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THE BRETHERTON PROBLEM IN ELASTIC-WALLED CHANNELS: FINITE REYNOLDSNUMBER EFFECTSMatthias HeilDepartment of Mathemati
s, University of Man
hesterM.Heil�maths.man.a
.ukAbstra
t This paper investigates the e�e
t of 
uid inertia on the propagation ofan air �nger into a 
hannel with elasti
 walls, a problem whi
h 
an beregarded as a generalisation of the 
lassi
al Bretherton problem. Thestudy is motivated by the physiologi
al problem of pulmonary airwayreopening. Numeri
al results show that 
uid inertia plays a surpris-ingly important role in this problem: Even for relatively modest ratiosof Reynolds and Capillary numbers (Re=Ca � 5 � 10), the pressurerequired to drive the air �nger at a given speed in
reases signi�
antly
ompared to the zero Reynolds number 
ase. Inertial e�e
ts are alsoshown to be responsible for a noti
eable 
hange in the wall deformationahead of the bubble tip. This is analysed by a Karman-Pohlhausen ap-proximation whi
h yields a linear ODE, the eigenvalues of whi
h deter-mine the wavelength and de
ay rate of the os
illatory wall displa
ement�eld in this region.Keywords: Bretherton problem, 
uid-stru
ture intera
tion, pulmonary airway re-opening1. INTRODUCTIONThe Bretherton problem (the propagation of an air �nger into a rigid-walled 
uid-�lled 
hannel; Bretherton 1961) is a 
lassi
al free-surfa
e
ow problem. Gaver et al. (1996) proposed a generalisation of this prob-lem as a model of pulmonary airway reopening: They 
onsidered thesteady propagation of an air �nger into a two-dimensional, 
uid-�lled
hannel whose 
exible walls are represented by membranes under ten-sion. The walls are supported on an elasti
 foundation (of sti�ness K�)whi
h represents the tethering provided by the lung tissue surroundingthe o

luded and 
ollapsed airway. The model problem is illustrated in



Fig. 1. Gaver et al. (1996) negle
ted 
uid inertia, an approximationwhi
h was justi�ed by the (assumed) small Reynolds numbers in air-way reopening and in ben
htop experiments by, e.g., Gaver et al. (1990)and Yap et al. (1994). The Stokes equations were solved by a bound-ary element method whi
h in
orporated an Eulerian des
ription of thewall me
hani
s. Gaver et al. (1996) provided a detailed analysis of thissystem and determined the non-dimensional propagation speed of thebubble tip (expressed in terms of the 
apillary number Ca = U�=
�) asa fun
tion of the applied bubble pressure pb.
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h of the Bretherton problem with elasti
 walls: An air �nger prop-agates into a liquid-�lled two-dimensional 
hannel with elasti
 walls.2. FINITE REYNOLDS NUMBER EFFECTSHeil (2000) re-investigated the problem and provided several improve-ments to the original model: (i)Gaver et al.'s (1996) Eulerian wall modelwhi
h required a number of ad-ho
 assumptions in the implementationof the no-slip 
ondition at the 
uid-wall interfa
e was repla
ed by a La-grangian wall model. This allowed a fully self-
onsistent des
ription ofthe 
uid-stru
ture intera
tion and the in
lusion of bending sti�ness; (ii)the solution of the 
uid equations was a
hieved by a Finite Element dis-
retisation of the free-surfa
e Navier-Stokes equations whi
h allowed thein
lusion of 
uid inertia into the problem.Brie
y, in Heil's (2000) model, the wall is regarded as a beam ofthi
kness h0 whi
h is subje
t to a large axial tension T = �0 h0. In aframe moving with velo
ity of the bubble tip, the wall deformation isdes
ribed by the prin
iple of virtual displa
ementsZ 1�1 h(�0 + e) Æe+ 112 � h0H0�2 � Æ� � �H0h0 ���Kv2(1 + v1;�) Æv2++ f � ÆRwq(1 + v1;�)2 + (v2;�)2� id� = 0; (1)



where Rw(�) is the ve
tor to a material point on the deformed wall(parametrised in terms of the Lagrangian travelling wave 
oordinate �),the vi are the 
omponents of the displa
ement ve
tor and e and � repre-sent the wall's in
remental strain and 
hange of 
urvature, respe
tively.f is the tra
tion (non-dimensionalised by the wall's elasti
 modulus E)a
ting on the wall and K = K�H0=E.The 
ow is des
ribed by the free-surfa
e Navier-Stokes equationsRe uj �ui�xj = � �p�xi + ��xj  �ui�xj + �uj�xi!�ui�xi = 0;together with the interfa
ial boundary 
onditionsu � n = 0�pni + � �ui�xj + �uj�xi �nj + 1Ca �fni = �pbni ) on the free surfa
e;where the velo
ities were s
aled with the bubble velo
ity U and thevis
ous pressure s
ale was used. �f is the non-dimensional 
urvature ofthe air-liquid interfa
e and Re = U�H0=�. The 
uid and solid domainsare 
oupled via the no-slip 
onditionu = �(1 + v1;� ; v2;�) on the wall (2)and by the tra
tion that the 
uid exerts on the wall. Taking the dif-ferent stress non-dimensionalisations in the 
uid and solid domains intoa

ount, the tra
tion on the wall is given byfi = Ca 
  pni �  �ui�xj + �uj�xi!nj! :Here the non-dimensional surfa
e tension 
 = 
�=(EH0) represents theratio of the 
uid surfa
e tension to the wall's extensional sti�ness.Heil (2000) showed that even moderate 
uid inertia signi�
antly in-
reases the bubble pressure pb required to drive the bubble at a givenspeed (
apillary number), as shown in Fig. 2. Note that the ratio of
apillary and Reynolds numbers (both of whi
h s
ale linearly with thebubble velo
ity) is kept 
onstant along the various 
urves in this �gure,to ensure that the 
urves represent physi
ally realisable parameter vari-ations. The 
orresponding plots of the 
uid domain in Fig. 3 show that
uid inertia leads to a signi�
ant 
hange in the wall displa
ement �eldahead of the bubble tip: At �nite Reynolds number, the wall developsan os
illatory deformation pattern whose wavelength, de
ay rate andamplitude vary strongly with the Reynolds number.
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Figure 2. The bubble pressure (on the 
apillary pressure s
ale) versus the non-dimensional bubble speed Ca = U�=
� for various values of Re=Ca.3. AN ANALYTICAL MODELWe will now develop an analyti
al model to analyse the 
hanges to thewall displa
ement �eld at �nite Reynolds number. The wall displa
e-ment �eld ahead of the bubble tip approa
hes the system's de
ayingeigenfun
tions as x1 ! 1. At zero Reynolds number, the eigenfun
-tion 
an be determined from a lubri
ation theory analysis (Gaver et al.1996). To extend the analysis to �nite Reynolds number, we note thatFig. 3 shows that in the region ahead of the bubble tip (i) the pressureremains approximately uniform over the width of the 
hannel1 and (ii)the wall slope remains moderate (note the di�erent s
ales for the x1 andx2-axes).Motivated by these observations, we 
onsider the 
ase in whi
h thesmall wall slope, dv2=d� = O(�) � 1 implies small transverse 
uidvelo
ities su
h that u2=u1 = O(�), but assume that 
uid inertia is solarge that �Re = O(1). Inserting these s
alings into the momentumequation yields the leading order 
ontributionsRe�u1�u1�x1 + u2�u1�x2� = � �p�x1 + �2u1�x22 (3)and �p=�x2 = 0. In view of the small wall de
e
tions, we linearisethe wall equations (whi
h represent the Euler-Lagrange equations of the1At suÆ
iently large Reynolds number, a lo
al pressure rise towards the bubble tip 
an bedete
ted; see the inset in Fig. 3. This pressure rise redu
es the 
urvature of the air-liquidinterfa
e near the bubble tip and 
an even 
ause it to `bulge out'.



Figure 3. Streamlines and pressure 
ontours (on the 
apillary pressure s
ale) forvarious Ca and for Re=Ca = 10. Only the lower half of the 
hannel is shown.variational prin
iple (1)) to obtain the following equation for the 
hannelhalf-width w(x1)p = 1Ca  �(w � 1)� �w00 + 112
 � h0H0�3 wiv! : (4)Here � = T=
� and � = K�H20=
� represent Gaver et al.'s (1996) non-dimensionalisations for the wall tension and the sti�ness of the elasti
foundation, respe
tively. The in
remental wall strain e tends to zero as



x1 !1, therefore the velo
ity boundary 
ondition (2) be
omes u1 = �1and u2 = �w0 at x2 = w. Following Christodoulou & S
riven (1989),we use the Karman-Pohlhausen method and approximate the velo
itydistribution byu1(x1; x2) = �1 + 32 w(x1)� 1w(x1)  1� � x2w(x1)�2! (5)and u2(x1; x2) = x2w(x1) w0(x1) u1(x1; x2) (6)and substitute (4) { (6) into (3). Integrating the momentum equation(3) over the 
hannel width yields a nonlinear equation for w(x1). Welinearise this equation with respe
t to !(x1) = w(x1) � 1 = O(�) toobtain the homogeneous ODERe Ca !0 = �!0 � �!000 + 112
 � h0H0�3 !v + 3 Ca !;whi
h governs the wall deformation as x1 !1 and ! ! 0. Its solutionis of the form ! � exp(�x1) = exp((��+ i�)x1)where only three of the �ve roots, �, of the 
hara
teristi
 polynomial112
 � h0H0�3 �5 � ��3 + (��Re Ca)� + 3Ca = 0 (7)have negative real part, i.e. are de
aying as x1 ! 1. Two of theseroots are 
omplex and represent the de
aying os
illatory wall displa
e-ment �eld that we wish to analyse. The third negative root is large andpurely real and is asso
iated with the short-lengths
ale bending deforma-tion. Note that the Reynolds number only appears in the 
ombinationRe Ca = U2�H0=�, whi
h is also known as the Weber number,We, andrepresents the ratio of inertia to surfa
e tension.We will now investigate how variations of the system's non-dimensionalparameters a�e
t the wall displa
ement �eld in the presen
e of 
uid in-ertia. As in Gaver et al. (1996) and Heil (2000), we regard � = 100; � =0:5; h0=H0 = 5� 10�4 and 
 = 10�7 as the referen
e state.Fig. 4 shows the variations of the wavenumber � and the de
ay rate �as a fun
tion of the non-dimensional bubble velo
ity Ca for several valuesof Re=Ca: An in
rease in Ca in
reases the wavenumber � and thusshortens the wavelength of the deformation pattern. Fluid inertia 
anbe seen to signi�
antly enhan
e this e�e
t. The de
ay rate � in
reases
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Figure 4. Variation of the wavenumber � and de
ay rate � with Ca for variousvalues of Re=Ca.
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Figure 5. Variation of the wavenumber � and de
ay rate � with wall tension � forvarious values of Re=Ca and for Ca = 2.with Ca when Re=Ca is small; this e�e
t is redu
ed and �nally reversedas Re=Ca in
reases.The 
hanges to the wall displa
ement �eld due to variations in thewall tension � are illustrated in Fig. 5: An in
rease in wall tensionsmoothes out the wavy wall displa
ement by redu
ing both the de
ayrate and the wavenumber. Fluid inertia has a mainly quantitative e�e
ton this behaviour but it is interesting to note that at suÆ
iently largevalues of Re=Ca, the de
ay rate � be
omes nearly independent of thewall tension �.Fig. 6 shows that variations in the sti�ness of the elasti
 foundation �only have a moderate e�e
t on the displa
ement �eld ahead of the bubbletip even though they strongly a�e
t the system's overall behaviour (seeHeil 2000). It is interesting to note that, a

ording to the linear theory,for a given value of Ca, 
hanges to � 
an be 
ompensated for by asuitable in
rease in the Weber number We, sin
e � only appears in the
ombination (��Re Ca).
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Figure 6. Variation of the wavenumber � and de
ay rate � with spring sti�ness �for various values of Re=Ca and for Ca = 2.The predi
tions shown in Figs. 4 { 6 are in ex
ellent agreement withthe trends observed in the 
omputational parameter studies. This 
on-�rms that, as spe
ulated in Heil (2000), the 
hanges to the wall dis-pla
ement �eld ahead of the bubble tip are mainly due to the Bernoullie�e
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