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PERFECT ISOMETRIES AND THE ALPERIN-MCKAY CONJECTURE

CHARLES W. EATON

Abstract. We give a brief survey of results and conjectures concerning the local deter-
mination of invariants of Brauer p-blocks of finite groups. We highlight the connections
between the various conjectures, in particular those of Alperin-McKay and of Broué,
and identify where further conjectures have to be made. We focus on the problem of
generalising Broué’s conjecture, and suggest a generalisation of the idea of a perfect
isometry. Finally we present evidence that such a generalised perfect isometry should
exist in certain cases.
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1. Introduction

The purpose of this survey, closely based on the author’s series of lectures given at the
Symposium, is to give motivation for the generalisation of a conjecture of Broué, and to
present one possibility for such a generalisation. As such, we are quite selective in the
material presented, giving only those results, examples and conjectures which illuminate
our chosen path. Hence we apologise in advance for omitting Dade’s conjectures and
those related to it, as well as some of the excellent work which has been done on Broué’s
conjectures and on fusion systems.

One of the main parts of the modular representation theory of finite groups concerns
local determination, which is the determination of invariants of a block of a group by
examining so-called local subgroups, with respect to a fixed prime p. Many of the main
results in the area may be phrased in this way, for example the Green correspondence
and Brauer’s first and second main theorems, as well as many conjectures, including
the Alperin-McKay conjecture of the title. The Alperin-McKay conjecture predicts a
straightforward equality between the number of height zero irreducible characters in a
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block and the number of such irreducible characters in a uniquely determined block of
a certain subgroup. We describe how Broué’s conjecture explains the Alperin-McKay
conjecture in restricted cases, resulting in particular in a structured bijection of irreducible
characters rather than just an equality of numbers.

In the last part of the survey we will discuss the generalisation of the weaker of Broué’s
conjectures, and propose such a generalisation.

2. Background in block theory

Excellent references for this section are [5], [10], [12] and [13].
Let G be a finite group and p a prime. In order to study the characteristic zero rep-

resentations of G in relation to the prime p, we consider a p-modular system (K,O, k)
relating fields K and k of characteristic zero and p respectively via a ring O. The con-
ditions which we take on (K,O, k) are not intended to be in anyway minimal. Briefly,
we let O be a complete local discrete valuation ring containing a primitive |G|3-root of
unity, such that k = O/J(O) is algebraically closed with char(k) = p and K is the field
of fractions of O (we take |G|3th roots of unity rather than |G|th roots because at some
stage we may need to take a central extension of G of order dividing |G|3).

Our approach will mostly be motivated by the study of characters, so our first task is
to partition the set Irr(G) of irreducible characters (with respect to K) of G into blocks.
The advantage of studying representations one block at a time is that representations
associated to the same block share some properties which we can take advantage of.

2.1. Characters in blocks. Decompose the group algebra OG into indecomposable two-
sided ideals:

OG = B1 ⊕ · · · ⊕Bn.

This corresponds to a decomposition of 1 ∈ Z(OG) into primitive idempotents of Z(OG),
say 1 = e1 + · · ·+ en, with eiOG = Bi.

Similarly we may decompose kG. For a =
∑

g∈G agg ∈ OG, write

a =
∑
g∈G

(ag + J(O))g ∈ kG.

Then 1 = e1 + · · ·+ en is a decomposition into primitive idempotents of Z(kG), and

kG = e1kG⊕ · · · ⊕ enkG

is a decomposition into indecomposable two-sided ideals. Write Bi = eikG. (Note that
each such decomposition of 1 lifts to a decomposition 1 into primitive idempotents of
Z(OG)). Essential in this is our choice of O complete.

We call the Bi (and Bi) blocks of G, and the ei (and ei) block idempotents.
Now let M be an OG-module. Then

M = B1M ⊕ · · · ⊕BnM.

Hence if M is indecomposable, then M = BiM for some unique block Bi, and we say
that M belongs to Bi. The same argument holds for kG-modules.

If χ ∈ Irr(G) (the set of irreducible (K-)characters of G), then χ is afforded by some
irreducible KG-module V . There is an indecomposable OG-lattice M such that V =
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K ⊗O M . We say that χ belongs to the block to which M belongs. This is independent
of the choice of M .

So we can partition Irr(G) into sets Irr(Bi) of characters belonging to Bi.
Alternatively, χ ∈ Irr(Bi) if χ(ej) = χ(1) for j = i and χ(ej) = 0 otherwise, giving the

same partition. In much of block theory there are several different ways of making any
definition, and they are usually equivalent.

We can determine the block idempotents quite explicitly from the values of the char-
acters in a block.

The primitive idempotent of Z(KG) corresponding to χ is

eχ =
χ(1)

|G|
∑
g∈G

χ(g−1)g.

Fixing a block B, with block idempotent eB, we have

eB =
∑

χ∈Irr(B)

eχ.

2.2. Brauer characters and decomposition matrices. Our aim here is to give the
characters of the (projective) indecomposable summands of OG as a left OG-module.
To do this we use Brauer characters. These are a way of assigning class functions with
values in K to simple kG-modules, in order that we may more directly compare the simple
kG-modules to Irr(G).

Let S be a simple kG-module, and let ρ : G → GLt(k) be an associated representation.
Let g ∈ Gp′ , the set of p-regular elements of G, and let m be the p′-part of the exponent

of G. Then ρ(g) has eigenvalues which are m-roots of unity. Let ω be a primitive m-th
root of unity in K, and note that the groups of m-th roots of unity of K and of k are
isomorphic. Say ω → ω under such an isomorphism.

Trace(ρ(g)) is a sum of m-th roots of unity, say
∑

i ω
ri . Define ϕ(g) =

∑
i ω

ri . We call
ϕ the irreducible Brauer character associated to S. This is a class function defined on
p-regular elements.

We assign ϕ to the same block as S, and write IBr(B) for the set of irreducible Brauer
characters belonging to B.

The number of distinct irreducible Brauer characters equals the number of p-regular
conjugacy classes of G. Further, the irreducible Brauer characters IBr(G) span the space
of class functions defined on p-regular conjugacy classes of G.

If χ is a character of G, write χp′ for the restriction of χ to the p-regular conjugacy
classes. In fact χp′ is a non-negative integer linear combination of irreducible Brauer
characters. If χ ∈ Irr(G), then write

χ =
∑

ϕ∈IBr(G)

dχφ,

where the dχφ are non-negative integers.
The dχϕ are called the decomposition numbers of G, and we call the matrix D = (dχϕ)

the decomposition matrix of G.
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If χ and ϕ are in different blocks, then dχϕ = 0, and so we can define the decomposition
matrix DB of a block B.

We obtain the Cartan matrix C by C = DT D, where DT denotes the transpose of
D. Recall that C is the matrix recording the occurrence of the simple kG-modules as
composition factors of the projective covers of all the simple kG-modules. Again we may
take the Cartan matrix CB of a block B.

We may now write down the character of a projective indecomposable OG-module P .
Now P/J(O)P is a projective indecomposable kG-module, which is the projective cover

of a simple kG-module, say S. Let ϕ be the irreducible Brauer character associated to S.
Then P has character

Φ = Φϕ =
∑

χ∈Irr(G)

dχϕχ.

Two important facts concerning the characters Φ are that
(i) Φ(g) = 0 whenever g is p-singular (i.e., g has order divisible by p);
(ii) if χ is a character of G such that χ(g) = 0 for all p-singular g, then χ is a Z-linear

combination of characters Φϕ for ϕ ∈ IBr(G).

2.3. Defect groups. We present one (of several equivalent) characterisations of the de-
fect groups of a block. As we mentioned earlier, we will usually consider local determi-
nation of invariants of blocks from invariants of normalisers of p-subgroups. The defect
groups of a block are a G-conjugacy class of p-subgroups associated to B, and local de-
termination will occur via normalisers of subgroups of the defect groups.

Let S be an indecomposable kG-module and let H ≤ G. We say S is H-projective if
there is a kH-module T such that S| IndG

H(T ).
Now if P ∈ Sylp(G), then S is P -projective. Further, if J ≤ H and S is J-projective,

then S is H-projective.
Hence there are subgroups Q which are minimal such that S is Q-projective, and these

must be p-groups. Call these the vertices of S.
Using the Mackey decomposition, we can see that the vertices of S form a G-conjugacy

class of p-subgroups.

Let B be a block. Define the defect groups of B to be the p-subgroups of G maximal
amongst the vertices of the simple modules in B.

The defect groups of B form a conjugacy class of p-subgroups of G. If D is a defect group
of B and |D| = pd, then we say B has defect d. The defect is related to the degrees of the
irreducible characters in B (in fact we may also determine the defect groups themselves
from the irreducible characters, but we do not describe that here).

For χ ∈ Irr(G), define the defect of χ to be the integer d(χ) such that |G|p = pd(χ)χ(1)p.
Then

d = max{d(χ) : χ ∈ Irr(B)}.

Examples
(a) We call the block containing the trivial character the principal block. The Sylow

p-subgroups are the defect groups.
(b) The blocks of defect zero, where the trivial group is the only defect group, are

of particular importance. These are simple algebras, and we do not expect to obtain
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any information about them from local subgroups. A block B has defect zero if and
only if k(B) = 1. The unique irreducible character χ in a block of defect zero satisfies
χ(1)p = |G|p.

2.4. Brauer correspondence. If we are to compare blocks of G with blocks of subgroups
of G, then we need a way of naturally associating them.

Let P be a p-subgroup of G and let H ≤ G such that CG(P ) ≤ H ≤ NG(P ). Define

BrP : Z(kG) → Z(kH) by defining BrP (Ĉ) = 0 if C ∩ CG(P ) = ∅ and BrP (Ĉ) =∑
g∈C∩CG(P ) g otherwise, where C is any conjugacy class of G and Ĉ =

∑
g∈C g. Then

BrP is an algebra homomorphism, called the Brauer homomorphism.
Let b be a block of H, with defect group Q, and suppose that CG(Q) ≤ H ≤ NG(Q).

Then there is a unique block B of G such that BrQ(eB)eb = eb. We write bG = B, and
call B the Brauer correspondent of b in G. We also sometimes call B the induced block.

If we fix a p-subgroup D of G, then the Brauer correspondence gives a bijection between
blocks of G with defect group D and blocks of NG(D) with defect group D (this is Brauer’s
first main theorem of block theory). Further (Brauer’s third main theorem), the principal
blocks correspond under this bijection.

Note that this is a slightly simplified definition, but one which suffices for our purposes.
The Brauer correspondence may be defined in greater generality than this. Note also that
there are several different definitions, which are not necessarily equivalent unless we put
restrictions on H similar to those above.

3. Local determination

We would like to obtain information about representations of a block B of a group G
from information about subgroups. So we have two questions: ”what sort of subgroups?”,
and ”what sort of information?”

What sort of subgroups?

One immediate restriction on our choice of subgroup is that we would like the Brauer
correspondence to be defined, i.e., we would like there to exist blocks of subgroups with
Brauer correspondent B, and we would like the blocks of our subgroups to have a Brauer
correspondent. We saw in the previous section conditions for the existence of Brauer
correspondents.

Further, Clifford’s theorem tells us that Op(G) ≤ ker(S) for every simple kG-module S.
This and other results tells us that in some respects we the presence of normal p-subgroups
allows us to obtain information from smaller groups still.

Existing results and conjectures involve the extraction of information from local sub-
groups, which may mean:

• normalisers NG(Q) of p-subgroups Q
• stablisers (under conjugation) of chains of p-subgroups
• centralizers CG(Q) of p-subgroups
• subgroups H with Op(H) 6= 1 (see the very nice paper by Thevenaz [16])
• slightly altered versions of the above (e.g., normalizers of subpairs)
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What sort of information?

This ranges from numerical information, e.g.,

• k(B) = | Irr(B)|
• l(B) = | IBr(B)|
• k0(B) = |{χ ∈ Irr(B) : d(χ) = d(B)}| (irreducible characters of height zero)

elementary divisors of the Cartan matrix

to categorical information, e.g.,

• the derived category Db(B)
• stable module category mod(B)

There are many examples of theorems in local determination, but we concentrate here
on the conjectures.

Throughout, let B be a block of G with defect group D. One of the earliest conjectures
is

Conjecture 1 (Alperin-McKay). Let b be the unique block of NG(D) with Brauer corre-
spondent B. Then

k0(B) = k0(b).

Here, local determination is particularly straightforward. However, we do not always
expect to obtain our information from just one source. For example, Alperin’s weight
conjecture gives l(B) in terms of information from many NG(Q), for p-subgroups Q. Let
P0(G) be the set of p-subgroups of G.

Conjecture 2 (Alperin’s weight conjecture).

l(B) =
∑

Q∈P0(G)

f
(B)
0 (NG(Q)/Q),

where f
(B)
0 (NG(Q)/Q) is the number of Q-projective simple kNG(Q)-modules in blocks

with Brauer correspondent B.

The Knörr-Robinson reformulation of Alperin’s weight conjecture is even more com-
plicated in terms of the number of local subgroups used, and gives k(B) in terms of an
alternating sum over stabilisers of chains of p-subgroups.

Note that in Alperin’s conjecture, using properties of the Brauer correspondence it
suffices to consider subgroups Q contained in a defect group for B.

If D is abelian, then Alperin’s weight conjecture predicts that l(B) = l(b), and the
Knörr-Robinson reformulation predicts that k(B) = k(b), i.e., local determination comes
from one subgroup. To see this for Alperin’s weight conjecture, consider Q ≤ D, and let
S be a simple kNG(Q)-module in a block b with Brauer correspondent B. Let R be a
defect group of b with R ≤ D (replacing D by a conjugate containing Q if necessary).
Then Q ≤ R and by [9] we have R = CR(Q) ≤ Q ≤ R. So b has defect group Q, and so
by Brauer’s first main theorem bG has defect group Q. But bG = B, so D = Q after all.
But every simple kNG(D)-module is D-projective, so we are done.

Alperin’s weight conjecture (and its reformulations by Knörr and Robinson are just two
of a wide array of conjectures concerning ever more detailed numerical invariants. These
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would take a long time to state, so we have only presented those which are relevant to
out story.

4. Broué’s conjecture

We would like to understand the numerical conjectures introduced in the last section
more deeply, for example as consequences of results about the module categories. However,
we also saw that in general local determination of numerical invariants involves comparing
a number of groups at once. Since we know best how to compare two categories, we start
by looking at situations where we expect local determination (of a block B of G) to use
just one block of one subgroup. We saw that one such case is where the defect group D
is abelian.

Throughout this section, let b be the unique block of NG(D) with Brauer correspondent
B. An excellent reference for this section is [10].

Conjecture 3 (Broué). Suppose D is abelian. Then the derived categories Db(B) and
Db(b) are equivalent (as triangulated categories).

Remark 4. Actually, more recent versions of Broué’s conjecture state that we should have
a splendid equivalence (also known as a Rickard equivalence). This places additional
restrictions on the tilting complex giving the derived equivalence, which amongst other
things ensure that we also have a family of compatible derived equivalences between
various subgroups.

Broué’s conjecture is very hard to verify for a given block, but it is known in many
cases. For reasons of space we do not attempt to list these here.

We relate Broué’s conjecture to numerical conjectures such as Alperin-McKay’s
Suppose that Db(B) and Db(b) are equivalent as triangulated categories (with no re-

strictions on D). Then Db(B) and Db(b) are also equivalent as triangulated categories .
We have:

• mod(B) and mod(b) (and mod(B) and mod(b)) have isomorphic Grothendieck
groups (see [K-Z,6.3.3])

• B and b (and B and b) have isomorphic centres (see [K-Z,6.3.2])

In particular,

• k(B) = k(b), l(B) = l(b)
• also k0(B) = k0(b), although this takes more work to prove.

Hence, in the abelian defect group case, Broué’s conjecture gives the Alperin, Knörr-
Robinson, Alperin-McKay (and Dade) conjectures.

Now suppose that D is non-abelian. Then in general we do not have k(B) = k(b),
l(B) = l(b) (although we do expect k0(B) = k0(b)). Hence there cannot be a derived
equivalence in general.

Even when we do have equality of numerical invariants, e.g., k(B) = k(b), l(B) = l(b),
etc., there is sometimes no derived equivalence:

We say that D is a trivial intersection (TI) subgroup of G if for each g ∈ G−NG(D),
we have Dg ∩D = 1. If B is a block with TI defect group D, then Alperin’s conjecture
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states that l(B) = l(b), and the Knörr-Robinson reformulation states that k(B) = k(b).
Actually

Theorem 5 (An-Eaton [2]). Suppose B is a block with TI defect groups. Then Alperin’s,
Alperin-McKay’s (and Dade’s, Isaacs-Navarro’s, Uno’s) conjectures all hold for B.

The principal 2-block of Sz(8) = 2B2(8) has TI defect groups. However, it has long
been known that B and b are not derived equivalent in this case. This was first observed
by Thompson, but see also Cliff [4], which shows that Z(B) and Z(b) are not isomorphic,
and Robinson [15], which we will discuss later.

To summarise , we have numerical conjectures which may be applied to all blocks, and
in a very restricted case (abelian defect groups) we have a deep structural explanation for
them, albeit a conjectural one!

A big problem is how to explain the numerical coincidences in general.
One approach would be to attempt to generalise Broué’s conjecture directly, e.g., to

generalise the concept of a derived equivalence. Alternatively, we could use invariants
of derived categories lying somewhere between the simplest numerical ones (number of
irreducible characters, etc.) and the derived equivalence class of a category.

So we try to formulate conjectures implying those of Alperin, Alperin-McKay, Dade’s,
etc., which hold in some non-abelian defect cases. This should give evidence for possible
generalisations of Broué’s conjecture.

We begin by looking at some consequences of Broué’s conjecture in more depth.

5. Perfect isometries

Excellent references for this section are [3], [7] and [10].
For a block (or sum of blocks) B of a group G, denote by

R(G, B)

the additive group of characters generated by Irr(B). We may identify this with the
Grothendieck group of mod(K⊗OB). We may considerR(G, B) as lying in CF (G, B, K) ⊂
CF (G, K), the space of K-valued class functions spanned by Irr(G, B).

Let b be a block of another group H. Note that B ⊗ b◦ is a block of G×H◦, where b◦,
H◦ denote the opposite algebra, group respectively

Given

µ ∈ R(G×H◦, B ⊗ b◦),

we define maps

Iµ : CF (H, b, K) → CF (G, B, K)

Rµ : CF (G, B, K) → CF (H, b, K)

where Iµ and Rµ are adjoint linear maps with respect to the usual scalar product on
characters, as follows:

Let α ∈ CF (H, b, K), β ∈ CF (G, B, K), h ∈ H, g ∈ G. Define

Iµ(α)(g) =
1

|H|
∑
h∈H

µ(g, h−1)α(h),
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Rµ(β)(h) =
1

|G|
∑
g∈G

µ(g−1, h)β(g).

Actually, if we have a linear map I : R(H, b) → R(G, B) then defining

µ =
∑

θ∈Irr(H,b)

I(θ)θ

gives Iµ = I. This follows from the orthogonality relations for ordinary characters.

Let µ ∈ R(G×H◦, B ⊗ b◦). So far, the maps Rµ and Iµ induced by µ tell us nothing
which relates the structures of B and b. They become more interesting when we require
that µ is perfect. Before defining perfect characters, we motivate them.

Suppose that Db(A) and Db(B) are equivalent as triangulated categories.
Then this equivalence may be induced by a bounded complex

M : · · · → M−r → M−r+1 → · · · → Ms → · · ·
of B-b-bimodules such that each Mr is projective as a B-module and as a b-module
(see [10]).

Let µr be the character afforded by K ⊗O Mr. Then the generalised character

µ =
∑

r

(−1)rµr

gives an isometry Iµ. In particular, if Broué’s conjecture holds, then we get an isometry
CF (NG(D), b, K) → CF (G, B, K) related to the complex inducing the equivalence of
categories.

A complex M of B-b-bilmodules whose terms are projective as B-modules and as b-
modules is called a perfect complex, and the definition of a perfect generalised character
is related to this.

Denote by CFp′(G, B, K) the subspace of class functions α ∈ CF (G, B, K) such that
if g ∈ G−Gp′ , then α(g) = 0.

Definition 6. µ ∈ R(G×H◦, B ⊗ b◦) is perfect if
(a) Iµ gives a map CF (H, b,O) → CF (G, B,O) and Rµ gives a map CF (G, B,O) →

CF (H, b,O)
(b) Iµ gives a map CFp′(H, b,O) → CFp′(G, B,O) and Rµ gives a map CFp′(G, B,O) →

CFp′(H, b,O).

Proposition 7 (Broué). µ ∈ R(G×H◦, B ⊗ b◦) is perfect if and only if
(a’) for all (g, h) ∈ G×H, we have µ(g, h)/|CG(g)| ∈ O and µ(g, h)/|CH(h)| ∈ O,
(b’) if µ(g, h) 6= 0, then both g and h are p-singular or both g and h are p-regular.

Remark 8. Suppose that a character µ of G × H◦ is afforded by an O(G × H◦)-module
which is projective as G- and H◦-modules. Then µ is perfect.

Example 9. Suppose H ≤ G, and let µ be the character of the KG-KH-bimodule KG.
Then µ is perfect. Here Iµ is induction and Rµ is restriction of characters. Explicitly,

µ(g, h) =
∑

χ∈Irr(G)

∑
θ∈Irr(H)

(ResG
H(χ), θ)χ(g)θ(h).
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Similarly, K ⊗ B may be considered as a K ⊗ B-K ⊗ b-bimodule in this way, to give
blockwise induction and restriction, which means induction and restriction, but only
taking only components in B or b.

We define a perfect isometry to be a map Iµ which is an isometry, such that µ is perfect.
The inverse map is Rµ. This gives a ‘bijection with signs’ between Irr(B) and Irr(b).

Broué conjectures that:

Conjecture 10 (Broué’s isometry conjecture). Let B be a block with abelian defect group
D, and let b be the unique block of NG(D) with bG = B. Then there is a perfect isometry

Iµ : CF (NG(D), b, K) → CF (G, B, K).

Remark 11. When discussing Conjecture 3, we mentioned splendid equivalences, which
give families of derived equivalences. This is in part motivated by a stronger form of
the above conjecture, which predicts an isotypy. This is a family of compatible perfect
isometries. However, we will not discuss these in detail here, although they are very
important to the subject. Actually, in some sense they aid the search for a perfect
isometry between B and b. We should further remark however, that perfect isometries
arising from stable equivalences in the TI defect group situation (in a similar way to
property (P+) later) automatically give isotypys.

5.1. Invariants preserved by perfect isometries. Suppose that Iµ is a perfect isom-
etry. Define

I0
µ : Z(KHeb) → Z(KGeB)

by

I0
µ(a) =

(
1

H

∑
g∈G

∑
h∈H

µ(g−1, h)ah

)
g,

where a =
∑

h∈H ahh.
Since µ is perfect, this also defines an invertible O-linear map

Z(OHeb) → Z(OGeB).

Write R0
µ for the analogous map Z(KGeB) → Z(KHeb). Then a → I0

µ(aR0
µ(eB)) defines

an algebra isomorphism

Z(OHeb) → Z(OGeB).

The calculations used to show the algebra isomorphism can also be used to show that
for each θ ∈ Irr(b),

|G|/Iµ(θ)(1)

|H|/θ(1)
∈ O

and is invertible inO. Hence Iµ preserves the defects of the ordinary irreducible characters.
Since d(B) = max{d(χ) : χ ∈ Irr(B)}, this means that the defect of a block is preserved.
(It is not known - to the authors knowledge - that a perfect isometry, or even Morita
equivalence preserves the isomorphism class of a defect group, although neither is the
author aware of a counterexample).
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It is also the case that, modulo p,

|G|/Iµ(θ)(1)

|H|/θ(1)
is independent (up to sign) of the choice of θ ∈ Irr(b).

Now suppose further that H = NG(D), that B (and so b) is the principal block, and
that Iµ(1H) = ±1G. Then D is a Sylow p-subgroup, and

[G : NG(D)] ≡ 1 mod p.

Then
Iµ(θ)(1) ≡ ±θ(1) mod p.

This is a motivation for the following strengthening of the Alperin-McKay conjecture
(although we do not claim that it was the original motivation).

Let B be a block of a group G with defect group D. Let b be the unique block of NG(D)
with bG = B. Let r be an integer. Write

Irr(B, [r]) = {χ ∈ Irr(B) :
|G|

χ(1)p

≡ ±r mod p}

and k(B, [r]) = | Irr(B, [r])|.
Conjecture 12 (Isaacs-Navarro). For each integer r, we have k0(B, [r]) = k0(b, [r]).

So in the above situation, for the principal block, the Isaacs-Navarro conjecture is a
consequence of a perfect isometry.

Remark 13. (a) Uno has announced a generalisation of the Isaacs-Navarro conjecture to
arbitary character defects, which is also a strengthening of Dade’s conjecture.

(b) Just as with the other numerical conjectures, when the defect group is TI, a straight-
forward equality is predicted, with all information coming from just one local subgroup,
NG(D). I regard this as evidence that there should be a generalisation of a perfect isom-
etry which at least holds in the TI defect group case.

Other invariants which are preserved by perfect isometries are l(B) and the elementary
divisors of the Cartan matrix.

Further evidence that the TI defect group case should be similar to the abelian defect
group case is the following consequence of Theorem 5 (see [6]):

Proposition 14. Suppose that B has TI defect group D, and let b be the unique block
of NG(D) with Brauer correspondent B. Then the Cartan matrices of B and b have the
same elementary divisors.

5.2. Existence and non-existence of perfect isometries. As mentioned earlier, Cliff
in [4] has proved that if G is Sz(8) and B is the principal 2-block, then Z(B) is not
isomorphic to Z(b), where b is the Brauer correspondent of B in NG(D). Hence there can
be no perfect isometry in this case.

Robinson in [15] gives general conditions for the non-existence of a perfect isometry,
based on the block having many irreducible characters constant on p-singular conjugacy
classes when NG(D)/Op′(NG(D)) is a Frobenius group. Such a condition can be checked
easily for, e.g., the Suzuki groups.
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As before, we do not attempt to list the cases for which Broué isometry conjecture is
known. However, we draw the reader’s attention to what may be considered the high
point of work on the conjecture, which is [7], where it is proved that the conjecture holds
for the principal block for p = 2.

6. Generalising perfect isometries

If we believe the numerical conjectures, then in general we expect local determination
to be complicated, because we expect information to come from a number of subgroups
simultaneously, as in Alperin’s weight conjecture. However, in some cases, the numerical
conjectures suggest that we may find information from just one subgroup. An example is
when NG(D) controls fusion in D, which includes the case D is abelian. This also includes
the case that D is TI.

We present here an observation of some very compelling behaviour in the TI defect
group case, which leads to a generalisation of Conjecture 10. Most of the results in this
section are taken from [6].

Throughout, let B be a block of G with defect group D, and let b be the unique block
of NG(D) with Brauer correspondent B.

Definition 15. We say that B satisfies property (P) if there is perfect µ ∈ R(G ×
NG(D)◦, B ⊗ b◦) such that for each θ ∈ Irr0(NG(D), b), the map

Iµ : CF (NG(D), b, K) → CF (G, B, K)

induced by µ satisfies
Iµ(θ) = εχ + ∆

for some χ ∈ Irr0(G, B), where ε ∈ {−1, 1} and no constituent of ∆ has height zero, and
for each χ ∈ Irr0(G, B), the map

Rµ : CF (G, B, K) → CF (NG(D), b, K)

satisfies
Rµ(χ) = εθ + Θ

for some θ ∈ Irr0(NG(D), b) where ε ∈ {−1, 1} and no constituent of Θ has height zero.

Remark 16. (a) Property (P) gives rise to a bijection ‘with signs’ between Irr0(B) and
Irr0(b), just as a perfect isometry does.

(b) If Iµ is a perfect isometry, then µ gives (P).
(c) If D is abelian, then Brauer’s abelian defect group conjecture predicts that Irr0(B) =

Irr(B), and we already know that Irr0(b) = Irr(b). Hence if Brauer’s conjecture is true
and D is abelian, then Iµ is a perfect isometry if and only if µ gives (P).

(P) holds for every example of a block with TI defect groups so far checked. Unfortu-
nately, (P) does not hold for all blocks, for example:

Proposition 17. Suppose that B is the principal block of G = PSL3(2). Then no choice
of µ can give (P).

Proof. D ∼= D8 and NG(D) = D. By checking the short list of possibilities, we cannot
have µ(1, h) = 0 for each nontrivial h ∈ D. �
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Note that G = PSL3(2) has non-TI Sylow 2-subgroups. Further, D = NG(D) does not
control fusion in D.

However, we will see in the first example that often something stronger than (P) actually
holds.

Now suppose that H = NG(D) and that bG = B. Consider ‘blockwise induction and
restriction’, which is given by Φ =

∑
χ∈Irr(B)

∑
θ∈Irr(b)(ResG

NG(D)(χ), θ)χθ. The map IΦ is
then ‘induction, taking terms in B,’ and RΦ is ‘restriction, taking terms in b.’ Just as
with induction/restriction, this is a perfect character.

Definition 18. We say that B satisfies (P+) if there is µ ∈ R(G×NG(D)◦, B⊗b◦) giving
(P) of the form µ = Φ +

∑
s,t as,tΓsΦt, where each as,t is an integer and Γs resp. Φt is the

character of a projective indecomposable module of B resp. b.

A generalised character µ of this form is necessarily perfect.

Remark 19. If B satisfies property (P+), then it is immediate that Conjecture 12 holds
for that block.

We give the following example in full as an illustration. Note that the block we use
does not have TI defect groups, but (P+) holds anyway.

Example 20. Let G = S5 and p = 2. Let B be the principal block of G, so B has
defect group D ∼= D8, a Sylow 2-subgroup of G. We have NG(D) = D. Now the
irreducible characters of G are χ1 . . . , χ7, with degrees 1, 1, 4, 4, 5, 5, 6 respectively. We
have Irr(B) = {χ1, χ2, χ5, χ6, χ7}. The irreducible characters of NG(P ) are θ1, . . . , θ5,
with degrees 1, 1, 1, 1, 2 respectively. We will need the following characters of projective
indecomposable modules: Γ = χ5 + χ6 + χ7 and Φ1 = θ1 + · · ·+ θ4 + 2θ5.

The restrictions of the irreducible characters of B to NG(D) are as follows:

ResG
NG(D)(χ1) = θ1 = θ1

ResG
NG(D)(χ2) = θ3 = θ3

ResG
NG(D)(χ5) = θ1 + θ2 + θ3 + θ5 = Φ1 − θ4 − θ5

ResG
NG(D)(χ6) = θ1 + θ3 + θ4 + θ5 = Φ1 − θ2 − θ5

ResG
NG(D)(χ7) = θ2 + θ4 + 2θ5 = Φ1 − θ1 − θ3

Hence µ = Φ− ΓΦ1 gives the bijection with signs
χ1

χ2

χ5

χ6

↔


θ1

θ3

−θ4

−θ2

 .

(P) is partially motivated by the following, from [14]:

Theorem 21 (Navarro). Let G be a p-solvable group such that NG(P ) = P for a Sylow
p-subgroup P . Then

(a) for each θ ∈ Irr(P ) with θ(1) = 1, we have IndG
P (θ) = χ + ∆ where θ ∈ Irr(G) with

p 6 |χ(1) and p|δ(1) for each irreducible constituent δ of ∆, and
(b) for each χ ∈ Irr(G) with p 6 |χ(1), we have ResG

P (χ) = θ + Θ, where θ ∈ Irr(P ) with
θ(1) = 1 and p|γ(1) for each irreducible constituent γ of Θ.

–13–



This means that for the principal block of a p-solvable group with NG(P ) = P , the
character for Φ for induction/restriction gives property (P+).

6.1. Controlled blocks. The principal block is a controlled block if, for P a Sylow p-
subgroup of G, if Q ≤ P and g ∈ G such that Qg ∈ P , then g = cn for some c ∈ CG(G)
and h ∈ NG(P ). There are examples of controlled blocks which do not have TI defect
groups. E.g., the principal 3-blocks of J2 and J3, and also the principal 5-block of Co3.

(P+) holds for J2 and J3, but not for Co3. However it is not clear whether (P) holds
for Co3.

6.2. Conjectures. We feel confident that the following holds:

Conjecture 22. Let B be a block with TI defect groups. Then (P+) holds for B.

We speculate that, if NG(D) controls fusion in D, then (P) holds.

6.3. Checking the conjectures. The following is an important example, since it is the
original example of a block with TI defect groups such that the conclusions of Broué’s
conjecture fail.

Example 23. Let G = 2B2(8) and p = 2. Let B be the principal block and P ∈ Sylp(G).
The irreducible characters of NG(P ) are θ1, . . . , θ10, with degrees 1, 1, 1, 1, 1, 1, 1, 7, 14, 14

respectively. These all lie in the principal block b. The irreducible characters of G are
χ1, . . . , χ11, with degrees 1, 14, 14, 35, 35, 35, 64, 65, 65, 65, 91 respectively. All but χ7 lie in
B.

The characters of the projective indecomposable modules of NG(P ) are Φi = θi + θ8 +
2θ9 + 2θ10, for 1 ≤ i ≤ 7. The characters of the relevant projective indecomposable
modules of B are

Γ2 = χ2 + χ3 + χ4 + 2χ5 + χ6 + 2χ8 + 2χ9 + 3χ10 + 3χ11,
Γ3 = χ2 + χ3 + χ4 + χ5 + 2χ6 + 3χ8 + 2χ9 + 2χ10 + 3χ11,
Γ4 = χ2 + χ3 + 2χ4 + χ5 + χ6 + 2χ8 + 3χ9 + 2χ10 + 3χ11,
Γ5 = χ5 + χ8 + χ10 + χ11,
Γ6 = χ6 + χ8 + χ9 + χ11,
Γ7 = χ4 + χ9 + χ10 + χ11.
We give the restrictions of the χi below, along with constituents of the images in Rµ in

Irr0(b) (which we write as R0
µ), where

µ = Φ− (Γ4 − Γ5 − Γ6 − Γ7)Φ2 − (Γ2 − Γ5 − Γ6 − Γ7)Φ3 − (Γ3 − Γ5 − Γ6 − Γ7)Φ4,

and Φ is as before.
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χi ResG
NG(P )(χi) R0

µ(χi)

χ1 θ1 θ1

χ2 θ9 = Φ2 + Φ3 + Φ4 − θ2 − θ3 − θ4 − 3θ8 − 5θ9 − 6θ10 −θ2 − θ3 − θ4 − 3θ8

χ3 θ10 = Φ2 + Φ3 + Φ4 − θ2 − θ3 − θ4 − 3θ8 − 6θ9 − 5θ10 −θ2 − θ3 − θ4 − 3θ8

χ4 θ8 + θ9 + θ10 = −θ2 − θ9 − θ10 + Φ2 −θ2

χ5 θ8 + θ9 + θ10 = −θ3 − θ9 − θ10 + Φ3 −θ3

χ6 θ8 + θ9 + θ10 = −θ4 − θ9 − θ10 + Φ4 −θ4

χ8 θ4 + θ5 + θ8 + 2θ9 + 2θ10 = θ5 + Φ4 θ5

χ9 θ2 + θ7 + θ8 + 2θ9 + 2θ10 = θ7 + Φ2 θ7

χ10 θ3 + θ6 + θ8 + 2θ9 + 2θ10 = θ6 + Φ3 θ6

χ11 θ8 + 3θ9 + 3θ10 θ8

We are able to verify that (P+) holds when B is the principal 2-block of any 2B2(2
2m+1),

and when B is any p-block of SU3(p
m). We are also able to prove the following:

Theorem 24. Let p be 5 or a prime such that 3 6 |(p + 1). Let B be a block with TI
non-abelian defect group D such that |D| ≤ p5. Then (P) holds for B.

Remark 25. Further, (P+) holds if G is quasisimple.

Outline of proof: We use Clifford-theoretic methods similar to those in [2] to reduce to
non-abelian simple groups, their automorphism groups and their covering groups. In [2]
certain Morita equivalences are constructed to achieve a similar reduction, and we use the
fact that Morita equivalences give perfect isometries.

It suffices to consider blocks with TI defect groups of central p′-extensions of automor-
phism groups of non-abelian simple groups.

These have been classified in [1], and it suffices to check the following cases:
(a) D ∼= 31+2

− and G is Aut( 2G2(3)
′) = 2G2(3);

(b) D ∼= 51+2
+ and G is 3.McL, Aut(McL), SU3(5), GU3(5), PSU3(5).2 or PGU3(5).2,

where the extension is by the unique field automorphism of order 2;
(c) D ∼= 51+2

− and G is Aut( 2B2(32));
(d) D ∼= p1+2

+ and G is PSU3(p) or PSU3(p).2, where the extension is by the unique
field automorphism of order 2 and 3 6 |p + 1.

Finally, we have checked all of these cases.

6.4. Other generalisations. (I) The problem of generalising perfect isometries has also
been studied by Jean-Baptiste Gramain in [8].

He uses the definition of a perfect isometry in Külshammer-Olsson-Robinson’s pa-
per [11] on generalised blocks of symmetric groups. The generalisation does not include
Broué’s conjecture on perfect isometries, but does give an isometry involving all irre-
ducible characters. Gramain verifies the conjecture for various classes of blocks with TI
defect groups. It is not clear whether a counterexample exists when the defect group is
not TI.

(II) In the main part of this section, we have been attempting to generalise the idea
of a perfect isometry by generalising from an isometry, whilst still considering perfect

–15–



characters. We may also attempt to find isometries with strong structural properties so
that we may generalise Broué’s conjecture. In examples of blocks with TI defect groups
tested, the following occurs:

There exists an isometry

Iµ : CF (NG(D), b, K) → CF (G, B, K)

where µ satisfies
(*) Suppose µ(g, h) 6= 0. Let gp be the (uniquely defined) part of g, and hp the p-part

of h. Then either gp and hp are both conjugate to an element of the derived subgroup D′,
or neither are.

In the case that D is abelian this is one of the conditions for a perfect isometry.
However, there is little evidence for this phenomenon, and there is no analogue for the

other condition for a perfect isometry. Also, there are counterexamples when D is not TI.
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