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THE BRETHERTON PROBLEM IN ELASTIC-WALLED CHANNELS: FINITE REYNOLDSNUMBER EFFECTSMatthias HeilDepartment of Mathematis, University of ManhesterM.Heil�maths.man.a.ukAbstrat This paper investigates the e�et of uid inertia on the propagation ofan air �nger into a hannel with elasti walls, a problem whih an beregarded as a generalisation of the lassial Bretherton problem. Thestudy is motivated by the physiologial problem of pulmonary airwayreopening. Numerial results show that uid inertia plays a surpris-ingly important role in this problem: Even for relatively modest ratiosof Reynolds and Capillary numbers (Re=Ca � 5 � 10), the pressurerequired to drive the air �nger at a given speed inreases signi�antlyompared to the zero Reynolds number ase. Inertial e�ets are alsoshown to be responsible for a notieable hange in the wall deformationahead of the bubble tip. This is analysed by a Karman-Pohlhausen ap-proximation whih yields a linear ODE, the eigenvalues of whih deter-mine the wavelength and deay rate of the osillatory wall displaement�eld in this region.Keywords: Bretherton problem, uid-struture interation, pulmonary airway re-opening1. INTRODUCTIONThe Bretherton problem (the propagation of an air �nger into a rigid-walled uid-�lled hannel; Bretherton 1961) is a lassial free-surfaeow problem. Gaver et al. (1996) proposed a generalisation of this prob-lem as a model of pulmonary airway reopening: They onsidered thesteady propagation of an air �nger into a two-dimensional, uid-�lledhannel whose exible walls are represented by membranes under ten-sion. The walls are supported on an elasti foundation (of sti�ness K�)whih represents the tethering provided by the lung tissue surroundingthe oluded and ollapsed airway. The model problem is illustrated in



Fig. 1. Gaver et al. (1996) negleted uid inertia, an approximationwhih was justi�ed by the (assumed) small Reynolds numbers in air-way reopening and in benhtop experiments by, e.g., Gaver et al. (1990)and Yap et al. (1994). The Stokes equations were solved by a bound-ary element method whih inorporated an Eulerian desription of thewall mehanis. Gaver et al. (1996) provided a detailed analysis of thissystem and determined the non-dimensional propagation speed of thebubble tip (expressed in terms of the apillary number Ca = U�=�) asa funtion of the applied bubble pressure pb.
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γFigure 1. Sketh of the Bretherton problem with elasti walls: An air �nger prop-agates into a liquid-�lled two-dimensional hannel with elasti walls.2. FINITE REYNOLDS NUMBER EFFECTSHeil (2000) re-investigated the problem and provided several improve-ments to the original model: (i)Gaver et al.'s (1996) Eulerian wall modelwhih required a number of ad-ho assumptions in the implementationof the no-slip ondition at the uid-wall interfae was replaed by a La-grangian wall model. This allowed a fully self-onsistent desription ofthe uid-struture interation and the inlusion of bending sti�ness; (ii)the solution of the uid equations was ahieved by a Finite Element dis-retisation of the free-surfae Navier-Stokes equations whih allowed theinlusion of uid inertia into the problem.Briey, in Heil's (2000) model, the wall is regarded as a beam ofthikness h0 whih is subjet to a large axial tension T = �0 h0. In aframe moving with veloity of the bubble tip, the wall deformation isdesribed by the priniple of virtual displaementsZ 1�1 h(�0 + e) Æe+ 112 � h0H0�2 � Æ� � �H0h0 ���Kv2(1 + v1;�) Æv2++ f � ÆRwq(1 + v1;�)2 + (v2;�)2� id� = 0; (1)



where Rw(�) is the vetor to a material point on the deformed wall(parametrised in terms of the Lagrangian travelling wave oordinate �),the vi are the omponents of the displaement vetor and e and � repre-sent the wall's inremental strain and hange of urvature, respetively.f is the tration (non-dimensionalised by the wall's elasti modulus E)ating on the wall and K = K�H0=E.The ow is desribed by the free-surfae Navier-Stokes equationsRe uj �ui�xj = � �p�xi + ��xj  �ui�xj + �uj�xi!�ui�xi = 0;together with the interfaial boundary onditionsu � n = 0�pni + � �ui�xj + �uj�xi �nj + 1Ca �fni = �pbni ) on the free surfae;where the veloities were saled with the bubble veloity U and thevisous pressure sale was used. �f is the non-dimensional urvature ofthe air-liquid interfae and Re = U�H0=�. The uid and solid domainsare oupled via the no-slip onditionu = �(1 + v1;� ; v2;�) on the wall (2)and by the tration that the uid exerts on the wall. Taking the dif-ferent stress non-dimensionalisations in the uid and solid domains intoaount, the tration on the wall is given byfi = Ca   pni �  �ui�xj + �uj�xi!nj! :Here the non-dimensional surfae tension  = �=(EH0) represents theratio of the uid surfae tension to the wall's extensional sti�ness.Heil (2000) showed that even moderate uid inertia signi�antly in-reases the bubble pressure pb required to drive the bubble at a givenspeed (apillary number), as shown in Fig. 2. Note that the ratio ofapillary and Reynolds numbers (both of whih sale linearly with thebubble veloity) is kept onstant along the various urves in this �gure,to ensure that the urves represent physially realisable parameter vari-ations. The orresponding plots of the uid domain in Fig. 3 show thatuid inertia leads to a signi�ant hange in the wall displaement �eldahead of the bubble tip: At �nite Reynolds number, the wall developsan osillatory deformation pattern whose wavelength, deay rate andamplitude vary strongly with the Reynolds number.



Ca

p b
C

a

0 0.5 1 1.5 22

3

4

5
Re/Ca=0.0
Re/Ca=2.5
Re/Ca=5.0
Re/Ca=7.5
Re/Ca=10.0

Figure 2. The bubble pressure (on the apillary pressure sale) versus the non-dimensional bubble speed Ca = U�=� for various values of Re=Ca.3. AN ANALYTICAL MODELWe will now develop an analytial model to analyse the hanges to thewall displaement �eld at �nite Reynolds number. The wall displae-ment �eld ahead of the bubble tip approahes the system's deayingeigenfuntions as x1 ! 1. At zero Reynolds number, the eigenfun-tion an be determined from a lubriation theory analysis (Gaver et al.1996). To extend the analysis to �nite Reynolds number, we note thatFig. 3 shows that in the region ahead of the bubble tip (i) the pressureremains approximately uniform over the width of the hannel1 and (ii)the wall slope remains moderate (note the di�erent sales for the x1 andx2-axes).Motivated by these observations, we onsider the ase in whih thesmall wall slope, dv2=d� = O(�) � 1 implies small transverse uidveloities suh that u2=u1 = O(�), but assume that uid inertia is solarge that �Re = O(1). Inserting these salings into the momentumequation yields the leading order ontributionsRe�u1�u1�x1 + u2�u1�x2� = � �p�x1 + �2u1�x22 (3)and �p=�x2 = 0. In view of the small wall deetions, we linearisethe wall equations (whih represent the Euler-Lagrange equations of the1At suÆiently large Reynolds number, a loal pressure rise towards the bubble tip an bedeteted; see the inset in Fig. 3. This pressure rise redues the urvature of the air-liquidinterfae near the bubble tip and an even ause it to `bulge out'.



Figure 3. Streamlines and pressure ontours (on the apillary pressure sale) forvarious Ca and for Re=Ca = 10. Only the lower half of the hannel is shown.variational priniple (1)) to obtain the following equation for the hannelhalf-width w(x1)p = 1Ca  �(w � 1)� �w00 + 112 � h0H0�3 wiv! : (4)Here � = T=� and � = K�H20=� represent Gaver et al.'s (1996) non-dimensionalisations for the wall tension and the sti�ness of the elastifoundation, respetively. The inremental wall strain e tends to zero as



x1 !1, therefore the veloity boundary ondition (2) beomes u1 = �1and u2 = �w0 at x2 = w. Following Christodoulou & Sriven (1989),we use the Karman-Pohlhausen method and approximate the veloitydistribution byu1(x1; x2) = �1 + 32 w(x1)� 1w(x1)  1� � x2w(x1)�2! (5)and u2(x1; x2) = x2w(x1) w0(x1) u1(x1; x2) (6)and substitute (4) { (6) into (3). Integrating the momentum equation(3) over the hannel width yields a nonlinear equation for w(x1). Welinearise this equation with respet to !(x1) = w(x1) � 1 = O(�) toobtain the homogeneous ODERe Ca !0 = �!0 � �!000 + 112 � h0H0�3 !v + 3 Ca !;whih governs the wall deformation as x1 !1 and ! ! 0. Its solutionis of the form ! � exp(�x1) = exp((��+ i�)x1)where only three of the �ve roots, �, of the harateristi polynomial112 � h0H0�3 �5 � ��3 + (��Re Ca)� + 3Ca = 0 (7)have negative real part, i.e. are deaying as x1 ! 1. Two of theseroots are omplex and represent the deaying osillatory wall displae-ment �eld that we wish to analyse. The third negative root is large andpurely real and is assoiated with the short-lengthsale bending deforma-tion. Note that the Reynolds number only appears in the ombinationRe Ca = U2�H0=�, whih is also known as the Weber number,We, andrepresents the ratio of inertia to surfae tension.We will now investigate how variations of the system's non-dimensionalparameters a�et the wall displaement �eld in the presene of uid in-ertia. As in Gaver et al. (1996) and Heil (2000), we regard � = 100; � =0:5; h0=H0 = 5� 10�4 and  = 10�7 as the referene state.Fig. 4 shows the variations of the wavenumber � and the deay rate �as a funtion of the non-dimensional bubble veloity Ca for several valuesof Re=Ca: An inrease in Ca inreases the wavenumber � and thusshortens the wavelength of the deformation pattern. Fluid inertia anbe seen to signi�antly enhane this e�et. The deay rate � inreases
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Figure 4. Variation of the wavenumber � and deay rate � with Ca for variousvalues of Re=Ca.
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Figure 5. Variation of the wavenumber � and deay rate � with wall tension � forvarious values of Re=Ca and for Ca = 2.with Ca when Re=Ca is small; this e�et is redued and �nally reversedas Re=Ca inreases.The hanges to the wall displaement �eld due to variations in thewall tension � are illustrated in Fig. 5: An inrease in wall tensionsmoothes out the wavy wall displaement by reduing both the deayrate and the wavenumber. Fluid inertia has a mainly quantitative e�eton this behaviour but it is interesting to note that at suÆiently largevalues of Re=Ca, the deay rate � beomes nearly independent of thewall tension �.Fig. 6 shows that variations in the sti�ness of the elasti foundation �only have a moderate e�et on the displaement �eld ahead of the bubbletip even though they strongly a�et the system's overall behaviour (seeHeil 2000). It is interesting to note that, aording to the linear theory,for a given value of Ca, hanges to � an be ompensated for by asuitable inrease in the Weber number We, sine � only appears in theombination (��Re Ca).
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Figure 6. Variation of the wavenumber � and deay rate � with spring sti�ness �for various values of Re=Ca and for Ca = 2.The preditions shown in Figs. 4 { 6 are in exellent agreement withthe trends observed in the omputational parameter studies. This on-�rms that, as speulated in Heil (2000), the hanges to the wall dis-plaement �eld ahead of the bubble tip are mainly due to the Bernoullie�et.ReferenesBretherton, F. 1961 The motion of long bubbles in tubes. Journal of FluidMehanis 10, 166{188.Christodoulou, K. & Sriven, L. 1989 The uid mehanis of slide oating.Journal of Fluid Mehanis 208, 321{354.Gaver, D., Halpern, D., Jensen, O. & Grotberg, J. 1996 The steady mo-tion of a semi-in�nite bubble through a exible walled hannel. Journal of FluidMehanis 319, 25{56.Gaver, D., Samsel, R. & Solway, J. 1990 E�ets of surfae tension and visosityon airway reopening. Journal of Applied Physiology 369, 74{85.Heil, M. 2000 Finite Reynolds number e�ets in the propagation of an air �ngerinto a liquid-�lled exible-walled hannel. Journal of Fluid Mehanis 424, 21{44.Yap, D., Liebkemann, W., Solway, J. & Gaver, D. 1994 Inuenes of parenhy-mal tethering on the reopening of losed pulmonary airways. Journal of AppliedPhysiology 76, 2095{2105.


