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Nilpotent blocks of quasisimple groups for odd primes 1

Jianbei An and Charles W. Eaton

Abstract

We investigate the nilpotent blocks of positive defect of the quasisimple groups
for odd primes. In particular, it is shown that every nilpotent block of a qua-
sisimple group has abelian defect groups. A conjecture of Puig concerning the
recognition of nilpotent blocks is also shown for these groups.

1 Introduction

Let G be a finite group and k an algebraically closed field of odd characteristic p. A
block B of kG with defect group D is said to be nilpotent if for each Q ≤ D and each
block bQ of CG(Q) with Brauer correspondent B we have that NG(Q, bQ)/CG(Q) is a
p-group, where NG(Q, bQ) is the stabilizer of bQ under conjugation in NG(Q). In the
case of the principal block B0, D is a Sylow p-subgroup of G and NG(Q, bQ) = NG(Q)
for each Q ≤ D, so that B0 is nilpotent if and only if G is p-nilpotent (i.e., G has a
normal p-complement). Note that every block of defect zero must be nilpotent, and
the classification of blocks of defect zero for finite simple groups has been the subject
of a separate program of research, culminating in [21]. Hence we give attention here
only to blocks with non-central defect groups.

Explicit characterizations of nilpotent blocks are obtained for classical groups, and
these are used to prove:

Theorem 1.1 Let G be a finite quasisimple group and let B be a nilpotent p-block of
G with p odd. Then B has abelian defect groups.

The second main result concerns the conjecture of Puig which states that a block
B of G is nilpotent if and only if l(bQ) = 1 for each p-subgroup Q and each block bQ of
CG(Q) with Brauer correspondent B (where l(bQ) is the number of irreducible Brauer
characters in bQ). The necessary condition for nilpotency is well-known. The converse
is known for blocks with abelian defect groups (see [30]), and is also known to be a
consequence of Alperin’s weight conjecture (see [33]). We prove that:

Theorem 1.2 Let G be a finite quasisimple group and let B be a p-block of G with p
odd. Then B is nilpotent if and only if l(bQ) = 1 for each p-subgroup Q and each block
bQ of CG(Q) with (bQ)G = B.

The main part of the paper concerns the representation theory of finite groups of
Lie type in non-defining characteristic, and makes use of the examination of subpairs
of blocks of classical groups given in [17]. The exceptional groups of Lie type are then
treated by examination of the centralizer of an element of the centre of a defect group,
and the results for the classical groups applied.

1The first author is supported by the Marsden Fund (of New Zealand), via award number UOA
0721 and the second author is supported by a Royal Society University Research Fellowship
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In Section 2 we review the basic notation regarding blocks, give some general results
concerning nilpotent blocks, particularly with regard to block domination, and also
prove some technical lemmas which will be useful later on. In Section 3 we consider
the alternating groups and their covering groups. Here we have able to give a rather
complete description of the nilpotent blocks. The covering groups of the sporadic
simple groups are treated in Section 4. We give some basic notation used for the
classical groups in Section 5. In Section 6 we give a treatment of the general linear and
unitary groups, where again we are able to give a full characterization of the nilpotent
blocks. In Section 7 we state the set of properties which are central to the study of
the nilpotent blocks of the groups of Lie type. These are rather technical conditions,
none of which can be satisfied by a nilpotent block with non-abelian defect groups,
which amongst other things allow us to use inductive argument when studying the
exceptional groups. That these conditions hold for the classical groups is the content
of Section 8, and for the exceptional groups is the content of Section 9.

2 Notation and general results

Let G be a finite group and p a prime. Although the classification concerns only blocks
with respect to a field of characteristic p, we use methods from ordinary character
theory, for example canonical characters, and so must use a p-modular system. Let
O be a local discrete valuation ring, complete with respect to the p-adic valuation,
with field of fractions K of characteristic zero and algebraically closed residue field
k = O/J(O) of characteristic p. We assume that O contains a primitive |G|th root of
unity. Write Blk(G) for the set of blocks of OG and denote by B0(G) the principal
block of G.

Let N be a normal subgroup of G and write Irr(G) the set of irreducible K-
characters of G. For θ ∈ Irr(N), we denote by Irr(G | θ) the subset of Irr(G) con-
sisting of characters covering θ. We denote by Irr(B) the set of irreducible characters
belonging to B, k(B) = |Irr(B)|, and combine with the above notation freely.

Let B be a p-block of a finite group G. A B-subgroup is a subpair (Q, bQ), where
Q is a p-subgroup of G and bQ is a block of QCG(Q) with Brauer correspondent
(bQ)G = B. The B-subgroups with |Q| maximized are called the Sylow B-subgroups,
and they are the B-subgroups for which Q is a defect group for B. Recall that the
canonical character of bQ is the unique irreducible character in bQ with Q in its kernel.
This will be a valuable tool when comparing subpairs of a group with those of a normal
subgroup.

A useful, and well-known, result is the following:

Proposition 2.1 Let B be a block of a finite group G. Suppose a defect group D of B
is abelian. Then B is nilpotent if and only if NG(D, bD) = CG(D), where (D, bD) is a
Sylow B-subgroup.

In general, we cannot say very much about the relationship between nilpotency of
blocks and nilpotency of covered blocks, and this is a main reason behind the difficulty
of the classification of nilpotent blocks of groups of Lie type.

However, we do have the following lemma by [24, Proposition 6.5].
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Lemma 2.2 Let N be a normal subgroup of a finite group G such that G/N is a p-
group. Suppose that B is a block of G and that b ∈ Blk(N) is covered by B. Then B
is nilpotent if and only if b is nilpotent.

We note that the analogous result does not hold if G/N is not a p-group. There
are many examples of non-nilpotent blocks covering nilpotent blocks, but there are
also examples of nilpotent blocks covering non-nilpotent blocks, such as the following
(which came to light during a conversation with Radha Kessar):

Example 2.3 Let G = PGL(3, 7), N = PSL(3, 7) and p = 2, so that [G:N ] = 3.
Then N has a unique block b with defect group D ∼= Z2 × Z2 and b is not nilpotent.
Moreover, b is covered by a nilpotent block B of G.

Note that CN(D) = Z6 × Z2. Let Irr0(CN(D)) be the subset of Irr(CN(D)) con-
sisting of characters of CN(D) whose kernel contains D. Then |Irr0(CN(D))| = 3. In
addition, CN(D) has a unique character (the trivial character) ξ ∈ Irr0(CN(D)) such
that NNN (D)(ξ) = NN(D), and two characters ξ ∈ Irr0(CN(D)) such that NNN (D)(ξ) =
CN(D).3. It follows that N has exactly one block b with a defect group D and b is
non-nilpotent, as NN(D, bD) = CN(D).3 for a Sylow b-subgroup (D, bD).

Moreover, CG(D) = Z6 × Z6, NG(D)/CG(D) ∼= S3 and |Irr0(CG(D))| = 9. In
addition, CG(D) has a unique character (the trivial character) ξ ∈ Irr0(CG(D)) such
that NNG(D)(ξ) = NG(D), and eight characters ξ ∈ Irr0(CG(D)) such that NNG(D)(ξ) =
CG(D). It follows that G has exactly one block B with a defect group D and B is
nilpotent, as NG(D, bD) = CG(D) for a Sylow b-subgroup (D, bD). Since b is covered
by a block of G with a defect group D, it follows that b is covered by B.

Recall that for N � G, a block B of G is said to dominate the block B of G/N if
the inflation to G of an irreducible character in B lies in B.

The following lemma follows by [33, Lemma 2].

Lemma 2.4 Let Z be a central p-subgroup of a finite group G, B ∈ Blk(G) and B the
block of G := G/Z dominated by B. Then B is nilpotent if and only if B is nilpotent.

Let Z be a central p′-subgroup of a finite group G, and write H = HZ/Z, where
H ≤ G. Let B ∈ Blk(G). There is a unique block B ∈ Blk(G) dominating B. By [25,
Theorem 5.8.8], Irr(B) = Irr(B) and if D is a defect group of B, then DZ/Z ∼= D is a
defect group of B.

IfQ is a p-subgroup ofG, then CG(Q) = CG(Q)/Z (since Z is a central p′-subgroup).
Let (Q, bQ) be a B-subgroup. Then Q = QZ/Z for a unique p-subgroup Q of G. Since

CG(Q) = CG(Q)/Z, we may consider the unique subpair (Q, bQ) with bQ dominating
bQ, which we call the Brauer pair dominating (Q, bQ).

We show that (Q, bQ) must be a B-subgroup, and that dominance of subpairs
respects the usual partial order on B-subgroups:

Lemma 2.5 Let Z be a central p′-subgroup of a finite group G, and let (Q, bQ) and

(P , bP ) be B-subgroups, where B is the block of G dominated by B. Suppose (Q, bQ) and
(P, bP ) are subpairs of G dominating (Q, bQ) and (P , bP ), respectively. Then (Q, bQ) ≤
(P , bP ) if and only if (Q, bQ) ≤ (P, bP ). In particular, (Q, bQ) is a B-subgroup.
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Proof: Let F be a splitting field of characteristic p of G, and µZ the map from
FG to FG defined by µZ(

∑
x∈G αxx) =

∑
x∈G αxx̄, where x̄ = µZ(x). For H ≤ G, let

C`(G | H) be the H-orbits of G under conjugation. Then {[C] : C ∈ C`(G | H)} forms
a F -basis of the fixed point set (FG)H , where [C] :=

∑
x∈C x.

If H is a p-subgroup, then (FG)H = FCG(H) ⊕ IH(FG) as vector spaces, where
IH(FG) =

∑
W<H(FG)H

W is an ideal of (FG)H and {[C] : C ∈ C`(G | H), |C| 6= 1}
forms an F -basis of IH(FG). Thus BrH([C]) := [C ∩CG(H)] gives the natural algebra
homomorphism from (FG)H onto FCG(H) with kernel IH(FG). Similarly,

(FG)H = F (CG(H)/Z)⊕ IH(FG)

and µZ : IH(FG) → IH(FG) is an isomorphism of algebras. Now

BrH : (FG)H → F (CG(H)/Z)

and µZ : FCG(H) → F (CG(H)/Z), so µZ ◦BrH = BrH ◦ µZ .
Suppose (Q, bQ) � (P , bP ), so that Q � P . Since Q = QZ/Z and P = PZ/Z for

p-subgroups Q,P of G and since Q is the only Sylow p-subgroup of QZ, it follows
that Q � P . Since PZ = P × Z and bQ is P -invariant, it follows that for any y ∈ P
byQ is a block of CG(Q) dominating bQ, so that by the uniqueness, byQ = bQ and bQ is
P -invariant. Now

µZ(BrP (bQ)bP ) = µZ(BrP (bQ))bP = BrP (µZ(bQ))bP = BrP (bQ)bP = bP 6= 0,

so that BrP (bQ)bP 6= 0 and BrP (bQ)bP = bP . It follows that (Q, bQ) � (P, bP ). Using
induction we have that (Q, bQ) ≤ (P, bP ) if (Q, bQ) ≤ (P , bP ).

Suppose (Q, bQ) � (P, bP ), so that Q � P and Q � P . Since bQ is P -invariant, it
follows that bQ is P -invariant. Since BrP (bQ)bP = bP , it follows that

BrP (bQ)bP = µZ(BrP (bQ)bP ) = µZ(bP ) = bP ,

so that (Q, bQ) � (P , bP ). Similarly, if (Q, bQ) ≤ (P, bP ), then (Q, bQ) ≤ (P , bP ). 2

We obtain as a consequence:

Proposition 2.6 Let G be a finite group, Z ≤ Z(G) and G = G/Z. Suppose B ∈
Blk(G) and B ∈ Blk(G) dominating B. Then B is nilpotent if and only if B is
nilpotent.

Proof: Write Zp = Op(Z), Zp′ = Op′(Z), G1 = G/Zp′ and let B1 ∈ Blk(G1) be
the unique block of G1 dominated by B. Then Irr(B1) = Irr(B), and B1 dominates B.

By Lemma 2.4, B is nilpotent if and only if B1 is nilpotent. Hence we suppose
B = B1 and Z = Zp′ .

Let (D, bD) be a Sylow B-subgroup and (D, bD) the unique B-subgroup dominating
(D, bD). Note that (D, bD) is a Sylow B-subgroup.

Suppose (Q, bQ) is a B-subgroup and (Q, bQ) is the B-subgroup dominating (Q, bQ).

If x̄ ∈ NG(Q, bQ), then x̄ = xZ for some x ∈ G, and xZ ⊆ NG(Q). Since µZ(bQ) = bQ
and µZ(bxQ) = bx̄

Q
= bQ, it follows that bQ and bxQ both are blocks of CG(Q) dominating
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bQ and bQ = bxQ by uniqueness. Thus x ∈ NG(Q, bQ) and NG(Q, bQ) = NG(Q, bQ)/Z.

Since Z ≤ CG(Q) and CG(Q) = CG(Q)/Z, it follows that

NG(Q, bQ)/CG(Q)Q ∼= NG(Q, bQ)/CG(Q)Q.

Suppose B is not nilpotent, so that there is some B-subgroup (Q, bQ) such that

NG(Q, bQ)/CG(Q)Q is not a p-group. Thus NG(Q, bQ)/CG(Q)Q is not a p-group and
B is not nilpotent.

Suppose B is not nilpotent, so that NG(Q, bQ)/CG(Q)Q is not a p-group for some
B-subgroup (Q, bQ). We may suppose (Q, bQ) ≤ (D, bD). Thus Q = QZ/Z ≤ D, and
(Q, bQ) ≤ (D, bD) for a unique B-subgroup (Q, bQ). Let (Q, b′Q) be a B-subgroup dom-

inating (Q, bQ). By Lemma 2.5 (Q, b′Q) ≤ (D, bD), so that by the uniqueness (Q, b′Q) =

(Q, bQ). Thus NG(Q, bQ)/CG(Q)Q ∼= NG(Q, bQ)/CG(Q)Q, and NG(Q, bQ)/CG(Q)Q is

not a p-group. It follows that B is not nilpotent. 2

When considering groups of Lie type, we will often examine the centralisers of p-
elements, which may be written as central products of groups. By a central product
G1◦ZG2 of G1 and G2 over Z ≤ Z(G1)∩Z(G2), we mean that G1◦ZG2 = G1G2, where
G1 and G2 are subgroups of G1 ◦Z G2 with G1 ∩G2 = Z and [G1, G2] = 1. When it is
clear what Z is, we write G1◦G2 = G1◦ZG2. Note that G1◦G2

∼= (G1×G2)/{(z, z−1) :
z ∈ Z}. For χi ∈ Irr(Gi) such that χ1 and χ2 both cover the same irreducible character
of Z, we may define χ1 ◦ χ2 ∈ Irr(G1 ◦G2) so that χ1χ2 ∈ Irr(G1 ×G2) is the inflation
of χ1 ◦ χ2. We refer to χ1 ◦ χ2 as the central product of χ1 and χ2.

We will need the following technical lemma in certain cases in relation to Property
7.1 (a) in Section 7 holds.

Lemma 2.7 For i = 1, 2, let Gi be a finite group, G1 ◦ G2 a central product of G1

and G2 over Z ≤ Z(G1) ∩ Z(G2) and Ni a normal subgroup of Gi such that Gi/Ni

is abelian, and let N := N1 × N2 ≤ G ≤ G1 ◦ G2 such that πi(G) = Gi/Z, where
πi : (G1 ◦G2) → Gi/Z is the canonical projection. Let θi ∈ Irr(Ni) such that θ2 has an
extension θ̃2 to G2, and let θ = θ1 × θ2 and ϕ ∈ Irr(G | θ).

(i) There exist ψ1 ∈ Irr(G1) and λ ∈ Irr(G2/N2) covering the same irreducible
character of Z, such that the restriction (ψ1 ◦ (θ̃2λ))|G of ψ1 ◦ (θ̃2λ) is equal to ϕ.
Moreover, if ψ ∈ Irr(G1 ◦G2 | ϕ), then ψ|G = ϕ.

(ii) If further Z ∩N2 = 1, then λ in (i) may be chosen with ZN2/N2 in its kernel,
so that it may be regarded as a character of G2/N2Z.

(iii) Suppose that Z ∩N2 = 1. If we have y ∈ Aut(G1 ◦G2) such that y centralizes
G1, stabilizes G, G2 and θ̃2, and gy

2 ∈ g2N2Z for any g2 ∈ G2, then y stabilizes ϕ.

Proof: (i) We first claim that we may suppose Z ≤ G. For since Z ≤ Z(G1 ◦G2),
we have that GZ is a central product over G ∩ Z. Now ϕ|G∩Z = ϕ(1)α for some
α ∈ Irr(G∩Z). Since Z is abelian, there exists α̃ ∈ Irr(Z) extending α. Then ϕ̃ = ϕα̃
is an extension of ϕ covering θ. If ψ1 ∈ Irr(G1) and λ ∈ Irr(G2/N2) such that ψ1 and λ
cover the same irreducible character of Z and (ψ1 ◦ θ̃2λ)|GZ = ϕ̃, then (ψ1 ◦ θ̃2λ)|G = ϕ,
and similarly for the final statement, proving the claim.

Similarly, (N1 × N2)Z = (N1Z) ◦ (N2Z) and ϕ covers an irreducible character
ξ ∈ Irr((N1Z) ◦ (N2Z) | θ) with ξ = ξ1 ◦ ξ2 for some ξi ∈ Irr(NiZ | θi) covering
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the same irreducible character of Z. Note that θ̃2|N2Z is also an extension of θ2 to
N2Z. By Gallagher’s theorem, (θ̃2|N2Z)β2 = ξ2 for some β2 ∈ Irr(N2Z/N2). Since
G2/N2 is abelian, it follows that β2 can be viewed as the restriction of a character
β ∈ Irr(G2/N2), so ξ2 = (θ̃2β)|N2Z . Write ξ̃2 = θ̃2β, so ξ̃2 is an extension of ξ2 to G2

Let M1 be a subgroup of G1 such that ξ1 has an extension ξ̃1 to M1 and M1 is
maximal with this property, that is, either M1 = G1 or ξ1 has no extension to H1 for
any M1 < H1 ≤ G1. Since G1/(N1Z) is abelian, it follows that the inertia subgroup
IG1(ξ̃1) equals M1.

Let M = (M1 ◦ G2) ∩ G ≤ G, M2 := G2 and γ ∈ Irr(M1 ◦ M2 | ξ). Then
G/M ∼= G1/M1 and γ = γ1 ◦ γ2 for some γi ∈ Irr(Mi | ξi). Since ξi has an extension ξ̃i
to Mi, it follows that γi = ξ̃iλi for some λi ∈ Irr(Mi/NiZ), so that γ|M is an extension
of ξ to M . Note that M ≤ IG(ξ) and ϕ also covers an extension of ξ to M . Replacing
γi by γiαi for some αi ∈ Irr(Mi/NiZ) if necessary, we may suppose ϕ ∈ Irr(G | γ|M).

Since γ1|N1Z = ξ1 and G2 stabilizes ξ̃2 (and G1/N1Z is abelian), it follows that
IG1(γ1) = M1, IG(γ) = M and IG1◦G2(γ) = M1 ◦G2. Let ψ1 = IndG1

M1
(γ1), so that

ζ := ψ1 ◦ γ2 = IndG1◦G2
M1◦G2

(γ1 ◦ γ2).

But ϕ = IndG
M(γ|M), so

(ζ|G, ϕ)G = (ζ|M , γ|M)M .

Since M and M1 ◦ G2 are both normal in G1 ◦ G2 and M ≤ M1 ◦ G2, it follows
that (M1 ◦ G2)\(G1 ◦ G2)/M = (G1 ◦ G2)/(M1 ◦ G2) ∼= G1/M1

∼= G/M . Note also
(M1 ◦G2)

t ∩M = M for any t ∈ G/M . Hence the Mackey decomposition gives us

ζ|M =
∑

t∈G/M

((γ1 ◦ γ2)
t|M) =

∑
t∈G/M

((γ|M)t)

and so (ζ|M , γ|M)M = 1. Since ζ(1) = ϕ(1) = [G:M ]γ(1), it follows that ζ|G = ϕ.
Note that IG1◦G2(ϕ) = G1 ◦ G2 and ϕ has an extension ζ to G1 ◦ G2. If ψ ∈

Irr(G1 ◦ G2 | ϕ), then by Gallagher’s theorem, ψ = ζη for some η ∈ Irr((G1 ◦ G2)/G)
and so ψ|G = ϕ.

(ii) First note that ZN2 = Z × N2 and (N1 × N2)Z = (N1 ◦ Z) × N2. If ξ ∈
Irr((N1 ×N2)Z | θ), then ξ = (θ1 ◦ η)× θ2 for some η ∈ Irr(Z). Thus we may suppose
ξ1 = (θ1 ◦ η) ∈ Irr(N1Z) and ξ2 = (θ2 × 1Z) ∈ Irr(N2Z), and take ξ̃2 = θ̃2 as an
extension of ξ2 to G2. As shown in the proof of part (i) ϕ = (ψ1 ◦ (θ̃2λ))|G for some
ψ1 ∈ Irr(G1) and λ ∈ Irr(G2/N2Z).

(iii) Since y centralizes the factor group G2/ZN2, it follows that y stabilizes λ, so
does θ̃2λ. But y centralizes G1, so y stabilizes ψ1 ◦ (θ̃2λ) and hence y stabilizes ϕ. 2

3 The alternating groups

To handle the case p = 3 we will need the following. The first lemma will be used in
determining non-faithful nilpotent blocks of the double covers of alternating groups.
Recall that a partition is self-associate if its Young diagram is symmetric.
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Lemma 3.1 Let n be a positive integer. There is a self-associate 3-core partition λ ` n
if and only if there is a positive integer m such that n = 3m2 + 2m or n = 3m2 − 2m.

Proof: We claim that the self-associate 3-cores, i.e., those Young diagrams which
are symmetric about the leading diagonal and have no 3-hooks, are those which arise
from partitions of the form

(3m, 3m− 2, 3m− 4, . . . , 3m− 2(m− 1),m2, (m− 1)2, . . . , 22, 12)

and
(3m− 2, 3m− 4, 3m− 6, . . . , 3m− 2m, (m− 1)2, (m− 2)2, . . . , 22, 12)

for integers m ≥ 1.
This may be seen directly from methodical construction of the possible Young

diagrams. However, we give a formal proof here using [19]. For a fixed t, Garson, Kim
and Stanton give a bijection φ between the set of t-cores and {n0, n1, . . . , nt−1 ∈ Zt :
n0 + · · · + nt−1 = 0}, defined as follows. We of course only need to consider the case
t = 3. Let λ be a 3-core. We take the 3-residue diagram, i.e., in the (i, j)th cell of the
Young diagram we put the residue of j−i modulo 3 (see [23, p.84]). We also include the
0th column (with infinitely many entries), calling this the extended 3-residue diagram.
Divide this into regions labelled by the integers as follows: the (i, j)th cell lies in the
region r if 3(r− 1) ≤ j− i < 3r. Say that a cell is exposed if it lies at the end of a row.
Define ni to be the maximal r such that an exposed cell with value i lies in the region
r (the inclusion of the 0th row ensures the existence of such an r).

It is verified in [19] that φ does indeed give a bijection. It is also shown that λ is self-
associate if and only if φ(λ) = (n0, n1, n2) = (−n2,−n1,−n0), i.e., if φ(λ) = (m, 0,−m)
for some m ∈ Z.

Suppose first that m > 0. Then the end cell on the first row is labelled 0, so the
first row has length λ1 = 3(m − 1) + 1 = 3m − 2. Since regions 0 and −m lie below
the leading diagonal, the end cells lying above the diagonal are all labelled 0. Since
λ is a 3-core, the difference between adjacent row lengths is at most 2, hence the row
lengths decrease in steps of two until the mth row (which has end cell on the leading
diagonal). Since λ, is self adjoint, this determines the whole Young diagram and we
are done in this case.

Suppose that m ≤ 0. Then the end cell of the first row is labelled 2, so the first row
has length λ1 = 3m, and by a similar argument to the above the difference between
adjacent row lengths is 2 until the (m+1)th row (which has end cell below the leading
diagonal). Again this determines λ, and we are done. 2

We now consider the analogue of the above lemma which will be used for faithful
blocks. We write λ � n for a bar partition of n (i.e., a partition with distinct parts).
Recall that a bar partition λ � n is odd or even according as n − r is odd or even,
where r is the number of parts in the partition. We refer to [26] for definitions of bars
and p̄-cores.

Lemma 3.2 Let n be a positive integer. There is an even 3̄-core bar partition λ � n if
and only if there is a positive integer m1 with m1 ≡ 0, 1 mod 4 and n = (3m2

1 −m1)/2
or a positive integer m2 with m2 ≡ 0, 3 mod 4 and n = (3m2

2 +m2)/2.
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Proof: Determining the 3̄-core partitions is a little more straight-forward than
determining 3-core partitions, and the reader can easily verify that the 3̄-core bar
partitions are precisely those of the form

λ−m := (3m− 2, 3m− 5, . . . , 3m− 2− 3i, . . . , 4, 1)

or
λ+

m := (3m− 1, 3m− 4, . . . , 3m− 1− 3i, . . . , 5, 2).

Note that λ−m � (3r2 −m)/2 and λ+
m � (3m2 +m)/2. Also note that λ−m is even if and

only if m ≡ 0, 1 mod 4; λ+
m is even if and only if m ≡ 0, 3 mod 4. 2

Theorem 3.3 Let n be an integer with n ≥ 5 and G = Ân, the double cover of An.
Let p be an odd prime. If p 6= 3, then G does not possess a nilpotent p-block of positive
defect. If p = 3, then G possesses a non-faithful nilpotent block of positive defect
if and only if n = 3m2 + 2m + 3 or n = 3m2 − 2m + 3 for some positive integer
m. Also if p = 3, then G possesses a faithful nilpotent block of positive defect if and
only if n = (3m2

1 − m1 + 6)/2 for a positive integer m1 with m1 ≡ 0, 1 mod 4 or
n = (3m2

2 +m2 +6)/2 for a positive integer m2 with m2 ≡ 0, 3 mod 4. In each case the
nilpotent blocks have defect groups of order 3 generated by (the preimage of) a 3-cycle.

Proof: The properties of Ân used here are described in [20, 5.2]. We consider
Ân ≤ Ŝn, the double cover of the symmetric group. Write Z = Z(Ŝn) and X = XZ/Z

whenever X ≤ Ŝn. For convenience of notation we write Ŝn = Sn and Ân = An. Since
we are taking p odd, for every p-subgroup Q ≤ Ŝn we have CSn(Q) = CŜn

(Q) and

NSn(Q) = NŜn
(Q). Suppose that B is a nilpotent p-block of Ân with non-trivial defect

group D. Choose y ∈ D of order p. Then yZ is a product of say t disjoint p-cycles,
fixing the other n−pt points. Then CSn(yZ) ∼= (Zp oSt)×Sn−pt, and so CÂn

(y) contains

a normal elementary abelian p-group R such that R is generated by t disjoint p-cycles.
Now R is contained in a conjugate of D, and so in particular D contains an element x
for which xZ is a p-cycle. Write Q = 〈x〉. We have CAn(Q) ∼= Q×An−p. By [20, 5.2.6]

we have CÂn
(Q) ∼= Q× Ân−p (the point here being that the central extension of An−p

does not split). We have NSn(Q) ∼= NSp(Q)×Sn−p and NAn(Q) ∼= (NAp(Q)×An−p)〈a〉
where a2 = 1. Note that [NÂn

(Q) : CÂn
(Q)] = p− 1.

The p-blocks of CÂn
(Q) are in 1-1 correspondence with the p-blocks of Ân−p and

the action of NÂn
(Q) on these blocks is determined by the action of Ŝn−p on the blocks

of Ân−p. Hence for each block bQ of CÂn
(Q) we have [NÂn

(Q, bQ) : CÂn
(Q)] = (p−1)/2

or p− 1.
If p > 3, then this shows that NÂn

(Q, bQ)/CÂn
(Q) is not a p-group, contradicting

our choice of B nilpotent.
Now suppose that p = 3. We first show that D is generated by a 3-cycle. Suppose

that D is not cyclic. Then D contains an elementary abelian subgroup of order 9, and
in particular contains distinct elements x and y for which xZ and yZ is the product of
s and t disjoint 3-cycles respectively (briefly, consider the centralizer of gh, for which
ghZ is the product of all the disjoint 3-cycles in gZ and hZ. This has an elementary
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abelian subgroup contained in a conjugate of D and containing elements whose images
in Sn are all the 3-cycles making up ghZ). Then CSn(xZ) ∼= (Zp o Ss) × Sn−ps and
CSn(yZ) ∼= (Zp o St) × Sn−pt. Hence D contains elements g and h for which gZ and
hZ are each a 3-cycle and these 3-cycles are disjoint. Write R = 〈g, h〉 ≤ D. We have
CSn(R) ∼= R×Sn−6 and CAn(R) ∼= R×An−6. Now [NŜn

(R) : CŜn
(R)] = 8, and arguing

as above we see that [NÂn
(R, bR) : CÂn

(R)] is even for every block bR of CÂn
(R), a

contradiction.
Hence D is cyclic. Suppose that |D| > 3. Then D possesses an element y of order

9. By an argument similar to above we may assume yZ is a 9-cycle. But then y3Z is
a product of three distinct 3-cycles, which as we have seen cannot happen.

Hence D has order three and is generated by an element x where xZ is a single
3-cycle. We have CÂn

(D) ∼= D× Ân−3. The blocks of CÂn
(D) with defect group D are

in 1-1 correspondence with the blocks of defect zero of Ân−3, and the action of NÂn
(D)

on these blocks is given by the action of Ŝn−3 on the blocks of defect zero of Ân−3.
Hence the nilpotent blocks of Ân with defect group D are in 1-1 correspondence with
orbits of length two of blocks of defect zero of Ân−3 under the action of Ŝn−3.

Now blocks of defect zero of Ân−3 are covered by blocks of defect zero of Ŝn−3.
We consider faithful and non-faithful blocks separately. Note that B is faithful if and
only if the B-subpairs have kernel intersecting trivially with Z (i.e., if and only if they
correspond to faithful blocks of Ân−3).

Suppose that B is non-faithful. Blocks of defect zero correspond to 3-core parti-
tions of n − 3. By [23, 2.5.7] irreducible characters of Sn−3 remain irreducible when
restricted to An−3 if and only if the corresponding partition is not self-associate. Hence
[NÂn

(D, bD) : CÂn
(D)] = 1 if and only if the block of defect zero of An−3 corresponding

to bD is labelled by a self-associate partition, and so the result follows in this case from
Lemma 3.1.

Suppose that B is faithful. Blocks of defect zero correspond to 3̄-core bar parti-
tions of n− 3. By [27, p.212] faithful irreducible characters of Ŝn−3 remain irreducible
when restricted to Ân−3 if and only if the corresponding bar partition is odd. Hence
[NÂn

(D, bD) : CÂn
(D)] = 1 if and only if the block of defect zero of Ân−3 corresponding

to bD is labelled by an even 3̄-core bar partition, and so the result follows in this case
from Lemma 3.2. 2

We have not yet considered all the perfect central extensions of A6 and A7. However,
by the above theorem, neither yields a nilpotent 3-block with non-central defect group,
and further it is easy to check that there are no nilpotent blocks of positive defect for
the other odd primes.

It is appropriate here to extend our study to the double covers of the symmetric
groups.

Proposition 3.4 Let G = Ŝn be the double cover of the symmetric group Sn for n ≥ 5
and let p be an odd prime. If p ≥ 5, then G does not possess a nilpotent p-block
of positive defect. If p = 3, then every nilpotent block of positive defect is faithful.
These have defect one, and occur if and only if there is a positive integer m1 with
m1 ≡ 2, 3 mod 4 and n = (3m2

1 − m1 + 6)/2 or a positive integer m2 such that
m2 ≡ 1, 2 mod 4 and n = (3m2

2 +m2 + 6)/2.
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Proof: Suppose first that B is a non-faithful block of positive defect. By, for
example, [23, 6.2.2] l(B) =

∑
p(w1) · · · p(wp−1), where the sum runs over improper

partitions (w1, . . . , wp−1) of the weight w of B and p(x) is the number of partitions of
x. But p− 1 ≥ 2 and (w, 0, . . . , 0) and (0, w, 0, . . . , 0) are improper partitions of w, so
l(B) > 1 and B cannot be nilpotent.

Now suppose that B is faithful of positive defect. Then by [28] l(B) is at least
k((p−1)/2, w), the number of (p−1)/2-tuples of (possibly empty) partitions with sum
w, where again w is the weight of B. If w ≤ 2, then ((w), ∅, . . . , ∅) and ((1w), ∅, . . . , ∅)
are such (p − 1)/2-tuples of partitions, so l(B) > 1 and B cannot be nilpotent. Now
suppose that w = 1. If p ≥ 5, then (1, ∅, . . . , ∅) and (∅, 1, ∅, . . . , ∅) are such (p− 1)/2-
tuples, and again B cannot be nilpotent. We are left with the case w = 1 and p = 3.
By [28, 13.17] l(B) = 2 if the 3-core µ of B is even (in the sense that n− 3− r is even,
where r is the number of parts in µ), and l(B) = 1 if µ is odd. Note that since B has
cyclic defect groups, B is nilpotent if and only if l(B) = 1, and so the result follows
from Lemma 3.2. 2

We now turn our attention to Puig’s conjecture.

Lemma 3.5 Let G = Ŝn be the double cover of Sn, and let B be a block of G with
defect group D. If |D| > p2, then l(B) ≥ 3.

Proof: Suppose first that B is a non-faithful block. As above,

l(B) =
∑

p(w1) · · · p(wp−1),

where the sum runs over improper partitions (w1, . . . , wp−1) of the weight w of D. If
|D| > p2, then w ≥ 2. But (w, 0, . . . , 0), (0, w, 0, . . . , 0) and (w−1, 1, 0, . . . , 0) are three
such improper partitions, so l(B) ≥ 3.

If B is faithful, then by [28] l(B) is at least k((p−1)/2, w), the number of (p−1)/2-
tuples of (possibly empty) partitions with sum w, where again w is the weight of B.
We have w ≥ 2. Here ((w), ∅, . . . , ∅), ((1w), ∅, . . . , ∅) and ((w − 1, 1), 1, ∅, . . . , ∅) are
three such tuples, so l(B) ≥ 3. 2

Corollary 3.6 Let B a p-block of G for p odd, where G is quasisimple with G/Z(G) ∼=
An for some n. Then B is nilpotent if and only if l(bQ) = 1 for every B-subgroup
(Q, bQ).

Proof: If B has abelian defect group D, then this is [30]. So we may assume
|D| > p2. Suppose G�H, where H ∼= Ŝn, and let BH ∈ Blk(H) covering B. Then BH

has defect group D, and by Lemma 3.5 l(BH) ≥ 3. But l(B) ≥ l(BH)/2 > 1, so B is
not nilpotent, and of course we can take the B-subgroup (1, B) to show the proposed
equivalent condition is also not satisfied.

It remains to consider the exceptional covers, but in these cases it is easy to check
that every block with non-central defect groups has more than one irreducible Brauer
character. 2
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4 Sporadic groups

In this section we determine the nilpotent blocks with non-central defect groups of
quasisimple groups G where G/Z(G) is one of the 26 sporadic simple groups. Note
that due to Lemma 2.4 it suffices to consider the case Z(G) is a p′-group.

In order to provide a reasonably unified treatment of the classification of nilpotent
blocks of the sporadic groups, we work from [20, Table 5.3]. However, in all cases the
number of irreducible Brauer characters in the blocks are known, which would lead to
a shorter but less illuminating proof. To avoid an overly long proof we do use these
results in showing that Puig’s conjecture holds.

We use [20, Table 5.3] and apply the following simple results to demonstrate the
non-existence of such blocks in many cases:

Lemma 4.1 Suppose that D is a defect group for a nilpotent block of a finite group G.
Let x ∈ D have order p and write Q = 〈x〉 and R = Op(CG(Q)). Then

(i) there is no p-regular g ∈ NG(Q)− CG(Q) which fixes every block of CG(Q);
(ii) there is no p-regular g ∈ NG(R)− CG(R) which fixes every block of CG(R).

Proof: Note that R is contained in every defect group of every block of CG(Q).
Hence R ≤ D. The result then follows from the definition of a nilpotent block. 2

Lemma 4.2 Let Q be a p-subgroup of G. If |NG(Q)/CG(Q)| is prime to p and, for
every n, is strictly greater than the number of p-blocks of CG(Q) of dimension n (or
is greater than or equal to n in the case n is the dimension of the principal block of
CG(Q)), then Q cannot be a subgroup of a defect group of a nilpotent block of G.

Proof: In this case every p-block of CG(Q) must be fixed by a p-regular element
of NG(Q)− CG(Q), and we apply Lemma 4.1. 2

Lemma 4.3 Let B be a nilpotent block with defect group D, and let 1 6= Q ≤ Z(D).
Then CG(Q)/Q possesses a nilpotent block with defect group D/Q.

Proof: Let bD ∈ Blk(DCG(D)) with bGD = B. Now DCG(D) ≤ CG(Q), and

b = b
CG(Q)
D is nilpotent. D is the unique defect group of bD and bG = B, so D is a

defect group of b. There is a one-to-one correspondence between the blocks of CG(Q)
with defect group D and the blocks of CG(Q)/Q with defect group D/Q. Let b be the
correspondent of b. By Lemma 2.4 b is nilpotent. 2

Write Z = Z(G) and G = G/Z. Note that when Z is a p′-group, for every p-
subgroup Q of G we have CG(Q) = CG(Q) and NG(Q) = NG(Q).

Throughout our notation for the conjugacy classes of G follows that of [20].

Proposition 4.4 Let G be a quasisimple group such that G is a sporadic simple group,
with |G|p = p. Let B be a p-block of maximal defect of G. Then B is not nilpotent.
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Proof: Let D ∈ Sylp(G). Note that D is abelian. If CG(D) ≤ D, then CG(D) ≤
DZ and every p-block of CG(D) is NG(D)-stable. But p does not divide [NG(D) :
DCG(D)], whilst by Burnside’s transfer theorem we cannot have NG(D) = CG(D), so
a block with defect group D cannot be nilpotent. Hence, using [20, Table 5.3], we may
rule out all but the following cases: p = 3 and G = J1; p = 5 and G = M24,J1,J3,J4;
p = 7 and G = M24,J4,Co3, Co2, Suz, Ly, Ru, Fi22, Fi23, HN ; p = 11 and G = Co3,
Co1, Ly, Fi22, Fi23, Fi

′
24, HN , F2; p = 13 and G = Co1, Ru, Fi23, Fi

′
24, Th, F2;

p = 17 and G = F2, F1; p = 19 and G = F2, F1; p = 23 and G = F2, F1; p = 29 and
G = F1; p = 31 and G = F1.

Applying Lemma 4.2 with Q = D to these cases eliminates all but the case p = 3
and G = J1. Here CG(D) ∼= D × D10 and NG(D) ∼= S3 × D10, and it is clear that
NG(D) fixes every block of CG(D). 2

Theorem 4.5 Let B be a nilpotent p-block with non-central defect group D of a qua-
sisimple group G such that G is a sporadic simple group. Then |D| = 3 and G is one of
M23, J4, Ly. In each of these cases G does indeed possess a nilpotent block with defect
group D.

Proof: We need only consider the case p2 divides |G|.
Suppose that D is a non-central defect group of a nilpotent p-block B. We assume

that Z is a p′-group. Choose x ∈ D of order p, and write Q = 〈x〉. In each case NG(Q)
is given by [20, Table 5.3], and CG(Q) may be deduced using [14].

Let P = Op(NG(Q)). Then P ≤ D.
We eliminate each possibility for the conjugacy class containing x in turn using a

succession of methods until we are left with the three cases listed. For each of these
we then verify the existence of a nilpotent block with defect group Q.

Suppose that NG(Q) ∼= H1 ×H2 and CG(Q) ∼= Q×H2 for some H1, H2 such that
Q/H1, and H1/Q not a p-group. Then every p-block of CG(Q) is fixed by NG(Q) and
NG(Q)/CG(Q) is not a p-group, so B cannot be nilpotent. In this way we eliminate the
following pairs (G,C), where C is the conjugacy class in G containing xZ: (M11, 3A),
(M12, 3B), (M24, 3B), (J2, 3B), (J2, 5), (Co3, 3C), (Co3, 5B), (Co2, 3B), (Co2, 5B),
(Co1, 3D), (HS, 3A), (HS, 5B), (He, 3B), (He, 7A), (He, 7B), (Ru, 5B), (Fi22, 3A),
(Fi22, 5A), (Fi23, 3A), (Fi23, 5A), (Fi′24, 7A), (F2, 3A), (F2, 5A), (F1, 3C).

Suppose that CG(P ) is a p-group and NG(P )/CG(P ) is not a p-group. Then every
p-block of CG(P ) is NG(P )-stable, and B cannot be nilpotent. In this way we may elim-
inate the pairs (M12, 3A), (J3, 3B), (J4, 11), (Co3, 3A), (Co3, 3B), (Co3, 5A), (Co2, 3A),
(Co2, 5A), (Co1, 3C), (Co1, 5C), (HS, 5A), (HS, 5C), (McL, 3), (McL, 5), (Suz, 3B),
(He, 7C), (He, 7D), (He, 7E), (Ly, 3B), (Ly, 5), (Ru, 5A), (O′N, 7), (Fi22, 3B), (Fi22, 3C),
(Fi22, 3D), (Fi23, 3B), (Fi23, 3C), (Fi′24, 3B) [since in this case no involution in G cen-
tralizes a subgroup of the form 31+10], (Fi′24, 3C) [since in this case no involution in G
centralizes a subgroup of the form C7

3 ], (Fi′24, 7B), (HN, 3B), (HN, 5B), (HN, 5C),
(HN, 5D), (HN, 5E), (Th, 3B), (Th, 3C), (Th, 5A), (F2, 3B) [since no involution in
G centralizes a subgroup of the form 31+8], (F2, 5B), (F1, 3B), (F1, 5B), (F1, 7B),
(F1, 13B).

Suppose that NG(Q) ∼= (H1 ×H2)n, where n is an integer, and CG(Q) ≤ H1 ×H2

for some H1 and H2 such that Q is a proper normal self-centralizing Sylow p-subgroup
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of H1. Then H1 ≤ NG(Q) fixes every p-block of CG(Q) and NG(Q)/CG(Q) is not a
p-group. It follows that B cannot be nilpotent. In this way we may eliminate the pairs
(Co1, 5A), (Co1, 5B), (Co1, 7), (Suz, 3C), (Suz, 5), (He, 5A), (O′N, 3A), (Fi′24, 3E),
(Fi′24, 5A), (HN, 5A), (Th, 7A), (F2, 7A), (F1, 5A), (F1, 7A), (F1, 11A), (F1, 13A).

Suppose that NG(Q) ∼= (H1×H2)n for some H1 and H2, where n is an integer which
is not a power of p, Q ≤ H1, and Hin (with the appropriate action) fixes every p-block
of Hi for i = 1, 2. Then NG(Q) fixes every p-block of CG(Q) and NG(Q)/CG(Q) is not a
p-group. It follows that B cannot be nilpotent. In this way we may eliminate the pairs
(M22, 3A), (M24, 3A), (J2, 3A), (J3, 3A), (Co1, 3A), (Co1, 3B), (Suz, 3A), (He, 3A),
(Ru, 3A), (Fi′24, 3A), (HN, 3A), (Th, 3A), (F1, 3A).

The only cases left unaccounted for are Fi23 and Fi′24, where in each case xZ
belongs to the class labelled 3D. Suppose G = Fi23 or Fi′24 and xZ ∈ 3D. In this
case Z = 1 (since p = 3). We have already seen that a nilpotent 3-block of G cannot
contain elements of order three outside of 3D. Note that x is conjugate to x−1 (to
see this consider the orders of the centralizers). Irreducible characters in such a block
must vanish on 3A, 3B and 3C. This happens for only one irreducible character, and
this lies in a block of defect zero.

IfG = M23 and p = 3, then Z = 1 andNG(Q) ∼= (Z3×A5)·2, CG(Q) ∼= Z3×A5. Note
that M23 possesses just one 3-block of maximal defect, which cannot then be nilpotent.
Hence we may assume D = Q, and so if bQ is a block of CG(Q) with bGQ = B, then bQ
has defect group Q. Now CG(Q) has two blocks with defect group Q. The action of
NG(Q) on the blocks of CG(Q) is given by the action of S5 on the blocks of A5, so the
two blocks with defect group Q are fused by NG(Q). Hence [NG(Q, bQ) : CG(Q)] = 1,
and bGQ is nilpotent.

If G = J4 and p = 3, then Z = 1 and NG(Q) ∼= (6M22) · 2 and CG(Q) ∼= (6M22).
By [14] 2M22 possesses precisely two 3-blocks of defect zero fused by 2M222 (the rest
are fixed). These correspond to two 3-blocks of CG(Q) with defect group Q fused
by NG(Q). Hence G possesses a nilpotent block with defect group Q (the Brauer
correspondent of the above blocks of CG(Q)).

If G = Ly and x ∈ 3A, then Z = 1 and G possesses a nilpotent block with defect
group Q, since NG(Q) ∼= (3McL) · 2, CG(Q) ∼= 3McL, and McL possesses precisely
two 3-blocks of defect zero which are fused in McL · 2 (all other 3-blocks of McL are
fixed by McL · 2). These correspond to two 3-blocks of CG(Q) with defect group Q
fused by NG(Q). Hence G possesses a nilpotent block with defect group Q (the Brauer
correspondent of the above blocks of CG(Q)).

Note that we have shown in particular that whenever p divides the Schur multiplier
of a sporadic simple group, there is no nilpotent block of positive defect of the quotient
group (by the Sylow p-subgroup of the centre). 2

We conclude:

Proposition 4.6 Let G be a quasisimple group such that G/Z(G) is a sporadic simple
group and let p be an odd prime. If B is a nilpotent block of G, then B has defect
groups of order at most three.

We now address Puig’s conjecture.
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Proposition 4.7 Let G be a quasisimple group such that G/Z(G) is a sporadic simple
group and let p be an odd prime. Let B be a p-block of G. If B has positive defect, then
l(B) > 1. In particular, B is nilpotent if and only if l(bQ) = 1 for every B-subgroup
(Q, bQ).

Proof: We may assume that Z(G) is a p′-group. Let D be a defect group of
B. If D is cyclic, then the result follows from the theory of blocks with cyclic defect
groups. In the following table we list all the numbers of irreducible Brauer characters
in blocks with non-cyclic defect groups, along with a reference. A ’*’ will be used to
denote a faithful block in a group with non-trivial centre. The result then follows from
examination of the table.

G/Z(G) |D| `(B) reference

M11 32 7 [18]

M12 33/33 8/8∗ [18]

M22 32/32/32 5/5∗/5∗ [18]

M23 32 7 [18]

M24 33 7 [18]

J2 33/33/52/52 8/8∗/6/6∗ [18]

J3 35 8 [18]

J4 33/33/32/113 9/9/5/40 [8]/[10]

HS 32/32/32/53/53 7/7/5∗/10/10∗ [18]

McL 36/53/53 10/12/12∗ [18]

Suz 37/32/37 13/5/10∗ [18]

Ly 37/56 21/35

He 33/32/52/73 7/7/14/10 [18]

Ru 33/33/53/53 9/9∗/18/18∗ [18]

O′N 34/32/73/73 14/5/19/19∗ [18]

Co3 37/53 20/18 [18]

Co2 36/53 23/16 [18]

Co1 39/33/32/54/52/72 29/7/5/29/12/21 [7]

Fi22 39/39/52/52/52/52 22/18∗/16/16∗/16∗/16∗ [18]

Fi23 313/52/52 32/16/16 [5]

Fi′24 316/32/52/52/52/52/52 25/4/16/16/14/16∗/16∗ [4]

52/52/73/73/73 14∗/14∗/22/22∗/22∗ [4]

Th 310/53/72 10/30/24

HN 36/32/56 20/7/16 [6]

F2 = B 313/32/32/32/313 71/7/7/5/31∗ [9]

56/52/52/56/72/72/72/72 51/16/16/33∗/24/24/21/24∗ [9]

F1 = M 320/33/59/52/76/72/112/133 83/7/91/16/70/24/45/52 [18]

Table 1: Numbers of irreducible Brauer characters in blocks with non-cyclic, non-
central defect groups of sporadic groups
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If G = Ly and p = 3, then by [14] G has thirty 3-regular conjugacy classes. By [31],
aside from the principal block, G has five 3-blocks of defect zero and two 3-blocks of
defect one. Since we have shown that neither of these blocks of defect one is nilpotent,
it follows that they each have two irreducible Brauer characters. Hence the principal
block has 21 irreducible Brauer characters for p = 3. A similar computation for p = 5
shows that the principal 5-block of Ly has 35 irreducible Brauer characters (and this
is the unique 5-block with non-cyclic defect groups).

If G = Th and p = 3, then by [14] G has sixteen 3-regular conjugacy classes. By [32]
G has four 3-blocks of defect zero and one 3-block of defect one (which we have seen
cannot be nilpotent, so has two irreducible Brauer characters. Hence the principal
block 3-possesses ten irreducible Brauer characters. A similar computation for p = 5
shows that the principal 5-block of Th has 30 irreducible Brauer characters (and this
is the unique 5-block with non-cyclic defect groups). For p = 7, by [32] G has fourteen
blocks of defect zero, a block of defect one (with six irreducible Brauer characters, by
consideration of the inertial quotient) and the principal block, which must then have
24 irreducible Brauer characters.

If G/Z(G) = Fi′24, then the result follows from [4] when p = 3, and when p = 5
or 7 for non-faithful blocks in the case |Z(G)| = 3. Suppose |Z(G)| = 3, and consider
faithful blocks B with a defect group D covering a block, say c of Z(G). Suppose first
p = 5. We have D = 52 and from [4, p.141] k(B) = 20. Note that G has only one
conjugacy class of elements of order 5. If x ∈ D\{1} and b ∈ Blk(CG(x)) with bG = B,
then CG(x) = 3×5×A9 and b = c×B0(5)×b′ for some b′ ∈ Blk(A9) with D(b′) = 5. As
shown in [4, p.114] A9 has three such blocks b′0 = B0(A9), b

′
1, b

′
2 and l(b′0) = l(b′1) = 4,

l(b′2) = 2. The canonical characters of the root blocks of b′2 and b′1 are linear and degree
3 characters of CA9(5) = 5 × A4, respectively. Since NG(D) = 3.(52:4A4 × A4).2 and
a Sylow 3-subgroup of NG(D) is isomorphic to 31+2

+ , it follows that c×B0(5)× b′0 and
c × B0(5) × b′2 induce the same block B of G and so l(B) = 20 − 4 − 2 = 14. Also
c×B0(5)× b′1 induces another block B of G and l(B) = 20− 4 = 16. If p = 7, then by
[4, p.141], k(B) = k(B0(Fi

′
24)) and CG(x) = 3 × CFi′24

(x) for any x ∈ D \ {1}. Thus
l(B) = l(B0(Fi24)) = 22. 2

5 Notation for classical groups and their blocks

Let V be a linear, unitary, non-degenerate orthogonal or symplectic space over the field
Fq, where q = ra for some prime r 6= p. We will follow the notation of [3], [11], [16]
and [17].

If V is orthogonal (and q is odd), then there is a choice of equivalence classes of
quadratic forms. Write η(V ) for the type of V as defined in [17], so η(V ) = η = + or
−. Write η(V ) = + if V is linear and η(V ) = − if V is unitary. If V is non-degenerate
orthogonal or symplectic, then denote by I(V ) the group of isometries on V and let
I0(V ) = I(V ) ∩ SL(V ).

If V is symplectic, then I(V ) = I0(V ) = Sp2n(q).
If V is a (2n + 1)-dimensional orthogonal space, then I(V ) = 〈−1V 〉 × I0(V ) with

I0(V ) = SO2n+1(q).
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If V is a 2n-dimensional orthogonal space, then I(V ) = Oη(V ) = Oη
2n(q) and

I0(V ) = SOη
2n(q).

If V is a 2n-dimensional non-degenerate orthogonal or symplectic space, then denote
by J0(V ) the conformal isometries of V with square determinant. If V is orthogonal
of dimensional at least two, then write D0(V ) for the special Clifford group of V (cf.
[17]).

Denote by GL+(V ) the general linear group GL(V ) and GL−(V ) the unitary group
U(V ).

Let G = GLη(V ) or I(V ). Write Fq = Fq(G) for the set of polynomials (with
coefficients in Fq) serving as elementary divisors for semisimple elements of G (cf. [3,
p.6]). For Γ ∈ Fq(G), let dΓ be the degree of Γ, and δΓ be the reduced degree defined
as in [3], [16] and [17]. So δΓ = dΓ or δΓ = 1

2
dΓ according as dΓ is even or odd (note

that if V is symplectic or orthogonal, Γ must have even degree unless Γ = X ± 1).
If G = GL(V ), then let εΓ = 1. Otherwise εΓ is given by [3, p.6]. Let eΓ be the

multiplicative order of εΓq
δΓ modulo p. Thus we may write eΓδΓ = epαΓδ′Γ for some αΓ

and δ′Γ with p - δ′Γ, where e = eX−1.
Given a semisimple element s ∈ G, there is a unique orthogonal decomposition

V =
∑

Γ∈Fq
VΓ(s), with s =

∏
Γ∈Fq

s(Γ), where the VΓ(s) are nondegenerate subspaces

of V and s(Γ) ∈ GL(VΓ(s)), U(VΓ(s)) or I(VΓ(s)) (depending on G) has minimal
polynomial Γ. This is called the primary decomposition of s. Write mΓ(s) for the
multiplicity of Γ in s(Γ). We have CG(s) =

∏
Γ∈Fq

CΓ(s), where CΓ(s) = I(VΓ(s)) or

GLεΓ(mΓ(s), qδΓ) as appropriate.

6 Blocks of linear and unitary groups

Suppose G = GLη
n(q) = GLη(V ) and p is odd and distinct to r, and let B be a p-block

of G with a defect group D and label (s, κ). Then we may write

V = V0 ⊥ V+, D = D0 ×D+, s = s0 × s+, (6.1)

where V0 = CV (D), V+ = [D,V ], s0 ∈ G0 = GLη(V0) and s+ ∈ G+ := GLη(V+). For
convenience we denote GLη(V ) by G(V ) and SLη(V ) by S(V ).

Theorem 6.1 Let G = GLη(V ) = GLη(n, q) and suppose p is odd with p - q. Then
the following are equivalent.

(a) B is a nilpotent block of G.
(b) mΓ(s+) = eΓ = 1 for all Γ ∈ Fq which are elementary divisors of s+.
(c) κΓ is a eΓ-core of mΓ(s) whenever e - δΓ, and mΓ(s) ≤ 1 whenever e | δΓ, where

κΓ = ∅ is viewed as an eΓ-core of 0 = mΓ(s).
(d) Let (D, bD) be a Sylow B-subgroup and θ the canonical character of bD. Then

CG(D) = G0 × C+ and θ = θ0 × θ+, where C+ := CG+(D+) is regular in G+, θ0 is

an irreducible character of defect 0 of G0 labelled by (s0, κ) and θ+ = ±RC+

T+
(s+) with

T+ = CC+(s+) a torus of both G+ and C+, and D+ = Op(T+). Here R
C+

T+
(s+) is the

Deligne-Lusztig generalized character.
In particular, if B is nilpotent, then D is abelian.
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Proof: Let s+ =
∏

Γ s(Γ) be a primary decomposition, so that V+ =
⊕

Γ VΓ with
VΓ the underlying space of s(Γ). Write mΓ for mΓ(s+). Then

CG+(s+) =
∏
Γ

CΓ, (6.2)

where CΓ
∼= GLεΓ(mΓ, q

δΓ). We may suppose D+ ∈ Sylp(CG+(s+)), so that

D+ =
∏
Γ

DΓ, DΓ ∈ Sylp(CΓ). (6.3)

So D is a direct product of wreath product p-groups.
Let Γ be an elementary divisor of s+. Since CVΓ

(DΓ) = 0, it follows that p divides
qδΓmΓ − εΓ and so eΓ | mΓ. Hence we may write mΓ = eΓwΓ for some wΓ. Let A(D)
be the subgroup of D generated by all the abelian normal subgroups of D. By [1,
Theorem 2], A(D) is the base subgroup of D. Write R = A(D). Then

R = D0 ×
∏
Γ

(RΓ)wΓ , CG(R) = G0 ×
∏
Γ

(KΓ)wΓ , KΓ
∼= GLε(δ′Γ, q

epαΓ ) (6.4)

where ε = εX−1 and RΓ = Op(Z(KΓ)) is cyclic and (RΓ)wΓ is a diagonal subgroup of
GLεΓ(wΓ, q

δΓeΓ) ≤ CΓ. Thus CGΓ
((RΓ)wΓ) = (KΓ)wΓ , CG(R) is regular in G,

NGΓ
((RΓ)wΓ) = KΓ o S(wΓ),

and we may suppose s ∈ CG(R), where GΓ := G(VΓ) and S(m) is the symmetric group
on m letters.

Suppose w∆ ≥ 2 for some ∆. Then there is P (D∆) ≤ (R∆)w∆ such that

CG∆
(P (D∆)) = (K∆)w∆−2 ×GLε(2δ′∆, q

epα∆ ) and P (D∆) = Op(CG∆
(P (D∆))).

Thus CC∆
(P (D∆)) = GLε∆(1, qδ∆e∆)w∆−2 ×GLε∆(2, qδ∆e∆) and

NCG∆
(P (D∆))((R∆)w∆) = (K∆)w∆−2 ×K∆ o S(2).

There is an element y∆ of (NC∆
((R∆)w∆)∩CG∆

(P (D∆))) \CC∆
((R∆)w∆) which swaps

exactly two factorsK∆ in CG∆
((R∆)w∆), |y∆| = 4, y2

∆ ∈ CC∆
((R∆)w∆) and det(y∆) = 1.

Writing yΓ := 1 when Γ 6= ∆, define

y := 1V0 ×
∏
Γ

yΓ and P (D) := D0 ×
∏
Γ6=∆

(RΓ)wΓ × P (D∆). (6.5)

Then y ∈ (NCG(P (D))(R)∩CG(s))\CG(R) and y2 ∈ CG(R). Let (R, bR) be aB-subgroup,
so that D(bR) = R and we may suppose bR ⊆ Ep(CG(R), (s)). Since y ∈ CG(s), it
follows that y ∈ NG(R, bR) \ CG(R), so B is not nilpotent, a contradiction. Thus
mΓ = eΓ for all Γ and D is abelian with each DΓ cyclic.

For each Γ,

NGLεΓ (eΓ,qδΓ )(DΓ) = 〈τΓ, CGLεΓ (eΓ,qδΓ )(DΓ)〉, CGLεΓ (eΓ,qδΓ )(DΓ) = GLεΓ(1, qeΓδΓ),
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where τΓ ∈ GLεΓ(eΓ, q
δΓ) has order eΓ modulo GLεΓ(1, qeΓδΓ). If τ = 1V0 ×

∏
Γ τΓ, then

τ ∈ NG(D)∩CG(s) and so τ ∈ NG(D, bD), where bD is the block of CG(D) labelled by
(s, κ).

Since eΓ and p are coprime, it follows that τ is a p′-element, eΓ = 1 and CΓ =
GLεΓ(1, qδΓ). In particular, CG+(s+) is a torus and e | δΓ.

Conversely, if mΓ(s+) = eΓ = 1, then CΓ = GLεΓ(1, qδΓ) and so NCΓ
(DΓ) =

CCΓ
(DΓ) = CΓ. Thus D is abelian,

NCG(s)(D) = CCG(s)(D) = CG(s)

and NG(D, bD) = CG(D). By Proposition 2.1, B is nilpotent.
Note that eΓ = 1 if and only if e | δΓ, so since D is a Sylow p-subgroup of

CG(s), it follows that mΓ(s0) = 0 whenever mΓ(s+) = 1, so that mΓ(s) = 1. If
mΓ(s0) = mΓ(s) 6= 0, then by definition, κΓ is an eΓ-core of mΓ(s). The equivalences
of (b), (c) and (d) now follow by [11] and [16]. 2

For integers c and m, we write pc‖m when pc | m and pc+1 - m.

Remark 6.2 In the notation of the proof above, we may suppose the element τ ∈
CG+(s+) has determinant 1 whenever eΓ ≥ 2 for some Γ.

Proof We may suppose q = qδΓ , so that eΓ = e. Let T be the diagonal maximal
torus of G = GL(F ⊗ V ), σ the Frobenius map of G such that CG(σ) = GLε(e, q),
where F is the algebraic closure of Fq.

Choose matrices Pij (with i 6= j) of G such that Pij acts on T as the permutation
swapping the (i, i) and (j, j) entries of T, the entries of Pij are 1 or −1, det(Pij) = 1
and Pij is fixed by σ. If W is generated by the matrices Pij, then NG(T) = TW and
WT/T ∼= S(e).

Note ωσ = ω for each ω ∈ W . Let ω0 ∈ W such that

CT(σω0) ∼= GLε(1, qe),

so that ω0 acts on T as the cycle (1, 2, · · · , e). Now CT(σω0) is conjugate in G to
the Coxeter torus GLε(1, qe) of CG(σ) and ω0 normalizes CT(σω0). Thus there is an
element β ∈ SLη(e, q) such that β normalizes the torus GLε(1, qe) and β has order e
modulo GLε(1, qe). Since NGLε(e,q)(GLε(1, qe))/GLε(1, qe) ∼= ZZe, it follows that

NGLε(e,q)(GLε(1, qe)) = 〈β,GLε(1, qe)〉

and we may suppose τ = β.

7 A set of technical conditions

In order to investigate nilpotent blocks of exceptional groups of Lie type it is not
sufficient just to find the nilpotent blocks of classical groups. We need in addition
some somewhat technical properties which we will identify in classical groups and their
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extensions by diagonal automorphisms which relate to nilpotency (in particular, they
will be used to examine centralizers of elements of defect groups of nilpotent blocks).

These properties also ensure that Puig’s conjecture holds for the groups under
consideration.

We state these properties in this section, along with some general results which will
be needed in proving that they hold for classical groups.

Let G be a finite group, Q a p-subgroup of G, and B ∈ Blk(G). If p is odd, we
denote by A(Q) the subgroup of Q generated by all the abelian normal subgroups of
Q. Recall that a B-subgroup (R, bR) is called self-centralizing if Z(R) is a defect group
of bR ∈ Blk(CG(R)).

We will prove for some finite groups of Lie type that one of (a)-(d) of the following
holds. A feature of these properties is that none can be satisfied by a nilpotent block
with non-abelian defect groups.

Property 7.1 Let K be a normal subgroup of a finite group H, and let B ∈ Blk(K)
and BH ∈ Blk(H) such that BH covers B.

(a) There exist B-subgroups (P, g) ≤ (R, b), where R is abelian, with abelian defect
groups D(g) and D(b) respectively such that D(g) = D(b), and an element y ∈
NCK(P )(R) such that y4 = 1, [y, x] 6∈ Z(K) for some x ∈ R and y2 ∈ CK(R),
and such that θy = θ, where θ is the canonical character of b. There exist BH-
subgroups (P, gH) ≤ (R, bH) where gH covers g, bH covers b, such that byH = bH
and D(bH) = D(gH) is abelian for defect groups D(bH) and D(gH) of bH and gH

respectively.

(a∗) Property (a) above holds, and there exist subgroups Ni �Mi of H, and characters
θi ∈ Irr(Ni) for i = 1, 2 such that Mi/Ni is abelian,

Z(K) ≤ N1 ×N2 ≤ CK(R) ≤ CH(R) ≤M1 ◦M2,

θ covers θ1× θ2, Z0 ∩N2 = 1, θ2 has a y-stable extension to M2 and [y, x] = 1 or
[y, x] ∈ Z0N2 according as x ∈M1 or M2, where Z0 ≤ Z(M1) ∩ Z(M2) such that
M1 ◦M2 is a central product over Z0

(b) D(B) ∼= 31+2
+ , `(B) ≥ 2, and either D(BH) = D(B) or D(BH) ∼= Z3 o Z3.

(c) D(B) = 32, `(B) ≥ 2, and either D(BH) = D(B) or D(BH) ∼= 31+2
+ .

(d) Both D(B) and D(BH) are abelian.

Remark 7.2 (i) Suppose that (P, g) ≤ (R, b) are B-subgroups with abelian defect
groups D(g) and D(b), and R is abelian. By [15, Lemma 4.1], there exists a BH-
subgroup (P, gH) such that gH covers g. Since R ≤ D(b) is abelian and (P, g) ≤ (R, b),
it follows that (R, b) is a g-subgroup and by [15, Lemma 4.1] again, there exists a gH-
subgroup (R, bH) such that bH covers b. Thus (R, bH) is a BH-subgroup and (P, gH) ≤
(R, bH).

(ii) Note that in the notation of the proof of Theorem 6.1, (R, bR) is self-centralizing.
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We also observe that there is some redundancy in (a) when (a∗) holds:

Remark 7.3 In the notation of Property 7.1 (a) and (a∗) suppose N1 × N2 ≤ E ≤
M1 ◦M2 such that y normalizes E and suppose ϕ ∈ Irr(E | θ1 × θ2). Then ϕy = ϕ.

Proof: Since ϕ has an extension ϕ̃ to EZ0, it follows that we may suppose Z0 ≤ E.
Let πi : (M1 ◦M2) → Mi/Z0 be the canonical projection and let Ei/Z0 = πi(E) for
some Ei ≤Mi. Then

N1 ×N2 ≤ E ≤ E1 ◦ E2 ≤M1 ◦M2.

Let ζ be the y-stable extension of θ2 to M2, and set θ̃2 = ζ|E2 . Then θ̃2 is an extension
of θ2 to E2 which is stabilized by y. Since [y, x] = 1 or N2Z0 according as x ∈ M1 or
x ∈ M2, it follows that y centralizes E1 and [y, x] ∈ N2Z0 for any x ∈ E2. By Lemma
2.7, ϕy = ϕ. 2

Applying Remark 7.3 to the canonical characters of b and bH , we see that in the
notation of (a), θy = θ and byH = bH are automatically satisfied if the other parts of
(a∗) hold.

Before stating the key consequence of Property 7.1, we need the following:

Lemma 7.4 Let B be a block of a finite group G and suppose there are B-subgroups
(P, bP ) ≤ (R, bR) such that R is abelian, bP has abelian defect groups and there is p-
regular element y ∈ NCG(P )(R) \CG(R) such that byR = bR. Then there is a B-subgroup
(Q, bQ) such that l(bQ) > 1.

Proof: For convenience write L = CG(P ). Note first that bP is not nilpotent, since
yCG(R) ∈ NL(R, bR)/CG(R) is not a p-element and (R, bR) is a bP -subgroup. Hence by
Lemma 2.4 the unique block bP of L := L/P dominated by bP is not nilpotent either.
But bP has abelian defect groups, so by [30, Theorem 3] there is a bP -subgroup (Q, bQ),

where Q = Q/P for some Q ≥ P , such that l(bQ) > 1.

Note that CL(Q)�CL(Q) and CL(Q)/CL(Q) is a p-group. By [33, Lemma 1] there
is a bP -subgroup (Q, bQ) such that bQ is the unique block of CL(Q) covering the block

b′
Q

of CL(Q) dominated by bQ. Note that l(bQ) = l(b′
Q
) = l(bQ) > 1. But P ≤ Q, so

(Q, bQ) is also a B-subgroup, and we are done. 2

We make the key observation, and see also that the conjecture of Puig is a conse-
quence of any of Properties 7.1 (a)-(d).

Corollary 7.5 Suppose one of Property 7.1 (a) − (d) holds for a block B. If B has
non-abelian defect groups, then there is a B-subgroup (Q, bQ) such that l(bQ) > 1, and
hence B is not nilpotent. In particular, B is nilpotent if and only if l(bQ) = 1 for every
B-subgroup (Q, bQ).

Proof: If (a) holds, then the result follows immediately from Lemma 7.4, since B
is not nilpotent and there is a B-subgroup (Q, bQ) such that l(bQ) > 1. If (b) or (c)
holds, then l(B) > 1, so B is not nilpotent, and we may take (Q, bQ) = (1, B). If (d)
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holds, then this is [30, Theorem 3]. 2

We prove a lemma which will be useful in establishing the given properties. Let H
be a finite group, K�H, Z ≤ Z(H)∩K and K := K/Z ≤ H := H/Z. Let B ∈ Blk(K)
and B ∈ Blk(K) dominating B, and (Q, bQ) a B-subgroup. Let γ : H → H be the
natural homomorphism, and write X = γ(X) for any X ⊆ H,

If Z is a p′-group, then (Q, b̄Q) is defined in Section 2 and it is a B-subgroup.
Suppose Z is a p-group. Then γ−1(CK(Q)) ≤ NK(QZ) and γ−1(CK(Q))/CK(Q) is

a p-group. Thus γ−1(CK(Q)) has a unique block b̂Q covering bQ and we denote b̄Q
the block of CK(Q) corresponding to b̂Q, so that by [33, Lemma 1], (Q, b̄Q) is also a
B-subgroup.

In general, since K ∼= (K/Op(Z))/(Z/Op(Z)) and Z/Op(Z) ≤ Z(K/Op(Z)), it
follows that (Q, b̄Q) is defined and is a B-subgroup.

Lemma 7.6 Let H be a finite group, K �H, Z ≤ Z(H) ∩K. Define K := K/Z and
H := H/Z. Let B ∈ Blk(K) and B ∈ Blk(K) dominating B. Suppose B-subgroups
(P, g) ≤ (R, b) satisfy Property 7.1 (a∗), and suppose Z(K) = Z(K)/Z. In addition, if
Z = Op(Z), then suppose, moreover that CH(P )/Z = CH(P ) and CH(R)/Z = CH(R).
Then the B-subgroups (P , ḡ) ≤ (R, b̄) satisfies Property 7.1 (a∗).

Proof: Let BH ∈ Blk(H) covering B, and BH ∈ Blk(H) dominating BH and
χ ∈ Irr(BH), so that χ covers some ψ ∈ Irr(B). But Irr(BH) ⊆ Irr(BH) and Irr(B) ⊆
Irr(B), so BH covers B.

Let f be the unique block of Z covered by B. Then each character χ in Irr(B)
covers a character in Irr(f). Since Irr(B) ⊆ Irr(B), it follows that f is the principal
block. Since (P, g) is a B-subgroup and Z ≤ Z(K) and since B covers f , it follows that
g covers f , and similarly, b covers f . The same applies to BH and to BH-subgroups.

Since CK(PZ) = CK(P ), it follows that we may suppose Op(Z) ≤ P . Let y ∈
NCK(P )(R) such that y4 = 1, [y, x] 6∈ Z(K) for some x ∈ R, y2 ∈ CK(R), and suppose
Ni and Mi are subgroups of H, and θi ∈ Irr(Ni) for i = 1, 2, such that Mi/Ni is abelian,

Z ≤ Z(K) ≤ N1 ×N2 ≤ CK(R) ≤ CH(R) ≤M1 ◦M2,

θ covers θ1 × θ2, Z0 ∩N2 = 1, θ2 has a y-stable extension θ̃2 to M2 and [y, x] = 1 or in
Z0N2 according as x ∈ M1 or M2, where Z0 ≤ Z(M1) ∩ Z(M2) such that M1 ◦M2 is
the central product over Z0 and θ is the canonical character of b.

It suffices to consider the cases p-group and a p′-group separately. Then by [33,
Lemma 1 (iii)] and Lemma 2.5, (P , ḡ) ≤ (R, b̄) are B-subgroups. If Z is a p′-group, then
CK(R)/Z = CK(R). If Z is a p-group, then CH(R)/Z = CH(R), γ−1(CH(R)) = CH(R)
and so γ−1(CK(R)) = CK(R). Thus in either case CK(R)/Z = CK(R) and D(b)Z/Z =
D(b̄). Similarly, D(ḡ) = D(g)Z/Z, and D(ḡ) = D(b̄) is abelian as D(g) = D(b) is
abelian.

Let ȳ = γ(y), so that ȳ4 = 1, ȳ ∈ CK(P )∩NK(R), ȳ2 ∈ CK(R). Since [y, x] 6∈ Z(K)
for some x ∈ R and since Z(K) = Z(K)/Z, it follows that [ȳ, x̄] 6∈ Z(K) and in
particular, ȳ 6∈ CK(R).

Let N i = γ(Ni) and M i = γ(Mi). Then N i �M i and M i/N i is abelian such that

Z(K) ≤ N1 ×N2 ≤ CK(R) ≤ CH(R) ≤M1 ◦M2,
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where M1 ◦M2 is the central product over Z0 = γ(Z0).
Since Z ≤ Z(K) ≤ N1×N2 and θ is the canonical character of b, it follows that θ is

the lift of the canonical character θ̄ of b̄. Similarly, since θ covers θ1×θ2, it follows that
Z ≤ ker(θ1 × θ2) and θ1 × θ2 is the lift of θ̄1 × θ̄2 for some θ̄i ∈ Irr(N i). In particular,
θ̄ ∈ Irr(CK(R) | θ̄1× θ̄2). If ϕ ∈ Irr(M1◦M2 | θ1×θ2), then by Lemma 2.7 ϕ = ψ◦(θ̃2λ)
for some ψ ∈ Irr(M1 | θ1) and λ ∈ Irr(M2/Z0N2). Since [y, x] ∈ N2Z0 for all x ∈M2, it
follows that λy = λ and so θ̃2λ is y-invariant. But Z ≤ ker(ϕ), so Z ∩M2 ≤ ker(θ̃2λ),
and θ̃2λ can be viewed as a character of Irr(M2), which is a ȳ-invariant extension of θ̄2

to M2. Thus Property 7.1 (a∗) holds for B.
Similarly, if (P, gH) ≤ (R, bH) are BH-blocks such that D(gH) = D(bH) is abelian,

and gH and bH cover g and b, respectively, then there exist BH-subgroups (P , ḡH) ≤
(R, b̄H) such that ḡH is dominated by gH and b̄H is dominated by bH and D(ḡH) =
D(gH)Z/Z and D(b̄H) = D(bH)Z/Z. Thus D(ḡH) = D(b̄H) = D(bH)Z/Z is abelian.

Since gH covers g, it follows that the canonical character θH of gH covers the canon-
ical character θ of g. But θH is the lift of the canonical character of ḡH and θ is the
lift of the canonical character of ḡ, so ḡH covers ḡ. Similarly, b̄H covers b̄. This proves
that Property 7.1 (a) holds for (P , ḡ) ≤ (R, b̄). 2

8 Classical groups

Suppose p is odd. In this section we demonstrate that every nilpotent block of a
classical group of has abelian defect groups.

Proposition 8.1 Let K := SLη
n(q) ≤ H ≤ G := GLη

n(q) = GLη(V ), Z ≤ Z(K),
B ∈ Blk(K), BH ∈ Blk(H) covering B. Let BG ∈ Blk(G) be a weakly regular cover of
BH . Write R := A(D(BG)) ∩K. Then Property 7.1 (a∗) holds for some B-subgroups
(P, g) ≤ (R, b) with CH(P )/Z = CH(P ) and CH(R)/Z = CH(R), or Property 7.1 (b)
or (d) holds, where X = XZ/Z for any X ≤ G. Moreover, if Property 7.1 (b) holds,
then n = 3d with gcd(6, d) = 1 and 3‖(q − η).

Proof: Suppose BG is labelled by (s, κ). Since BH covers B, it follows that
D(B) = D(BH)∩K for some defect group D(BH). There exists a defect group D(BG)
such that D(BH) = D(BG) ∩H, so

D(B) = D(BH) ∩K = D(BG) ∩K and D(BH) = D(BG) ∩H.

We may suppose D(BG) ∈ Sylp(CG(s)).
Suppose the decompositions V = V0 ⊥ V+, D(BG) = D0 ×D+ and s = s0 × s+ are

given as in (6.1). Set RG = A(D(BG)). Then RG and CG(RG) are given by (6.4) with
R replaced by RG.

In the notation of the proof of Theorem 6.1, suppose each wΓ ≤ (p − 1). Then
D(BG) is abelian, and both D(B) and D(BH) are abelian. Thus Property 7.1 (d)
holds. So we suppose that w∆ ≥ p for some ∆. There exists y ∈ CG(s) ∩K such that
y ∈ NG(RG) \ CG(RG), |y| = 4, y|V0 = 1V0 , y|VΓ

= 1VΓ
for all Γ 6= ∆, and y swaps

exactly two factors K∆ of CG(RG). Let RH := RG ∩H and R = RG ∩K.
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Let PG := P (D(BG)) be defined by (6.5), so that PG ≤ RG and we may suppose
y ∈ CG(PG) ∩K. Let P := PG ∩K and PH = PG ∩H. Since w∆ ≥ p, it follows that
|Ω1(PG)| ≥ pp−1, and P is cyclic if and only if p = 3, w∆ = 3, wΓ = 0 for all Γ 6= ∆
and PG 6≤ K.

We claim that CG(P ) 6= CG(PG) if and only if V0 = 0, p = 3 = w∆, wΓ = 0 when
Γ 6= ∆, η = ε, α∆ = 0, e∆ = 1 and 3‖(q − ε). In particular, D(B) = 31+2

+ in this case.
Indeed, if w∆ > 3, then P is noncyclic and so CG(P ) = CG(PG). Thus w∆ = 3, and

so p = 3. If wΓ 6= 0, then P is also noncyclic and hence CG(P ) = CG(PG). Suppose
p = 3 = w∆ and wΓ = 0, so that |Ω1(PG)| = 32. Define c ≥ 1 by 3c‖(qe3α∆ − ε),
and choose β ∈ F×

q2e3α∆ with |β| = 3c. Note that xβ := 1V0 × diag{β−2, β, β} ∈ P

and so if c ≥ 2, then CG(P ) = CG(PG). Thus 3‖(qe3α∆ − ε) and so α∆ = 0. Note
that e = 1 or 2 as p = 3. If e = 2, then we may suppose β ∈ SL2(q), since SL2(q)
contains a maximal torus Zq−ε. Thus det(β) = 1, P = PG and CG(P ) = CG(PG), a
contradiction. So e = 1 and 3‖(q − ε). But Z(G(V0)) × Z(G(V+)) ≤ Z(CG(P )), so
η = ε. Since 3 | (q − η) and 1 = D0 = O3(G(V0)), it follows that V0 = 0. Similarly,
since Z(G) = Zq−η ≤ Z(CG(s)) = Zqd∆−ε∆

, it follows that e∆ = 1 and the claim holds.
Suppose V0 = 0, p = 3 = w∆, wΓ = 0 when Γ 6= ∆, η = ε, α∆ = 0, e∆ = 1 and

3‖(q − ε). Then

CG(P ) = GLε(3d∆, q) = G, CG(PG) = GLε(d∆, q)×GLε(2d∆, q),

so P = O3(Z(G)) = O3(Z(K)) = Z3 and PG = O3(Z(CG(PG))) = Z2
3. In addition,

CG(s) ∼= GLε∆(3, qδ∆) and D(BG) ∈ Syl3(GLε∆(3, qδ∆)). Since α∆ = 0, it follows that
3‖(qδ∆ − ε∆), D(BG) = Z3 o Z3 and |D(B)| = 33. But 31+2

+ ∈ Syl3(SLε∆(3, qδ∆)), so
D(B) ∼= 31+2

+ .
Write DG = D(BG), DH = D(BH) and D = D(B). Since [DG:D] = 3, it follows

that DH = D or DH = DG. Note that DG = 〈RG, σ〉 for some permutation σ of
order 3. So D = 〈R, σ〉, CG(DG) = CG(D) ∼= GLε(d∆, q), CG(CG(D)) = GLε(3, q)
and 〈DG, y〉 ≤ CG(CG(D)). Thus y centralizes CG(D) and so y ∈ NK(D, bD), where
(D, bD) is a Sylow B-subgroup. Since Z(D) ≤ Z(K), it follows that B dominates
a block B ∈ Blk(K/Z(D)), D(B) = D/Z(D) ∼= 32 and ȳ stabilizes the B-subgroup
(D/Z(D), b̄D) with |ȳ| = 4, where ȳ = yZ(D). In particular, B is non-nilpotent.
But D(B) is abelian, so `(bQ) ≥ 2 for some B-subgroup (Q, bQ). If Q ∼= Z3, then

CK/Z(D)(Q) = CK(Q)D/Z(D) = (CK(Q)/Z(D)).3, where Q = 〈Z(K), w〉 for some w ∈
D\Z(D) of order 3. Let BQ be a block of CK(Q)D dominating bQ and bQ ∈ Blk(CK(Q))
covered by BQ. Then D(bQ) = Q and the canonical character θQ of bQ is the only
irreducible Brauer character of bQ. If φ is any irreducible Brauer character of BQ,
then φ covers θQ. But CK(Q) contains a representative set of the conjugacy 3′-classes
of CK(Q)D, so `(BQ) = 1. In particular, `(bQ) = 1. Similarly, if Q = D/Z(D), then

`(bQ) = 1. Thus if `(bQ) ≥ 2, then Q = 1 and bQ = B. It follows that `(B) ≥ `(B) ≥ 2,
and hence Property 7.1 (b) holds.

Since p is odd, it follows that CG(R) = CG(RH) = CG(RG). Let x ∈ G such that
for any u ∈ R, there exists z ∈ Z(G) such that x−1ux = uz. Then x−1ux = cu for
some c ∈ Op(F×q2) and so x ∈ NG(R) = NG(RG). If λ is an eigenvalue of u in some
algebraic closure of Fq2 and mX−λ(u) is the multiplicity, then cλ is also an eigenvalue
of u with the same multiplicity. In particular, mX−1(u) = mX−c(u). It follows that
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if we choose u ∈ R such that mX−1(u) 6= mX−c(u) for any c ∈ F×q2 , then x−1ux = u.

Since |Ω1(R)| ≥ pp−1, it follows that x ∈ CG(R) and so CG(R)/Z = CG/Z(R/Z) for
any Z ≤ Z(G), except when p = 3 = w∆, α∆ = 0 and 3‖(qe − ε), in which case
D(B) = 31+2

+ . If 3 - (q − η), then e = 2 and as shown above R = RG, in which case
we still have x ∈ CG(R). If 3 | (q − η), then 3‖(q − η), P ∼= Z3 and CG(P ) 6= CG(PG),
which is discussed above.

Similarly, CG(P )/Z = CG/Z(P/Z) for any Z ≤ Z(G) when CG(P ) = CG(PG) (note
in this case that for any u ∈ P , we have mX−λ(u) ≥ 2 for some eigenvalue λ).

Suppose CG(P ) = CG(PH) = CG(PG) and CG(R) = CG(RG) = CG(RH). Thus
CG(R) is regular in G and s ∈ CG(R). Let (P, g) and (R, b) be B-subgroups such that
(P, g) ≤ (R, b).

Let (P, gH) ≤ (R, bH) be BH-subgroups such that gH covers g and bH covers b (see
the remark after the definition of Property 7.1), and (P, gG) ≤ (R, bG) BG-subgroups
such that gG covers gH and bG covers bH . By [12, Theorem 3.2], we may suppose
bG ⊆ Ep(CG(R), (s)) and so byG = bG as y ∈ CG(s) ∩K. Now

bG = b(0)×
∏
Γ

b(Γ)wΓ ,

where b(0) is a block of G0 labelled by (s0, κ) with defect 0, and b(Γ) = Ep(KΓ, (tΓ))
with tΓ the restriction of s to KΓ. Note that if UΓ is the underlying space of KΓ and
view tΓ as an element of G(UΓ), then we have mΓ(tΓ) = eΓ. Thus for any generator
xΓ ∈ RΓ

TΓ := CKΓ
(tΓ) = CG(UΓ)(xΓtΓ) ∼= GLεΓ(1, qeΓδΓ)

is a Coxeter torus of both KΓ and G(UΓ), and RΓ = Op(TΓ) is a defect group of b(Γ).
In particular, RG is a defect group of bG. We may suppose D(b) = D(bG)∩CK(R) and
D(bH) = D(bG) ∩H, so that D(b) = R and D(bH) = RH .

Since (P, gG) ≤ (R, bG) and D(bG) ≤ CG(P ), it follows that D(gG) = D(bG) = RG

and so D(g) = D(bG)∩CK(P ) = D(bG)∩K = R is abelian. Similarly, D(gH) = RH =
D(bH).

Let θ, θH and θG be canonical characters of b, bH and bG, respectively. Then θG

covers θH and θH covers θ. Now

θG = θ(0)× θ(+), θ(+) :=
∏
Γ

θ(Γ)wΓ , θ(Γ) := ±RKΓ
TΓ

(tΓ)

where Irr(b(0)) = {θ(0)}. If HΓ := KΓ ∩ S(UΓ), then there exists an element xΓ ∈ KΓ

permutes all the irreducible constituents of the restriction θ(Γ)|HΓ
. Since w∆ ≥ p, it

follows that θ(+)|CS(V+)(R+) is irreducible, where R+ = S(V+) ∩ (
∏

Γ(RΓ)wΓ).

Let K0 = S(V0) and K+ = S(V+), so that

CK(R) = 〈K0 × CK+(R+), uK〉, uK = u0 × u+

with u0 ∈ G0 \ K0 and u+ ∈ CG+(R+) \ CK+(R+). Note that G0 = 〈K0, u0〉 and
CG+(R+) = 〈CK+(R+), u+〉.

Let θ0 and θ+ be irreducible constituents of θ|K0 and θ|CK+
(R+), respectively. Then

θ ∈ Irr(CK(R) | θ0 × θ+) and θG covers θ0 × θ+. But θ(+)|CK+
(R+) is irreducible, so
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θ+ = θ(+)|CK+
(R+) and θ+ has an extension θ(+) to CG+(R+). Applying Lemma 2.7

to
K0 × CK+(R+) ≤ CK(R) ≤ CG(R) = G0 × CG+(R+)

(with Z0 = 1), we have that θG|CK(R) = θ. In particular, θG|CK(R) is irreducible and so
is θG|CH(R). But θG covers θH , so θG|CH(R) = θH . Thus θy = θ, θy

H = θH , by = b and
byH = bH . Note that θH |CK(R) = θ. Thus Property 7.1 (a∗) holds. 2

Let V be a non-degenerate orthogonal or symplectic space, G = I0(V ) and let G∗

be the dual group of G. Then

Sp2n(q)∗ = SO2n+1(q), SO2n+1(q)
∗ = Sp2n(q), SOη

2n(q)∗ = SOη
2n(q).

If B is a block of I0(V ), then there exists a semisimple p′-element s ∈ I0(V )∗ such that

B ⊆ Ep(I0(V ), (s)).

Let (D, bD) be a Sylow B-subgroup of I0(V ). Then V and D have corresponding
decompositions

V = V0 ⊥ V+, D = D0 ×D+. (8.1)

We have V0 = CV (D), V+ = [ V,D ], D0 = {1V0} and D+ ≤ I0(V+). Let G0 := I0(V0),
G+ := I0(V+), C+ := CI0(V+)(D+) and let V ∗ be the underlying space of I0(V )∗.

Let z ∈ D be a primitive element. Then z ∈ Z(D) with |z| = p (cf. [17, p.176]).
Thus

z = z0 × z+, L := CG(z) = L0 × L+, L0 = G0, L+ := GLε(m, qe), (8.2)

where z0 = 1V0 , z+ ≤ D+ and dimV+ = 2em. Then L is a regular subgroup of G and
we may suppose s ∈ L∗ ≤ G∗. In particular,

V ∗ = U0 ⊥ U+ and s = s0 × s+, (8.3)

where U0 = V ∗
0 , s0 ∈ L∗0 = I0(U0), U+ is the underlying space of L∗+ and s+ ∈ L∗+ ≤

I0(U+).
Let CI(U+)(s+) =

∏
ΓCΓ and let UΓ be the underlying vector space of CΓ, so that

CΓ = GLεΓ(mΓ(s+), qδΓ) or I(UΓ) (8.4)

according as Γ 6= X ± 1 or Γ = X ± 1.

Proposition 8.2 Let K := Ωη
2n(q) := Ωη(V ) ≤ H ≤ J0(V ), BK ∈ Blk(K) and

BH ∈ Blk(H) covering BK. Write R := A(D(BK)). Then either Property 7.1 (a∗)
holds for some BK-subgroups (P, g) ≤ (R, b) or Property 7.1 (d) holds, where P is some
subgroup of R.

Proof: LetG := SOη
2n(q) := SO(V ) and B ∈ Blk(G) covering BK . ThenD(BK) =

D ∩K for some defect group D := D(B). Since G is self dual, we have V = V ∗, U0 =
V0, U+ = V+ in (8.3).
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(1). Since |G:K| = 2, it follows that D = D(BK) and D = D(BH) ∩ G for some
D(BH). In the notation above we have

CK(z) ≤ L = L0 × L+.

Let K0 = Ω(V0), K+ = Ω(V+) and M+ := SLε(m, qe) ≤ L+ ∩K+, so that

M+ ≤ CK+(z+) ≤ L+, CK(z) = 〈K0 × CK+(z+), t0 × t+〉 (8.5)

and [L+:CK+(z+)] ≤ 2, where t0 ∈ L0 \ K0 and t+ ∈ L+. Let (z, Bz) be a major
subsection of BK . Then Bz covers a block B0 × B+ of K0 × CK+(z+) with B0 ∈
Blk(K0) and B+ ∈ Blk(CK+(z+)) such that D(Bz) = D(B0 × B+) = D. Note since
[L+:CK+(z+)] ≤ 2, it follows that D(B+) = D+ 6∼= 31+2

+ .
By [15, Lemma 4.1], there exists a B-subgroup (z, BL) such that BL covers Bz.

Thus (z, BL) is a major subsection of B.
Let R := A(D), so that z ∈ R and

R = D0 ×
∏
Γ

(RΓ)wΓ , CG(R) = SO(V0)×
∏
Γ

(KΓ)wΓ ,

where RΓ = Op(KΓ), mΓ(s+) = wΓeΓ or 2wΓeΓ according as Γ 6= X ± 1 or Γ = X ± 1,
KΓ

∼= GLε(δ′Γ, q
epαΓ ). Thus R = Op(CG(R)), CG(R) is a regular subgroup of G and we

may suppose s ∈ CG(R). Set R+ =
∏

Γ(RΓ)wΓ , so that R+ ≤ CK+(z+) and

K0 × CK+(R+) ≤ CK(R) ≤ CG(R) = L0 × CL+(R+).

Let (R+, b+) be a B+-subgroup, so that

(B0 × b+)K0×CK+
(z+) = B0 ×B+

and b+ ∈ Blk(CK+(R+)) as CK+(R+) ≤ CK+(z+). Now K0 × CK+(z+) is normal in
CK(z), R ≤ K0 × CK+(z+) and Bz covers B0 × B+. It follows by [15, Lemma 4.1]
that there exists a Bz-subgroup (R, b) such that b covers B0 × b+, so that (R, b) is a
BK-subgroup.

Similarly, there exists a BL-subgroup (R, bG) such that bG covers b. Thus bG ⊆
Ep(CG(R), (s)), R = D(bG), and so R = D(b) = D(B0 × b+).

Since L = L0 × L+ with L0 = G0 = SO(V0), it follows that BL = BL0 × BL+ with
BL0 ∈ Blk(G0) and BL+ ∈ Blk(L+). But BL covers Bz and Bz covers B0 × B+, so
BL0 covers B0 and BL+ covers B+. In particular, D+ = D(B+) = D(BL+). Similarly,
bG = bG0 × bG+ with bG0 = BL0 ∈ Blk(G0) and bG+ ∈ Blk(CL+(R+)), and bG+ covers
b+.

Suppose D is non-abelian, so that w∆ ≥ p for some ∆. Let P := D0 ×P+ ≤ R and
(P, g) ≤ (R, b), where P+ := P (D+) is given by (6.5). By Proposition 8.1, there exists
B+-subgroup (P+, g+) such that (P+, g+) ≤ (R+, b+) and D(g+) = D(b+) = R+. By
the remark after Property 7.1, we may choose (P, g) such that g covering B0 × g+, so
D(g) = D0 ×D(g+) = D0 ×D(b+) = D(b) = R.

In addition, there exists y ∈ CL+(s+)∩M+ such that y ∈ NCL+
(P+)(R+)\CL+(R+),

|y| = 4, y2 ∈ CL+(R+), y|V0 = 1V0 , y|VΓ
= 1VΓ

for all Γ 6= ∆ and y swaps exactly two
factors K∆ of CG(R). Since y ∈ CL+(s+), it follows that (bG+)y = bG+ .
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Let θG and θ be canonical characters of bG and b, respectively. Then θG covers θ,

θG = θG0 × θG+

with Irr(bG0) = {θG0} and θG+ the canonical character of bG+ . If Irr(B0) = {θ0} and θ+

is the canonical character of b+, then θG+ covers θ+. Since CK+(R+) = CCK+
(z+)(R+),

it follows by the proof of Proposition 8.1 that θ+ = θG+ |CK+
(R+) and θy

+ = θ+.
Now

CK(R) = 〈K0 × CK+(R+), uK〉, uK = u0 × u+ (8.6)

with [CK(R):K0 × CK+(R+)] ≤ 2, where u0 ∈ G0 and u+ ∈ CL+(R+). If CK(R) =
K0 × CK+(R+), then θ = θ0 × θ+ and θy = θ. If [CK(R):K0 × CK+(R+)] = 2, then
L0 = 〈K0, u0〉 and CL+(R+) = 〈CK+(R+), u+〉. Now θ ∈ Irr(CK(R) | θ0 × θ+) and
θG ∈ Irr(CG(R) | θ) and θ+ has an extension θG+ to CL+(R+), so by Lemma 2.7,
θG|CK(R) = θ and hence θy = θ and y ∈ NK(R, b).

(2). Suppose K ≤ H ≤ J0(V ). Let (P, gH) ≤ (R, bH) be BH-subgroups such that
gH covers g and bH covering b. Since J0(V )/Z(J0(V ))K is a 2-group and p is odd, it
follows that D(gH) = Op(Z(H))D(g) = Op(Z(H))D(b) = D(bH) and both are abelian,
and the canonical character θH of bH covers θ. Now

K0 × CK+(R+) ≤ CK(R) ≤ CH(R) ≤ CJ0(V )(R) ≤ J0(V0)× CJ0(V+)(R+).

By [17, (1A)], CJ0(V+)(z+) = 〈L+, τ+〉 with [τ+, L+] = 1 and so CJ0(V+)(R+) is a central

product CL+(R+) ◦ 〈τ+〉. In particular, θG+ has an extension θ̃G+ to CJ0(V+)(R+), and

θ̃G+ is also an extension of θ+. Moreover, y stabilizes θ̃G+ , since θ̃G+ is a central produce
θG+ ◦ β for some β ∈ Irr(〈τ+〉) and θy

G+
= θG+ . Since y ∈ M+ ≤ K+ and y normalizes

K+, it follows that [y, x] ∈ CK+(R+) = CL+(R+) ∩ K+ for any x ∈ CL+(R+). But
CJ0(V+)(R+) = CL+(R+) ◦ 〈τ+〉, so [y, x] ∈ CK+(R+) for all x ∈ CJ0(V+)(R+). It follows
by Remark 7.3 that y stabilizes θH and so byH = bH . Thus Property 7.1 (a∗) holds.

(3). Suppose wΓ < p for any Γ with mΓ(s+) 6= 0. Then D = D(BK) is abelian,
and so D(BH) = DOp(Z(H)) is abelian. Thus Property 7.1 (d) holds. 2

Proposition 8.3 Let K := Ω2n+1(q) = Ω(V ) or K := Sp2n(q) = Sp(V ), and

K ≤ H ≤ J0(V ),

BK ∈ Blk(K) and BH ∈ Blk(H) covering BK, where H = SO(V ) when K = Ω(V ).
Write R := A(D(BK)). Then either Property 7.1 (a∗) holds for some BK-subgroups
(P, g) ≤ (R, b) or Property 7.1 (d) holds, where P is some subgroup of R.

Proof: Suppose V is orthogonal. Replacing G by H in the proof (1) of Proposition
8.2 with some obvious modifications, we have that Property 7.1 (a∗) holds for (P, g) ≤
(R, b). Suppose V is symplectic, so that H/K is cyclic. Applying the proofs (1) and
(2) of Proposition 8.2 with some obvious modifications, we have that Property 7.1 (a∗)
holds for (P, g) ≤ (R, b).
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If D(BK) is abelian, then D(BK) = D(BH) ∩K for some D(BH). Since the outer-
diagonal group of K is order 2, it follows that D(BH) ≤ KZ(H) and so D(BH) =
D(BK)Op(Z(H)) is abelian. 2

Theorem 8.4 Let G = I0(V ), B ∈ Blk(G), and (D, bD) a Sylow B-subgroup. Follow
the notation in (8.1), (8.2) and (8.3). Then the following are equivalent:

(a) B is nilpotent.

(b) CI0(V )(D) = G0×CI0(V+)(D+) is a regular subgroup of I0(V ) and s ∈ CI0(V )(D)∗ ≤
L∗ satisfies the following conditions.

(i) Suppose I0(V ) = Sp2n(q) or SO2n+1(q). Then

mΓ(s+) =
{

0 or 1 if Γ 6= X ± 1 and e | δΓ,
0 otherwise.

(ii) Suppose I0(V ) = SOη
2n(q). ThenmΓ(s+) = 0 or 1 if Γ 6= X ± 1 and e | δΓ,

mX−1(s+) +mX+1(s+) = 0 or 2 if p | (q − ε),
mΓ(s+) = 0 otherwise,

where ε is the type of the underlying space of (s+)X±1 when mX−1(s+) +
mX+1(s+) = 2.

(c) CI0(V )(D) = G0×CI0(V+)(D+) is a regular subgroup of I0(V ) and s ∈ CI0(V )(D)∗ ≤
L∗ such that T ∗+ := CI0(U+)(s+) is a maximal torus of I0(U+). In particular, if
θ = θ0 × θ+ is the canonical character of bD with θ0 ∈ Irr(G0) and θ+ ∈ Irr(C+),

then θ0 has defect zero and θ+ = ±RC+

T+
(s+), where C+ = CI0(V+)(D+) and T+ ≤

C+ is a dual of T ∗+.

Proof: Suppose B is nilpotent. By Propositions 8.2 and 8.3, D is abelian, so
mΓ(s+) = eΓ or 0 when Γ 6= X ± 1 and mΓ(s+) = 2e or 0 when Γ = X ± 1.

Suppose mΓ(s+) = eΓ ≥ 2 with Γ 6= X ± 1. As shown in the proof of Theorem
6.1 there exists a p′-element τΓ ∈ C∗

Γ of order eΓ normalizing DΓ := D ∩ C∗
Γ, so that

there exists a p′-element of order eΓ normalizing the Sylow B-subgroup (D, bD), a
contradiction, so eΓ ≤ 1 and e | δΓ.

Suppose Γ = X ± 1, so that mΓ(s+) = 2e or 0 and CΓ = I(UΓ).
Suppose, moreover that G = SOη

2n(q), so that G = G∗. Let ∆ = X±1 and suppose
m∆(s+) = 2e. By [17, (1.14)],

|NI(U∆)(〈z∆〉)/CI(U∆)(z∆)| = 2e.

If e ≥ 2, then there exists y∆ ∈ NI0(U∆)(〈z∆〉) \ CI0(U∆)(z∆) of order e, so that y∆

normalizes the Sylow subgroup D∆ of CI0(U∆)(z∆). Let yΓ = 1 ∈ I0(UΓ) and y =
1V0 ×

∏
Γ yΓ. Then

y ∈ (NG(D) ∩ CG(s)) \ CG(D)
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and y normalizes (D, bD). Since |y| = e 6= 1, it follows that B is not nilpotent, which
is impossible. Thus e = 1, I0(U∆) = SOε(2, q) with ε = η(U∆), so p | (q − ε).

Similarly, suppose mX−1(s+) = mX+1(s+) = 2. Since Ω−
4 (q) = PSL2(q

2), Ω+
4 (q) =

SL2(q) ◦ SL2(q) and SO±
4 (q) = Ω±

4 (q).2, it follows that there exists an element w ∈
(NG(D) ∩ CG(s)) \ CG(D) of order 2 such that w ∈ NG(D, bD), a contradiction.

If G = Sp2n(q) or SO2n+1(q), then by [17, (1.14)] again, there exists an element
w ∈ NG(D) \ CG(D) of order 2e such that w normalizes (D, bD), which is impossible.
Thus mX±1(s+) = 0 and (b) holds.

Suppose (b) holds. Then T ∗+ := CC∗
+
(s+) is a maximal torus of I0(U+) and so D is

abelian. Since CG(D) is regular in G, we may suppose s ∈ CG(D)∗ and so

bD ⊆ Ep(CG(D), (s)).

Thus θ+ = ±RC+

T+
(s+) and θ = θ0 × θ+ is the canonical character of bD, where

θ0 ∈ Irr(G0) has defect 0. In particular, NG(D, θ) = CG(D) and B is nilpotent.
2

Proposition 8.5 Let K := Spinη(V ) �H such that H/K is abelian, CH(K) ≤ Z(H)
and H/Z(H) ≤ SO(V ) or J0(V )/Z(J0(V )) according as dimV is odd or even. Let
B ∈ Blk(K), BH ∈ Blk(H) covering B, and Z ≤ Z(K) such that Kc := K/Z = Ωη(V ),
so that |Z| = gcd(2, q− η). Write R := A(D(B)). Then either Property 7.1 (a∗) holds
for some BK-subgroups (P, g) ≤ (R, b) or Property 7.1 (d) holds, where P is some
subgroup of R.

Proof: Let D := D(B), G := SOη(V ) and Z+ ≤ Z(D0(V )) such that G =
D0(V )/Z+, so that Z = Z+ ∩K and Z+

∼= Zq−1.
We may suppose D = DZ/Z ≤ Kc. Thus D is of defect type in Kc, where a

p-subgroup Q of Kc is of defect type if Q is a Sylow p-subgroup of a centralizer CKc(t)
of a semisimple p′-element t. So D is of defect type of G, and D has a primary
element z ∈ Z(D) (see [17, Section 5]). Thus we have the corresponding decompositions
V = V0 ⊥ V+, D = D0 ×D+, z = z0 × z+, CG(z) = L0 × L+ given by (8.1) and (8.2).
Since K is universal, it follows by [20, Theorem 4.2.2] and [17, (2E)] that

C := CK(z) = LCTC , LC = L1 × SLε(m, qe), L1 = Spin(V0),

where TC is an abelian r′-group inducing inner-diagonal automorphisms on SLε(m, qe)
and L1. Here for simplicity, we identify z with its preimage (with the same order) in
K. Since p is odd and D ≤ C, it follows that D+ ∩ L1 = 1 and so L1L2 = L1 × L2,
where L2 = SLε(m, qe)D+ ≤ L+. Let L = L1 × L2 ≤ C, so that C = LTC . Let
(z, Bz) be a major subsection of B, and BL = B1 × B2 a block of L covered by Bz,
where B1 ∈ Blk(L1) and B2 ∈ Blk(L2). We may suppose D(B2) = D+ ∩ L2, so that
D(B2) = D+.

Suppose B2 satisfies Property 7.1 (a∗). Let R2 := A(D+) ≤ D(B2), R := R1 ×R2,
P2 := P (D+) ≤ R2, P = P1 × P2 ≤ R and let (P, gL) ≤ (R, bL) be BL-subgroups,
where P1 = R1 = D0. So gL = g1 × g2, bL = b1 × b2 with g1 = b1 = B1, g

L2
2 = bL2

2 = B2

and D(b2) = R2 = D(g2). In addition, there exists y ∈ (NL2(R2) ∩ CL2(P2)) \ CL2(R2)
such that y4 = 1, y2 ∈ CL2(R2), and by2 = b2. Thus byL = bL and D(bL) = R = D(gL).
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(1). For t ∈ TC write t = t1t2 such that [t1, t2] = 1 and t2 induces inner-diagonal
automorphism on L2. Let Ji = 〈Li, ti : t = t1t2 ∈ TC〉, so that C � J := J1 × J2 and
L2 ≤ J2 ≤ L+. Let BJ ∈ Blk(J) be a weakly regular cover of Bz, (P, g) ≤ (R, b) Bz-
subgroups such that g covers gL and b covers bL, and (P, gJ) ≤ (R, bJ) BJ -subgroups
such that gJ covers g and bJ covers b, so that gJ covers gL and bJ covers bL.

If gJ = gJ1 × gJ2 and bJ = bJ1 × bJ2 for some gJi
∈ Blk(CJi

(Pi)) and bJi
∈

Blk(CJi
(Ri)), then gJ2 covers g2 and bJ2 covers b2 and by Proposition 8.1 and its proof

(1), D(gJ2) = D(bJ2) is abelian θJ2|CL2
(R2) = θ2 and θy

J2
= θJ2 , where θJi

and θi are
canonical characters of bJi

and bi, respectively. Thus D(gJ) = D(bJ) is abelian. But
P ≤ R ≤ D(gJ) and D(gJ) is abelian, so

D(g) = D(gJ) ∩ CK(P ) = D(gJ) ∩K = D(bJ) ∩K = D(bJ) ∩ CK(R) = D(b),

which is also abelian. In addition, as shown in the proof (1) of Proposition 8.1 θJ2 has
an extension to CL+(R2).

Let θJ and θ be canonical characters of bJ and b, respectively, so that θJ = θJ1 ×θJ2

covers θ, θy
J = θJ and θ ∈ Irr(CK(R) | θ1 × θ2). Applying Lemma 2.7 to

L1 × CL2(R2) ≤ CK(R) ≤ J1 × CJ2(R2)

we have that θJ |CK(R) = θ, so θy = θ and by = b.

(2). If q is even, then the outer-diagonal group of K is trivial, so we may suppose
q is odd. Let (P, gH) ≤ (R, bH) be BH-subgroups such that gH covers g and bH covers
b. Then bH is a block of CH(R) and R = D(bH) ∩ CK(R) for some D(bH). Since H
induces inner-diagonal automorphisms and since the outer-diagonal group of K is a 2-
group, it follows that D(bH) ≤ RZ(H) and D(bH) = ROp(Z(H)) is abelian. Similarly,
R = D(b) = D(g) = D(gH) ∩ CK(P ) and D(gH) = ROp(Z(H)) = D(bH).

Now z ∈ K ≤ D0(V ), so by [17, (2E)], CD0(V )(z) = D0(V0) ◦ L̃+, CD0(V )(z)/Z+ =

CG(z) and C = CD0(V )(z) ∩K, where L̃+ is a central extension of L+ by Z+.
To show that byH = bH we may suppose H/KZ(H) = J0(V )/KcZ(J0(V )) =

Outdiag(K), so that H/KZ(H) is a 2-group. Let t ∈ CH(z) \ CK(z), so that t4 ∈
CK(z)Z(H). In the notation of [20, Table 4.5.2], t induces an element of C∗ :=
CInndiag(K)(zZ(K)) (note here C∗ is not the dual group of C). But C∗/C◦∗ is a p-
group, so t induce an element of C◦∗ and hence t ∈ CK(z)Z(H). Thus

CH(z) = 〈CK(z), xH , tH〉, xH = x1x2, tH = t1t2

where x1 ∈ D0(V0) and x2 ∈ L̃+, and tH centralizes L̃+. So

〈CK(z), xH〉 ≤ 〈J1, x1〉 ◦ 〈J2, x2〉 ≤ D0(V0) ◦ L̃+.

Let H1 = 〈J1, x1, tH〉 and H2 = 〈J2, x2〉, so that

L1 × L2 ≤ CK(z) ≤ CH(z) ≤ H1 ◦H2.

It follows that

L1 × CL2(R2) ≤ CK(R) ≤ CH(R) ≤ H1 ◦ CH2(R2). (8.26)
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By [20, Table 4.5.2],
L̃+ = (Z × L2 ◦ Zq−ε)〈x+〉

where x+ induces outer-diagonal automorphism of order dividing gcd(m, q − ε) on L2.
Thus CH2(R2) = (Z × CL2(R2) ◦ Zq−ε)〈y2〉 for some y2 ∈ L̃+ inducing outer-diagonal
automorphism on L2. View θ2 as character of Z × CL2(R2) with Z ≤ ker(θ2). Now
CL2(R2) ≤ CH2(R2)/Z ≤ CL+(R2). As shown in the proof (1) of Proposition 8.1 θ2

has an extension θ̃2 to CH2(R2)/Z such that θ̃y
2 = θ̃2. By Remark 7.3 θy

H = θH and
byH = bH . Thus the Property 7.1 (a∗) holds for (R, b).

Suppose B2 satisfies Property 7.1 (d), so that D(B2) is abelian. Thus D+ and
so D(B) are abelian. Since D(B) = D(BH) ∩ K for some D(BH), it follows that
D(BH) ≤ KZ(H) and D(BH) = D(B)Op(Z(H)) which is abelian. 2

Theorem 8.6 Let K be a finite quasi-simple group of classical type over a field Fq and
B ∈ Blk(K), and let K � H such that H/K is abelian, CH(K) ≤ Z(H), H induces
inner-diagonal automorphisms on K and BH ∈ Blk(H) covering B. If p | q, then
either D(B) = D(BH) is cyclic or l(B) ≥ 2. Suppose p - q and p is odd. Then one of
Properties 7.1 (a∗), (b), (c) and (d) holds. In addition, if Property 7.1 (b) or (c) holds,
then p = 3, K = SLη(3d, q)/Z for some Z ≤ Z(SLη(3d, q)) with gcd(6, d) = 1 and
3‖(q − η).

Proof: We will follow the notation of [20]. In particular, Ku denotes the universal
group with the same type as K. If p|q and D(B) is noncyclic, then D(B) is a Sylow
subgroup of K and l(B) = l(B0) with principal B0 := B0(K) ∈ Blk(K). But B0

dominates the principal block B of K/Z(K) = Ka and l(B) + 1 is the number of
p′-conjugacy classes of Ka, so l(B0) ≥ l(B) ≥ 2. Suppose p - q.

If K = Aη
n(q), then set K̂ = Ku = SLη

n+1(q) ≤ GLη
n+1(q), so that K = K̂/Z for

some Z ≤ Z(GLη
n+1(q)) ∩ K̂. We may take Ĥ ≤ GLη

n+1(q) such that H = Ĥ/Z.

If K = Bn(q) = Ka = Ω2n+1(q), then set K̂ = Ω2n+1(q) ≤ Ĥ ≤ SO2n+1(q) such that

H = Ĥ/Z. If K = Bn(q) = Ku = Spin2n+1(q) = Spin(V ), then take K = K̂ � Ĥ = H
such that H/Z(K) ≤ SO(V ).

If K = Cn(q), then we may take K̂ = Sp2n(q) = Sp(V ) ≤ Ĥ ≤ J0(V ) such that

H = Ĥ/Z.
Suppose K = Dη

n(q) with (n, η) = (2k + 1,±) or (2k,−). If K = Ωη
2n(q) = Ω(V ),

then K = K̂ � Ĥ = H ≤ J0(V ). If K = PΩη
2n(q) = PΩ(V ), then take K̂ =

Ωε
2n(q) ≤ Ĥ ≤ J0(V ) such that H = Ĥ/Z. If K = Spinη

2n(q) = Spin(V ), then take

K = K̂ � Ĥ = H such that H/Z(K) ≤ J0(V ).

Suppose K = D+
2k(q) with q even. Then K = H and we may take K̂ = Ĥ = H.

Suppose K = D+
2k(q) with q odd, so that Z(Ku) = {1, z, zs, zc} and Ku/Z = Ω+

4k(q),

where Z = 〈z〉. If K = Ω+
4k(q) = Ω(V ), then take K̂ = K ≤ Ĥ ≤ J0(V ). If

K = PΩ+
4k(q) = PΩ(V ), then take K̂ = Ω(V ) ≤ Ĥ ≤ J0(V ) such that Ĥ/Z = H. If

K = Spin+
4k(q)/Z

′ for Z ′ = 〈zs〉 or 〈zc〉, then we may take K̂ = Spin+
4k(q) = Spin(V ) ≤

Ĥ ≤ D0(V ) such that H = Ĥ/Z ′. If K = Spin+
4k(q) = Spin(V ), then take K̂ = K and

Ĥ = H.
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Let B̂ ∈ Blk(K̂) dominating B and B̂H ∈ Blk(Ĥ) dominating BH , so that B̂H

covers B̂. By Propositions 8.1, 8.2, 8.3 and 8.5, one of Properties 7.1 (a∗), (b) of (d)

holds for B̂.
If Property 7.1 (a∗) holds for B̂, then there exist B̂-subgroups (P̂ , ĝ) ≤ (R̂, b̂)

satisfying Property 7.1 (a∗). By Lemma 7.6, Property 7.1 (a∗) holds for some B-
subgroups (P, g) ≤ (R, b).

Suppose Property 7.1 (b) holds for B̂. By Proposition 8.1, K̂ = SLη
n+1(q), D(B̂) =

31+2
+ and n + 1 = 3d with gcd(6, d) = 1 and 3‖(q − η). In particular, Z(D(B̂)) =

O3(Z(K̂)) and we may suppose D(B) ≤ D(B̂)Z/Z. If O3(Z(K̂)) ≤ Z, then D(B) =

Z2
3, D(BH) = 32 or Z3 o Z3/O3(Z(K̂)) ∼= 31+2

+ and (c) holds. If Z is a 3′-group, then

D(B) = D(B̂) and (b) holds.

If Property 7.1 (d) holds for B̂, then D(B̂) and D(B̂H) are both abelian. Since

Z ≤ Z(Ĥ) ∩ K̂, it follows that D(B) = D(B̂)Z/Z and D(BH) = D(B̂H)Z/Z, and so
D(B) and D(BH) are both abelian. 2

9 Exceptional groups

Suppose p is odd. We will follow the notation of [20]. In this section we demonstrate
that every nilpotent block of an exceptional group of Lie type has abelian defect groups.
We first prove a simple lemma.

Lemma 9.1 Let Ji be a finite group and Pi a p-subgroup of Ji such that CJi/Zi
(Pi/Zi) =

CJi
(Pi)/Zi for i = 1, 2, where Zi = Op(Z(Ji)). Let J = J1 × J2, P = P1 × P2 and

Z ≤ Op(Z(J)). Then
CJ(P )/Z = CJ/Z(P/Z).

Proof: Let Z+ = Z1 × Z2 = Op(Z(J)). Then

CJ/Z+(P/Z+) = CJ1/Z1(P1/Z1)×CJ1/Z1(P1/Z1) = CJ1(P1)/Z1×CJ2(P2)/Z2 = CJ(P )/Z+.

It is clear that CJ(P )/Z ≤ CJ/Z(P/Z). If xZ ∈ CJ/Z(P/Z) for some x ∈ J , then
xZ+ ∈ CJ/Z+(P/Z+) and so xZ+ = (x1, x2)Z+ for some xi ∈ CJi

(Pi). In particular,
x = (x1, x2)x+ for some x+ ∈ Z+. Since Z+ ≤ CJ(P ), it follows that x ∈ CJ(P ) and
hence CJ/Z(P/Z) = CJ(P )/Z. 2

The lemma will be applied to a central product J1 ◦ J2 as J1 ◦ J2 = (J1 × J2)/Z0

for some Z0 ≤ Z(J1) ∩ Z(J2).

Theorem 9.2 Let K be a finite quasi-simple group of exceptional type over a field Fq,
let B ∈ Blk(K), and let K � H such that CH(K) ≤ Z(H), H/K is cyclic, and H
induces inner-diagonal automorphisms on K. Let BH ∈ Blk(H) be a block covering B.
Choose (as we may) defect groups D(B) and D(BH) of B and BH respectively such
that D(B) = D(BH) ∩K. If p|q, then either D(B) = D(BH) is cyclic or l(B) ≥ 2. If
p - q and p is odd, then one of the Properties 7.1 (a), (b) and (d) holds.

32



Proof: If p|q, then a proof similar to that of Theorem 8.6 shows that either
D(B) = D(BH) is cyclic or l(B) ≥ 2.

Suppose p - q. Let Ku be the universal group, so that K = Ku/Z for some
Z ≤ Z(Ku). Since Z(Ku) is cyclic of order 1, 2 or 3, it follows that H induces the
trivial action on Z(Ku).

Before beginning the proof proper we introduce some notation.
Write D := D(B). If Z(K) 6= Ω1(Z(D)), then take z ∈ Z(D) \ Z(K) with |z| = p.

If Z(K) = Ω1(Z(D)) (so in particular p = 3), then take z ∈ D such that |z| = p2 and
zZ(K) ∈ Z(D/Z(K)). Let (z, Bz) be a B-subsection, which we choose to be major in
the case z ∈ Z(D) (that such a major subsection exists is [2, 4.15]). In the case that
z ∈ Z(D), we may further choose (z, Bz) so that Bz (a block of C := CK(z)) has defect
group D. By [20, Theorem 4.2.2] C = Or′(C)T , where Or′(C) is a central product

Or′(C) = L1 ◦ L2 ◦ · · · ◦ L`

with each Li ∈ Lie(r), and T is an abelian r′-group inducing inner-diagonal automor-
phisms on each Li. In general, it may be the case that z 6∈ Or′(C). We introduce some
more notation as follows to allow for this inconvenience: If Z(C) ≤ Or′(C), then define
s := ` and L := Or′(C). If Z(C) 6≤ Or′(C), then define s = `+ 1, Ls = Z(C) and

L := L1 ◦ L2 ◦ · · · ◦ Ls. (9.1)

In all cases C = LT , z ∈ L and L� C. Let BL be a block of L covered by Bz. There
are uniquely defined blocks Bi ∈ Blk(Li) such that if χ ∈ Irr(BL) with χ = χ1 ◦ · · · ◦χs

for some χi ∈ Irr(Li), then χi ∈ Irr(Bi). We write

BL = B1 ◦B2 ◦ · · · ◦Bs.

Each element t ∈ T has the form t1t2 · · · tst′, where t′ centralizes L and ti induces
an inner-diagonal automorphism on Li and [Li, tj] = 1 for i 6= j. Let T ′ = 〈t′ : t =
t1t2 · · · ts ◦ t′ ∈ T 〉, and

Ji := 〈Li, ti : t = t1t2 · · · tst′ ∈ T 〉, and J := J1 ◦ J2 ◦ · · · ◦ Js ◦ T ′. (9.2)

Then LT � J and T ′ is abelian. Let BJ be a block of J covering Bz, so that BJ covers
BL. Thus

BJ = BJ1 ◦BJ2 ◦ · · · ◦BJs ◦BT ′ ,

where BJi
∈ Blk(Ji) covering Bi and BT ′ ∈ Blk(T ′). Note that if CJi

(Li) ≤ Z(Li) for
all i, then the central product J is over a subgroup of Z(L).

Case 1. Suppose each Bi satisfies Property 7.1 (d). Then each D(BJi
) is abelian

and so is D(BJ). Thus D(Bz) = D(BJ) ∩ C is abelian.

Case 2. Suppose L is a direct product of Li’s, CJi
(Li) ≤ Z(Li) for all i and some

Bj satisfies Property 7.1 (a∗). Without loss of generality, take j = 1. In addition,
suppose each Li is classical and universal (or Ls = Z(C)). Thus

L = L1 × · · · × Ls ≤ C � J = J1 × · · · × Js × T ′. (9.3)

33



We now define Ri. If Li = SLη(Vi), then denoteGi = GLη(Vi) and let BGi
∈ Blk(Gi)

be a weakly regular cover of BJi
and Ri := A(D(BGi

)) ∩ Li. If Li is not linear and
unitary, then set Ri = A(D(Bi)). In addition, let (Ri, bi) be a Bi-subgroup, and note
that (Ri, bi) is a Sylow Bi-subgroup when D(Bi) is abelian. Let

R := R1 × · · · ×Rs ≤ L, bL := b1 × · · · × bs,

so that (R, bL) is a BL-subgroup. Since z ∈ Op(Z(L)) and R is abelian, it follows that
z ∈ R and R ≤ C. By Propositions 8.1, 8.2, 8.3 and 8.5, each defect group D(bi) of
bi is abelian. Let (R, bz) be a Bz-subgroup such that bz covers bL, and (R, bJ) be a
BJ -subgroup such that bJ covers bz, so that bJ covers bL and

bJ = bJ1 × · · · × bJs ×BT ′ (9.4)

where each bJi
covers bi. By Propositions 8.1, 8.2, 8.3 and 8.5 again, each defect group

D(bJi
) is abelian, so defect groups D(bJ) and D(bz) of bJ and bz respectively are both

abelian, since we may suppose D(bz) = D(bJ)∩C. Note in the proof above that (R, bz)
can be any Bz-subgroup such that bz covers bL. Later we will choose a special such
Bz-subgroup.

Suppose further that B1 satisfies Property 7.1 (a∗) in Propositions 8.1, 8.2, 8.3 or
8.5 for B1-subgroups (P1, g1) ≤ (R1, b1). Let

L+ =
s∏

i=2

Li, R+ :=
s∏

i=2

Ri, P = P1×R+, gL = g1×

(
s∏

i=2

bi

)
, J+ =

(
s∏

i=2

Ji

)
× T ′,

so that CL(R) = CL1(R1) × CL+(R+) ≤ CC(R) ≤ CJ1(R1) × CJ+(R+), and (P, gL) ≤
(R, bL). Since Bz covers BL, it follows that there exist Bz-subgroups (P, gz) ≤ (R, bz)
such that gz covers gL and bz covers bL. Let (P, gJ) ≤ (R, bJ) be BJ -subgroups such
that gJ covers gz and bJ covers bz. Thus gJ covers gL, bJ covers bL and gJ = gJ1 ×
· · · × gJs × BT ′ . In particular, gJi

= bJi
for i ≥ 2, where bJi

are given in (9.4). By
Propositions 8.1, 8.2, 8.3 and 8.5 again, each D(bJi

) is abelian and D(gJ1) = D(bJ1),
and hence D(gJ) = D(bJ) is abelian and D(gz) = D(gJ) ∩ C = D(bJ) ∩ C = D(bz).

Let θi be the canonical character of bi and θ+ =
∏

i≥2 θi, so that θ := θ1 × θ+ is the
canonical character of bL and the canonical character θz of bz covers θ.

Since (P1, g1) ≤ (R1, b1) satisfy Property 7.1 (a∗), it follows that there exists y ∈
NCL1

(P1)(R1, b1) \ CL1(R1) such that y4 = 1, y2 ∈ CL1(R1) and [y, x] 6∈ Z(L1) for some
x ∈ R1. Moreover, there exist subgroups Ni �Mi of J1, and character φi ∈ Irr(Ni) for
i = 1, 2 such that Mi/Ni is abelian,

Z(L1) ≤ N1 ×N2 ≤ CL1(R1) ≤ CJ1(R1) ≤M1 ◦M2,

θ1 covers φ1 × φ2, Z ∩N2 = 1, φ2 has a y-stable extension φ̃2 to M2 and [y, x] = 1 or
in ZN2 according as x ∈ M1 or M2, where Z ≤ Z(M1) ∩ Z(M2) such that M1 ◦M2 is
the central product over Z.

Let N ′
2 = N1 × CL+(R+), M ′

2 := M1 × CJ+(R+), and φ′2 = φ1 × θ+. Then M2/N2

and M ′
2/N

′
2 are abelian,

Z(C) ≤ N ′
2 ×N2 ≤ CC(R) ≤ CJ(R) ≤M ′

2 ◦M2,

34



φ2 has an extension φ̃2 to M2 which is y-invariant, [y, x] = 1 for any x ∈ M ′
2, [y, x] ∈

ZN2 for any x ∈M2, M2◦M ′
2 is a central product over Z and θz ∈ Irr(CC(R) | φ′2×φ2).

By Remark 7.3, θy
z = θz, and so byz = bz. If [y, x] ∈ Z(C) for all x ∈ R, then

[y, x] ∈ Z(C) ∩ L1 = Z(L1) for all x ∈ R1, which is impossible. Thus [y, x] 6∈ Z(C) for
some x ∈ R and Property 7.1 (a∗) holds for (P, gz) ≤ (R, bz) (with H := K).

Case 3. Suppose that K := 2B(22a+1), 2G2(3
2a+1), 2F4(2

2a+1), G2(q),
3D4(q),

F4(q) or E−ε
6 (q) with q ≡ ε mod 3, and B ∈ Blk(K). Then B satisfies one of Property

7.1 (a∗), (b) or (d).

In each case K = Ku and z induces an inner automorphism on K, so it follows that
each Li is a classical group (or possibly Ls is abelian). Hence by the results of Section
8 each Bi satisfies one of Property 7.1 (a∗), (b), (c) or (d).

Case 3.1. Suppose Bi satisfies either Property 7.1 (b) or (c) for some i. Without
loss of generality, take i = 1. By Theorem 8.6, p = 3, L1 = SLε1(3d1, q1)/Z for
some Z ≤ Z(SLε1(3d1, q1)), gcd(6, d1) = 1 and 3‖(q1 − ε1). By [20, Table 4.7.3A],
(q1, ε1) = (q, ε) or (q2, 1) and (K,C) are given in Table 2, where Lε := SLε

3(q).

K C K C
3D4(q) (Zq2+εq+1 ◦ Lε).3 G2(q) Lε
2F4(2

2m+1) SU3(2
2m+1) F4(q) (Lε ◦ Lε).(3:3)

E−ε
6 (q) (Lε ◦ SL3(q

2)).(3:3) Eε
6(q)u (Lε × Lε ◦ Lε).(3:3:3)

E7(q)u (Lε ◦ SLε
6(q)).(3:3) E8(q) (Eε

6(q)u ◦ Lε).(3:3)

Table 2: Possible (K,C) with some Bi satisfying Property 7.1 (b) or (c)

Case 3.1.1. If K = G2(q) or 2F4(2
2m+1), then s = 1 and L = C and Bz = BL =

B0(L), so B = B0(K) with D(B) = 31+2
+ . In particular, l(B) ≥ 2.

Case 3.1.2. Let K = 3D4(q), so that C = Z 1
3
(q2+εq+1) × Hε, where Hε = 〈Lε, x〉

with x inducing outer-diagonal automorphism of order 3 on Lε. So D(Bz) = Z3 o Z3 ∈
Syl3(C) and we may suppose D(Bz) ∈ Syl3(Gε), where Gε = GLε

3(q) contains Hε. Let
Rε = A(D(Bz)) = (Z3)

3 and Pε = 〈Z(Lε), diag{1, w, w}〉 ≤ Rε such that |w| = 3 in
F×q2 . Then CGε(Pε) = Zq−ε ×GLε

2(q) and CGε(Rε) = (Zq−ε)
3. Thus

Z 1
3
(q2+εq+1) × CHε(Rε) = CC(Rε) ≤ CC(Pε) = Z 1

3
(q2+εq+1) × CHε(Pε).

As shown in the proof of Proposition 8.1 the Bz-subgroups (Pε, g) ≤ (Rε, b) satisfy
Property 7.1 (a∗).

Note that in the notation above CGε(Pε)/Z = CGε/Z(Pε/Z) and CGε(Rε)/Z =
CGε/Z(Rε/Z) for any Z ≤ Z(Lε). Let bε ∈ Blk(Hε) and Bε ∈ Blk(Gε) covering bε,
so that D(bε) = D(Bε) ∩Hε = D(Bε). Thus D(bε) ∈ Syl3(CGε(t)) for some semisimple
3′-element t. In particular, D(bε) is either abelian with |D(bε)| ≥ 9 and D(bε) 6≤ Lε

or D(bε) = Z3 o Z3. In the former case, CGε(D(bε))/Z = CGε/Z(D(bε)/Z) for any
Z ≤ Z(Lε).
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Case 3.1.3. Suppose K = E−ε
6 (q) or F4(q) and L1 = Lε, so that C = 〈L1 ◦ L2, x〉,

where L2 = Lε or SL3(q
2), and x = x1x2 such that each xi induces outer-diagonal

automorphism of order 3 on Li. Let Ji = 〈Li, xi〉 and BJ2 ∈ Blk(J2) covering B2.
Let R1 = Rε ≤ J1, P1 = Pε ≤ R1 and P2 = R2 = A(BJ2), so that by the remark
of Case 3.1.2 above, CJi

(Pi)/Z = CJi/Z(Pi/Z) and CJi
(Ri)/Z = CJi/Z(Ri/Z) for any

Z ≤ Z(Li). By Lemmas 9.1 and 7.6, we may suppose

L = L1 × L2 ≤ C � J := J1 × J2

Let R = (R1×R2)∩C, P = (P1×P2)∩C and let (P, g) ≤ (R, b) be Bz-subgroups,
so that π1(P ) = Pε and π1(R) = Rε, where πi is the natural projection form J to Ji. A
proof similar to that of Case 2 shows that (P, g) ≤ (R, b) satisfy Property 7.1 (a∗). If
K = E−ε

6 (q) and L1 = SL3(q
2), then L2 = Lε and a similar proof shows that Property

7.1 (a∗) holds for some B-subgroups (P, g) ≤ (R, b).
Note that CJ(P )/Z = CJ/Z(P/Z) and CJ(R)/Z = CJ/Z(R/Z) for any Z ≤ O3(Z(L)).

Case 3.2. Suppose that each Bi satisfies either Property 7.1 (a∗) or (d). By Case
1, we may suppose, moreover that B1 satisfies Property 7.1 (a∗). In particular, a Sylow
p-subgroup of L1 is nonabelian.

Case 3.2.1. Suppose p ≥ 5, so that z is of parabolic type. By [20, Theorem
4.2.2 (f)], Or′(C) is a direct product and each Li is universal. In addition, if a Sylow
p-subgroup of L1 is nonabelian, then ` = 1 or 2 and each Li is universal.

Suppose ` = 1, so that s = 1 or 2. Since B1 satisfies Property 7.1 (a∗) and
Ls = Z(C) when s = 2, it follows by Lemma 9.1 that we may suppose L = L1 × Ls

and CJi
(Li) ≤ Z(Li).

Suppose ` = 2, so that s = 2 or 3. Since L1 has a nonabelian Sylow p-subgroup,
it follows that L2 has an abelian Sylow p-subgroup and, moreover L2 ∩Op(Z(C)) = 1.
Since the central product L1 ◦ L2 ◦ Ls is over a subgroup of Z(C), it follows that each
p-subgroup of L2 satisfies the assumption of Lemma 9.1. Since B1 satisfies Property
7.1 (a∗) and Ls = Z(C) when s = 3, it follows by Lemma 9.1 that we may suppose
L = L1 × Ls × Ls and CJi

(Li) ≤ Z(Li).
By Case 2, B satisfies Property 7.1 (a∗).
Case 3.2.2. Suppose p = 3, so that C is given by [20, Table 4.7.3a]. Thus either

` = 1 or ` = 2 with C given by Table 2. In addition, each Li is also universal for
1 ≤ i ≤ ` and CJi

(Li) ≤ Z(Li).
A proof similar to that of Case 3.2.1 shows that we may suppose (9.3) holds and

by Case 2, B satisfies Property 7.1 (a∗).

Case 4. Let 3 | (q − ε), K = Ku = 3.Eε
6(q) ≤ E := 3.Eε

6(q).3, B ∈ Blk(K)
and BE ∈ Blk(E) covering B. Either Property 7.1 (a∗) holds for some B-subgroups
(P, g) ≤ (R, b) with CE(P )/Z = CE/Z(P/Z) and CE(R)/Z = CE/Z(R/Z) for Z ≤
Op(K), or Property 7.1 (d) holds for B.

Let D := D(B) and m∗ := gcd(m, q − ε).
If some Bi satisfies either Property 7.1 (b) or (c), then p = 3 and C is given by

Table 2. A proof similar to that of Case 3.2.2 shows that Property 7.1 (a*) holds for
some B-subgroups (P, g) ≤ (R, b).

Suppose some Bi satisfies Property 7.1 (a∗). Since z is parabolic or equal-rank type
and z induces an inner automorphism on K, it follows that each Li is classical. We
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first show that there exist B-subgroups (P, g) ≤ (R, b) and y satisfying the Property
7.1 (a∗) with H := K.

If p ≥ 5, then z is parabiloc. A proof similar to that of Case 3.2.1 shows that the
Property 7.1 (a∗) holds for B-subgroups (P, g) ≤ (R, g).

Suppose p = 3. By [20, Table 4.7.3A],

CK(z) = 〈SLε
3(q)× SLε

3(q) ◦ SLε
3(q), 3:3:3〉, (SLε

6(q) ◦2∗ (q − ε)).2∗,

Spin+
8 (q) ◦2∗ ((q − ε) × (q − ε)).(2∗ × 2∗), Spinε

10(q) ◦ (q − ε).(2∗ × 2∗ε) (when q ≡ ε
(mod 9)) with 2∗ε = 1 or 2∗ according as ε = − or +, or (SL2(q)× SLε

5(q)) ◦ (q − ε).2∗

(when q ≡ ε (mod 9)).
Thus ` = 1, 2 or 3. If ` = 1 or 2, then a proof similar to that of Cases 3.2.1 and

3.2.2 shows that the Property 7.1 (a∗) holds for B-subgroups (P, g) ≤ (R, g). If ` = 3,
then each Li = SLε

3(q) and CJi
(Li) ≤ Z(Li). A proof similar to that of Cases 3.1.3

shows that we may suppose (9.3) holds and by Case 2, the Property 7.1 (a∗) holds for
B-subgroups (P, g) ≤ (R, g).

If all Bi satisfies Property 7.1 (d), then by Case 1, D(Bz) is abelian.
Now we prove the rest of Property 7.1 (a∗) with H = E. Suppose (P, gE) ≤ (R, bE)

are BE-subgroups such that gE covers g and bE covering b.

Case 4.1. If p ≥ 5, then D(b) = D(bE), D(g) = D(gE), and so D(gE) = D(bE)
is abelian. Now CE(z) = C or 〈C, x〉 for some x ∈ E \ K. If CE(z) = C, then
CE(R) = CC(R). Apply the proof of Case 2 we have that

Z(C) ≤ N ′
2 ×N2 ≤ CC(R) ≤ CCE(z)(R) ≤M ′

2 ◦M2. (9.5)

Suppose CE(z) = 〈LT, x〉 for some x ∈ E \ K, so that x induces inner-diagonal
automorphism on each Li. Thus x = x1x2 · · ·xsx

′. Replacing Ji by 〈Ji, xi〉 and T ′ by
〈T ′, x′〉 in the proof Case 2 with some obvious modifications, we have that (9.5) still
holds. Thus Property 7.1 (a∗) holds for B-subgroups (P, g) ≤ (R, b) (with H := E).

Case 4.2. Suppose p = 3. By [20, Table 4.7.3A],

CE(z) = 〈SLε
3(q)× SLε

3(q) ◦ SLε
3(q), 3:3:1, 1:3:3〉, (SLε

6(q) ◦2∗ (q − ε)).(3× 2∗),

Spin+
8 (q)◦2∗ ((q− ε)× (q− ε)).(2∗× 2∗× 3), Spinε

10(q)◦ (q− ε).(3× 2∗× 2∗ε) (when q ≡ ε
(mod 9)) with 2∗ε = 1 or 2∗ according as ε = − or +, or (SL2(q)×SLε

5(q))◦(q−ε).(2∗×3)
(when q ≡ ε (mod 9)).

Suppose CE(z) = 〈SLε
3(q) × SLε

3(q) ◦ SLε
3(q), t, x〉, so that L = SLε

3(q) × SLε
3(q) ◦

SLε
3(q), T = 〈t〉 ≤ K with t induces 3:3:3 on L, and x ∈ E \ K induces 1:3:3 on

L. Let Li = SLε
3(q) ≤ Gi := GLε

3(q), t = t1 × t2 × t3, x = x1 × x2 × x3 with ti, xi

act on Li and centralizes Lj when i 6= j. In addition, let Hi = 〈Li, ti, xi〉, so that
Hi ≤ Gi. Let S = Zq−ε×Zq−ε ≤ SLε

3(q) be a maximal torus, and S×S ◦3S ≤ L. Since
CGLε

3(q)(S) = Zq−ε×Zq−ε×Zq−ε is a maximal torus, it follows that A := CE(S×S ◦3S)
is abelian such that A ∩K ∼= Z6

q−ε is a maximal torus of K and A/(A ∩K) = Z3. In
particular, we may suppose t, x ∈ A and CE(z) = LA with abelian A and L� CE(z).

Similarly, if CE(z) = (SLε
6(q) × (q − ε)).6∗, Spin+

8 (q) ◦2 ((q − ε) × (q − ε)).(2∗ ×
6∗), Spinε

10(q) ◦ (q − ε).(6∗ × 2∗ε) or (SL2(q) × SLε
5(q)) ◦ (q − ε).6∗, then A ≤ CE(z)

and so CE(z) = LA with abelian A and L � CE(z), and A induces inner-diagonal
automorphisms on each Li.
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A proof similar to that of Case 2 with LT replaced by LA and some modifications
shows that D(gE) = D(bE) is abelian, and hence Property 7.1 (a∗) holds.

Case 4.3. Suppose p = 3 and Z = Z(K). If CE(z)/Z = CE/Z(zZ), then CE(P )/Z =
CE/Z(P/Z) and CE(R)/Z = CE/Z(R/Z). Suppose CE(z)/Z 6= CE/Z(zZ). By [20, Ta-
ble 4.7.3A], either L = L1 ◦ L2 with L1 = Spin+

8 (q) and L2 = Z(C) = Zq−ε × Zq−ε or
L = Lε × Lε ◦ Lε ≤ K. In the former case,

CE/Z(zZ) = 〈CE(z)/Z,wZ〉,

where w ∈ E such that w = γ:ω, that is, w acts on L1 as a graph automorphism of
order 3 and (h1, h2)

ω = (h2, (h1h2)
−1) for any (h1, h2) ∈ L2. Now O3(L2) = O3(Zq−ε)×

O3(Zq−ε) ≤ P and Z(K) = {(x, x) : x ∈ Ω1(O3(Zq−ε))} ≤ Z(C). Suppose h ∈
E such that for any u ∈ P we have h−1uh = cu for some c ∈ Z(K) and suppose
h 6∈ CE(z). Then we may suppose h = tw for some t ∈ CE(z), and so (1, h2)

h =
(1, h2)

ω = (h2, 1) for any h2 ∈ O3(Zq−ε) \ {1}. But (h2, 1) 6= c(1, h2) for any c ∈ Z(K),
which is a contradiction. Thus h ∈ CE(z) and so CE(P )/Z = CE/Z(P/Z). Similarly,
CE(R)/Z = CE/Z(R/Z). If L = Lε ×Lε ◦Lε, then L/Z = Lε ◦Lε ◦Lε and CE/Z(zZ) =
〈L/Z, tZ, xZ,wZ〉, where t, x are given above and w ∈ E \ K permutes transitively
the three components Lε of L. The proof in this case is similar. Suppose h ∈ E
such that for all u ∈ P h−1uh = cu for some c ∈ Z, so that hZ ∈ CE/Z(zZ). Since
|Ω1(P )| ≥ 34 and CJ(P )/Z = CJ/Z(P/Z), it follows that h ∈ CE(z) = 〈L, x, t〉 and
hence CE(P )/Z = CJ/Z(P/Z). Similarly, CE(R)/Z = CE/Z(R/Z).

Case 4.4. Now we prove the rest of Property 7.1 (d). Suppose Property 7.1 (d)
holds for each Bi and suppose DE ∩K = D for some DE = D(BE), so that D(BJi

) is
abelian and so is D(Bz) = D(BJ) ∩ C. If Bz is a major subsection, then D = D(Bz)
is abelian. If p ≥ 5, then DE = D. Suppose p = 3 and there exists x ∈ Z(DE) \ D.
Then x ∈ E \ K, x ∈ CE(D) and DE = 〈D, x〉 is abelian. If Z(DE) ≤ D, then take
z ∈ Z(DE) with |z| = 3, so that DE ≤ CE(z) = LA. A proof similar to that of Case
1.2 with some obvious modifications shows that DE is abelian.

Suppose z ∈ D with |z| = 9 and zZ(K) ∈ Z(D/Z(K)). By [20, Table 4.7.3A],
9 | (q − ε) and CE(z) = Spinε

10(q) ◦ (q − ε).(6∗ × 2∗ε) or (SL2(q) × SLε
5(q)) ◦ (q −

ε).6∗. In this case, CE/Z(K)(zZ(K)) is also given by [20, Table 4.7.3A], and we have
CK/Z(K)(zZ(K)) = CK(z)/Z(K). Thus D/Z(K) ≤ CK(z)/Z(K) and D ≤ CK(z). In
particular, z ∈ Z(D) and we may suppose (z, Bz) is major. Hence D = D(Bz) is
abelian. It follows that Property 7.1 (d) holds for B.

Case 5. Let K := E7(q) with q even and B ∈ Blk(K). Then either Li is classical,
or Li is exceptional given in Cases 3 or 4. If Li is classical, then apply Propositions
8.1, 8.2, 8.3 and 8.5. If Li is exceptional, then apply the results given in Cases 3
and 4. Either Property 7.1 (a∗) holds for B or Property 7.1 (d) holds for B (with
H := K := E7(q)).

Let q be odd, K = 2.E7(q) ≤ E := 2.E7(q).2, B ∈ Blk(K) and BE ∈ Blk(E)
covering B. Either Property 7.1 (a∗) holds for some B-subgroups (P, g) ≤ (R, b) or
Property 7.1 (d) holds for B.

Again let D := D(B) and m∗ := gcd(m, q − ε).
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Suppose Property 7.1 (a∗) holds for some Bi-subgroups (Pi, gi) ≤ (Ri, bi). A proof
similar to that of Case 3.2 with some obvious modifications shows that there exist
B-subgroups (P, g) ≤ (R, b) and y satisfying the first part of Property 7.1 (a∗) (with
H = K). Suppose Bi satisfies either Property 7.1 (b) or (c) for some i. Then p = 3
and C is given by Table 2. A proof similar to that of Case 3.1.3 shows that Property
7.1 (a*) holds for some B-subgroups (P, g) ≤ (R, b). Suppose (P, gE) ≤ (R, bE) are
BE-subgroups such that gE covering g and bE covering b. Then D(g) = D(gE) and
D(b) = D(bE) for some D(gE) and D(bE). But D(g) = D(b) is abelian, so D(gE) =
D(bE) is abelian. A proof similar to that of Case 4.1 shows that (9.5) holds and so
Property 7.1 (a∗) (with H = E) holds for B-subgroups (P, g) ≤ (R, b).

Since E/K = 2 and p is odd, it follows that D(BE) is abelian whenever D(B) is
abelian.

Case 6. Suppose K := E8(q). Either Property 7.1 (a) holds for some B-subgroups
(P, g) ≤ (R, b) or Property 7.1 (d) holds for B.

In this case (z, Bz) is a major subsection of B and either Li is classical, or Li is
exceptional given in Cases 3, 4 or 5. If Li is classical, then apply Theorem 8.6. If Li is
exceptional, then apply the results in Cases 3, 4 or 5. Thus if each D(Bi) is abelian,
then D(BJi

) is abelian, and so D = D(Bz) = D(BJ) ∩C is abelian. Suppose D(Bi) is
non-abelian for some i, say i = 1.

If p ≥ 7, then B1 satisfies Property 7.1 (a∗), z is of parabolic type and the proof is
similar to that of Case 3.2.1.

Suppose p = 5, so that B1 satisfies Property 7.1 (a∗) and C is given by [20, Table
4.7.3B]. Thus ` = 1 or 2. If z is parabolic, then a proof similar to that of Case 3.2.1
shows that we may suppose (9.3) holds.

If z is equal-rank, then

C = 〈L1 ◦ L2, 5:5〉, L1 = L2 = SLε
5(q),

so that L = L1 ◦L2. Here ε = ±1 such that q ≡ ε (mod 5). A proof similar to that of
Case 3.1.3 shows that we may suppose L = L1 × L2. By Case 2, B satisfies Property
7.1 (a∗).

Suppose p = 3, so that C is given by [20, Table 4.7.3A] and ` = 1 or 2.
If some Bi satisfies either Property 7.1 (b) or (c), then C is given by Table 2. In

particular, ` = 2 and D(Bi) = 31+2
+ .

If ` = 1, then B1 satisfies Property 7.1 (a∗) and we may suppose (9.3) holds. By
Case 2, B satisfies Property 7.1 (a∗).

Suppose ` = 2, so that L = Lε ◦ E6(q)u and C = 〈L, 3:3〉, where Lε = SLε
3(q) with

q ≡ ε (mod 3).
If L1 = E6(q)u and B1 satisfies Property 7.1 (a∗) for (P1, g1) ≤ (R1, b1). Let

P2 = R2 = A(D(B2)), and let (R2, b2) be a B2-subgroup and set (P2, g2) = (R2, b2).
By Case 4 and the ramark of Case 3.1.2, CJi

(Ri)/Zi = CJi/Zi
(Ri/Zi) for i = 1, 2. By

Lemma 9.1, we may suppose L = L1 × L2 and a similar to that of Case 2 shows that
B satisfies Property 7.1 (a∗).

Suppose L1 = Lε and B2 satisfies Property 7.1 (d), so that D(B2) is abelian. In
this case B1 satisfies Property 7.1 (b) with D(B1) = 31+2

+ or B1 satisfies Property 7.1
(a*). Note that J = J1 ◦ J2 over Z(L) = 3 and J1 = Hε given in Case 3.1.2.
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Let (Pε, g) ≤ (Rε, b) be defined in Case 3.1.2. Then there exists y ∈ CHε(Pε) ∩
NHε(Rε) \ CHε(Rε) satisfies Property 7.1 (a∗).

Let P2 = R2 = A(D(BJ2)) = D(B2) and let (P2, b2) = (R2, b2) be the Sylow
BJ2-subgroup. Since Hε = J1, it follows that Pε ◦ P2 ≤ Rε ◦R2 ≤ J . Set

P = (Pε ◦ P2) ∩ C, and R = (Rε ◦R2) ∩ C.

Then P ≤ R ≤ D and P,R are abelian. Since Z(L) = 3, it follows that b ◦ b2 is a
block CJ(Rε ◦ R2) and g ◦ g2 ∈ Blk(CJ(Pε ◦ P2)). Since J/C = 3, it follows that b ◦ b2
covers a unique block bR of CC(R) and similarly, g ◦ g2 covers a unique block gP of
CC(P ). Since BJ is the unique block covering Bz, it follows that (P, bP ) ≤ (R, bR) are
Bz-subgroups. Since Hε/Lε = 3, it follows that y ∈ Lε = L1. Now B satisfies Property
7.1 (a) (not (a∗)) for B-subgroups (P, bP ) ≤ (R, bR) (with H = K). 2

Lemma 9.3 Let G be a quasisimple group such that G/Z(G) is alternating or of Lie
type and G is an exceptional cover. Let p be an odd prime. Then every p-block of G with
nonabelian defect groups has a subpair with at least two irreducible Brauer characters.

Proof: We must consider the cases G/Z(G) ∼= PSL2(4), PSL2(9), A7, PSL3(2),
PSL3(4), PSU4(2), PSU4(3), PSU6(2),

2B2(8), O7(2), O7(3), O
+
8 (2), G2(3), G2(4),

F4(2) and 2E6(2). We may use [18] to confirm all but the cases F4(2) for p = 3, and
2E6(2) for p = 3, 5, 7 (noting that the three double covers of O+

8 (2) have the same block
structure - see [14]), as in each case the block itself has at least two irreducible Brauer
characters. The result holds for F4(2) for p = 3 by [22]. Note that 2E6(2) has abelian
Sylow 5- and 7-subgroups, so we are left with p = 3 and G/Z(G) ∼= 2E6(2). In this case
we do not know the Brauer characters of G, so we are forced into a slightly involved
argument to make use of the current literature. Note that it suffices to consider the
case |Z(G)| = 4. Our group G has three conjugacy classes of elements of order three,
3A, 3B and 3C. For each such x ∈ G, we have CG(x)/Z(G) ∼= CG/Z(G)(xZ(G)). Con-
sider a block B covering the block c of Z(G) containing the irreducible character λ,
say. We may assume that c is faithful. By examination of the character table in [14],
only two irreducible characters lying over λ vanish on 3A, 3B but not 3C (χ184 and
χ202 in the notation of [14]). Since a 3-block of positive defect must possess at least
three irreducible characters, it follows by a theorem of Green that B must have a de-
fect group D containing elements of 3A or 3B. Suppose x ∈ Z(D) has order three.
Write Q = 〈x〉. Note that DCG(D) ≤ CG(Q), so there is a B-subgroup (Q, bQ) with
defect group D. If x ∈ 3A, then CG/Z(G)(xZ(G)) ∼= Q× PSU6(2). We have seen that
every block with nonabelian defect groups of a double cover of PSU6(2) has at least
two irreducible Brauer characters, so it follows that l(bQ) = 1 if D is nonabelian. If
x ∈ 3B, then CG/Z(G)(xZ(G)) ∼= Q × O+

8 (2).3, and the same argument applies as for
3A. 2

Theorem 9.4 Let G be a quasisimple group and B a nilpotent p-block of G with defect
group D, where p is odd. Then D is abelian.
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Proof: If G/Z(G) is an alternating group, then the result follows by Theorem 3.3
and the remarks following it. For G/Z(G) sporadic see Theorem 4.5. If G/Z(G) is a
classical group and G is a non-exceptional cover, see Propositions 8.1, 8.2, 8.3 and 8.5.
For G/Z(G) an exceptional group of Lie type and G is a non-exceptional cover, see
Theorem 9.2. For the exceptional covers, see Lemma 9.3. 2

10 Puig’s conjecture

We complete the proof of Puig’s conjecture for quasisimple groups for odd primes,
present some general results and deduce some corollaries.

Theorem 10.1 Let G be a finite quasisimple group and let B be a p-block of G with p
odd. Then B is nilpotent if and only if l(bQ) = 1 for each p-subgroup Q and each block
bQ of CG(Q) with (bQ)G = B.

Proof: The necessary condition for nilpotency follows from [13, 1.2]. By Corollary
7.5 and Propositions 8.1, 8.2, 8.3 and 8.5 the result holds for the classical groups. By
Theorem 9.2 it holds for the exceptional groups of Lie type. The result holds for the
double covers of the alternating groups by Theorem 3.3, and when G/Z(G) is sporadic
by Theorem 4.5. For the exceptional covers of the alternating groups and of the finite
simple groups of Lie type, see Lemma 9.3. 2

Lemma 10.2 Let N � G such that G/N is cyclic and of order prime to p, and let
B ∈ Blk(G) cover b ∈ Blk(N). Suppose there are abelian R and P and b-subgroups
(P, bP ) ≤ (R, bR) such that bP and bR have abelian defect groups and there is x ∈
CN(P ) of order prime to [G:N ] such that x ∈ NN(R, bR) \ CN(R). Then there are
B-subgroups (P,BP ) ≤ (R,BR) such that BR and BP have abelian defect groups and
x ∈ NG(R,BR) \ CG(R).

Proof: By [15, 4.1] there is BR ∈ Blk(CG(R)) such that (BR)G = B and BR

covers bR. We claim that the number of such BR divides [G:N ]. Now CG(R)/CN(R)
is cyclic of order dividing [G:N ]. The blocks of CN(R) and of CG(R) are in 1-1 corre-
spondence with their canonical characters. Let θR be the canonical character for bR.
Since CG(R)/CN(R) is cyclic, θR extends to an irreducible character of CG(R), and
since [CG(R) : CN(R)] is not divisible by p, the extensions are precisely the canoni-
cal characters of the blocks of CG(R) covering bR. By Clifford theory, the group of
irreducible characters of CG(R)/CN(R) acts transitively on the blocks B1, . . . , Bn of
CG(R) covering bR by inflation and multiplication, and also transitively on the set
{BG

i : 1 ≤ i ≤ n}. Consequently the number of blocks of CG(R) covering bR with
Brauer correspondent B divides [CG(R) : CN(R)], and the claim follows.

For each i, we have (Bx
i )G = (BG

i )x = Bx = B, and Bx
i overs bxi = bi. Hence

x permutes {Bi : BG
i = B}. Since this set has order prime to the order of x, it fol-

lows that x must fix some such Bi. Call it BR. Letting BP = (BR)CG(P ), we are done. 2

As an almost immediate corollary we have:
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Corollary 10.3 Let G be a finite group such that there is N �G with [G : N ] odd and
G/N is a p-regular cyclic group, where N is quasisimple and p > 3 is a prime. Let B
be a p-block of G. Then B is nilpotent if and only if l(bQ) = 1 for every B-subgroup
(Q, bQ).

Proof: Since the alternating and sporadic groups have outer automorphism groups
of order at most two, it follows that it suffices to consider the groups of Lie type.
Suppose first that N is not an exceptional covering group. Since p > 3, every block of
N satisfies one of Property 7.1 (a) or (d), and the result follows by Lemma 10.2 and
Corollary 7.5.

Suppose that N is an exceptional cover. Then the outer automorphism group is
a 2-group except when N/Z(N) ∼= PSL3(4), PSU6(2) or 2E6(2), in which case it has
order three, and consists of diagonal automorphisms. In each case Z(N) is a Klein-four
group. However, in each of these cases the non-inner automorphisms transitively per-
mute the blocks whose kernel does not contain Z(N), and the result follows in these
cases too, since B is nilpotent if and only if b is, and B-subgroups (Q,BQ) covering
b-subgroups (Q, bQ) satisfy l(BQ) = l(bQ). 2
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