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Abstract

We introduce SDELab, a package for solving stochastic differential equations (SDEs) within
MATLAB. SDELab features explicit and implicit integrators for a general class of Itô and Stratonovich
SDEs, including Milstein’s method, sophisticated algorithms for iterated stochastic integrals, and
flexible plotting facilities.

1 Introduction

MATLAB is an established tool for scientists and engineers that provides ready access to many
mathematical models. For example, ordinary differential equations (ODEs) are easily examined with
tools for finding, visualising, and validating approximate solutions [20]. The main aim of our work
has been to make stochastic differential equations (SDEs) as easily accessible. We introduce SDELab,
a package for solving SDEs within MATLAB. SDELab features explicit and implicit integrators
for a general class of Itô and Stratonovich SDEs, including Milstein’s method and sophisticated
algorithms for iterated stochastic integrals. Plotting is flexible in SDELab and includes path and phase
plane plots that are drawn as SDELab computes. SDELab is written in C. SDELab and installation
instructions are available from either

http://www.ma.man.ac.uk/~sdelab

http://wws.mathematik.hu-berlin.de/~gilsing/sdelab

This article is organised as follows: §2 introduces SDEs and the examples we work with. §3 de-
scribes the numerical integrators implemented in SDELab, including methods for Itô and Stratonovich
equations, and the special case of small noise. §4 discusses approximation of iterated integrals. §5
shows how SDELab is used and includes the code necessary to approximate geometric Brownian
motion. §6 uses the explicit solution for geometric Brownian motion to test the SDELab integrators.
We also show that SDELab is much faster when dynamic libraries are used to specify the SDE rather
than m-files. §7 uses SDELab to investigate the bifurcation behaviour of the van der Pol Duffing
system.

2 Stochastic Differential Equations (SDEs)

An SDE is an important model in science and engineering when noise affects behaviour. For example,
SDEs can model the trajectory of a distinguished particle subject to impacts by gas particles or the

∗Institut für Mathematik, Humboldt Universität zu Berlin, Unter den Linden 6, Berlin Mitte 10099, Germany.
gilsing@informatik.hu-berlin.de

†School of Mathematics, Oxford Road, Manchester University M13 9PL, UK. shardlow@maths.man.ac.uk. This
work was partially supported by EPSRC grant GR/R78725/01.

1



rapidly fluctuating prices of the stock market. A detailed review of SDEs and their mathematical
theory can be found in many texts, including [16, 17], and we only cover the bare essentials. An
SDE is a differential equation forced by white noise ξ(t) ∈ Rm. Consider the equation for initial
data y0 ∈ Rd

dY (t)

dt
= f(t, Y (t)) + g(t, Y (t)) ξ(t), Y (t0) = y0, (2.1)

where f : R × Rd → Rd is known as the drift and g : R × Rd → Rd×m is the diffusion function.
The white noise ξ(t) only exists in an integral sense and is usually interpreted through Brownian
motion. An Rm Brownian motion W (t) is a process with increments W (t)−W (s) for s < t that are
independent on disjoint intervals [s, t] and have distribution N(0, |t−s|Im) (the Gaussian distribution
with mean 0 and covariance |t − s|Im, where Im is the m × m identity matrix). Let E denote the
average over samples of the Brownian motion: if W (0) = 0 then EW (t)W (t)T = t Im and we see
the rescaled Brownian motion α−1/2W (αt) is also a Brownian motion. In other words, W (t) scales
locally like

√
t, which is made precise by the law of iterated logarithms, and it is not surprising that

W (t) has no derivative. To have ξ(t) = dW (t)/dt in (2.1), consider the integral form

Y (t) = y0 +

∫ t

t0

f(s, Y (s)) ds +

∫ t

t0

g(s, Y (s)) dW (s), (2.2)

where the second integral is the Itô Integral defined as the limit as N → ∞ of

N
∑

i=0

g(si, Y (si))(W (si+1) − W (si)),

for a partition t0 = s0 < s1 < · · · < sN = t of the interval [t0, t]. Notice the integrand is evaluated
at si, the left hand point of the interval [si, si+1]. Replacing g(si, Y (si)) by g(ŝi, Y (ŝi)) where

ŝi = 1
2(si + si+1) yields the Stratonovich integral, which is normally denoted

∫ t

t0

g(s, Y (s)) ◦ dW (s).

These are the two main ways of interpreting stochastic integrals, others are available by modifying
ŝi, and they lead to a well defined theory of stochastic integrals and differential equations.

We will consider the Itô SDE

dY = f(t, Y ) dt + g(t, Y ) dW, Y (t0) = y0, (2.3)

and also the Stratonovich SDE

dY = f(t, Y ) dt + g(t, Y ) ◦ dW, Y (t0) = y0, (2.4)

where Y and W are evaluated at time t. This is common short hand for the Itô integral form (2.2)
(and the corresponding Stratonovich integral form) We will assume that f, g are sufficiently regular
that the SDEs have a unique solution Y (t) on [t0, T ] for each y0. In general this is hard to establish,
though some general theory is available. For example [16], if f and g are continuous in (t, Y ) and
globally Lipschitz in Y , there is a unique solution.

We will test SDELab with the following examples.
Geometric Brownian motion. The basic model of stock prices in mathematical finance is

geometric Brownian motion, the solution of the following one dimensional SDE (d = m = 1)

dY = r Y dt + σ Y dW, Y (0) = y0 (2.5)

where r is the interest rate and σ is the volatility. Because of the roughness of W (t), the deterministic
chain rule does not hold and dY 2 6= 2Y dY . Even though Brownian motion is nowhere differentiable
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almost surely, it is Hölder continuous up to exponent 1/2 and this provides boundedness of variations
of second order. These second order terms are significant and change the rules of calculus, most
famously in the Itô formula: for smooth φ : R ×Rd → R

dφ(t, Y ) =
(

φt(t, Y ) + φY (t, Y )f(t, Y )

+ 1
2

d
∑

i,j=1

m
∑

k=1

φYiYj
(s, Y )gik(t, Y )gjk(t, Y )

)

dt + φY (t, Y )g(t, Y )dW.
(2.6)

Applying this formula with φ(t, Y ) = lnY , it is easy to verify that geometric Brownian motion

Y (t) = y0 exp((r − 1
2σ2)t + σW (t)). (2.7)

The Stratonovich integral is the choice of ŝi for which the chain rule has no second order term and
the solution of

dY = r Y dt + σ Y ◦ dW, Y (0) = y0

is easily found to be
Y (t) = y0 exp(r t + σW (t)). (2.8)

An alternative approach to this is the following transformation of the drift (see [17], page 125): The
solution Y (t) of (2.3) solves the Stratonovich SDE

dY =
[

f(t, Y ) − 1

2

(

m
∑

j=1

∂

∂y
gj(t, Y )gj(t, Y )

)]

dt + g(t, Y ) ◦ dW, (2.9)

with initial data Y (t0) = y0 and where gj(t, Y ) is the jth column of g(t, Y ). Thus, the solution Y (t)
of (2.5) obeys the Stratonovich equation

dY = (r − 1
2σ2)Y dt + σY ◦ dW.

The Stratonovich solution (2.8) is now available using the Itô solution (2.7).
The choice of stochastic integral is part of the modelling process and has significant impact on

the solution. As in (2.7)–(2.8), the Itô interpretation of the integral includes an exp(− 1
2σ2t) factor,

which stabilises the solution Y (t) in comparison to the Stratonovich solution. Broadly speaking,
the Stratonovich integral arises from a rough but absolutely continuous noise process, whereas the
Itô interpretation results from external noise in a system that is independent of the current state.
Experiments in physics with noisy electric circuits are best modelled in the Stratonovich sense [11].
The Itô integral is a martingale (so that the stochastic integrals have zero mean) and this is decisive
in finance as it corresponds to the common theoretical no-arbitrage assumption of ideal markets.
SDELab supports both types of model.

Van der Pol Duffing. Consider the van der Pol Duffing system [1] (d = 2,m = 1) where
Y = (Y1, Y2)

T ,

dY =

(

Y2

αY1 + βY2 − AY 3
1 − BY 2

1 Y2

)

dt +

(

0
σY1

)

dW, (2.10)

where α, β,A,B are parameters and σ is noise intensity. This second order system is typical of many
problems in physics where the noise impinges directly only on Y2, which represents the momentum
of an oscillator. In constant temperature molecular dynamics, the Langevin equations [15] models
have this character. The Itô notation is used, but in this case Stratonovich and Itô interpretations
are the same.
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This system does not have an explicit solution and numerical approximations are required.
There are two types of approximation that we may be interested in. The first is pathwise or strong

approximation: for a given sample of the Brownian path W (t), compute the corresponding Y (t).
This is of interest for example in understanding how a change in one of the parameters affects
behaviour. The second is weak approximation: for a given test function φ : Rd → R, compute the
average of φ(Y (t)). For example, we may like to know the average kinetic energy at time t, case
φ(Y ) = 1

2Y 2
2 . Release 1 of SDELab focuses on strong approximations and we illustrate its use in

understanding the dependence of trajectories on parameters in §7.
Geometric Brownian motion in Rd. Consider the following generalisation of geometric

Brownian motion to d dimensions [7, Page 151]:

dY = AY dt +
m

∑

i=1

BiY dWi(t), (2.11)

where A,Bi ∈ Rd×d and Wi are independent scalar Brownian motions for i = 1, . . . ,m. If the
matrices A,Bi all commute (so that ABi = BiA and BiBj = BjBi for i, j = 1, . . . ,m),

Y (t) = exp
((

A − 1
2

m
∑

i=1

B2
i

)

t +

m
∑

i=1

BiWi(t)
)

y0. (2.12)

We take advantage of the exact solution in §6 to demonstrate the convergence of the methods in
SDELab.

3 Integrators

3.1 Itô SDEs – Euler methods

The basic integrators for the ODE dY/dt = f(t, Y ) are

Zn+1 = Zn +
[

(1 − α)f(tn, Zn) + αf(tn+1, Zn+1)
]

∆t, Z0 = y0,

where α is a parameter in [0, 1], ∆t is the time step, and tn = t0 + n∆t. It is well known that this
method converges to the exact solution on [t0, T ]. Let ‖ · ‖ denote the Euclidean norm on Rd and
O(∆tp) denote a quantity bounded by K∆tp, where K is independent of ∆t but dependent on the
differential equation, the time interval, and initial data. If f is sufficiently smooth, ‖Y (tn)−Zn‖ =
O(∆tp) when t0 ≤ tn ≤ T for p = 1 (respectively, p = 2) if α 6= 1/2 (resp., α = 1/2).

These methods are extended to Itô SDEs as follows:

Zn+1 = Zn +
[

(1 − α)f(tn, Zn) + αf(tn+1, Zn+1)
]

∆t + g(tn, Zn)∆Wn, (3.1)

where initial data Z0 = y0 and ∆Wn = W (tn+1)−W (tn). We call this the Strong Itô Euler method
and in the explicit case (α = 0) it is often called the Euler-Maruyama method following [10].

The Strong Itô Euler methods provide accurate pathwise solutions for small time steps if the
drift and diffusion are well behaved. Use ‖ · ‖ also to denote the Frobenius norm on Rd×m and
denote by E the expectation over samples of the Brownian motion. Suppose [6, Theorem 10.2.2] for
a constant K > 0 that f and g obey

‖f(t, Y1) − f(t, Y2)‖ + ‖g(t, Y1) − g(t, Y2)‖ ≤K‖Y1 − Y2‖,
‖f(t, Y )‖ + ‖g(t, Y )‖ ≤K(1 + ‖Y ‖),

‖f(s, Y ) − f(t, Y )‖ + ‖g(s, Y ) − g(t, Y )‖ ≤K(1 + ‖Y ‖)|s − t|1/2

(3.2)
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for t0 ≤ t ≤ T and Y, Y1, Y2 ∈ Rd. Then, the solution Zn of (3.1) converges to the solution Y (t)
of (2.3) and has strong order 1/2; i.e., (E‖Y (tn) − Zn‖2)1/2 = O(∆t1/2) for t0 ≤ tn ≤ T . The
conditions (3.2) are restrictive and do not apply for instance to the van der Pol Duffing system.
Theory is available [5] for systems with locally Lipschitz f if the moments can be controlled, but it
is hard to characterise completely when the methods will converge. The user should be aware that
integrators in SDELab may fail if asked to approximate an SDE with poor regularity.

There are two main issues in implementing this class of method: the generation of random
numbers and solution of nonlinear equations. To generate the increments ∆Wn, we must take m
independent samples from the distribution N(0,∆t). SDELab employs the Ziggurat method [9]. This
method covers the Gaussian distribution curve with a set of regions, comprising rectangles and a
wedge shaped area for the tail. By careful choice of the covering, a Gaussian sample is generated
by choosing a region from the uniform distribution and rejection sampling on the chosen region.
A very efficient implementation is provided [9] that uses 255 rectangles and is able to generate a
Gaussian sample using only two look up table fetches and one magnitude test 99% of the time.
For efficiency, the method is implemented in C within SDELab, rather than calling MATLAB’s own
random number generators.

For α 6= 0, the integrator requires solution of a system of nonlinear equations for all but the
most trivial drift functions. We employ Minpack [14], a library of FORTRAN routines freely avail-
able through http://www.netlib.org/, to solve the nonlinear equations. Minpack implements a
variation of the Powell hybrid method [18] that can be used with exact or numerical derivatives.

3.2 Milstein methods

The basic tool for developing integration methods of higher order is Taylor expansions. Taylor
expansions for Itô equations may be developed as follows: Expand both drift and diffusion terms
in (2.3) using the Itô Formula:

df(t, Y ) =ft(t, Y ) dt + fY (t, Y )f(t, Y ) dt + fY (t, y)g(t, Y ) dW

+ 1
2

d
∑

i,j=1

m
∑

k=1

fYiYj
(s, Y )gik(t, Y )gjk(t, Y ) dt

and similarly for g(t, Y ). Substituting these expressions back into (2.3) yields

Y (T ) − y0 =

∫ T

t0

[

f(t0, y0) +

∫ t

t0

ft(s, Y ) ds + . . .
]

dt

+

∫ T

t0

[

g(t0, y0) +

∫ t

t0

gt(s, Y ) ds + · · · +
∫ t

t0

gY (r, Y (r))g(r, Y (r))dW (r)
]

dW.

Further iteration yields an expansion akin to the Taylor expansion that can be truncated to find
new integrators in terms of iterated integrals

∫ ∆t

0

∫ s1

0
. . .

∫ sp−1

0
dWip(sp)dWip−1

(sp−1) . . . dWi1(s1),

where dW0 = dt and ik ∈ {0, 1, . . . ,m}. These terms have order ∆t(p+q)/2, where q is the number of
ij = 0, and are the generalisation of the building blocks ∆tp of the deterministic Taylor expansion.
It is difficult to compute these quantities. Usually, the work involved outweighs the benefits of high
order convergence and SDELab provides integrators that depend on the first level of iterated integrals
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only. The basic example is the Milstein method [12],

Zn+1 =Zn +
[

(1 − α)f(tn, Zn) + αf(tn+1, Zn+1)
]

∆t + g(tn, Zn)∆Wn

+

m
∑

j=1

∂

∂y
gj(tn, Zn)

(

g(tn, Zn)ξj

)

, Z0 = y0

(3.3)

where gj(t, Z) is the jth column of g(t, Z), ξj = (I1j,n, . . . , Imj,n)T , and

Iij,n =

∫ tn+1

tn

∫ r

tn

dWi(s) dWj(r).

We discuss how SDELab approximates ξj in §4. To implement this method without requiring the
user to specify the derivative of g, we include derivative free versions,

Zn+1 =Zn +
[

(1 − α)f(tn, Zn) + αf(tn+1, Zn+1)
]

∆t + g(tn, Zn)∆Wn

+
m

∑

j=1

Dg(n, j) ξj , Z0 = y0

(3.4)

where Dg(n, j) = (g(tn, Zaux
n,j )−g(tn, Zn))/∆t1/2 and the support vectors Zaux

n,j can be set in SDELab

as Zaux
n,j = Zn + ∆t1/2g(tn, Zn)ej or Zaux

n,j = Zn + ∆tf(tn, Zn) + ∆t1/2g(tn, Zn)ej (where ej denotes
the jth standard basis function in Rm). The Milstein methods converge with order 1, more rapidly
than the order 1/2 convergence of the Euler methods. Further regularity on f and g is required,
but details are not given here; see [6, page 345].

3.3 Small noise

Many SDEs of interest in science and engineering feature small noise and have the form

dY = f(t, Y ) dt + ε g(t, Y ) dW, Y (t0) = y0, (3.5)

for a small parameter ε. Certain methods are especially useful in this context, as they give an
improvement over the explicit Euler method when ε � ∆t and this improvement does not depend
on iterated integrals and therefore is efficient. This is true of the α = 1/2 Euler method. SDELab

also provides the second order Backward Differentiation Formula (BDF 2) method:

Zn+1 =
4

3
Zn − 1

3
Zn−1 +

2

3
f(tn+1, Zn+1)∆t

+ g(tn, Zn)∆Wn − 1

3
g(tn−1, Zn−1)∆Wn−1

(3.6)

for n ≥ 2 and with starting values given by

Z1 =Z0 +
[1

2
f(t0, Z0) +

1

2
f(t1, Z1)

]

∆t + g(t0, Z0)∆W0, Z0 = y0.

The solution Zn from either BDF 2 (3.6) or Euler (3.1) with α = 1/2 satisfies (E‖Y (tn)−Zn‖2)
1
2 =

O(∆t2 + ε∆t + ε2∆t
1
2 ) for t0 ≤ tn ≤ T . See [2, 13] for further details. In the small noise case

ε � ∆t, the O(ε2∆t1/2) term becomes negligible and the error is O(ε∆t + ∆t2) . The methods look
like they have order 1 for certain ∆t even though in the limit ∆t → 0 they are order 1/2.
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3.4 Stratonovich SDEs

The Itô methods can be used to approximate Stratonovich SDEs by converting to the Itô formulation.
To work directly with the Stratonovich SDE, SDELab provides the Euler Heun and Stratonovich
Milstein methods. The Euler Heun method with parameter α ∈ [0, 1] is

Zn+1 =Zn +
[

(1 − α)f(tn, Zn) + αf(tn+1, Zn+1)
]

∆t

+ 1
2

[

g(tn, Zaux
n ) + g(tn, Zn)

]

∆Wn, Z0 = y0

with Zaux
n = Zn + g(tn, Zn)∆Wn. The Euler Heun method converges to the solution of (2.4) with

order 1 when the noise is commutative and order 1/2 otherwise. The Stratonovich Milstein method
with parameter α is

Zn+1 =Zn +
[

(1 − α)f(tn, Zn) + αf(tn+1, Zn+1)
]

∆t

+ g(tn, Zn)∆Wn +

m
∑

j=1

∂

∂y
gj(tn, Zn)

(

g(tn, Zn)ξj

)

, Z0 = y0

where ξj = (J1j,n, . . . , Jmj,n)T for the iterated Stratonovich integral Jij,n =
∫ tn+1

tn

∫ r
tn
◦dWi(s) ◦

dWj(r). The Stratonovich Milstein method converges to the solution of (2.4) with order 1. Again
SDELab includes versions that do not require user supplied derivatives.

4 Iterated Stochastic Integrals

We look at how SDELab generates second order iterated integrals. We work with Stratonovich
iterated integrals on [0,∆t] and use the notation

Ji =

∫ ∆t

0
dWi(s), Jij =

∫ ∆t

0

∫ r

0
◦dWi(s) ◦ dWj(r).

SDELab computes the second order Itô integrals from the Stratonovich version by Iij = Jij for i 6= j
and Iii = Jii − 1

2∆t for i = 1, . . . ,m. There are a number of important special cases that are used
by SDELab to improve efficiency. If the diffusion g(t, Y ) is diagonal, Jij are not required for i 6= j. If

∂

∂xi
gkj(t, Y )g(t, Y ) =

∂

∂xj
gki(t, Y )g(t, Y ), (4.1)

for k = 1, . . . , d and i, j = 1, . . . ,m, the diffusion is said to be commutative and the identity
Jij + Jji = JiJj is used to simplify the Milstein method. In particular, we compute only JiJj and
avoid the difficult off diagonal iterated integrals. If g(t, Y ) does has not have the above structures,
we must approximate each Jij . There are a number of efficient methods [19, 4] for sampling Jij

with m = 2. Unfortunately, Jij cannot be generated pairwise for m > 2 because correlations are
significant. Such specialist methods are not included in SDELab as we prefer algorithms that are
widely applicable. SDELab generates samples using a truncated expansion of the Brownian bridge
process with a Gaussian approximation to the tail.

The Brownian bridge process Wj(t) − (t/∆t)Wj(∆t) for 0 ≤ t ≤ ∆t has Fourier series

Wj(t) −
t

∆t
Wj(∆t) = 1

2aj0 +

∞
∑

r=1

ajr cos
2πrt

∆t
+ bjr sin

2πrt

∆t
, (4.2)
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for j = 1, . . . ,m, where (by putting t = 0)

aj0 = −2

∞
∑

r=1

ajr (4.3)

and the coefficients bjr, ajr are independent random variables with distributions N(0,∆t/2π2r2) for
r = 1, 2, . . . , which is easily derived from the Fourier integrals

ajr =
2

∆t

∫ ∆t

0

(

Wj(s) −
s

∆t
Wj(∆t)

)

cos
2π r s

∆t
ds,

bjr =
2

∆t

∫ ∆t

0

(

Wj(s) −
s

∆t
Wj(∆t)

)

sin
2π r s

∆t
ds.

This representation was developed [7] to express numerically computable formulae for iterated
stochastic integrals and in particular Jij by truncating the expansions to p terms. By integrat-
ing (4.2) over [0,∆t] with respect to dt, Ji0 = 1

2∆t(Ji + ai0), and using the symmetry relation
J0i + Ji0 = JiJ0, we see J0i = 1

2∆t(Ji − ai0). Integrating (4.2) over [0,∆t] with respect to Wj(t)
yields

Jij = 1
2JiJj − 1

2(aj0Ji − ai0Jj) + ∆tAij , i, j = 1, . . . ,m, (4.4)

where Aij =
1

∆t

∞
∑

r=1

ζ∗irη
∗
jr − η∗ir ζ∗ji and η∗jr =

√
πrajr and ζ∗jr =

√
πrbjr. Because ζ∗jr, η∗jr, and

Wj(∆t) are independent, we easily find ζ∗
jr and η∗jr by sampling from N(0,∆t/2π r). We approximate

Aij by truncating the sum to p terms,

Ap
ij =

1

∆t

p
∑

r=1

ζ∗irη
∗
jr − η∗ir ζ∗ji, (4.5)

and define the approximate iterated integral J p
ij = 1

2JiJj− 1
2 (ap

j0Ji−ap
i0Jj)+∆tAp

ij , where from (4.3)

ap
i0 = −

p
∑

r=1

2√
π r

ζ∗ir. (4.6)

To understand the importance of the tail correction, consider the estimate

(

E
[

|J̃p
ij − Jij |2

])1/2
≤ ∆t√

2p π
,

which holds for approximations J̃p
ij = 1

2JiJj − 1
2 (ãp

j0Ji − ãp
i0Jj) + ∆tAp

ij that include a higher order
correction to ãp

i0,
ãp

i0 = ap
i0 − 2

√

∆tρpµjp, (4.7)

where µjp = (1/
√

∆tρp)
∑∞

r=p+1 ajr and ρp = (1/12)−(1/2π2)
∑p

r=1 1/r2. To use J̃p
ij in the Milstein

scheme with time step ∆t, we want errors of O(∆t3/2) and the number of terms in the expansions
p should be O(1/∆t) .

Wiktorsson [21] introduced a technique that reduces the number of terms p necessary to achieve
an O(∆t3/2) error. Recall the Levy area

Aij =1
2 (Jij − Jji) = ai0Jj + aj0Ji + ∆tAij .

Wiktorsson uses the conditional (on Wj(∆t)) joint characteristic function of the Levy areas to derive
a Gaussian approximation to the tail of Aij . Sampling from this Gaussian provides a small correction
to Jp

ij that improves the rate of convergence. SDELab implements the following algorithm:
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(i) Fix a constant C. Choose the smallest number p such that

p ≥ 1

Cπ

√

m(m − 1)

24∆t

√

√

√

√m + 4
m

∑

j=1

Wj(∆t)2/∆t. (4.8)

Note that the number of terms p grows like 1/
√

∆t, not 1/∆t as in the first method, and that
p depends on the path.

(ii) Using (4.5)–(4.6), compute approximations J p
ij = 1

2JiJj − 1
2(ap

j0Ji − ap
i0Jj) + ∆tAp

ij .

(iii) We now define the tail approximation Ap,tail. Let x, y ∈ Rm, M = 1
2m(m − 1), and em

i

denote the ith standard basis element in Rm. We introduce Pm : Rm2 → RM , the linear
operator defined by Pm(x ⊗ y) = y ⊗ x, and Km : Rm2 → RM , the linear operator defined by
Km(em

i ⊗ em
j ) = eM

k(i,j) and Km(em
j ⊗ em

i ) = 0 = Km(em
j ⊗ em

j ), where i < j and k(i, j) is the

position of (i, j) in the M term sequence

(1, 2), (1, 3), . . . , (1,m), (2, 3), . . . , (2,m), . . . , (m − 1,m).

Denote by Im the m × m identity matrix. The tail approximation is

Ap,tail = (Im2 − Pm)KT
m

∆t

2π
a1/2

p

√

Σ∞Gp, (4.9)

where ap =
∑∞

k=p+1 k−2, Gp ∈ RM is chosen from the distibution N(0, IM ),

Σ∞ = 2IM +
2

∆t
Km(Im2 − Pm)(Im ⊗ W (∆t)W (∆t)T )(Im2 − Pm)KT

m,

and W (∆t) = (W1(∆t), . . . ,Wm(∆t))T . To compute (4.9), we use the following expression for
the square root of Σ∞ [21]:

√

Σ∞ =
Σ∞ + 2αIM√

2(1 + α)
, where α =

√

√

√

√1 +
m

∑

j=1

Wj(∆t)2/∆t.

(iv) Add the correction term to J p
ij to define Jp+tail

ij = Jp
ij + Ap,tail

ij .

Under the truncation condition (4.8), [21] proves that

max
ij

E
[

|Jij − Jp+tail
ij |2

∣

∣

∣
W (∆t)

]

≤ C2∆t3,

where E
[

·
∣

∣

∣
W (∆t)

]

denotes the expectation of · conditioned on W (∆t). In terms of Gaussian

samples, the tail expansion is justified in the limit ∆t → 0. The Euler methods (3.1) required O(1)
Gaussians per time step, Milstein (3.3) with J̃ij requires O(1/∆t) Gaussians, and Milstein with

J̃p+tail
ij requires O(∆t−1/2) . On the other hand, rates of convergence are O(∆t1/2) for Euler and

O(∆t) for Milstein. Hence, to achieve a particular level of accuracy ε both Euler and Milstein with

J̃ij require ε−2 samples, whilst Milstein with J̃p+tail
ij requires only ε−3/2 samples.. Asymptotically

in ∆t → 0, the use of the tail approximation means fewer Gaussian samples are required.
In practice, the method is expensive for large m, because the covariance matrix Σ∞, which is

an M × M matrix where M = 1
2m(m − 1), is treated as a dense matrix with O(m4) entries. This

is impractical for very high m as it is hard to take ∆t sufficiently small to see its benefits. To give
some understanding, the table compares the two methods J p

ij and Jp+tail
ij for different values of m.

The time to compute 106 samples is given (in seconds) and the error in computing the variance
(again using 106 samples) of J12/dt, which is known to equal 1/2, is given.
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m ∆t Jp
ij : time error Jp+tail

ij : time error

5 0.1 1.9 0.1 3.5 3.7e-3
0.01 4.8 2.3e-2 3.5 5.5e-4

10 0.1 4.2 0.9e-1 13.65 6.5e-3
0.001 66.04 2e-3 12.39 6.3e-5

100 0.1 114 0.1 3420 0.04

5 The use of SDELab

We describe the most important features of SDELab with extensive documentation provided online.
To start using SDELab within MATLAB, type sdelab_init. To find approximate paths for (2.3)
or (2.4), one of the following is used

[t,y] = sdelab_strong_solutions(fcn, tspan, y0, m, opt, ...);

sdelab_strong_solutions(fcn, tspan, y0, m, opt, ...);

The return values give approximate solutions y(:,i) at times t(i). If [t, y] is omitted, a MAT-
LAB figure appears and the approximate paths are plotted as they are computed. The arguments
are

fcn SDELab provides the single structure fcn for specifying the drift f and diffusion g. The fcn

fields may point to a variety of implementations, including m-files, mex files, and dynamic
library routines. This flexibility allows users to prototype quickly using m-files and develop
efficient code by linking to dynamic libraries of C or FORTRAN routines.

When using m-files, the fields drift and diff_noise, and optional fields drift_dy and
diff_noise_dy contain the names of the m-files. An example is given later. When using
dynamic libraries, the fields drift, diff_noise, etc. each have subfields Libname (name
of dynamic library) and Init_fcn, Exec_fcn, and Cleanup_fcn (names of functions in the
dynamic library that initialise, compute, and clean up).

tspan is a vector that indicates the time interval for integration [t0, T ]. If tspan has more than
two points, it specifies the times at which Y (t) is approximated and is returned in t.

y0 is the initial condition.

m equals dimension of the Brownian motion W .

opt is a structure whose fields set SDELab options.

... is an optional list of model parameters.

The following are specified by setting the corresponding field in opt.

MaxStepSize is an upper bound on ∆t, chosen so an integer multiple of steps fits into [t0, T ]. A
default value of (T − t0)/100 is used.

IntegrationMethod specifies the type of equation (Itô/Stratonovich) as well as the integrator.
The default is StrongItoEuler and the options are

StrongItoMilstein, StrongItoBDF2

StrongStratoEulerHeun, StrongStratoMilstein.

The parameter α is controlled by the following:
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StrongItoEuler.Alpha, StrongItoMilstein.Alpha,

StrongStratoEulerHeun.Alpha, StrongStratoMilstein.Alpha.

RelTol is the relative error used by Minpack as a termination criterion.

MaxFeval controls the behaviour of the nonlinear Minpack solve. If positive, MaxFeval is the
maximum number of function evaluations allowed by Minpack. If −1, the Minpack default
value is chosen.

Stats controls the reporting of number of function calls and Minpack information. It should be set
to on or off.

NoiseType indicates the structure of the diffusion term. If NoiseType=1, the diffusion is considered
to be unstructured and second order iterated integrals are approximated using Wiktorsson’s
method. If NoiseType=2, the diffusion is treated as diagonal and if NoiseType=3 as commu-
tative (see (4.1)).

OutputPlot is set to on if plots are required; off otherwise.

OutputPlotType specifies the type of plot. The possibilities are
sdelab_path_plot (path plot; default);
sdelab_phase_plot (two dimensional phase plot);
sdelab_time_phase (two dimensional path plots against time);
sdelab_phase3_plot (three dimensional phase plot).

OutputSel controls which components of y are used in the plots.

We consider how to approximate geometric Brownian motion (2.11) with SDELab. The drift is
defined by the following m-file:

function [z] = drift(t, y, varargin)

A = varargin{2}.A; % Extract parameters

z = A*y; % Compute drift

The specification of the diffusion is more involved. SDELab requires that we specify the diffusion
in two ways: (1) as the product of the matrix g(t, Y ) with the Brownian increment, which is very
beneficial for sparse diffusion matrices, and (2) as the matrix g(t, Y ). SDELab uses the two ways in
its implementation of the Milstein methods to reduce the number of function calls.

function z = diff_noise(t, y, dw, flag, varargin)

B = varargin{2}.B; % Extract parameter

m = length(dw);

d = length(y);

B2 = zeros(d,m); % Compute the diffusion

for (i=1:m)

B2(:,i) = B(:,:,i) * y;

end;

if (flag==0)

z = B2 * dw;

else

z = B2;

end;
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Figure 1: A realisation of geometric Brownian motion.

We may now use SDELab to approximates paths of (2.11). Set up the problem dimensions, time
interval and initial data,

d = 2; % dimension of y

m = d; % dimension of W(t)

tspan = [0, 1]; % time interval

y0 = [1; 2]; % initial condition

and define the drift and diffusion functions with their parameters:

fcn.drift = ’drift’; % name of MATLAB m-files

fcn.diff_noise = ’diff_noise’;

params.A = [-0.5, 0; 0, -1]; % parameters

params.B = zeros(d,d,m);

params.B(:, :, 1) = diag([1; 1]);

params.B(:, :, 2) = diag([1; 1]);

Run SDELab with the default method, Itô Euler with α = 0.

opt.IntegrationMethod = ’StrongItoEuler’;

opt.MSIGenRNG.SeedZig = 23;

sdelab_init;

sdelab_strong_solutions(fcn, tspan, y0, m, opt, params);

xlabel(’t’); ylabel(’y’);

A window pops up automatically and you see the path plotted as it is computed. See Figure 1.
To assist the nonlinear solver, the user may provide derivatives of the drift function. SDELab

can utilise a function drift_dy that returns the Jacobian matrix of f with entries ∂fi(t, Y )/∂Yj for
i, j = 1, . . . , d. For (2.11), the Jacobian is A.

function z = drift_dy(t, y, varargin)

A = varargin{2}.A;

z = A;
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Let gij(t, Y ) denote the (i, j) entry of g(t, Y ) for i = 1, . . . , d and j = 1, . . . ,m. SDELab can utilise
a function diff_noise_dy that returns the derivative of the jth column of g(t, Y ) with respect to
Y in the direction dy ∈ Rd; that is, dgj dy ∈ Rd, where dgj is the d × d matrix with (i, k) entry
∂gij/∂Yk. For (2.11), dgj dy = Bj dy.

function z = diff_noise_dy(t, y, dy, j, varargin)

B = varargin{2}.B;

d = length(y);

z = B(:,:,j) * dy;

Finally define the fcn structure and compute the solution using Itô Milstein with α = 1. Rather
than plot, we store the results in [t, y].

fcn.drift = ’drift’;

fcn.drift_dy = ’drift_dy’;

fcn.diff_noise = ’diff_noise’;

fcn.drift_noise_dy = ’diff_noise_dy’;

opt.IntegrationMethod = ’StrongItoMilstein’;

opt.StrongItoMilstein.Alpha = 1.0;

[t, y] = sdelab_strong_solutions(fcn, tspan, y0, m, opt, params);

6 Geometric Brownian Motion

We consider the behaviour of five of SDELab’s Itô methods (Euler’s method with α = 0, 0.5, Milstein’s
method with α = 0, 0.5, and BDF 2) for approximating geometric Brownian motion (2.11). The
following matrices are used

A = −2I, B1 =

(

0.3106 0.1360
0.1360 0.3106

)

, B2 =

(

0.9027 −0.0674
−0.0674 0.9027

)

.

These matrices are commutative and the exact solution (2.12) is available. Using the exact solution,
we compute the strong error with L samples by

( 1

L

∑

L trials

‖Y (T ) − ZN‖2
)1/2

, N∆t = T.

Figure 2 plots error against time step and run time (with drift and diffusion functions implemented
as C dynamic library functions), with L = 2000. To test the approximations to the iterated integrals,
we set opt.NoiseType=1 during these calculations (rather than take advantage of the commutative
structure). We see the order 1 convergence of the Milstein methods and the order 1/2 convergence of
the Euler methods. Even allowing for the extra time to compute a single time step, it is more efficient
to use the Milstein methods in this case. Figure 3 shows the same plot for the Stratonovich version
of geometric Brownian motion. Here the Euler-Heun method has order 1 because the matrices are
commutative. Figure 4 shows the same plot for the Itô equation with small noise; specifically, (2.11)
with the diffusion matrices Bi replaced by εBi with ε = 10−3. We clearly see the benefits of choosing
the method carefully and the BDF 2 and Euler α = 0.5 methods are most efficient. Figure 5 shows
how the CPU time depends on problem dimension m. Matrices A,B1, . . . , Bm are chosen and
approximations computed using both the m-file and dynamic library implementation of the drift
and diffusion functions. We see the cost of using Milstein methods scales badly with m due to the
difficulties of computing the stochastic integrals. We also notice considerable speed improvements
in using a dynamic library implementation.

13



10−6 10−5 10−4 10−3
10−7

10−6

10−5

10−4

10−3

10−2

time step

er
ro

r

100 105
10−7

10−6

10−5

10−4

10−3

10−2

run time

er
ro

r

Euler α=0
Euler α=0.5
Milstein α=0
Milstein α=0.5
BDF 2

Figure 2: Plots of error (computed with 2000 samples) against time step and run time for Itô
geometric Brownian motion. Notice Milstein methods have order 1 convergence, and the Euler and
BDF 2 methods have order 1/2 convergence.

7 Van der Pol Duffing

Consider the van der Pol Duffing system (2.10) with parameters A = B = 1. We use the plotting
facilities of SDELab to illustrate two bifurcations in this system. In order to use the same Brownian
path for each plot, we set the seed of the random number generator at the start of each simulation.
This is effective if we fix the time step for all our simulations. In the long run, we would like to add
functionality to decrease the time step and refine the same Brownian motion.

The MATLAB m-files are given in Appendix A. Set the fcn structure as in the previous example,
and set the dimensions, initial data, and time interval for the van der Pol Duffing system:

d = 2; m = 1; % problem dimensions

tspan = [0, 500]; % time interval

y0 = [0.0, 0.0001]; % inital condition

Define the problem parameters:

params.alpha = -1.0; params.beta = 0.1;

params.A = 1.0; params.B = 1.0;

params.sigma = 0.1;

A phase plot with seed 23 and maximum time step 0.01 can be produced as follows:

opt.MaxStepSize = 1e-2;

opt.OutputPlotType = ’sdelab_phase_plot’;

opt.MSIGenRNG.SeedZig = 23;

sdelab_strong_solutions(fcn, tspan, y0, m, opt, params);

It is now easy to explore the dynamical behaviour of the system and its response to varying α
and β. Without noise (case σ = 0) and with β < 0, the system experiences a pitchfork bifurcation
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Figure 3: Plots of error (computed with 2000 samples) against time step and run time for
Stratonovich geometric Brownian motion. As the noise is commutative, the Euler Heun method
has the same order 1 convergence as the Milstein methods. The Milstein method is slower to
compute, as this test was done without the commutative noise flag set.

(when a fixed point loses its stability and gives rise two to stable fixed points) as the parameter α
crosses 0. We explore this situation for σ = 0.4 in Figure 6. We see the dynamics do not settle
down to fixed points when there is noise, but oscillate near to meta stable states. Only the last
plot shows the two meta stable created by the bifurcation (notice the change in scale on the plots),
even though three of the figures have parameter α ≥ 0. This is a well known phenomenon [1]: noise
delays a pitchfork bifurcation. In this case, the bifurcation is delayed until α ≈ 0.1.

If α < 0, a Hopf bifurcation (or creation of a periodic orbit) can be found in the deterministic
system as the parameter β crosses 0. With noise present, the bifurcation point is known to occur
for β < 0. Figure 7 illustrates the behaviour of (2.10) with α = −1 and σ = 0.1 for values of
β = −0.1,−0.01, 0, 0.1. We see the trajectories are focused on a circle for β ≥ −0.01, which shows
that the bifurcation occurs for negative β.

8 Further directions

There are a number of ways we would like to develop SDELab.

(i) SDELab does not provide special algorithms for computing averages of φ(Y (t)). This is an
important problem and will be dealt with in future releases of SDELab.

(ii) One of the key features of the MATLAB ODE suite is its use of error estimation to select time
step sizes. The theory of error estimation for SDE integrators is not well developed (see [8, 3]
for recent work) and we are unaware of any technique robust enough for inclusion in a software
package for (2.3) or (2.4). We hope the algorithms will mature and eventually be included in
SDELab.
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Figure 4: Plots of error (computed with 2000 samples) against time step and run time for the Itô
equation (2.11) with small noise. Each method appears to have order 1.

(iii) It is frequently of interest to determine times at which certain events happen, such as Y (t)
crossing a barrier. At this time, no algorithms are included in SDELab.

(iv) Some classes of SDEs deserve special attention, such as Langevin equations, geometric Brow-
nian motion, and the Ornstein-Uhlenbeck process, and we would like to address this within
SDELab.

A Van der Pol Duffing

function z = drift(t,y,varargin)

alpha = varargin{2}.alpha; % Extract parameters

beta = varargin{2}.beta;

A = varargin{2}.A;

B = varargin{2}.B;

z=[ y(2); ...

(beta-B*y(1)*y(1))*y(2)+ (alpha-A*y(1)*y(1))*y(1) ];

function z = drift_dy(t,y,varargin)

alpha = varargin{2}.alpha; % Extract parameters

A = varargin{2}.A;

B = varargin{2}.B;

z=[ 0 1 ; ...

alpha-(3*A*y(1)+2*B*y(2))*y(1) beta-B*y(1)*y(1)];

function z = diff_noise(t,y,dw,flag,varargin)

sigma = varargin{2}.sigma;

if (flag)
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Figure 5: Plots of CPU time against problem dimension m = d for the Itô equation (2.11) for both
MATLAB m-files (left) and dynamic library functions (right).

z =[0; sigma*y(1)]; % Return g(t,y)

else

z =[0; sigma*y(1)*dw]; % Compute g(t,y) * dw

end;

function z = diff_noise_dy(t, y, dw, j, varargin)

sigma = varargin{2}.sigma;

z=[0; sigma * dw(1)];
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