenvector of Fσ(λ) with finite eigenvalue λ0 ∈ C and
x is the (k− c1)th block of z, then x is a right eigenvector of P (λ) with finite
eigenvalue λ0.

(b) If {z1, . . . , zp} is a basis of Nr(Fσ(λ0)) and xj is the (k − c1)th block of zj,
for j = 1, . . . , p, then {x1, . . . , xp} is a basis of Nr(P (λ0)).

Note that these results hold for the first (resp. second) companion form of P (λ) by
taking c1 = 0 (resp. c1 = k − 1).

2Of course, results like Theorems 5.5 and 5.7 give trivial information if P (λ) is regular because,
in this case, the F(λ)-null spaces Nr(P ), N`(P ), Nr(Fσ) and N`(Fσ) are trivial and only contain
the corresponding zero vector.
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For the recovery of left eigenvectors, one gets the following counterpart of Corol-
lary 5.9.

Corollary 6.3 (Left eigenvector recovery from Fiedler pencils for finite eigen-
values). Under the same assumptions and notation as in Corollary 6.2. Suppose that
1× nk vectors are partitioned as 1× k block vectors with 1× n blocks.

(a) If zT ∈ C1×nk is a left eigenvector of Fσ(λ) with finite eigenvalue λ0 ∈ C and

yT is the
{

kth block of zT if c1 > 0
(k − i1)th block of zT if c1 = 0 ,

then yT is a left eigenvector of P (λ) with finite eigenvalue λ0.
(b) If {zT

1 , . . . , zT
p } is a basis of N`(Fσ(λ0)) and

yT
j is the

{
kth block of zT

j if c1 > 0
(k − i1)th block of zT

j if c1 = 0 ,

for j = 1, . . . , p, then {yT
1 , . . . , yT

p } is a basis of N`(P (λ0)).
Note that these results hold for the first (resp. second) companion form of P (λ) by
taking (c1, i1) = (0, k − 1) (resp. (c1, i1) = (k − 1, 0)).

Our last result deals with the recovery of left and right eigenvectors corresponding
to the infinite eigenvalue, which is very simple in the case of Fiedler pencils. Note
that if the matrix polynomial P (λ) in (1.1) is regular and has infinite as one of its
eigenvalues, then the corresponding right (resp. left) eigenvectors are the right (resp.
left) null vectors of (revP )(0) = Ak. For every Fiedler pencil Fσ(λ) of P (λ) its right
(resp. left) eigenvectors for the infinite eigenvalue are the right (resp. left) null vectors
of (revFσ)(0) = Mk = diag(Ak, I(k−1)n). Based on these relationships, one can prove
immediately that z ∈ Fnk×1 (resp. wT ∈ F1×nk) is a right (resp. left) null vector of
Mk if and only if z = [xT 0T

(k−1)n×1]
T (resp. wT = [yT 01×(k−1)n]), where x (resp.

yT ) is a right (resp. left) null vector of Ak. From this, it follows easily that the
map x 7−→ [xT 0T

(k−1)n×1]
T (resp. yT 7−→ [yT 01×(k−1)n]) from Nr(Ak) to Nr(Mk)

(resp. from N`(Ak) to N`(Mk)) is an isomorphism. This discussion allows us to state
Theorem 6.4, where we show that eigenvectors associated to the infinite eigenvalue
are recovered in the same way for any Fiedler pencil.

Theorem 6.4 (Left and right eigenvector recovery from Fiedler pencils for the
infinite eigenvalue). Let P (λ) be an n×n regular matrix polynomial with degree k ≥ 2,
let Fσ(λ) ∈ F(λ)nk×nk be the Fiedler pencil of P (λ) associated with the bijection σ.
Then:

1. z ∈ Fnk×1 (resp. wT ∈ F1×nk) is a right (resp. left) eigenvector of Fσ(λ)
for the infinite eigenvalue if and only if z = [xT 0T

(k−1)n×1]
T (resp. wT =

[yT 01×(k−1)n]), where x (resp. yT ) is a right (resp. left) eigenvector of P (λ)
for the infinite eigenvalue.

2. {z1, . . . , zp} ⊂ Fnk×1 (resp. {wT
1 , . . . , wT

p } ⊂ F1×nk) is a basis of the right
(resp. left) null space of (revFσ)(0) if and only if zj = [xT

j 0T
(k−1)n×1]

T

(resp. wT
j = [yT

j 01×(k−1)n]), for j = 1, . . . , p, where {x1, . . . , xp} (resp.
{yT

1 , . . . , yT
p }) is a basis of the right (resp. left) null space of (revP )(0).

7. Conclusions and future work. We have proved that every Fiedler pencil of
a given square matrix polynomial P (λ) is always a strong linearization of P (λ), even
in the case that P (λ) is singular. In addition, we have shown that the minimal indices
and bases of a singular square matrix polynomial are very easily recovered from the
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minimal indices and bases of any of its Fiedler pencils, without any computational
cost. These simple recovery procedures have been extended to the recovery of the
eigenvectors of a regular matrix polynomial from the eigenvectors of its Fiedler pencils.
These results now make it possible to use well-established numerical algorithms on
any Fiedler pencil [33, 6, 8, 9, 13] to obtain the complete eigenstructure of a square
matrix polynomial (regular or singular).

This paper continues the work initiated by the authors in [11] with the aim of
creating a wide arena of linearizations for singular matrix polynomials that allow us
to easily recover the complete eigenstructure of a matrix polynomial. Note that the
mere definition of strong linearization does not guarantee that the minimal indices and
bases of P (λ) can be easily recovered, or even that the minimal indices and bases of
P (λ) have any simple relationship at all to those of a given linearization. Consequently
each family of linearizations requires a separate study in order to establish convenient
recovery procedures.

Another goal of our continuing work on linearizations for singular polynomials
is to create more possibilities for preserving any structure that a matrix polynomial
might possess in a linearization. The results of [11] show that for many types of
structure, this cannot be achieved using any of the linearizations defined in [30].
Thus the next steps in our investigation are to modify Fiedler pencils with the aim
of finding structured linearizations for singular structured matrix polynomials [12],
and also to extend Fiedler pencils to try to deal with the very important case of
(non-square) rectangular matrix polynomials.
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