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Abstract  This paper investigates the effect of fluid inertia on the propagation of
an air finger into a channel with elastic walls, a problem which can be
regarded as a generalisation of the classical Bretherton problem. The
study is motivated by the physiological problem of pulmonary airway
reopening. Numerical results show that fluid inertia plays a surpris-
ingly important role in this problem: Even for relatively modest ratios
of Reynolds and Capillary numbers (Re/Ca =~ 5 — 10), the pressure
required to drive the air finger at a given speed increases significantly
compared to the zero Reynolds number case. Inertial effects are also
shown to be responsible for a noticeable change in the wall deformation
ahead of the bubble tip. This is analysed by a Karman-Pohlhausen ap-
proximation which yields a linear ODE, the eigenvalues of which deter-
mine the wavelength and decay rate of the oscillatory wall displacement
field in this region.

Keywords: Bretherton problem, fluid-structure interaction, pulmonary airway re-
opening

1. INTRODUCTION

The Bretherton problem (the propagation of an air finger into a rigid-
walled fluid-filled channel; Bretherton 1961) is a classical free-surface
flow problem. Gaver et al. (1996) proposed a generalisation of this prob-
lem as a model of pulmonary airway reopening: They considered the
steady propagation of an air finger into a two-dimensional, fluid-filled
channel whose flexible walls are represented by membranes under ten-
sion. The walls are supported on an elastic foundation (of stiffness K*)
which represents the tethering provided by the lung tissue surrounding
the occluded and collapsed airway. The model problem is illustrated in



Fig. 1. Gaver et al. (1996) neglected fluid inertia, an approximation
which was justified by the (assumed) small Reynolds numbers in air-
way reopening and in benchtop experiments by, e.g., Gaver et al. (1990)
and Yap et al. (1994). The Stokes equations were solved by a bound-
ary element method which incorporated an Eulerian description of the
wall mechanics. Gaver et al. (1996) provided a detailed analysis of this
system and determined the non-dimensional propagation speed of the
bubble tip (expressed in terms of the capillary number Ca = Up/v*) as
a function of the applied bubble pressure py.
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Figure 1.  Sketch of the Bretherton problem with elastic walls: An air finger prop-
agates into a liquid-filled two-dimensional channel with elastic walls.

2. FINITE REYNOLDS NUMBER EFFECTS

Heil (2000) re-investigated the problem and provided several improve-
ments to the original model: (i) Gaver et al.’s (1996) Eulerian wall model
which required a number of ad-hoc assumptions in the implementation
of the no-slip condition at the fluid-wall interface was replaced by a La-
grangian wall model. This allowed a fully self-consistent description of
the fluid-structure interaction and the inclusion of bending stiffness; (ii)
the solution of the fluid equations was achieved by a Finite Element dis-
cretisation of the free-surface Navier-Stokes equations which allowed the
inclusion of fluid inertia into the problem.

Briefly, in Heil’s (2000) model, the wall is regarded as a beam of
thickness hg which is subject to a large axial tension T' = oy hy. In a
frame moving with velocity of the bubble tip, the wall deformation is
described by the principle of virtual displacements
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where R, (¢) is the vector to a material point on the deformed wall
(parametrised in terms of the Lagrangian travelling wave coordinate (),
the v" are the components of the displacement vector and e and x repre-
sent the wall’s incremental strain and change of curvature, respectively.
f is the traction (non-dimensionalised by the wall’s elastic modulus E)
acting on the wall and K = K*H,/FE.

The flow is described by the free-surface Navier-Stokes equations
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together with the interfacial boundary conditions
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where the velocities were scaled with the bubble velocity U and the
viscous pressure scale was used. ry is the non-dimensional curvature of
the air-liquid interface and Re = UpHy/p. The fluid and solid domains
are coupled via the no-slip condition

u=—(1+ ’U}C,Ui) on the wall (2)

and by the traction that the fluid exerts on the wall. Taking the dif-
ferent stress non-dimensionalisations in the fluid and solid domains into
account, the traction on the wall is given by
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Here the non-dimensional surface tension v = v*/(EHj) represents the
ratio of the fluid surface tension to the wall’s extensional stiffness.

Heil (2000) showed that even moderate fluid inertia significantly in-
creases the bubble pressure p, required to drive the bubble at a given
speed (capillary number), as shown in Fig. 2. Note that the ratio of
capillary and Reynolds numbers (both of which scale linearly with the
bubble velocity) is kept constant along the various curves in this figure,
to ensure that the curves represent physically realisable parameter vari-
ations. The corresponding plots of the fluid domain in Fig. 3 show that
fluid inertia leads to a significant change in the wall displacement field
ahead of the bubble tip: At finite Reynolds number, the wall develops
an oscillatory deformation pattern whose wavelength, decay rate and
amplitude vary strongly with the Reynolds number.
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Figure 2. The bubble pressure (on the capillary pressure scale) versus the non-
dimensional bubble speed Ca = Up/~* for various values of Re/Ca.

3. AN ANALYTICAL MODEL

We will now develop an analytical model to analyse the changes to the
wall displacement field at finite Reynolds number. The wall displace-
ment field ahead of the bubble tip approaches the system’s decaying
eigenfunctions as 1 — o0o. At zero Reynolds number, the eigenfunc-
tion can be determined from a lubrication theory analysis (Gaver et al.
1996). To extend the analysis to finite Reynolds number, we note that
Fig. 3 shows that in the region ahead of the bubble tip (i) the pressure
remains approximately uniform over the width of the channel' and (ii)
the wall slope remains moderate (note the different scales for the z; and
To-axes).

Motivated by these observations, we consider the case in which the
small wall slope, dv?/d( = O(e) < 1 implies small transverse fluid
velocities such that ug/u; = O(€), but assume that fluid inertia is so

large that eRe = O(1). Inserting these scalings into the momentum
equation yields the leading order contributions
Ou ouq ap 82“]
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and dp/dre = 0. In view of the small wall deflections, we linearise

the wall equations (which represent the Euler-Lagrange equations of the

LAt sufficiently large Reynolds number, a local pressure rise towards the bubble tip can be
detected; see the inset in Fig. 3. This pressure rise reduces the curvature of the air-liquid
interface near the bubble tip and can even cause it to ‘bulge out’.
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Figure 3. Streamlines and pressure contours (on the capillary pressure scale) for

various Ca and for Re/Ca = 10. Only the lower half of the channel is shown.

variational principle (1)) to obtain the following equation for the channel
half-width w(x1)

1 T(w—1) - "-{—L(ﬂ):; v (4)
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Here n = T/y* and T' = K*H{ /v* represent Gaver et al.’s (1996) non-
dimensionalisations for the wall tension and the stiffness of the elastic
foundation, respectively. The incremental wall strain e tends to zero as



21 — 00, therefore the velocity boundary condition (2) becomes u; = —
and up = —w' at z9 = w. Following Christodoulou & Scriven (1989),
we use the Karman-Pohlhausen method and approximate the velocity
distribution by
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and
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and substitute (4) (6) into (3). Integrating the momentum equation
(3) over the channel width yields a nonlinear equation for w(z;). We
linearise this equation with respect to w(z1) = w(z) —1 = O(e) to
obtain the homogeneous ODE

3
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which governs the wall deformation as £; — oo and w — 0. Its solution
is of the form
w ~exp(Azy) = exp((—\ + ia)zq)

where only three of the five roots, A, of the characteristic polynomial

3
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have negative real part, i.e. are decaying as z1 — oc. Two of these
roots are complex and represent the decaying oscillatory wall displace-
ment field that we wish to analyse. The third negative root is large and
purely real and is associated with the short-lengthscale bending deforma-
tion. Note that the Reynolds number only appears in the combination
Re Ca = U?pHy /o, which is also known as the Weber number, We, and
represents the ratio of inertia to surface tension.

We will now investigate how variations of the system’s non-dimensional
parameters affect the wall displacement field in the presence of fluid in-
ertia. As in Gaver et al. (1996) and Heil (2000), we regard n = 100, I =
0.5, ho/Hy =5 x 10~* and v = 107 as the reference state.

Fig. 4 shows the variations of the wavenumber « and the decay rate A
as a function of the non-dimensional bubble velocity Ca for several values
of Re/Ca: An increase in Ca increases the wavenumber o and thus
shortens the wavelength of the deformation pattern. Fluid inertia can
be seen to significantly enhance this effect. The decay rate A increases
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Figure 4.  Variation of the wavenumber a and decay rate A with Ca for various
values of Re/Ca.
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Figure 5.  Variation of the wavenumber a and decay rate A with wall tension 7 for
various values of Re/Ca and for Ca = 2.

with C'a when Re/Ca is small; this effect is reduced and finally reversed
as Re/Ca increases.

The changes to the wall displacement field due to variations in the
wall tension 7 are illustrated in Fig. 5: An increase in wall tension
smoothes out the wavy wall displacement by reducing both the decay
rate and the wavenumber. Fluid inertia has a mainly quantitative effect
on this behaviour but it is interesting to note that at sufficiently large
values of Re/Ca, the decay rate A becomes nearly independent of the
wall tension 7.

Fig. 6 shows that variations in the stiffness of the elastic foundation I'
only have a moderate effect on the displacement field ahead of the bubble
tip even though they strongly affect the system’s overall behaviour (see
Heil 2000). It is interesting to note that, according to the linear theory,
for a given value of Ca, changes to I' can be compensated for by a
suitable increase in the Weber number We, since I' only appears in the
combination (I' — Re Ca).
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Figure 6.  Variation of the wavenumber a and decay rate A with spring stiffness T’
for various values of Re/Ca and for Ca = 2.

The predictions shown in Figs. 4 6 are in excellent agreement with
the trends observed in the computational parameter studies. This con-
firms that, as speculated in Heil (2000), the changes to the wall dis-
placement field ahead of the bubble tip are mainly due to the Bernoulli
effect.
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