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Abstract. This paper discusses certain aspects of the design and implementa-
tion of oomph-lib, an object-oriented multi-physics finite-element library, available
as open-source software at http://www.oomph-lib.org. The main aim of the li-
brary is to provide an environment that facilitates the robust, adaptive solution
of multi-physics problems by monolithic discretisations, while maximising the po-
tential for code re-use. This is achieved by the extensive use of object-oriented
programming techniques, including multiple inheritance, function overloading and
template (generic) programming, which allow existing objects to be (re-)used in
many different ways without having to change their original implementation.

These ideas are illustrated by considering some specific issues that arise when
implementing monolithic finite-element discretisations of large-displacement fluid-
structure-interaction problems within an Arbitrary Lagrangian Eulerian (ALE)
framework. We also discuss the development of wrapper classes that permit the
generic and efficient evaluation of the so-called “shape derivatives”, the derivatives
of the discretised fluid equations with respect to those solid mechanics degrees of
freedom that affect the nodal positions in the fluid mesh. Finally, we apply the
methodology in several examples.

1 Introduction

The development of efficient and robust methods for the numerical solution
of multi-physics problems, such as large-displacement fluid-structure inter-
actions, involves numerous challenges. One of the key issues is how best to
combine existing “optimal” methodologies for the solution of the constituent
single-physics problems in a coupled framework.

The two main approaches are “partitioned” and “monolithic” solvers.
In a partitioned approach, existing single-physics codes are coupled via a
global fixed-point (Picard) iteration and the single-physics codes are treated
as “black-box” modules, whose internal data structures are regarded as inac-
cessible. The approach facilitates (in fact, requires) code re-use and is the only
feasible approach if the source code for the single-physics solvers is unavail-
able, e.g. commercial software packages. The disadvantage of this approach is
that the Picard iteration often converges very slowly, or not at all, even when
good initial guesses are available. Under-relaxation or Aitken extrapolation
may improve the convergence characteristics (see, e.g., [1] and, more recently,
[2]), but in many cases (especially in time-dependent problems with strong
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fluid-structure interaction) even these methods are not sufficient to ensure
convergence.

Monolithic solvers are based on the fully-coupled discretisation of the gov-
erning equations, allowing (but also demanding) complete control over every
aspect of the implementation. This approach allows the complete system of
nonlinear algebraic equations that results from the coupled discretisation to
be solved using Newton’s method. If good initial guesses for the solution are
available, e.g. from continuation methods or when time-stepping, the Newton
iteration converges quadratically, leading to a robust method for solving the
coupled problem.

A monolithic discretisation allows direct access to the code’s internal data
structures and facilitates the implementation of non-standard boundary con-
ditions, or other “exotic” constraints. Furthermore, preconditioners for the
iterative solution of the linear systems that must be solved during the Newton
iteration may be derived directly from the governing equations; see, e.g., [3].
While these characteristics make monolithic solvers attractive, their imple-
mentation is often regarded as (too) labour intensive, and code re-use is
perceived to be difficult to achieve.

In this paper we shall discuss the design and implementation of oomph-lib,
an object-oriented multi-physics finite-element library, available as open-
source software at http://www.oomph-lib.org. The main aim of the library
is to provide an environment that facilitates the monolithic discretisation of
multi-physics problems while maximising the potential for code re-use. This
is achieved by the extensive use of object-oriented programming techniques,
including multiple inheritance, function overloading and template (generic)
programming, which allow existing objects to be (re-)used in many different
ways without having to change their original implementation.

We shall illustrate these techniques by considering some specific issues
that arise when implementing monolithic finite-element discretisations of
large-displacement fluid-structure-interaction problems (and many other free
boundary problems) within an Arbitrary Lagrangian Eulerian (ALE) frame-
work:

1. It must be possible for the “load terms” in the solid mechanics finite
elements to depend on unknowns in the coupled problem because the
traction that the fluid exerts onto the solid must be determined as part
of the overall coupled solution.

2. The solution of the equations of solid mechanics determines the shape
of the fluid domain. We, therefore, require clearly defined interfaces that
allow the transfer of geometric information between the solid mechanics
elements and the procedures that generate the (fluid) mesh, and update
its nodal positions in response to changes in the shape and position of
the domain boundary.

3. The discretised fluid equations are affected by changes in the nodal posi-
tions within the fluid mesh, which are determined indirectly (via the node
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update procedures referred to in 2.) by the solid mechanics degrees of
freedom. A monolithic discretisation of the coupled problem requires the
efficient evaluation of the so-called “shape derivatives” — the derivatives
of the discretised fluid equations with respect to those solid mechanics
degrees of freedom that affect the nodal positions in the fluid mesh.

In order to maximise the potential for code re-use, it is desirable to provide
this functionality without having to re-implement any existing fluid or solid
elements or any mesh generation/update procedures.

The outline of this paper is as follows: after a brief discussion of oomph-
lib’s general design objectives in Section 2, Section 3 provides an overview
of oomph-lib’s data structures and discusses the library’s fundamental ob-
jects: Data, Node, Element, Mesh and Problem. In Section 4 we illustrate how
multiple inheritance, combining the GeneralisedElement and GeomObject
base classes, is used to represent domain boundaries whose positions are
determined as part of the solution. Section 5 explains the mesh genera-
tion process and illustrates how oomph-lib’s mesh adaptation procedures
allow the fully-automatic spatial adaptation of meshes in domains that are
bounded by curvilinear boundaries. In Section 6 we describe the joint use of
template programming and multiple inheritance to create wrapper classes
that “upgrade” existing elements to elements that allow the generic and
efficient evaluation of the “shape-derivatives”. Finally, Section 7 presents
two examples: a “toy” free-boundary problem in which the solution of a
2D Poisson equation is coupled to the shape of the domain boundary; and
an unsteady large-displacement fluid-structure-interaction problem: finite-
Reynolds-number flow in a rapidly oscillating elastic tube.

2 The Overall Design

2.1 General Design Objectives

The main aim of the library is to provide a general framework for the dis-
cretisation and the robust, adaptive solution of a wide range of multi- (and
single-)physics problems. The library provides fully-functional elements for a
wide range of “classical” partial differential equations (the Poisson, Advection-
Diffusion, and the Navier–Stokes equations; the Principle of Virtual Displace-
ments (PVD) for solid mechanics; etc.) and it is easy to formulate new ele-
ments for other, more “exotic” problems. Furthermore, it is straightforward
to combine existing single-physics elements to create hybrid elements that
can be used in multi-physics simulations.

“Raw speed” is regarded as less important than robustness and generality,
but this is not an excuse for inefficiency. The use of appropriate data struc-
tures and “easy-to-use” spatial and temporal adaptivity are a key feature of
the library.

Generic tasks such as equation numbering, the assembly and solution of
the system of coupled nonlinear algebraic equations, timestepping, etc. are
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fully implemented and may be executed via simple and intuitive high-level
interfaces. This allows the “user” to concentrate on the problem formulation,
performed by writing C++ “driver” codes that specify the discretisation of
a (mathematical) problem as a Problem object.

2.2 The Overall Framework

Within oomph-lib, all problems are regarded as nonlinear and it is assumed
that any continuous (sub-)problems will be discretised in time and space, i.e.
the problem’s (approximate) solution must be represented by M discrete val-
ues Vj (j = 1, ...,M), e.g. the nodal values in a finite-element mesh. Boundary
conditions and other constraints prescribe some of these values, and so only
a subset of the M values are unknown. We shall denote these unknowns by
Ui (i = 1, ..., N) and assume that they are determined by a system of N
non-linear algebraic equations that may be written in residual form:

Ri (U1, ..., UN ) = 0 for i = 1, ..., N . (1)

By default, oomph-lib uses Newton’s method to solve the system (1). The
method requires the provision of an initial guess for the unknowns, and the
repeated solution of the linear system

N∑

i=1

Jij δUj = −Ri for i = 1, ..., N , (2)

where
Jij =

∂Ri

∂Uj
for i, j = 1, ..., N (3)

is the Jacobian matrix. The solution of the linear system is followed by an
update of the unknowns,

Ui := Ui + δUi for i = 1, ..., N . (4)

Steps (2) and (4) are repeated until the infinity norm of the residual vec-
tor, ||RRR||∞, is sufficiently small. Within this framework, linear problems are
special cases for which Newton’s method converges in a single iteration.

The adaptive solution of a given problem involves three main tasks:

1. The (repeated) “assembly” of the global Jacobian matrix and

residual vector

oomph-lib employs a finite-element-type framework in which each “el-
ement” provides a contribution to the global Jacobian matrix, JJJ , and
the global residual vector, RRR, as illustrated in Fig. 1. We note that
oomph-lib’s definition of an “element” is very general. While the elemen-
tal residual vectors and Jacobian matrices may arise from finite-element
discretisations, they could equally well represent finite-difference stencils
or algebraic constraints.
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Fig. 1. Schematic illustration of the “assembly” process. Each “element” provides a
contribution to the global Jacobian matrix JJJ and residual vector RRR. The elemental
contributions may arise from a finite-element discretisation but they could equally
well represent finite-difference stencils or algebraic constraints.

2. The solution of the linear systems

The Newton iteration requires the repeated solution of the linear systems
(2) that are (at least formally) specified by the global Jacobian matrix JJJ
and residual vectorRRR. (Not all linear solvers actually require the assembly
of these objects. For instance, frontal solvers perform the LU decomposi-
tion of the Jacobian matrix “on the fly”.) In cases where the assembled
Jacobian matrix is required, the assembly can be performed serially or
in parallel, using an MPI-based implementation of the assembly process.
The solution of the linear systems is performed by LinearSolver objects,
most of which currently represent wrappers to state-of-the-art third-party
direct solvers such as the frontal solver MA42 from the HSL library [4] or
the serial and parallel versions of SuperLU [5,6]. IterativeSolver and
Preconditioner classes are currently under development.

3. Error estimation and problem adaptation

Following the solution of the discretised problem with a given spatial dis-
cretisation, oomph-lib’s ErrorEstimator objects may be used to deter-
mine error estimates for each “element” in the mesh. oomph-lib provides
fully automatic mesh adaptation procedures which refine (or unrefine)
the mesh in regions in which the estimated error is larger (or smaller)
than certain user-specified thresholds. The procedures are implemented
via high-level interfaces so that a simple modification to the driver code
suffices to compute a fully adaptive solution to a given problem; see the
two example driver codes shown in Fig. 3 below.
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Dataand is then represented by          .]

Fig. 2. Overview of the relation between oomph-lib’s fundamental objects.

3 The Data Structure

3.1 The Fundamental Objects

Figure 2 presents an overview of the relation between oomph-lib’s funda-
mental objects: Data, Node, Element, Mesh and Problem.

Data: The ultimate aim of any oomph-lib computation is the determination
of the M values Vi (i = 1, ...,M) that represent the solution to the discretised
problem. These values are either prescribed (“pinned”) by boundary condi-
tions, or are unknowns. Each of the N unknown values is associated with
a unique global (equation) number in the range 1 to N . oomph-lib’s Data
object provides storage for values and their global equation numbers.

In many problems, the values represent components of vectors and it is of-
ten desirable to combine related values in a single object. For instance, in the
finite-element discretisation of a 3D Navier-Stokes problem, each node stores
three velocity components. Data therefore provides storage for multiple val-
ues. Furthermore, in time-dependent problems, the implicit approximation
of time-derivatives requires the storage of auxiliary “history values”. For in-
stance, in a backward Euler time-discretisation, the value of the unknown at
the previous timestep is required to evaluate an approximation of the value’s
time-derivative. Data provides storage for such history values, and stores a
(pointer to a) TimeStepper object that translates the history values into
approximations of the values’ time-derivatives.

Nodes: Nodes are Data, i.e. they store values, but they also store the node’s
spatial (Eulerian) coordinates. In solid mechanics problems, the nodal coor-
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// Driver code solves problem

// on a fixed mesh

main()

{

// Create the problem object

ReallyHardProblem problem;

// Solve the problem on

// the specified mesh

problem.newton_solve();

// Document the solution

problem.doc_solution();

}

// Driver code solves problem

// with spatial adaptivity

main()

{

// Create the problem object

ReallyHardProblem problem;

// Solve, adapt the mesh,

// re-solve, ... up to

// three times

problem.newton_solve(3);

// Document the solution

problem.doc_solution();

}

Fig. 3. Two simple driver codes illustrate oomph-lib’s high-level interfaces. Note
that fully-automatic spatial adaptivity is enabled by a trivial change to the driver
code.

dinates can themselves be unknowns and in that case they are represented
by Data.

Elements: The main role of Elements is to provide contributions to the
global Jacobian matrix and the residual vector. The elemental contributions
typically depend on a subset of the problem’s Data, which are accessed via
pointers, stored in the Element. Within an Element, we distinguish between
three different types of Data: (i) Internal Data contains values that are local
to the element, such as the pressure in a Navier-Stokes element with a discon-
tinuous pressure representation; (ii) Nodal Data is usually shared with other
elements and all elements that share a given Node make contributions to the
global equations that determine its values; (iii) External Data contains val-
ues that affect the element’s residual vector and its Jacobian matrix but are
not determined by it. For instance, in a fluid-structure-interaction problem,
the load that acts on a solid-mechanics finite element affects its residual but
is determined by the adjacent fluid element(s).

Meshes: The main role of a Mesh is to provide ordered access to its Nodes and
Elements. A Mesh also provides storage for (and access to) lookup schemes
that identify the Nodes that are located on domain boundaries.

Problem: To solve a given (mathematical) problem with oomph-lib, its
discretisation must be specified in a suitable Problem object. This usually
involves the specification of the Mesh and the Element types, followed by
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the application of boundary conditions. If spatial adaptivity is required,
an ErrorEstimator object must also be specified. The error estimator is
used by oomph-lib’s automatic mesh adaptation procedures to determine
which elements should be refined or unrefined. The Problem base class im-
plements generic tasks such as equation numbering, the solution of the non-
linear algebraic equations by Newton’s method, time-stepping, error esti-
mation and spatial adaptation, etc. Typically, the problem specification is
provided in the constructor, in which case the driver code can be as simple as
the ones shown in Fig. 3. Note the trivial change required to enable spatial
adaptivity.

3.2 An Example of Object Hierarchies: The Inheritance
Structure for Elements

Most of oomph-lib’s fundamental objects are implemented in a hierarchical
structure to maximise the potential for code re-use. Typically, abstract base
classes are employed to (i) define interfaces for functions that all objects
of this type must have, but that cannot be implemented in generality; and
(ii) to implement concrete functions that perform generic tasks common to
all such objects. Templating is used extensively to define families of related
objects.

As an example, Fig. 4 illustrates the typical inheritance structure for
finite elements. As discussed above, the minimum requirement for all ele-
ments is that they must be able to compute their contribution to the global
Jacobian matrix and the residual vector. Interfaces for these tasks are de-
fined1 in the base class GeneralisedElement. For instance, the computa-
tion of the elemental Jacobian matrix must be implemented in the function
GeneralisedElement::get jacobian(...). The class also provides storage
for the (pointers to the) element’s external and internal Data. (Generalised-
Elements do not necessarily have Nodes; see Section 4.1 for an example).
Finally, the class implements various generic tasks, such as the setup of the
local/global equation numbering scheme for the values associated with the
Data objects that affect the element.

The next level in the element hierarchy are FiniteElements. All Finite-
Elements have Nodes, and the FiniteElement class provides pointer-based
access to these. Furthermore, all FiniteElements have (geometric) shape
functions which are used to compute the mapping between the element’s
local and global (Eulerian) coordinates. The number and functional form of
these shape functions depend on the specific element geometry, therefore the
FiniteElement class only defines abstract interfaces for these functions.

Shape functions are implemented in specific “geometric” FiniteElements,
such as the QElement family of 1D line, 2D quad and 3D brick elements.
QElements are templated by the spatial dimension and the number of nodes
1 The is achieved by implementing them as “pure virtual” C++ functions.
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PoissonEquations<DIM>

FiniteElement

Specific, fully functional FiniteElement
− Implements the computation of the element’s

Jacobian matrix and residual vector, often using
shape functions defined at the GeometricElement
level.

QElement<2,3>

GeneralisedElement

− Establishes local equation numbers. 

−Stores (pointers to):
  − internal 
  − external 

− Defines interfaces for functions that compute
the element’s Jacobian matrix and residual vector.

Data
Data

−Stores (pointers to):
  − Nodes
− Defines interfaces for functions that compute

− the (geometric) shape functions
− the mapping between local and global coordinates

is is

QElement<DIM,NNODE_1D>

Equation class Geometric finite element

is is

is

QElement<1,4>

Geometric finite elements:
− implement the (geometric)
 shape functions

− implement the mapping between
local and global coordinates.

QPoissonElement<DIM,NNODE_1D>

Fig. 4. Typical inheritance structure for FiniteElements.

along the element’s 1D edges so that QElement<1,4> represents a four-node
line element, while QElement<3,2> is an eight-node brick element, etc.

“Equation classes”, such as PoissonEquations, are also derived directly
from the FiniteElement class and implement the computation of the ele-
ment’s Jacobian matrix and its residual vector for a specific mathematical
problem, based on the weak form of the partial differential equation (PDE).
Within the equation classes, we only define the interfaces to the functions
that compute the shape functions (used to represent the element geometry),
the basis functions (used to represent the unknown functions) and the test
functions. Their full specification is delayed until the next and final level of
the element hierarchy. Templating is again used to implement equations in
dimension-independent form, wherever possible. Table 1 provides a partial
list of currently implemented equation classes. oomph-lib’s documentation
provides instructions and numerous “worked examples” that illustrate how
to create additional equation classes.

Finally, fully functional elements are constructed via multiple inheri-
tance, by combining a specific geometric FiniteElement with a specific
equation class. The (geometric) shape functions, provided by the geomet-
ric FiniteElement class implement the abstract shape functions defined in
the equation class. For isoparametric Galerkin finite elements, the geometric
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Table 1. Partial list of oomph-lib’s equation classes. These may be combined
(by multiple inheritance) with any geometric finite element that provides sufficient
inter-element continuity to form fully-functional finite elements. The presence of
a template argument, DIM, indicates the dimension-independent implementation of
the equations. The two PVD equation elements implement the principal of virtual
displacements in the displacement and displacement/pressure formulations, respec-
tively.

• PoissonEquations<DIM>

• AdvectionDiffusionEquations<DIM>

• UnsteadyHeatEquations<DIM>

• LinearWaveEquations<DIM>

• NavierStokesEquations<DIM>

• AxisymmetricNavierStokesEquations

• PVDEquations<DIM>

• PVDEquationsWithPressure<DIM>

• KirchhoffLoveBeamEquations

• KirchhoffLoveShellEquations

shape functions are also used as the basis and test functions; for Petrov-
Galerkin methods or for elements that use different interpolations for differ-
ent variables (e.g. velocity and pressure in mixed Navier-Stokes elements),
additional basis and test functions may be specified when the specific el-
ement is defined. Again, templating is used to create families of elements.
For instance, the QPoissonElement<DIM,NNODE 1D> represents the family of
isoparametric, Galerkin finite elements that discretise the DIM-dimensional
Poisson equation on line, quad or brick elements with NNODE 1DDIM nodes.

The hierarchical implementation maximises the potential for code re-use,
because any equation class may be combined with any geometric element,
provided the degree of inter-element continuity of the geometric element is
consistent with the differentiability requirements imposed by the weak form of
the PDE represented by the equation class. The distinction between equation
classes and geometric elements also facilitates the generic implementation of
mesh generation and adaptation procedures, which both operate on the level
of geometric FiniteElements.

4 GeneralisedElements and GeomObjects – How to
Represent Unknown Domain Boundaries

The inheritance structure discussed in the previous section contains objects
that arise naturally in the course of the finite-element discretisation of “clas-
sical” PDE problems. However, oomph-lib does not require the PDEs to be
discretised by finite-element methods. The GeneralisedElements’ contribu-
tions to the global residual vector and the Jacobian matrix may equally well



oomph-lib – An Object-Oriented Multi-Physics Finite-Element Library 29

represent finite-difference stencils or algebraic constraints. We shall now il-
lustrate how this allows the representation of unknown domain boundaries
in fluid-structure-interaction problems.

4.1 An Example of a GeneralisedElement

Figure 5(a) shows a very simple example of an object that may be encountered
in a fluid-structure-interaction problem: a circular ring of radius R whose
centre is located at (Xc, Yc). The ring is mounted on an elastic foundation
(a spring of stiffness k), and is loaded by an external force f . The vertical
displacement of the ring is governed by the algebraic equilibrium equation

f = k Yc. (5)

If the ring represents a boundary in a fluid-structure-interaction problem,
f would be the (resultant) vertical force that the surrounding fluid exerts
onto the ring. To allow the determination of the ring’s vertical displace-
ment, Yc, as part of the overall solution, the ring must be represented by
a GeneralisedElement – a RingOnElasticBeddingElement, say. For this
purpose we represent Yc as the element’s internal Data whose single un-
known value is determined by the residual equation (5). In a fluid-structure-
interaction problem, the load f is an unknown. Its magnitude affects the
element’s residual equation, but is not determined by the element, so we
represent the load as external Data. If the load f is prescribed, a situation
that would arise if the RingOnElasticBeddingElement was used in a (triv-
ial) single-physics problem, “pinning” the value that represents f (using the
Data member function Data::pin(...)) automatically excludes it from the
element’s list of unknowns. Similarly, the vertical position of the ring may be
fixed by “pinning” the value that represents Yc.

The entries in the element’s residual vector contain the element’s contri-
bution to the global equations that determine the values of its (up to) two

(a) (b)

spring stiffness k

y

x

load f

R
  c(X  ,Yc) ξ

GeneralisedElement GeomObject

is is

RingOnElasticBeddingElement

Fig. 5. A ring on an elastic foundation and its implementation as a
GeneralisedElement and a GeomObject.
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unknowns. If both Yc and f are unknown, the first entry in the residual vec-
tor is given by the residual of the equilibrium equation (5). The element does
not make a direct contribution to the equation that determines the external
load, therefore we set the second entry to zero. The 2× 2 elemental Jacobian
matrix contains the derivatives of the two components of the residual vector
with respect to the corresponding unknowns, so we have

RRR(E) =
(

f − k Yc

0

)
and JJJ (E) =

(
−k 1
0 0

)
. (6)

If either f or Yc are pinned, the element contains only a single unknown
and its Jacobian matrix and residual vector are reduced to the appropriate
1 × 1 sub-blocks. If both values are pinned, the element does not make any
contribution to global Jacobian matrix and residual vector.

4.2 An Example of a GeomObject

If used in a fluid-structure-interaction problem, the RingOnElasticBedding-
Element defines the boundary of the fluid domain. Hence its position and
shape must be accessible (via standard interfaces) to oomph-lib’s mesh gen-
eration and mesh update procedures. oomph-lib provides an abstract base
class, GeomObject, that defines the common functionality of all objects that
describe geometric features. It is assumed that the shape of a GeomObject
may be specified explicitly by a position vector R(ξξξ), parameterised by a
vector of intrinsic (Lagrangian) coordinates, ξξξ, where dim(R) ≥ dim(ξξξ). For
instance, the ring’s shape may be represented by a 2D position vector R,
parametrised by the 1D Lagrangian coordinate ξ;

R(ξ) =
(

Xc + R cos(ξ)
Yc + R sin(ξ)

)
. (7)

This parametrisation must be implemented in the GeomObject’s member
function GeomObject::position(xi,r), which computes the position vec-
tor r as a function of the vector of the intrinsic coordinates xi.

Multiple inheritance allows the RingOnElasticBeddingElement to exist
as both a GeneralisedElement and a GeomObject, as indicated by the in-
heritance diagram in Fig. 5(b). Its role as a GeneralisedElement allows us
to determine its vertical height, Yc, as part of the overall solution process;
its role as a GeomObject allows us to use it for the parametrisation of the
domain boundary, e.g. during mesh generation.

In fluid-structure-interaction problems, the (solid mechanics) unknowns
that determine the position of the domain boundary affect the residuals and
Jacobian matrices of the elements in the fluid mesh. The monolithic solution
of the coupled problem via Newton’s method requires the evaluation of the
derivatives of the fluid mechanics residuals with respect to the (solid mechan-
ics) unknowns that determine the shape of the fluid domain — the so-called
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GeomObject

is

is

...

GeneralisedElement

isis

KirchhoffLoveBeamElement

FSIKirchhoffLoveBeamElement

Fig. 6. Inheritance structure illustrating how a KirchhoffLoveBeamElement is “up-
graded” to an element that may be used in fluid-structure-interaction problems.

“shape derivatives”. To facilitate such computations, the GeomObject class
provides storage for (pointers to) those Data objects whose values affect the
object’s shape and position. We refer to these as “geometric Data” and note
that they should be identified and declared whenever a specific GeomObject
is implemented. For instance, in the above example, the internal Data object
that stores the value of Yc represents the RingOnElasticBeddingElement’s
only geometric Data.

Similar inheritance structures are implemented for “real” solid mechanics
elements. For instance, in the 2D fluid-structure-interaction problem to be
discussed in Section 7, the fluid domain is bounded by a thin-walled elas-
tic ring. The ring is discretised by a surface mesh of KirchhoffLoveBeam-
Elements. The shape of a deformed beam element is defined by interpolation
between its nodal coordinates (represented by the Node’s positional Data),
using the element’s geometric shape functions. The element’s 1D local coor-
dinate, therefore, parametrises its 2D shape and allows it to be implemented
as a GeomObject that can be used to define domain boundaries in fluid-
structure-interaction problems. The positional Data stored at the element’s
Nodes is the GeomObject’s geometric Data. Figure 6 illustrates the inheri-
tance structure for this element.

5 Mesh Generation and Adaptation in Domains with
Curvilinear Boundaries

In the previous Section we demonstrated how GeomObjects provide standard-
ised interfaces for the specification of domain boundaries, and illustrated how
multiple inheritance may be used to deal with domain boundaries whose po-
sitions must be determined as part of the overall solution. We now discuss
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how the geometric information provided by GeomObjects is used to create
and adapt meshes in domains with arbitrary, curvilinear boundaries. The
methodology employed during the mesh generation allows a sparse update of
the nodal positions in response to changes in the boundary shape — a key
requirement for the efficient solution of fluid-structure-interaction problems
using monolithic schemes.

5.1 Two Simple Examples

We first illustrate oomph-lib’s mesh adaptation capabilities in two simple
single-physics problems. To begin, consider the 2D Poisson problem

∇2u = 1 in Dfish subject to u = 0 on ∂Dfish, (8)

where Dfish is the fish-shaped domain, shown in Fig. 7(a). The “fish body”
is bounded by two circular arcs of radius R, whose centres are located at
(Xc,±Yc); the remaining domain boundaries are straight lines. The plots in
Figs. 7(b-e) show contours of the solution, computed on the meshes that
are generated at successive stages of the fully-automatic mesh-adaptation
process. Note that oomph-lib requires only the provision of a very coarse ini-
tial mesh, here containing just four nine-node quad elements of type QPoisson-
Element<2,3>.

Following the initial solution, oomph-lib’s mesh adaptation procedures
refine the mesh, first uniformly throughout the domain, then predominantly
near the inward facing corners, where the solution of Poisson’s equation is
singular.

Fig. 7. The solution of a 2D Poisson equation in a fish-shaped domain. Figure
(a) shows the problem sketch; Figs. (b)-(e) show contours of the computed solu-
tion, obtained on the meshes that are generated by oomph-lib’s automatic mesh
adaptation procedures.

Circular arc;
centre at (X  ,Y  )c c

fishD

Circular arc;
centre at c(X  ,−Y  )c

(b)(a)

(d)

(c)

(e)
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Figure 8 shows a 3D example: steady entry flow into a circular cylin-
drical tube at a Reynolds number of Re = 200. The axial velocity profiles
illustrate how the flow develops from the entry profile u = (1 − r20)ez to-
wards the parabolic Hagen-Poiseuille profile. This computation was started
with a very coarse initial mesh, comprising six axial layers, each containing
three elements. The automatic mesh adaptations then refined the mesh, most
strongly near the inflow where a thin boundary layer develops on the tube
wall.

Y

X

Z

X

Z
Y

(a) (b)

Fig. 8. Adaptive computation of finite-Reynolds-number entry flow into a circular
cylindrical tube at Re = 200. (a) The adapted mesh (flow is from right to left). (b)
Axial velocity profiles (flow is from left to right).

5.2 Some Details of the Implementation

oomph-lib’s fully-automatic mesh adaptation routines use generic high-level
interfaces to the procedures that implement the adaptation for specific types
of meshes (e.g. meshes consisting of quad or brick elements). The adaptation
involves the following specific steps:

1. Compute an error estimate for all elements in the mesh. This task is
performed by a specific ErrorEstimator object. Error estimation in the
two examples shown above was performed with oomph-lib’s Z2Error-
Estimator which provides an implementation of Zhu & Zienkiewicz’s flux
recovery procedure [7].

2. Select all elements whose error estimate exceeds (or falls below) certain
user-specified thresholds for refinement (or unrefinement).

3. Split all elements that are scheduled for refinement into “son” elements
and collapse groups of elements that are scheduled for unrefinement into
their “father” element, provided all elements in the group are scheduled
for unrefinement.
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4. Delete any nodes that might have become obsolete, and create new ones
where required. Interpolate the previously computed solution onto the
new nodes and apply the correct boundary conditions for any newly cre-
ated nodes that are located on a domain boundary.

5. Identify any “hanging nodes”, i.e. nodes on the edges or faces of ele-
ments that are not shared by adjacent (larger) elements. Inter-element
continuity of the solution is ensured by constraining the nodal values and
coordinates at such nodes so that they represent suitable linear combina-
tions of these quantities at the associated “master nodes”; see Fig. 9(c).
This is achieved through the implementation of the access functions to
the nodal values and coordinates. For instance, at non-hanging nodes, the
function Node::value(j) returns the j-th nodal value itself; at hanging
nodes, it returns the weighted averages of the j-th values at the “master
nodes”.

6. Re-generate the equation numbering scheme.

s0

s1

s0

s1

s0

s1

10

2

Original mesh Refined mesh

H1

M3

Hanging nodes (H) and
associated master nodes (M).

H2
M1 M2

(a) (b) (c)

Fig. 9. (a,b): Adaptive mesh refinement without MacroElements. The positions of
newly created nodes are determined by interpolation, using the “father” element’s
geometric shape functions. Mesh refinement does not improve the representation of
the curvilinear domain boundary. (c): Hanging nodes and associated master nodes:
M1 and M2 are master nodes for H1; M2 and M3 are master nodes for H2.

Provided an ErrorEstimator object has been specified, the above steps are
performed completely automatically by a call to the function Problem::ad-
apt(). On return from this function, the adapted problem may be re-solved
immediately.

At present, oomph-lib provides implementations of these procedures for
meshes that contain 2D quad and 3D brick elements. Generalised quadtree
and octree data structures are used to store the refinement pattern, and to
identify efficiently the elements’ edge and face neighbours during the deter-
mination of the hanging nodes and their associated “master nodes”.
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5.3 How to Resolve Curvilinear Boundaries: Domains
and MacroElements

One particular aspect of the implementation requires a more detailed discus-
sion. How do oomph-lib’s mesh adaptation procedures determine the position
of newly created nodes in domains with curvilinear boundaries? Figure 9 il-
lustrates the potential problem. A quarter-circle domain has been discretised
with a very coarse initial mesh, containing three four-node quad elements.
Assume that the error estimation indicates that element 2 should be refined.
During the refinement, four new “son” elements and five new nodes are cre-
ated. By default, the nodal values and coordinates of newly created nodes are
obtained by interpolation from the corresponding quantities in the “father”
element, using the “father” elements shape and basis functions. This proce-
dure is perfectly adequate for meshes in domains with polygonal boundaries.
However, in problems with curvilinear domain boundaries, we must ensure
that the refined meshes provide a progressively more accurate representation
of the exact boundary shape.

In order to achieve this, oomph-lib requires domains with curvilinear
boundaries to be represented by objects that are derived from the abstract
base class Domain. All specific Domain objects decompose an “exact” do-
main into a number of macro elements which must have the same topol-
ogy and be parametrised by the same set of local coordinates as the geo-
metric finite elements in the coarse initial mesh, as illustrated in Fig. 10.
A Domain object defines the boundaries of its constituent macro elements,
given by either the exact curvilinear boundaries (typically represented by
GeomObjects), or arbitrary (usually straight/planar) internal edges/faces.
Common interfaces for macro elements are defined in the abstract base class
MacroElement. All macro elements must implement the member function
MacroElement::macro map(S,r) which establishes the mapping between the
macro element’s vector of local coordinates, S, and the global (Eulerian) posi-
tion vector, r, to a point inside it. The QMacroElement<DIM> family provides
an implementation of this mapping for 2D quad- and 3D brick-shaped macro
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S 1

S 0

S 1

S 0

S 1 10
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S 0

S 1

S 
 =

 −
1

 0

S  =
 1

 0S  = −1 1

S  = 1
 1

Macro element 

Macro element 
representation 
of domain

Mesh refinement
with macro elements

Fig. 10. MacroElements decompose a Domain into a number of subdomains which
have the same topology as the corresponding FiniteElements in the coarse initial
mesh.
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elements and may be used with geometric finite elements from the QElement
family.

The only non-trivial task to be performed when creating a new Domain
object is the parametrisation of its macro element boundaries; not an overly
onerous task, given that a domain may (and indeed should) be parametrised
by very few macro elements. Once a physical domain is represented by a
Domain object, each FiniteElement in the coarse initial mesh is associated
with one of the Domain’s macro elements. The FiniteElement’s macro el-
ement representation is then employed (i) to determine the position of the
nodes in the coarse initial mesh, and (ii) to determine the position of newly
created nodes during mesh refinement.

6 Evaluation of “Shape Derivatives”

6.1 Macro-Element-Based Node Updates

The macro-element-based representation of the domain may also be used to
update the nodal positions in response to changes in the domain boundary.
The update may be performed on a node-by-node basis, if we allow each Node
to store (i) a pointer to the macro element in which it is located2, and (ii)
its local coordinates in that macro element. Thus each Node is able to deter-
mine (or update) “its own” position by a call to the macro-element mapping
MacroElement::macro map(S,r). (To avoid the allocation of unnecessary
storage in problems that do not involve moving boundaries, the storage for
these quantities is provided in the class MacroElementUpdateNode, derived
from oomph-lib’s Node class.) Once Nodes can “update their own positions”,
the generic and efficient evaluation of shape derivatives in fluid-structure in-
teraction (or any other free-boundary) problems is possible.

6.2 The Generic Evaluation of “Shape Derivatives”

For simplicity we shall illustrate the methodology by considering a “toy”
free-boundary problem: the solution of a 2D Poisson problem, coupled to the
position of the boundary. Recall that oomph-lib’s QPoissonElement<DIM,
NNODE 1D> is a single-physics element that implements the discretisation of
the DIM-dimensional Poisson equation ∇2u(xi) = g(xi), via an isoparametric
Galerkin approach in which the element’s N

(E)
u geometric shape functions

ψi(xj) (i = 1, ..., N
(E)
u ) are also used as test and basis functions. The N

(E)
u

2 The macro-element mappings of adjacent MacroElements are continuous, there-
fore Nodes that are located at the interface between two MacroElements may be
associated with either one.
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components of the element’s residual vector are given by

R(E)
i =

∫

E




N(E)

u∑

j=1

U
(E)
j

DIM∑

k=1

∂ψj

∂xk

∂ψi

∂xk
+ g(x1, ..., xDIM)ψi



 dV

for i = 1, ..., N
(E)
u , (9)

and depend on the element’s N
(E)
u unknown nodal values, U

(E)
j (j = 1, ...,

N
(E)
u ). The element’s N

(E)
u × N

(E)
u Jacobian matrix contains the derivatives

of the residual vector with respect to these unknowns,

J (E)
ij =

∂R(E)
i

∂U
(E)
j

=
∫

E

(
DIM∑

k=1

∂ψj

∂xk

∂ψi

∂xk

)

dV for i, j = 1, ..., N
(E)
u . (10)

In a free-boundary problem, the residual also depends on the nodal positions
which are determined (via the element’s macro element representation) by
the position of the domain boundary. As discussed above, unknown domain
boundaries are represented by GeomObjects, whose shape and position is
specified by their geometric Data. We shall denote the set of N

(E)
G geometric

unknowns, represented by the geometric Data that affect the nodal positions
in an element, by G

(E)
i (i = 1, ..., N

(E)
G ).

In order to use an existing FiniteElement in a free-boundary problem,
the geometric unknowns G

(E)
i (i = 1, ..., N

(E)
G ) that determine the element’s

nodal positions must be added to the list of unknowns that affect the ele-
ment’s residual vector. This requires the extension of the element’s Jacobian
matrix and residual vector to

JJJ (E) =




JJJ (E)

[DD] JJJ
(E)
[DB]

JJJ (E)
[BD] JJJ

(E)
[BB]



 and RRR(E) =




RRR(E)

[D]

RRR(E)
[B]



 , (11)

where the subscripts “D” and “B” indicate entries that correspond to equa-
tions/unknowns that are associated with the equation being solved inside the
domain and those that determine the shape of its boundary, respectively.

oomph-lib provides a templated wrapper class,

template<class ELEMENT>

class MacroElementNodeUpdateElement<ELEMENT> : public virtual ELEMENT

that computes the augmented quantities in (11) in complete generality. Given
any existing finite element, specified by the template parameter ELEMENT, the
MacroElementNodeUpdateElement class automatically incorporates the de-
pendence of the element’s residual vector on the geometric unknowns involved
in its macro-element-based node update functions into the computation of the
element’s Jacobian matrix.
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To explain the implementation, we consider the origin of the various
terms in (11) for our “free boundary” Poisson element. The vector RRR(E)

[D]

contains the residuals of the discretised Poisson equation, evaluated for the
current values of nodal unknowns, U

(E)
i (i = 1, ..., N

(E)
U ), and the geomet-

ric unknowns G
(E)
i (i = 1, ..., N

(E)
G ). The main diagonal block JJJ (E)

[DD] con-

tains the derivatives of RRR(E)
[D] with respect to the element’s nodal values.

JJJ (E)
[DD] and RRR(E)

[D] are therefore given by the Jacobian matrix and the resid-
ual vector of the single-physics element, as specified in (9) and (10). In the
MacroElementNodeUpdateElement these may be obtained directly by call-
ing ELEMENT::get jacobian(...). The Poisson element does not make a
direct contribution to the equations that determine the shape of the domain
boundary, therefore we set RRR(E)

[B] = 0, which implies that JJJ (E)
[BD] = JJJ (E)

[BB] = 0.
Hence, the only non-trivial entry in the augmented element’s Jacobian ma-
trix is the off-diagonal block JJJ (E)

[DB]. It contains the derivatives of the resid-
ual vector of the underlying element with respect to the geometric unknowns
G

(E)
i (i = 1, ..., N

(E)
G ) — the “shape derivatives”. For our “free boundary”

Poisson element these are given by

J (E)
[DB] ij =

∂

∂Gj

∫

E




N(E)

u∑

l=1

U
(E)
l

DIM∑

k=1

∂ψl

∂xk

∂ψi

∂xk
+ g(x1, ..., xDIM) ψi



 dV

for i = 1, ..., N
(E)
U , j = 1, ..., N

(E)
G . (12)

In Eqn. (12) the underlined quantities are affected by a change in the ele-
ment’s nodal positions, and hence by a change in the geometric unknowns
G

(E)
i (i = 1, ..., N

(E)
G ). A change in the geometric unknowns affects the Ja-

cobian of the mapping between local and global coordinates, contained in
the differential dV ; the derivatives of the shape functions with respect to
the global coordinates; and the argument to the source function, g(xi). The
analytical evaluation of the derivatives of these quantities with respect to
the geometric unknowns would result in extremely lengthy algebraic expres-
sions. Furthermore, the precise form of the derivatives is element-specific and
would also depend on the macro-element mapping. To permit the evaluation
of these terms for any template argument, ELEMENT, and any MacroElement,
oomph-lib approximates the derivatives using finite differences,

J (E)
[DB] ij =

∂R(E)
i

(
U1, ..., UN

(E)
U

;G1, ..., GN
(E)
G

)

∂Gj

≈ R(E)
i (..., Gj + εFD, ...) −R(E)

i (..., Gj , ...)
εFD

, (13)

where εFD � 1. The evaluation of the finite-difference expressions is a sparse
operation because the element’s list of geometric unknowns includes only
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unknowns that actually change the position of at least one of its nodes,
implying that only non-zero entries in the Jacobian matrix are computed.

The implementation of the above steps is completely generic, allowing
the wrapper class to be used with any of oomph-lib’s existing finite elements
and macro elements. In addition, because the adaptive solution of problems in
domains with curvilinear boundaries already requires a macro-element-based
representation of the domain, “upgrading” an existing fixed-domain problem
to a free-boundary problem is trivial. In fact, it is only necessary to pass a list
of (the pointers to) those GeomObjects that determine the boundaries of a
given macro element to the associated FiniteElement when the coarse initial
mesh is created. oomph-lib automatically extracts the geometric unknowns
from the GeomObject’s geometric Data and includes them in the list of the
element’s unknowns. Moreover, during mesh refinement, the relevant infor-
mation is automatically passed to the “son” elements when a coarse element
is split.

6.3 Other Node Update Approaches in oomph-lib

The generic implementation of the MacroElementNodeUpdateElement as a
templated wrapper class is only possible because MacroElementUpdateNodes
are able to update their own positions in response to changes in the shape
of the domain boundaries. oomph-lib provides a number of alternative node
update strategies and associated wrapper elements:

SpineElement<ELEMENT>: A generalisation of Kistler & Scriven’s “Method
of Spines” [8], often used for free-surface fluids problems.

AlgebraicElement<ELEMENT>: A generalisation of the MacroElementNode-
UpdateElement class, discussed above. These elements increase the spar-
sity of the node update operations in cases where a domain is bounded by
many GeomObjects and are explained in more detail in Section 7.2. These
elements are more efficient than MacroElementNodeUpdateElement but
require more “user” input.

All elements discussed so far update the nodal positions based on algebraic
update functions. oomph-lib also provides the

PseudoElasticNodeUpdateElement<ELEMENT,SOLID ELEMENT>: A doubly-
templated wrapper class that uses the equations of solid mechanics (dis-
cretised by the solid mechanics element specified by the second template
parameter) to update the nodal positions. This element is easiest to use
because it requires neither MacroElements nor any algebraic update func-
tions. However, it is much more computationally expensive than the other
wrapper classes, because it introduces a large number of additional un-
knowns into the problem.
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Fig. 11. Sketch illustrating the combination of two simple single-physics problems
into a coupled “free boundary” Poisson problem.

7 Examples

We present several examples that illustrate the application of the method-
ologies discussed in the previous sections. Fully-documented demo codes for
the solution of the example problems are available from http://www.oomph-
lib.org.

7.1 A “Toy” Free-Boundary Problem: The Solution of Poisson’s
Equation, Coupled to the Position of the Domain Boundary

In our first example we combine the two simple single-physics problems of
Section 4.1 and Section 5.1 into a “toy” free-boundary problem: Two rings
on elastic foundations define the upper and lower curvilinear boundaries of
the fish-shaped domain, while uctrl, the solution of Poisson’s equation at a
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pre-selected control node, specifies the load that drives the rings’ vertical
displacements, as shown in Fig. 11

In oomph-lib, the solution of the coupled problem only requires a few
trivial changes to the single-physics (Poisson) code:

– Replace the element type, QPoissonElement<3,2>, by MacroElement-
NodeUpdateElement<QPoissonElement<3,2> >.

– Pass the pointers to the RingOnElasticBeddingElements (which are al-
ready used during the macro-element-based mesh generation in the single-
physics code) to the MacroElementNodeUpdateElements to indicate that
their geometric Data affects their nodal positions. During this step, the
RingOnElasticBeddingElements are used in their role as GeomObjects.

– Pass the pointer to the control Node in the fish mesh to the RingOn-
ElasticBeddingElements to specify the “load”. During this step, the
control Node is used in its role as Data.

– Add the RingOnElasticBeddingElements to the fish mesh. During this
step, the RingOnElasticBeddingElements are used in their role as Gene-
ralisedElements.

Figure 12 compares the results of a sequence of single-physics computations in
which Yc is prescribed, to the solution of the coupled problem. An increase in
Yc increases the distance between the two RingOnElasticBeddingElements
that define the upper and lower curvilinear boundaries of the fish-shaped do-
main. Figures 12(a-d) shows that this increases the amplitude of the solution
of Poisson’s equation, causing uctrl(Yc) to increase with Yc, as shown by the
solid line in Fig. 12(e).

For a spring stiffness of k = 1, the solution of the coupled problem should
be located at the intersection of uctrl(Yc) with the line uctrl = Yc (the dashed
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u ct
rl

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

uctrl

Yc = uctrl

uctrl

(a)

(c)

(b)

(d)

(e)

Fig. 12. (a-d) The single-physics solutions of Poisson’s equation for various values
of Yc. (e) The solution of Poisson’s equation at a control node, uctrl as a function of
Yc (solid line), and the solution of the coupled problem for k = 1 (square marker).
The solution is located at the intersection of uctrl(Yc) with the line uctrl = Yc (the
dashed line).
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line). This is in perfect agreement with oomph-lib’s solution of the coupled
problem, represented by the square marker.

7.2 A Fluid-Structure-Interaction Problem: Flow
in Collapsible Tubes

I. Background

Our next example is concerned with the classical biomechanical fluid-structure-
interaction problem of flow in collapsible tubes. Many physiological flow prob-
lems (e.g. blood flow in the veins and arteries) involve finite-Reynolds-number
flows in elastic vessels (see, e.g., [9] for a recent review). Experimental studies
of such flows, reviewed in [10], are often performed using a Starling Resistor, a
thin-walled elastic tube mounted on two rigid tubes and enclosed in a pressure
chamber. Viscous fluid is pumped through the tube, while the external pres-
sure in the chamber is kept constant. The tube wall is loaded by the external
pressure and the fluid traction. When the compressive load exceeds a critical
threshold, the tube buckles non-axisymmetrically, undergoing large deflec-
tions and inducing strong fluid-structure interaction. The non-axisymmetric
collapse is often followed by the development of large-amplitude, self-excited
oscillations. The mechanism responsible for the development of these oscilla-
tions is not fully understood. This is partly because the theoretical or com-
putational analysis of the problem involves the solution of the 3D unsteady
Navier–Stokes equations, coupled to the equations of large-displacement thin-
shell theory, a formidable task. However, scaling arguments may be used
to simplify the problem in particular regions of parameter space. Here we
consider the case in which the Reynolds number associated with the mean
flow through the tube is large, and the tube wall performs high-frequency,
small-amplitude oscillations. If the 3D unsteady flow u(x, t) in the tube is
decomposed into a steady and a time-periodic unsteady component, so that
u(x, t) = u(x)+û(x, t), it may be shown that the unsteady component û(x, t)
uncouples from the mean flow (see [11] for details). Furthermore, because
the amplitude of the wall deformation is small, the oscillation causes small
changes in the tube’s cross-sectional area and only drives small axial flows.
This implies that û(x, t) is dominated by its transverse components, allowing
û(x, t) to be determined by computing the 2D flows that develop within the
tube’s individual cross-sections, as indicated by the sketch in Fig. 13.

II. Prescribed wall motion – MacroElement-based node update

We start by analysing the 2D internal fluid flows generated by the non-
axisymmetric deflections of a circular ring performing a prescribed high-
frequency oscillation that resembles the in vacuo oscillations of an elastic
ring in its N -th fundamental mode. If we denote the amplitude of the oscil-
lations by ε, the time-dependent wall shape, parametrised by the Lagrangian
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Fig. 13. Large-Reynolds-number flows in collapsible tubes that perform high-
frequency, small-amplitude oscillations may be decomposed into steady and time-
periodic unsteady components. The time-periodic unsteady flows are dominated by
their transverse velocity components and may be determined independently in the
cross-sections of the tube.

coordinate ξ, shown in Fig. 13, is given by

R(ξ, t) = R0

(
cos(ξ)
sin(ξ)

)
+ ε VN (ξ) sin (Ωt) , (14)

where the wall displacement field, VN (ξ), has the form

VN (ξ) =
(

cos(Nξ) cos(ξ) − A sin(Nξ) sin(ξ)
cos(Nξ) sin(ξ) + A sin(Nξ) cos(ξ)

)
, (15)

see [12]. To investigate this problem with oomph-lib, we represent the wall
shape by a GeomObject and use it to create the coarse initial fluid mesh,
shown in the leftmost plot in Fig. 14. The fluid mesh initially contains only
three Crozier-Raviart (Q2Q-1) Navier-Stokes elements. Before starting the
computation, we perform three uniform refinements, using the Problem mem-
ber function Problem::refine uniformly(), and assign the initial condi-
tions on the resulting mesh, shown in the second mesh plot. The remaining
mesh plots in Fig. 14 illustrate how oomph-lib’s automatic adaptation pro-
cedures adjust the fluid mesh throughout the simulation.

Because the wall shape is prescribed by equations (14) and (15), the
current problem does not involve any “proper” fluid-structure interaction.
However, the small but finite change in the ring’s cross-sectional area, induced
by the prescribed wall displacement field (15), would violate the discrete mass
conservation enforced by the discretised continuity equation. It is therefore
necessary to adjust the shape of the boundary so that the total area of the



44 M. Heil and A.L. Hazel

Fig. 14. Mesh adaptation during the simulation of 2D flows that are driven by the
motion of the oscillating ring. The simulation is started with the uniform mesh that
is obtained by performing three levels of uniform refinement of the coarse initial
mesh. The remaining plots illustrate how oomph-lib’s automatic mesh adaptation
procedures adjust the mesh throughout the simulation.

computational domain is maintained, e.g. by allowing the ring’s mean radius,
R0, to vary. In principle, R0 could be determined via the constraint on the
area of the computational domain. However, a more elegant (and easier-to-
implement) approach is to give the ring some nominal elasticity, so that its
mean radius is determined by the “equilibrium equation”

R0 − 1 = pctrl (16)

where pctrl is the fluid pressure at a certain fixed position, e.g. at the origin.
In this approach, variations in the fluid pressure (which, in an incompressible
fluid, is only determined up to an arbitrary constant) adjust R0 so that the
area of the computational domain is conserved.

The implementation of this approach is straightforward. We treat R0 as
the GeomObject’s geometric Data whose single unknown value is determined
by the “equilibrium equation” (16). The resulting free-boundary problem
may be solved exactly as the free-boundary Poisson problem considered in
the previous example.

Figure 15 compares the computational results (instantaneous streamlines
and pressure contours at two characteristic phases during the oscillation) with
Heil & Waters’ [11] asymptotic predictions. The two upper plots show the
velocity field at an instant when the moving wall approaches its undeformed,
axisymmetric configuration. The fluid is accelerated and the velocity field
resembles an unsteady stagnation point flow. A thin boundary layer exists
near the wall but it has little effect on the overall flow field. The two lower
plots show the flow during the second half of the periodic oscillation, when
the wall approaches its most strongly deformed configuration. A strong ad-
verse pressure gradient decelerates the fluid and an area of “flow separation”
appears to form near the wall.

The flow is characterised by the amplitude of the wall oscillation, ε, and
the Womersley number, α2, an unsteady Reynolds number. The computa-
tions were performed for ε = 0.1 and α2 = 100. Given that the asymptotic
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Fig. 15. Instantaneous streamlines and contours of the pressure at two characteris-
tic phases of the oscillation. The plots on the left show the computed results, those
on the right show the analytical predictions of reference [11].

predictions are only valid in the limit of small amplitude, ε � 1, and large
Womersley number, α2 � 1, the agreement between the two sets of results
is very satisfying.

III. Full fluid-structure interaction

III.a Node update with AlgebraicNodes

Next, we consider the problem with “full” fluid-structure interaction. For
this purpose, we replace the GeomObject that prescribes the wall motion by
a surface mesh of FSIKirchhoffLoveBeamElements, loaded by the traction
exerted by the adjacent fluid elements. The implementation of the fluid-mesh
update in response to changes in the shape of the domain boundary could,
in principle, be performed by the macro-element-based mesh update used
in all previous examples. For this purpose, we would have to combine the
individual FSIKirchhoffLoveBeamElements into a single GeomObject whose
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Fig. 16. Sketch illustrating the sparse node update procedures for a “quarter circle”
mesh.

geometric Data contains the positional Data of all nodes in the wall mesh.
Using this representation, the change in the nodal positions of any node in
the wall mesh potentially induces a change in the position of all fluid nodes.

To avoid this undesirable feature, oomph-lib provides an alternative mesh
update strategy that allows node updates to be performed much more sparsely.
The idea is illustrated in Fig. 16. Consider the coarse three-element mesh in
a “quarter circle domain” whose curved boundary is represented by one (or
possibly more) GeomObjects. One strategy for distributing the nodes is to
place the central node, “C”, at fixed fractions, λx and λy, of the domain’s
width W and height H, respectively. This defines the boundary of the central
element. Its constituent nodes can then be located at fixed fractions, ρx and
ρy, of its width and height. Similarly, the nodes in the two elements adjacent
to the curvilinear boundary may be placed on straight lines that connect the
central element to reference points on the curvilinear boundary, identified by
their intrinsic coordinate ξref on the GeomObject. If the curvilinear boundary
is represented by multiple GeomObjects (as in the fluid-structure-interaction
problem), the reference points on the curvilinear boundary may be identified
by a pointer to one of those GeomObjects, and the reference point’s intrinsic
coordinate, ξref , within it.

To update the nodal positions in response to changes in the domain
boundary, each Node therefore requires (at most) two types of data: (i)
Pointer(s) to the GeomObject(s) that affect its position, and (ii) a certain
number of parameters such as λx, λy, ρx, ρy and ξref , that identify reference
points on the GeomObjects, and the Node’s relative position to these. Storage
for this “node update data” is provided in the AlgebraicNode class, which
is derived from the Node class.
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Using this mesh-update strategy, the position of each fluid node in the
“quarter circle domain” depends on no more than three FSIKirchhoffLove-
BeamElements. As a result, the shape-derivative sub-matrix in the global
Jacobian matrix is much sparser than that generated by the macro-element-
based node update.

It is important to note that, as in the case of the macro-element-based
node updates, oomph-lib only requires the specification of the “node update
data” on a coarse initial mesh. Once created, the mesh may be refined with
oomph-lib’s mesh adaptation procedures which automatically determine the
“node update data” for any newly created AlgebraicNodes, based on the
data stored at the previously existing nodes.

The computation of the “shape derivatives” is again performed fully-
automatically by a templated wrapper class, AlgebraicElement<ELEMENT>,
which determines the geometric unknowns that affect the element’s nodal
positions by extracting the geometric Data from the GeomObjects that are
stored in the “node update data” of its constituent AlgebraicNodes.

III.b Results

Figure 17 shows a result from the numerical simulation of the fully-coupled
fluid-structure-interaction problem. The computations were performed with
the AlgebraicElement-version of the 2D Crozier-Raviart Navier-Stokes el-
ement used in the previous example. The simulations were started from an
initial configuration in which the ring and the fluid are at rest. The oscillation
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Fig. 17. Time history of the control radius, Rctrl(t) for the fully-coupled fluid-
structure-interaction problem at α2 = 200. At large times, the amplitude of the

oscillation, R̂ctrl, decays exponentially, i.e. R̂ctrl ∼ exp(−λt), as shown by the en-
velope.



48 M. Heil and A.L. Hazel

was initiated by subjecting the ring to a short transient load perturbation of
the form

ftransient =






0 for t < 0
pcos cos(Nξ) N for 0 ≤ t ≤ 0.3
0 for t > 0.3,

(17)

where N is the unit normal vector on the ring. Figure 17 shows a plot of the
control radius Rctrl (identified in the sketch in Fig. 13) as a function of time.
The transient perturbation deforms the ring non-axisymmetrically, with a
maximum amplitude of approximately 6% of its undeformed radius. Subse-
quently, the ring performs slowly decaying oscillations about its axisymmetric
equilibrium state. Heil & Waters’ theoretical analysis [11] demonstrates that
the period of the oscillations is controlled by a dynamic balance between
fluid inertia and the wall’s elastic restoring forces, while viscous dissipation
causes the oscillations to decay over a timescale that is much larger than the
period of the oscillations. The frequency of the oscillations decreases slightly
and ultimately approaches a constant value. At this stage, the system per-
forms damped harmonic oscillations whose amplitude decays exponentially,
as shown by the envelope in Fig. 17. The period and decay rate of the os-
cillation observed in the computations is in excellent agreement with Heil &
Waters’ theoretical predictions, obtained from a multiple-scales analysis of
the problem.
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