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Summary. In tumour xenograft experiments, treatment regimens are ad-

ministered and the tumour volume of each individual is measured repeatedly

over time. Survival data are recorded due to the death of some individuals

during the observation time period. Also, cure data are observed due to a

portion of individuals who are completely cured in the experiments. When

modelling these data, certain constraints have to be imposed on the param-

eters in the models to account for the intrinsic growth of the tumour in the

absence of treatment. Also, the likely inherent association of longitudinal

and survival-cure data has to be taken into account in order to obtain unbi-

ased estimators of parameters. In this paper, we propose such models for the

joint modelling of longitudinal and survival-cure data arising in xenograft

∗email: jianxin.pan@manchester.ac.uk
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experiments. Estimators of parameters in the joint models are obtained us-

ing a Markov chain Monte Carlo approach. Real data analysis of a xenograft

experiment is carried out and simulation studies are also conducted, show-

ing that the proposed joint modelling approach outperforms the separate

modelling methods in the sense of mean squared errors.

Key words: Constrained parameters; joint longitudinal and survival-cure

model; Markov chain Monte Carlo; xenograft experiment.
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1. Introduction

In cancer drug development, demonstrating anti-tumor activity in an in vivo

experiment is an important and necessary step to make a promising experi-

mental treatment available to humans. The xenograft model is a commonly

used in vivo model in cancer research, for which severe combined immun-

odeficient (scid) mice are grafted with human cancer cells after which they

receive a treatment and are then followed up. Tan et. al. (2005a) pre-

sented a typical xenograft experiment, where several treatment regimens are

administered and an outcome variable, tumour volume, is measured at the

start of the treatment and then at regular follow-up times. In the literature,

methodology has been developed to analyze repeated measurements and sur-

vival times collected from xenograft experiments. For example, Tan et. al.

(2002) developed a t-test via the EM algorithm and also a Bayesian approach

for testing for differences in effects between two treatment regimens. If no

treatment were given to the tumour-bearing mice, the tumours would keep

growing until the mice died or are sacrificed. Therefore, certain constraints

have to be imposed on the parameters in the model to account for the in-

trinsic growth of a tumour in the absence of treatment. Tan et. al. (2005a)

considered a class of regression models for longitudinal outcomes with con-

strained parameters. Fang et. al. (2004) proposed a Bayesian hierarchical

model to account for the parameter constraints. However, these authors ig-

nored the very likely inherent association between longitudinal responses and

survival outcomes for data coming from the same subject. As a result, such

statistical inferences may be biased.

Joint models for both longitudinal and survival data have been developed
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in recent years and are extensively reviewed by Tsiatis and Davidian (2004).

It is well known nowadays that analyzing combined longitudinal data and

survival data can lead to a significant improvement in the efficiency of statis-

tical modelling compared to the separate analyses - see, for example, Tsiatis

et. al. (1995), Wulfsohn and Tsiatis (1997), Henderson et. al. (2000) and Xu

and Zeger (2001). Moreover, a separate analysis of longitudinal data using

traditional linear mixed models may be biased when the data contain non-

ignorable missing values arising from informative drop outs (Elashoff et. al.

2007). When there are cured individuals in the survival studies, either due

to immunes or long-term survivors, joint models for survival and cured data

have been considered by Sy and Taylor (2000). Longitudinal and survival-

cure models have been further developed by Yu et. al. (2004) and Yu et. al.

(2008) in a study of prostate cancer data, where longitudinal data not only

have an inherent relationship with survival outcomes but are also related

to the probability of cure of an individual. However, these models are not

suitable for analyzing the tumour data arising in xenograft experiments for

the following reasons. a) These models assume the cure probability only de-

pends on the baseline covariates, rather than the true values of longitudinal

measurements. This assumption may not be true in xenograft experiments

because the cure probability of a mouse will clearly depend on the tumor

volume which varies over time. b) These models place no constraints on

parameters in the longitudinal models and take no account of the intrinsic

growth of a tumour in the absence of treatment.

In this paper, motivated by a dataset from an xenograft experiment for

mice, we propose new joint models for longitudinal and survival-cure data by
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taking into account not only the likely inherent association of the different

types of data but also the intrinsic growth of a tumour in the absence of

any treatment. The random effects in linear mixed models for longitudinal

data, after being properly scaled, are incorporated into the Cox hazard model

for survival data and the logistic model for cure data, so that the inherent

association between the different types of data can be accounted for. The

fixed effects in the longitudinal linear mixed models, on the other hand, are

imposed constraints similar to those of Tan et. al. (2005b) in order to account

for the intrinsic growth of a tumour in the absence of treatment. Posterior

inferences for the parameters in the models are obtained by using a Markov

chain Monte Carlo (MCMC) method involving a Gibbs sampling technique

implemented with adaptive rejection sampling.

The rest of the paper is organized as follows. In Section 2, we define the

joint longitudinal and survival-cure models for the xenograft experimental

data and provide the log-likelihood function for the complete data. In Sec-

tion 3, we specify prior distributions for the parameters and provide model

selection criteria for finding the best model. In Section 4, we use a MCMC

method to generate random samples from the posterior distributions of the

parameters and apply to the real xenograft data analysis involving two new

anticancer agents against rhabdomyosarcomas. In Section 5 we carry out

simulation studies to access the performance of the proposed approach. Nu-

merical results show that the proposed joint modelling strategy outperforms

the separate modelling methods. Further comments and discussions are given

in Section 6. Technical details on deriving the posterior distributions and fur-

ther data information are provided in the Supplementary Web Materials.
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2. Data and Models

2.1 Data set

The xenograft experimental data in Tan et. al. (2005a) and Houghton et.

al. (2000) are about two new anticancer agents: temozolomide (TMZ) and

irinotecan (CPT-11). TMZ is a methylating agent that has been approved

for treatment of astrocytoma and is entering various phases of clinical eval-

uation against tumours. CPT-11 has demonstrated a broad activity against

both murine and human tumour xenograft models and clinically significant

activity against many types of cancer. A DNA analysis has formed the bio-

chemical rationale for combining TMZ and CPT-11. Our primary objective

is to analyze the activity of TMZ combined with CPT-11 against one rhab-

domyosarcoma (Rh18) xenograft. Mice from the same strain were used and

they are virtually genetically identical. In total, we have 51 subjects (mice)

observed, which are divided into eight groups for different treatment regi-

mens. Tumor-bearing mice were treated with TMZ by oral gavage for 5 days

(days 1-5) or two 5 day courses (1-5 and 8-12) per 21-day cycle. Alterna-

tively, mice received three 5-day courses per 28-day cycle. In subsequent

combination studies, TMZ was administered daily for two consecutive days

(days 1-5) of each cycle, because this was found optimal in initial studies.

TMZ was administered 1 hour prior to administration of CPT-11. Cycles of

therapy were repeated twice at 21-day intervals. CPT-11, at doses listed for

individual experiments, was administered daily for two consecutive days for

two consecutive weeks. Table 1 in the Supplementary Web Materials pro-

vides weekly total doses of TMZ and CPT-11 assigned to different groups.

The tumour volume was measured at the initial time and once a week within
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the follow-up period of 12 weeks. Figure 1 shows the change of tumor volume

(cm3) with time for mice in each of the eight treatment groups.

[Figure 1 about here.]

From Figure 1, it is clear that in the control group (i.e., no treatment) the

tumor volume increases with time, while in other treatment groups the tu-

mor volume may decrease in the beginning and then increase at later times.

Figure 1 displays the longitudinal measurements observed until mice died or

were sacrificed due to the tumour volume quadrupled. Among these 51 mice,

in total 25 mice either died of toxicity or were sacrificed and the remain-

ing 26 mice survived longer than the 12-week observation period. For these

survived ones, their lifetimes cannot be observed but were censored at the

end of 12 weeks. On the other hand, 15 mice quickly shrank their tumour

volumes smaller than 0.01cm3, which became too small to be observable by

a reading machine, and had no recurrent growth of tumour in the rest pe-

riod of the experiment. For this portion of mice, it is believed that they

are very likely cured already, see Tan et. al. (2005a) for more details. We

also note that a few of the mice had the tumour disappear (< 0.01cm3) first

but grow back in later weeks up to the end of the experiment. These mice

cannot be considered as cured ones but the intermittent missing values are

truncated as 0.01cm3. We are therefore motivated by this dataset to build

longitudinal models for repeated measurements of the tumour volume, sur-

vival models for time-to-death or sacrifice of the mice, and cure models for

the cured mice, simultaneously. The longitudinal models have to account for

the intrinsic growth of a tumour in the absence of any treatment in order to

have unbiased statistical inferences.
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2.2 Longitudinal data sub-model

Consider in general the anti-tumour activity of S agents. Suppose that

there are n + 1 pre-specified follow-up times t0 < t1 < · · · < tn for each of

the m subjects/mice. Let Yi0 and Yi = (Yi1, ..., Yini
)′ (ni ≤ n) be the initial

tumour volume and the ni-dimensional vector of tumour volumes of the ith

mouse measured at the times t1, t2, · · · , tni
, respectively. To make the data

normally distributed, we assume that a log scale has been introduced to Yi0

and Yij (j = 1, ..., ni). Let x
(s)
ij be the cumulative dose of the sth agent

administered to the ith mouse until the time tj for s = 1, ..., S, and their

interaction terms for s = S + 1, ..., p1, where p1 is the total number of the S

agents and the associated interactions, j = 1, ..., ni and i = 1, ..., m. Denote

x
(s)
i = (x

(s)
i1 , · · · , x

(s)
ini

)′ as the anti-tumour activity of the sth agent received

by the ith mouse. The responses Yi (i = 1, ...,m) may be modelled by a

linear mixed model

Yi = Ψi + Xiβ + 1ni
Ui + εi, (1)

where Ψi = (ψ1, ..., ψni
)′ and β = (β0, ..., βp1)

′ are unknown parameter vec-

tors, Xi = (Yi01ni
, x

(1)
i , ..., x

(p1)
i ) is the ni× (p1 +1) known design matrix, 1ni

is the ni-dimensional vector with components 1, Ui is the univariate inde-

pendent random effects from the Normal distribution N(0, σ2
u) and the error

term εi is assumed to follow the ni-dimensional normal distribution with

mean 0 and covariance matrix σ2
εIni

.

In the model (1), the first column of Xi is the initial tumour volume Yi0,

i.e., it is treated as a covariate. The corresponding regression coefficient β0

reflects the effect of the initial tumour volume. The other columns of Xi
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consist of the cumulative doses of agents received by the ith mouse at each

observation time and the associated interactions among the S agents. There-

fore, the design matrices Xi (i = 1, · · · ,m) may vary from mouse to mouse

though all mice in the same treatment group may have the same schedule of

administration. For simplicity, in the model (1) we only consider univariate

random effects Ui, which are incorporated to account for the within-subject

correlation. It is possible to extend Ui to multivariate random effects but

the linkage to the survival-cure models discussed later may become compli-

cated. In this paper, we focus on the simple case of univariate random effects.

On the other hand, it is common in the literature that the components of

the intercept vector Ψi are treated to be identical. As pointed out by Tan

et. al. (2005a), however, in the xenograft experiments the tumour born by

a immunosuppressants mouse in the control group keeps growing over the

follow-up period. Ignoring this fact can lead to misleading inferences, for

example, resulting in underestimates of treatment effects. In order to re-

flect this fact in the model, the components of Ψi are assumed to be in an

increasing order over the follow-up periods. In other words,

ψ1 ≤ ψ2 ≤ · · · ≤ ψni
(2)

for i = 1, ..., m. To estimate the constrained parameters in (2), following

Tan et. al. (2005b) we make a transformation Ψi = Qir, where the (ni × n)

matrix Qi is obtained by removing the last n−ni rows of the (n×n) matrix Q

that is a lower-triangular matrix with 1′s as the diagonal and below diagonal

entries, and r = (r1, · · · , rn)′ ∈ R× Rn−1
+ with

R× Rn−1
+ =

{
r : −∞ < r1 < ∞, rj ≥ 0, j = 2, · · · , n

}
. (3)

9



2.3 Proportional hazard and cure sub-models

A mouse is said to be cured if its tumour volume is smaller than 0.01cm3

and no recurrent growth of the tumour occurs in the rest period of the ex-

periment. Let ξi = 0 denote the ith mouse cured by agents and ξi = 1 be

not cured. Assume pi = Pr(ξi = 1), that is, pi is the probability of inci-

dence that the event, death caused by the tumour problem or toxicity of

agents, eventually occurs. Obviously, a cured mouse does not experience the

death or sacrifice in the experiment period. Conversely, a mouse who died or

was sacrificed during the experiment period must have the incidence ξi = 1.

Let Ti be the time to death for the ith individual, defined only for those

with ξi = 1, with the hazard function h(t|ξi = 1) and the survival function

S(t|ξi = 1). If a mouse survives longer than the experiment period, the sur-

vival time of the mouse is censored as the mouse is either cured or has no

enough follow-up times. In other words, we actually observe T̃i = min(Ti, Ci)

and δi = I(Ti ≤ Ci) where Ci is the censoring time and δi is the relative fail-

ure indicator. Clearly, when the censoring occurs the incidence indicator ξi

becomes not observable. We actually observe ξi = 1 if the failure indicator

δi = 1.

The marginal survival function of Ti therefore is given by

Si(t) = Pr(Ti ≥ t)

= Pr(Ti ≥ t|ξi = 0)Pr(ξi = 0) + Pr(Ti ≥ t|ξi = 1)Pr(ξi = 1)

= 1− pi + piS(t|ξi = 1) (4)

for t < ∞. Note that Si(t) → (1− pi) as t →∞, implying that the marginal

survival function Si(t) tends to the cure probability (1 − pi) for large t. As
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long as the incidence probability pi and the conditional survival function

S(t|ξi = 1), or the conditional hazard function h(t|ξi = 1), are obtained, the

marginal survival function Si(t) can be formed using (4). In what follows we

discuss how to model h(t|ξi = 1) and pi in terms of covariates of interest.

For simplicity, we assume the censoring mechanism is noninformative and is

independent of the longitudinal response Y .

Farewell (1982) proposed to use the following logistic regression model

p(zi) = Pr(ξi = 1|zi) =
exp(z′iλ)

1 + exp(z′iλ)

to model the incidence probability pi, where zi and λ are (p3 × 1) vectors

of covariates and parameters, respectively. He also suggested a parametric

survival model for S(t|ξ = 1). Sy and Taylor (2000) generalized the work of

Farewell (1982) to the following Cox proportional hazard model

hi(t|ξi = 1, wi) = h0(t|ξi = 1) exp(w′
iα),

where wi and α are (p2×1) vectors of covariates and parameters, respectively,

and h0(t|ξi = 1) is the conditional baseline hazard function.

The models above, however, take no account of the likely dependence of

the incidence probability and the conditional hazard function on the tumour

volume Y . As a result, the separate use of those models may lead to biased

statistical inferences. Instead, we propose to use the random effects Ui in the

longitudinal model (1), multiplied by a constant, to link the longitudinal and

survival-cure models. In other words, we use the following logistic regression

model

Pr(ξi = 1|zi, Ui) =
exp(z′iλ + π2Ui)

1 + exp(z′iλ + π2Ui)
(5)
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to model the incidence probability, and use the following proportional hazard

frailty model

hi(t|ξi = 1, Ui) = h0(t|ξi = 1) exp(w′
iα + π1Ui) (6)

to model the conditional hazard function, where π1 in (5) and π2 in (6)

are unknown link parameters. If the estimators of π1 and π2 are statisti-

cally significant, we conclude that the joint modelling of the longitudinal

and survival-cure data is really necessary. Otherwise, the separate modelling

strategy may be preferred.

2.4 Complete log-likelihood function

Given the random effect Ui, we assume the longitudinal data and survival-

cure data are independent. It is noted that the incidence ξi may be observable

or unobservable, depending whether or not the censoring occurs. Define ξ =

{ξo, ξm} as the set of all the incidences ξi’s, where ξo and ξm are the collections

of the observable and unobservable incidences, respectively. The observed

data are D = {(Yi, Ti, δi, Xi, wi, zi) : i = 1, ...,m} and ξo. Then the complete

log-likelihood function of the parameters Θ = (r, β, α, λ, σ2
ε , σ

2
u, π1, π2, h0) and

the unobservable data (U, ξm), apart from a constant, can be written as

`(Θ, U, ξm|D, ξo)

= − N

2
log σ2

ε −
1

2σ2
ε

m∑
i=1

(Yi −Qir −Xiβ − 1ni
Ui)

′(Yi −Qir −Xiβ − 1ni
Ui)

+
m∑

i=1

{
δiξi

(
log h0(T̃i|ξi = 1) + w′

iα + π1Ui

)

− ξi

∫ T̃i

0

h0(t|ξi = 1) exp(w′
iα + π1Ui)dt

}
− m

2
log σ2

u

+
m∑

i=1

{
ξi(z

′
iλ + π2Ui)− log(1 + exp(z′iλ + π2Ui))

}
− 1

σ2
u

m∑
i=1

U2
i . (7)
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Note that in the complete log-likelihood function (7), the conditional cumu-

lative hazard function

H(t|ξi = 1) =

∫ t

0

h0(t|ξi = 1) exp(w′
iα + π1Ui)dt

involves an integral which is usually analytically intractable when the time-

varying covariates wi = wi(t) are not linear in t. For the xenograft experi-

ments we study, the covariates wi are piecewise constants within the (n + 1)

pre-specified follow-up time intervals, although they are really time-varying.

In other words, wi(t) = wik if tk−1 ≤ t < tk where wik are known constants

(k = 1, · · · , n). For the baseline hazard function h0(t|ξi = 1), we assume it

is a piecewise constant function as well, that is,

h0(t|ξi = 1) = h0k, for tk−1 ≤ t < tk (k = 1, · · · , n), (8)

where h0 = (h01, · · · , h0n)′ are unknown parameters. In this case, the com-

plete log-likelihood function (7) has the analytical form

`(Θ, U, ξm|D, ξo)

= − N

2
log σ2

ε −
1

2σ2
ε

m∑
i=1

(Yi −Qir −Xiβ − 1ni
Ui)

′(Yi −Qir −Xiβ − 1ni
Ui)

+
m∑

i=1

n∑

k=1

I(tk−1 ≤ T̃i < tk)
{

δiξi (log h0k + w′
ikα + π1Ui)

− ξi

k∑
j=1

h0j exp(w′
ijα + π1Ui)(tj − tj−1)

}
− m

2
log σ2

u

+
m∑

i=1

{
ξi(z

′
iλ + π2Ui)− log (1 + exp(z′iλ + π2Ui))

}
− 1

σ2
u

m∑
i=1

U2
i , (9)

so that the calculation of the parameter estimators is straightforward.
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3. Bayesian Inference

We propose to use a Bayesian approach to make statistical inferences for

the joint models (1), (5) and (6) to avoid the analytical intractable inte-

gral problem involved in the marginalized log-likelihood function. Markov

chain Monte Carlo (MCMC) is applied in our implementation. Rather than

integrating out the random effects Ui and the missing values ξm from (9),

we sample U and ξm, as well as other parameters, from their corresponding

conditional posterior distributions.

3.1 Priors and Gibbs sampler with adaptive rejection sampling method

We specify independent normal priors for the parameters β, α, λ and

r, of which all are assumed to have very large variances. We also specify

inverse Gamma priors for the random errors variance σ2
ε and random effects

variance σ2
u. We choose a Gamma prior for each h0j (j = 1, 2, ..., n), so that

a conjugate posterior distribution for h0j is easy to obtain.

We assume a mixture normal distribution, κN(τ1, ς1) + (1 − κ)N(τ2, ς2),

as the prior for each of the link parameters π1 and π2, where 0 < κ < 1,

−∞ < τk < ∞ and ςk > 0 (k = 1, 2). Mixture normal priors may come

up if investigators are not sure on the choice of a prior, or they would like

to mix a small proportion of a diffuse prior with a relatively sharp one.

Mixture normal priors also have relatively desirable properties for sensitivity

assessments. For example, we may change the mixture weight κ to assess the

sensitivity of statistical inferences to the priors. We may also specify τ1 = 0

(but τ2 6= 0) and vary κ, ς1 and ς2 to see how the parameter estimators are

sensitive to the priors of π1 and π2 focusing on the origin, and to study if the

joint models for longitudinal and survival-cure data are really necessary.
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Since the joint log-likelihood `(Θ, U, ξm|D, ξo) in (9) is complicated, the

full posterior distributions of the parameters, except β, σ2
ε , σ2

u, h0 and ξm, are

not analytically tractable. In order to sample from the posterior distributions

of these parameters, we propose to use the Gibbs sampler with adaptive

rejection sampling method (Gilks and Wild, 1992). The technical details on

the sampling distributions are provided in the Supplementary Web Materials.

3.2 Model selection

We propose to use the DIC value to select the most appropriate model.

The DIC value consists of two terms, one for goodness-of-fit measured by the

deviance evaluated at the posterior mean of parameters, and the other ac-

counting for a penalty defined by twice of the effective number of parameters.

The latter is defined by the mean deviance minus the deviance evaluated at

the posterior mean. Under the model assumption with missing data, the DIC

is defined by

DIC = −4EΘ,U,ξm [`(Θ, U, ξm|D, ξo)|D, ξo)] + 2EU,ξm [`(Θ̃, U, ξm|D, ξo)|D, ξo)]

where Θ̃ = E[Θ|D, U, ξm, ξo]. See Spiegelhalter et. al. (2002) and Celeux et.

al. (2006) for more details.

4. Real data analysis

Denote ni as the number of repeated measurements for the ith mouse (ni ≤
12). Let Yi0 and Yi = (Yi1, · · · , Yini

)′ be the logarithmic transformations of

the initial tumour volume and the ni-dimensional vector of tumour volumes

in the follow-up weeks for the ith mouse, respectively. If Yij < log 0.01 for

some j satisfying 1 < j < ni, then Yij is truncated to be log 0.01. Let x
(1)
ij be

the cumulative weekly total doses/100 of TMZ and x
(2)
ij be the cumulative
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weekly total doses of CPT-11, which are received by the ith mouse at jth week

(j = 1, ..., ni, i = 1, ..., 51). To account for the synergism of the two drugs,

following Tan et. al. (2005a) we take x
(3)
ij =

√
x

(1)
ij x

(2)
ij as the interaction term.

Let x
(s)
i = (x

(s)
i1 , · · · , x

(s)
ini

)′ (s = 1, 2, 3) and Xi = (Yi01ni
, x

(1)
i , x

(2)
i , x

(3)
i ). The

longitudinal sub-model

Yi = Ψi + Yi01ni
β0 + x

(1)
i β1 + x

(2)
i β2 + x

(3)
i β3 + 1ni

Ui + εi (10)

is then used to model the activity of the TMZ combined with CPT-11

against Rh18 tumour growth for the ith mouse in the xenograft experiments

(i = 1, ..., 51). In the literature, Tan et. al. (2005a) used the linear model

with the same covariates as (10) to model the tumour volume of Rh18 tu-

mour, but completely ignored the within-subject correlation and survival-

cure outcomes.

Among the 51 mice, in total 25 mice died of toxicity or were sacrificed as

the tumour volumes were quadrupled. On the other hand, 15 mice quickly

shrank their tumour volumes smaller than 0.01cm3 and had no recurrent

growth of the tumour in the rest period of experiment, so that they were

considered to be cured. The remaining 11 mice were not cured but sur-

vived longer than 12 week so that their true lifetimes are not observable and

censored at 12 weeks. We then use the survival model (6) to model the con-

ditional hazard function hi(t|ξi = 1, Ui), where wi(t) = (Yi0, x
(1)
ij , x

(2)
ij , x

(3)
ij )′

for tj−1 ≤ t < tj (j = 1, ..., n) and x
(s)
ij (s = 1, 2, 3) are the same as

these in (10). We also use the model (5) to model the incidence probability

Pr(ξi = 1|zi, Ui), where zi = (Yi0, x
(1)

T̃i
, x

(2)

T̃i
, x

(3)

T̃i
, 1)′, x

(1)

T̃i
and x

(2)

T̃i
are the cu-

mulative total doses of TMZ and CPT-11 up to the time T̃i, respectively, and

x
(3)

T̃i
is the associated interaction term. The model involves time-dependent
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covatiates x
(1)

T̃i
and x

(2)

T̃i
because the incidence probability of a mouse may

depend on the total doses taken by the mouse. The parameters of interest in

the survival-cure models are the fixed effects parameters α′ = (α0, α1, α2, α3),

λ′ = (λ0, λ1, λ2, λ3, λ4) and the link parameters π1 and π2, where the inter-

cept λ4 is introduced to the incidence model to take account of the fact that

the incidence probability pi = Pr(ξi = 1|zi, Ui) can be very close to 1 if no

treatment is given. This is because there is an intrinsic growth of a tumour

in the absence of treatment, which eventually leads to the death or sacrifice

of the mouse.

Following Tan et. al. (2005b), the prior for r is chosen to be a truncated

n-dimensional normal distribution r ∼ TNn(0, σ2
rIn) with σ2

r = 100. The

prior for each element of β and λ is chosen to be N(0, 10000). The priors for

σ−2
ε , σ−2

u and each element of h0 are all chosen to be Gamma(0.001, 0.001).

For the link parameters π1 and π2, a non-informative normal prior N(0, 100)

is considered first, and then sensitivity assessment is made by using a variety

of mixture normal priors.

To see if the model links are really necessary, we consider the following

four possible link scenarios.

Case 1: longitudinal and survival-cure models are linked by π1 and π2.

Case 2: longitudinal and survival models are linked by π1 (i.e. π2 = 0).

Case 3: longitudinal and cure models are linked by π2 (i.e. π1 = 0).

Case 4: neither of these models are linked (i.e. π1 = π2 = 0).

By assuming the normal prior N(0, 100) for π1 and π2, in Table 1 we sum-

marize the posterior means and 95% credit intervals of the parameters in the

models for each case above. We also provide the relative DIC values for all
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the four possible scenarios. In each case, we uses 10,000 iterations of MCMC

sampling chains following a 5,000-iteration ‘burn-in’ period.

[Table 1 about here.]

From Table 1, it turns out that the smallest DIC value is achieved by the

model that links all the three sub-models, implying that the joint modelling

may be necessary. The baseline tumour size has a significant positive influ-

ence on the tumour growth, while the TMZ and CPT-11 treatments both

have significant negative effects on the tumour growth, implying the treat-

ments work in reducing the tumour growth. However, there is no evidence

on the interaction of the two treatments in reducing the tumour size. In con-

trast, Tan et. al. (2005a) concluded that the baseline tumour size and the

CPT-11, but not the TMZ, are significant factors that influence the Rh18

tumour growth. In the cure model, the estimate of λ4 in Case 1 is about

4.14, leading to the incidence probability being 98% in the absence of treat-

ments. In other words, without treatments the tumour-beard mice have only

2% chances to be cured. This incidence probability for the control group

may be underestimated if the inherent association between longitudinal and

survival-cure models is ignored. Within the joint longitudinal and survival

modelling framework (Case 1 and Case 2), the CPT-11 has a significant pos-

itive effect on both the incidence probability and the survival time, but the

TMZ-11 and the interaction of two treatments are not significant. When the

longitudinal model and the survival model are not connected (Case 3 and 4),

both the TMZ and CPT-11 are two significant factors of increasing the cure

probability. Temozolomide is, however, considered to be toxic and suggested
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to be combined with CPT-11 to reduce the toxicity, see Tan et. al. (2005a).

Hence it is more likely that only the CPT-11 is significant in reducing the

hazard rate and increasing the cure probability, see Case 1 and Case 2 above.

The proposed joint models for longitudinal and survival-cure data seem to

be more reasonable than the separate models on this nature. The link pa-

rameter π1, on the other hand, is statistically significant, showing that there

is an evidence of inherent association between the longitudinal and survival

data. The link parameter π2, however, is not significant, implying that the

incidence probability of the mice may not be directly related to the tumour

volumes for this dataset. But the estimated link parameters π1 and π2 are

both positive, showing that the bigger the Rh18 tumour volume the higher

the hazard rate of death, and so does the incidence rate.

In Table 2 and Figure 1 in the Supplementary Web Materials we also

provide the estimators of the constrained parameters r and Ψ = Qr. The

latter is the estimated average growth curve of the Rh18 tumour volume of

mice in the control group. We observe that there is a sharp increasing of the

tumour volume after the 6th week if no treatment is provided.

[Table 2 about here.]

Finally, we change the priors of π1 and π2 to mixture normal distribu-

tions in order to carry out sensitivity analysis. We consider the following

four mixture normal distributions by varying the mixture weights and the

variances: (1) 0.1N(0, 100) + 0.9N(4, 0.1), (2) 0.9N(0, 0.1) + 0.1N(4, 100),

(3) 0.5N(0, 0.1) + 0.5N(4, 100), and (4) 0.5N(0, 100) + 0.5N(4, 0.1). These

mixture normal priors consider different weights at the origin. For example,
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the prior in (2) above places a great weight (90%) at the origin and a very

small weight (10%) on N(4, 100), implying the majority of the random sam-

ples from the priors of π1 and π2 are around zero. For the joint modelling of

longitudinal and survival-cure data, numerical results in Table 2 show that

parameter estimators are quite similar under the above four different priors.

Comparing Table 2 to Table 1, it is clear that the estimation results under

the mixture normal priors are also similar to those under the non-informative

normal prior. We therefore conclude that the parameter estimators in the

joint models are robust against the priors of π1 and π2.

5. Simulation studies

We mimic the real data in Section 4 in the following simulation studies.

Assume we have four covariates: baseline tumour size, two treatments TMZ

and CPT-11, and their interaction. These covariates are included in both the

longitudinal and survival models. For simplicity, we only choose the TMZ

42 mg/kg and the CPT-11 0.61 mg/kg as the treatment regimens and then

consider four groups of treatments: control, TMZ 42 mg/kg, CPT-11 0.61

mg/kg, and TMZ 42 mg/kg + CPT-11 0.61 mg/kg. We increase the sample

size to m = 400 and allocate 100 samples to each of the four groups. Let x
(1)
ij ,

x
(2)
ij be the cumulative weekly doses of the TMZ 42 mg/kg and CPT-11 0.61

mg/kg groups, respectively, and x
(3)
ij be the interaction of x

(1)
ij and x

(2)
ij . For

each group, we have the model (1) where Xi is the design matrix with the jth

row xij = (Yi0, x
(1)
ij , x

(2)
ij , x

(3)
ij ) (j = 1, ..., ni; i = 1, ..., m). Yi0 is the logarithm

of the baseline tumour volume, which can be generated from the Normal

distribution N(µY0 , σ
2
Y0

), where µY0 = −0.5 and σY0 = 0.83 are the sample

mean and sample standard deviation from the real data. The independent
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random effects Ui are assumed to follow Normal distribution N(0, σ2
u), the

random errors εi follow Normal distribution N(0, σ2
εIni

), and Ui and εi are

mutually independent.

Given the random effects Ui, the incidence probability satisfying

logit(pi) = Yi0λ0 + ziλ1 + π2Ui

is used to generate the uncure random indicator ξi from the Bernoulli distri-

bution with probability pi, where zi is a group indicator with zi = 1 if the

ith subject is from control group and zi = 0 otherwise. We only consider

the covariate zi as a group indicator here, rather than the cumulative weekly

dose as given in the real data in Section 4, in order to avoid a logical dilemma

arising in simulation studies. The reason is that the incidence indicator ξ and

the cumulative dose of a treatment may have causal effects to each other. For

example, the cumulative dose received by a mouse may depend on its death

status and time-to-death. Thus it is not sensible to fix the cumulative dose

of a treatment first and then generate the incidence indicator ξ.

For these subjects with incidence indicator ξi = 1, on the other hand,

the survival model (6) is used to generate the survival outcomes Ti, where

wi(t) = (Yi0, x
(1)
ij , x

(2)
ij , x

(3)
ij )′ for tj−1 ≤ t < tj. The baseline hazard rate

h0(t|ξi = 1) is assumed to be a piecewise constant function

h0(t|ξi = 1) = h0j = exp(−3 + 0.45 ∗ j)

for tj−1 ≤ t < tj (j = 1, ..., n). It is assumed that the baseline hazard

has an increasing jump because the hazard rate increases in the absence of

treatments. In the simulation studies, we choose the parameter estimators

obtained in the real data analysis as the true values of the parameters.
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To measure the effects of the association of the longitudinal and survival-

cure models, we consider two scenarios, that is, with the association (π1 6= 0

and π2 6= 0) and without the association (π1 = π2 = 0). For each scenario,

we simulate 100 data sets and calculate the sample mean and the sample

standard deviation for each parameter estimator. For each data set, we draw

1,000 random samples from the posterior distributions following a 4,000-

iteration ‘burn-in’ period in order to estimate the parameters. Table 3 and

Table 4 provide the parameter estimators, standard deviations and mean

squared errors(MSE) defined by MSE(θ) =
∑100

k=1(θ − θ̂k)
2/100, where θ̂k is

the estimator of parameter θ in the kth run of simulations.

When the latent association of longitudinal and survival-cure data does

exist, i.e., π1 6= 0 and π2 6= 0, the proposed joint modelling approach performs

very well. For example, the link parameter estimators of π1 and π2 are

statistically significant, which correctly identifies that the joint models are

really necessary. On the contrary, the separated modelling approach that

ignores the existing inherent association gives considerably biased estimators

of the parameters in the survival and cure models. By introducing the link

parameters π1 and π2, the longitudinal and survival-cure models are linked

inherently and the resulting parameter estimators are unbiased. When the

association exists but is ignored, the survival and cure model based inferences

are affected considerably, although little effect on the parameter estimators

in the longitudinal model is found.

[Table 3 about here.]

When there is no latent association of the longitudinal and survival-cure

models, it is concluded that the separate modelling approach produces better
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results in terms of smaller values of the MSE for most of the parameters, see

Table 4. This is what we expect. The joint modelling approach, on the other

hand, performs very well too, in the sense of not only giving unbiased estima-

tors but also having relatively small values of the MSE. The link parameter

estimators of π1 and π2 in this case are actually not significant, implying

that the proposed joint modelling method correctly identifies that the link is

not necessary. So, the separate modelling approach fits the data best in this

case.

[Table 4 about here.]

In summary, the proposed joint modelling approach is very reliable even

if longitudinal and survival-cure data do not have an inherent association. It

gives much better results than the separated modelling approach when the

inherent association exists.

6. Discussion

In this paper we propose a joint modelling approach to account for the likely

inherent association for longitudinal data and survival-cure outcomes. We

propose to use common random effects, after being properly scaled, to con-

nect the different models. The approach is then used to analyze a real dataset

arising from tumour xenograft experiments. Bayesian inferences are obtained

using a MCMC approach, showing the parameter estimators from the poste-

riors are robust against the priors of the link parameters. Our conclusion on

the data analysis is mostly consistent with Houghton et. al. (2000) but the

inherent association of different types of data is taken into account so that

more information is discovered. Simulation studies show that the proposed
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joint modelling approach produces very satisfactory parameter estimators.

Some further research needs to be studied when each mouse has mul-

tiple tumours. Tan et. al. (2005b) described an example of preclinical

studies evaluating the anti-tumour effects of exemestane and tamoxifen for

postmenopausal breast cancer, in which each mouse received subcutaneous

injections at two sites and developed four tumours in the process. It is

anticipated that multivariate longitudinal responses and multi-dimensional

random effects will be involved and additional correlation between tumours

for the same mice should be accounted for. We will report this in a follow-up

paper.
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Figure 1. Observed tumor sizes for the eight treatment groups.
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Table 1
Posterior mean (95% credit interval) of the parameters and the DIC values.

Par. Case 1 Case 2 Case 3 Case 4
DIC 614.5 674.6 681.9 688.3
β0 0.8616 0.8295 0.8324 0.8527

(0.4091 1.3835) (0.3412 1.2422) (0.4676 1.2388) (0.5484 1.2704)
β1 -0.5567 -0.5628 -0.5525 -0.5510

(-0.6832 -0.4096) (-0.7014 -0.4230) (-0.7025 -0.4260) (-0.7102 -0.4285)
β2 -0.4103 -0.4009 -0.3948 -0.4014

(-0.4745 -0.3478) ( -0.4516 -0.3361) (-0.4490 -0.3411) (-0.4568 -0.3555)
β3 0.0789 0.1524 -0.0340 -0.1970

(-3.4472 4.0170) (-4.4393 3.9468) (-4.2190 3.9682) (-3.2439 3.7544)
α0 0.3634 0.3569 0.7421 0.6643

(-0.7022 1.2606) (-0.7193 1.3840) (-0.1494 1.5168) (-0.3595 1.3594)
α1 -0.2445 -0.2064 -0.1284 -0.0651

(-0.5345 0.0967) (-0.5035 0.0654) (-0.3704 0.1489) (-0.3426 0.2878)
α2 -0.2730 -0.2472 -0.2097 -0.1645

(-0.4020 -0.0842) (-0.4267 -0.0819) (-0.3579 -0.0205) (-0.3453 0.0153)
α3 -0.0513 0.0393 -0.1507 0.0003

(-3.5973 3.7937) (-3.6933 4.2151) (-4.8075 4.0492) (-3.7621 3.6113)
λ0 0.1672 -0.0398 0.2529 -0.0355

(-1.3126 1.6016) (-1.3370 1.5346) (-0.8815 1.4278) (-1.4610 1.3311)
λ1 -0.3169 -0.3162 -0.3040 -0.3275

(-0.6948 0.0037) (-0.7040 0.0098) (-0.5576 -0.0156) (-0.7052 -0.0233)
λ2 -0.2551 -0.2619 -0.2292 -0.2627

(-0.4357 -0.1304) (-0.4249 -0.1095) (-0.3738 -0.1020) (-0.4447 -0.1200)
λ3 0.0781 0.2724 0.2718 -0.1434

(-3.6592 4.1942) (-3.1518 4.0833) (-2.7524 3.3410) (-4.3685 3.8604)
λ4 4.1369 3.8725 4.0205 3.9354

(2.5493 6.2047) (2.2288 5.6393) (2.4436 5.7740) (2.2531 6.3405)
σ2

ε 1.4443 1.3791 1.3551 1.3897
(0.8235 2.4107) (0.9292 2.1738) (0.8262 2.1431) (0.8290 2.3188)

σ2
u 1.4616 1.4420 1.4547 1.4570

(1.2264 1.7022) (1.1895 1.7257) (1.2048 1.7872) (1.2128 1.7340)
π1 0.7142 0.7410 0 0

(0.0728 1.3774) (0.0524 1.5126) (0 0) (0 0)
π2 0.5496 0 0.6139 0

(-0.4693 1.5104) (0 0) (-0.6380 1.7556) (0 0)
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Table 2
Posterior mean (95% credit interval) of the parameters and the DIC values
with priors: (1) 0.1N(0,100)+0.9N(4,0.1); (2) 0.9N(0,0.1)+0.1N(4,100);

(3) 0.5N(0,0.1)+0.5N(4,100); (4) 0.5N(0,100)+0.5N(4,0.1).

Par. (1) (2) (3) (4)
DIC 673.6 636.9 690.6 648.2
β0 0.791 0.780 0.803 0.842

(0.369 1.208) (0.301 1.274) (0.349 1.272 ) (0.415 1.245)
β1 -0.560 -0.545 -0.551 -0.554

(-0.727 -0.403) (-0.735 -0.379) (-0.691 -0.390) (-0.709 -0.390)
β2 -0.407 -0.404 -0.405 -0.403

(-0.459 -0.344) (-0.459 -0.351) (-0.459 -0.350 ) (-0.455 -0.346)
β3 0.006 -0.032 -0.059 -0.013

(-3.881 3.868) (-3.616 3.9055) (-4.095 3.872) (-3.912 3.865)
α0 0.209 0.229 0.274 0.249

(-0.832 1.299) (-0.899 1.307) (-0.800 1.471) (-0.763 1.247)
α1 -0.281 -0.221 -0.208 -0.265

(-0.639 0.063) (-0.606 0.182) (-0.557 0.183) (-0.627 0.121)
α2 -0.279 -0.246 -0.238 -0.269

(-0.466 -0.100) (-0.433 -0.054) (-0.404 -0.045) (-0.445 -0.094)
α3 -0.041 -0.041 -0.033 0.051

(-3.755 3.889 ) (-3.857 3.797) (-4.157 3.776) (-3.846 3.769)
λ0 0.094 -0.014 -0.032 0.127

(-1.507 1.458) (-1.405 1.451) (-1.384 1.402) (-1.306 1.613)
λ1 -0.325 -0.343 -0.327 -0.312

(-0.752 0.040) (-0.756 0.001) (-0.714 0.017) (-0.721 0.026)
λ2 -0.263 -0.272 -0.279 -0.257

(-0.448 -0.111 ) (-0.463 -0.111 ) (-0.455 -0.119) (-0.440 -0.096 )
λ3 -0.035 -0.017 -0.031 -0.056

(-4.015 4.065 ) (-4.083 3.874 ) (-3.985 3.992) (-4.050 3.939)
λ4 4.222 4.204 4.139 4.104

(2.327 6.426) (2.300 6.795) (2.262 6.226) (2.196 6.381)
σ2

ε 1.391 1.418 1.370 1.383
(0.818 2.289 ) (0.834 2.284) (0.792 2.192) (0.807 2.208)

σ2
u 1.449 1.446 1.452 1.455

(1.218 1.735) (1.221 1.731) (1.219 1.734) (1.229 1.742)
π1 0.814 0.694 0.765 0.786

(0.133 1.586 ) (0.010 1.576 ) (0.035 1.613) (0.131 1.636)
π2 0.506 0.382 0.315 0.496

(-0.630 1.758) (-0.433 1.839) (-0.449 1.658) (-0.670 1.834)
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Table 3
Simulation results for the case that there is a latent association, i.e., π1 6= 0

and π2 6= 0. The sample size m=400.

Par. True Separate modelling Joint modelling
Estimates St.D. MSE Estimates St.D. MSE

β0 0.86 0.8506 0.0795 0.0063 0.8649 0.0643 0.0041
β1 -0.56 -0.5622 0.0365 0.0013 -0.5733 0.0373 0.0016
β2 -0.41 -0.4078 0.0109 0.0001 -0.4167 0.0120 0.0002
β3 0.08 0.0818 0.0256 0.0007 0.0866 0.0295 0.0009
b0 0.36 0.2554 0.0972 0.0227 0.3300 0.0933 0.0095
b1 -0.24 -0.1171 0.0364 0.0164 -0.2077 0.0406 0.0027
b2 -0.27 -0.2857 0.0322 0.0048 -0.2718 0.0380 0.0014
b3 -0.05 -0.1311 0.3348 0.1176 -0.0216 0.1387 0.0199
a0 0.17 0.1014 0.1184 0.0140 0.1933 0.1199 0.0148
a1 4.14 3.9065 0.5227 0.3250 4.0588 0.5359 0.2909
σ2

ε 1.44 1.4418 0.0421 0.0018 1.4419 0.0387 0.0015
σ2

u 1.46 1.4348 0.1247 0.0160 1.4687 0.1134 0.0128
π1 0.71 - - - 0.6380 0.0951 0.0141
π2 0.55 - - - 0.5743 0.1279 0.0168
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Table 4
Simulation results for the case that there is no latent association, i.e.,

π1 = π2 = 0. The sample size m=400.

Par. True Separate modelling Joint modelling
Estimates St.D. MSE Estimates St.D. MSE

β0 0.86 0.8636 0.0782 0.0061 0.8610 0.1034 0.0106
β1 -0.56 -0.5710 0.0345 0.0013 -0.5780 0.0712 0.0053
β2 -0.41 -0.4167 0.0102 0.0001 -0.4150 0.0444 0.0020
β3 0.08 0.0867 0.0867 0.0005 0.0894 0.0266 0.0008
b0 0.36 0.3301 0.0988 0.0106 0.3364 0.0842 0.0076
b1 -0.24 -0.1984 0.0376 0.0031 -0.1950 0.0424 0.0038
b2 -0.27 -0.2933 0.0847 0.0076 -0.2871 0.0780 0.0063
b3 -0.05 0.0008 0.2295 0.0547 0.0020 0.1846 0.0364
a0 0.17 0.1809 0.1299 0.0168 0.2014 0.1386 0.0200
a1 4.14 3.9943 0.5002 0.2690 3.8913 0.6740 0.5116
σ2

ε 1.44 1.4472 0.0364 0.0014 1.4233 0.1450 0.0211
σ2

u 1.46 1.4797 0.1274 0.0165 1.4464 0.1729 0.0298
π1 0.0 - - - 0.0117 0.0725 0.0053
π2 0.0 - - - 0.0130 0.1182 0.0140
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