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The steady propagation of an air finger into a fluid-filled tube of uniform rectangular
cross-section is investigated. This paper is primarily focused on the influence of the
aspect ratio, α, on the flow properties, but the effects of a transverse gravitational field
are also considered. The three-dimensional interfacial problem is solved numerically
using the object-oriented multi-physics finite-element library oomph-lib and the
results agree with our previous experimental results (de Lózar et al. Phys. Rev. Lett.
vol. 99, 2007, article 234501) to within the ±1 % experimental error.

At a fixed capillary number Ca (ratio of viscous to surface-tension forces) the pres-
sure drops across the finger tip and relative finger widths decrease with increasing α.
The dependence of the wet fraction m (the relative quantity of liquid that remains on
the tube walls after the propagation of the finger) is more complicated: m decreases
with increasing α for low Ca but it increases with α at high Ca. Our results also
indicate that the system is approximately quasi-two-dimensional for α � 8, when we
obtain quantitative agreement with McLean & Saffman’s two-dimensional model for
the relative finger width as a function of the governing parameter 1/B =12α2Ca .
The action of gravity causes an increase in the pressure drops, finger widths and wet
fractions at fixed capillary number. In particular, when the Bond number (ratio of
gravitational to surface-tension forces) is greater than one the finger lifts off the bottom
wall of the tube leading to dramatic increases in the finger width and wet fraction at a
given Ca.

For α � 3 a previously unobserved flow regime has been identified in which a
small recirculation flow is situated in front of the finger tip, shielding it from any
contaminants in the flow. In addition, for α � 2 the capillary number, Cac, above
which global recirculation flows disappear has been observed to follow the simple
empirical law: Ca2/3

c α = 1.21.

1. Introduction
The displacement of one fluid by a second, immiscible, fluid is a phenomenon

present in many applications including enhanced oil recovery, flow in porous media,
thin-film coating and the biomechanics of the lung. The canonical model problem
concerns a finger, or long bubble, of air that is driven through a tube of uniform
cross-section, initially filled by a wetting fluid.

The majority of previous studies of this model problem have considered two
particular tube geometries: (i) a circular tube (Bretherton 1961), and (ii) a Hele-Shaw
cell, a rectangular tube whose width is much greater than its depth so that the system
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is approximately two-dimensional (Saffman & Taylor 1958). In many applications,
however, the tubes are neither circular nor quasi-two-dimensional. In particular,
many pharmaceutical and food processing applications require an understanding of
interfacial flows at microfluidic scales (Baroud & Willaime 2004). In microfluidic
devices the manufactured microchannels are usually of rectangular cross-section, but
with widths comparable to their depths.

Motivated by these applications, recent studies have investigated air-finger
propagation in polygonal tubes, see the recent review by Ajaev & Homsy (2006).
The tubes are usually of rectangular cross-section, which can be characterized by a
single aspect ratio α = w/b, defined to be the ratio of the tube cross-section width w

to its depth b. If the aspect ratio is large, the Hele-Shaw cell geometry is recovered,
in which the displacement of viscous fluid by a propagating air finger is known
as the Saffman–Taylor problem. The Saffman–Taylor problem is an archetype of
pattern-forming instabilities and has been extensively studied in the literature, see the
review of Homsy (1987). Fewer studies have been conducted at low aspect ratios,
but for 1 � α � 2 steady air-finger propagation in fluid-filled rectangular tubes has
been comprehensively described by the numerical simulations of Hazel & Heil (2002).
Not surprisingly, comparison of the available results suggests that the dynamics of
the system are rather different at low and high aspect ratios. At intermediate aspect
ratios, we are aware of only three previous studies: (i) a lubrication-theory-based
approach valid only at very low finger-propagation speeds (Wong, Radke & Morris
1995a , b); (ii) an investigation of the specific case of buoyancy-driven ‘free’ rise of
bubbles (Clanet, Héraud & Searby 2004); and (iii) our recent experimental results
covering the range 1 � α � 15 (de Lózar, Hazel & Juel 2007).

In this paper we extend the study of Hazel & Heil (2002) and complement the
experimental results of de Lózar et al. (2007) by solving the three-dimensional free-
surface Stokes equations numerically in order to investigate the steady propagation
of air fingers in rectangular tubes of intermediate aspect ratio (1 � α � 8). The
chosen range of aspect ratios is the relevant one for microfluidics devices, in which
microchannels are usually manufactured with 1 � α � 10 (Whitesides & Stroock 2001).
In the interest of simplicity, we neglect the effects of fluid inertia, but we do include
the effects of a transverse gravitational body force for direct comparison with the
experimental results. The agreement between our simulations and experiments is
within the ±1 % experimental error, demonstrating the accuracy of the simulations
and the quality of the experimental data.

The simulations provide detailed information about the influence of gravity and
aspect ratio on the system. Furthermore, we uncover the physical origin of the
empirical scaling found by de Lózar et al. (2007) relating the wet fraction (the relative
quantity of liquid that remains on the walls after the propagation of the air finger) to
a modified capillary number that depends on the aspect ratio. We show that, although
not exact, this relation is valid to within experimental error over a wide range of
parameter values. The present study also represents a significant step towards the
direct numerical study of the Saffman–Taylor instability; and our simulations indicate
that the Saffman–Taylor, quasi-two-dimensional, approximation is valid for α � 8.

An outline of the paper is as follows. In § 2, we describe the model problem and the
numerical method, and present a validation of the numerical results and a discussion
of the limitations of the simulation. In § 3, we consider the effects of the aspect ratio α

on the system in the absence of gravitational body forces, paying particular attention
to the cross-sections of the air finger, the wet fraction, the pressure drop across the
finger tip, the relative finger width and the topology of flow fields. In § 4, we examine
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Figure 1. Sketch of the problem: an air finger propagates at a constant speed UF into a
tube of rectangular cross-section with height 2b and width 2w. The tube is initially filled by a
wetting Newtonian fluid of viscosity μ and density ρ and the surface tension at the air–liquid
interface is σ . A gravitational body force of magnitude g acts normally to the axis of the tube.

the effects of gravity on the system and in § 5, we revisit the empirical scaling of
de Lózar et al. (2007). Finally, we draw our conclusions in § 6.

2. The model
A finger of air, assumed to be of negligible viscosity and density, propagates at a

constant speed UF under an internal pressure p∗
F into a tube of uniform rectangular

cross-section with aspect ratio α = w/b, where 2b is the depth of the cross-section and
2w is the width. Throughout this paper we use an asterisk to distinguish dimensional
fluid pressures, fluid velocities, coordinates and curvatures from their dimensionless
equivalents. The wetting fluid originally contained in the tube is assumed to be an
incompressible Newtonian fluid of dynamic viscosity μ and density ρ and the liquid–
air interfacial tension is given by σ . The entire system is subject to a gravitational body
force of magnitude g directed normally to both the direction of finger propagation
and the wider plane of the tube’s cross-section exactly as in de Lózar et al. (2007)’s
experimental setup, see figure 1. For simplicity, we neglect inertial effects in the fluid.

2.1. Governing equations

The problem is formulated in dimensionless Cartesian coordinates x = (x1, x2, x3) =
x∗/b and the finger propagates in the negative x2-direction. The outer walls of the
tube are located at x1 = ±α and x3 = ±1.

We non-dimensionalize the fluid velocity using the finger velocity u = u∗/UF and
the fluid pressure using the viscous scale p = p∗/(μUF /b). In an inertial frame moving
with the constant velocity of the finger the motion of the fluid is governed by the
steady Stokes equations:

− ∂p

∂xi

+
∂

∂xj

(
∂ui

∂xj

+
∂uj

∂xi

)
+

Bo

Ca
ki = 0, (2.1)

and the equation of continuity

∂uj

∂xj

= 0. (2.2)

The Einstein summation convention is used and the indices take the values
i = 1, 2, 3. The vector k = (0, 0, −1) indicates the direction of the gravitational body
force. Two dimensionless parameters govern the behaviour of the system: the capillary
number, Ca = μUF /σ (the ratio of viscous to surface-tension forces) and the Bond
number Bo = ρgb2/σ (the ratio of buoyancy to surface-tension forces). Hence, the
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Figure 2. Illustrative (coarse) finite-element mesh. The mesh is divided into three subdomains:
the liquid, tip and canyon regions. In the liquid subdomain, the mesh remains fixed. In the
tip and canyon domains, the volume mesh deforms in response to changes in the interfacial
position. The symmetry plane is x1 = 0.

factor Bo/Ca appearing in equation (2.1) represents the ratio of buoyancy to viscous
forces, sometimes called a Galileo or Archimedes number.

2.2. Boundary conditions

On the free surface we impose a non-penetration condition

uini = 0, (2.3)

and a dynamic boundary condition for the jump in stress across the interface(
∂ui

∂xj

+
∂uj

∂xi

)
nj +

1

Ca
κni = (p − pF )ni, (2.4)

where n is the unit vector normal to the free surface (directed out of the fluid) and
κ = κ∗b is the dimensionless mean curvature of the surface. On the tube walls we
impose the non-slip boundary condition and in the moving frame of reference the
wall velocity is

u = (0, 1, 0). (2.5)

We must truncate our computational domain and require boundary conditions at
the domain ends. Far behind the tip (at the outlet in figure 2), the variations in
the axial direction are gentle enough that a long-wavelength approximation is valid.
The usual assumption (see Reinelt & Saffmann 1985) is to neglect all axial variations
at the end of the domain. Using this condition in equation (2.1) yields a Laplace
equation for the axial velocity. Instead of this we impose a weaker condition: we
assume that only the axial variations of the pressure and axial velocity are zero:
∂p/∂x2 = ∂u2/∂x2 = 0. This assumption permits axial variations in the transverse
velocity components at the end of the computational domain and, although not
rational in an asymptotic sense, was found to provide accurate results in smaller
domains than those required when applying the ‘full’ long-wavelength approximation.
Using this weaker condition in equation (2.1), we obtain

∂

∂xβ

(
∂u2

∂xβ

+
∂uβ

∂x2

)
= 0, (2.6)
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with β =1, 3. The axial component of the momentum equation (2.1) is replaced by
equation (2.6) at the outlet boundary subject to the boundary conditions of no-
slip at the tube wall and the approximate dynamic boundary condition on the free
surface, obtained by taking the dot product of equation (2.4) with the unit vector
in the x2-direction and assuming that the vector normal to the free surface, n, has
no component in the x2-direction. The approximate dynamic boundary condition is
∂u2/∂n+ ∂un/∂x2 = 0, where n is now taken to be perpendicular to the free boundary
in the plane of the boundary and un is the velocity component directed along the
vector n. In the transverse directions, tractions consistent with the prescribed axial
velocity and hydrostatic pressure gradient are applied.

Far ahead of the tip (at the inlet in figure 2), we enforce parallel flow (u1 = u3 = 0)
and the hydrostatic pressure gradient p = −x3 Bo/Ca is applied as a traction boundary
condition in the axial direction. The axial velocity at the inlet, u2(x1, x3), is determined
as part of the solution and we find that the axial velocity is approximately independent
of the axial coordinate (centreline value varies by less than 1%) by a distance α ahead
of the finger tip. By imposing the pressure far ahead of the finger tip, the pressure
within the air finger is no longer independent and pF must be treated as an unknown.
The required additional equation is obtained by fixing the tip of the finger to remove
the translational invariance of the problem.

2.3. Numerical method

The governing equations are solved numerically using a finite-element method via
the object-oriented multi-physics library oomph-lib (Heil & Hazel 2006). The fluid
domain is divided into a number of volumetric elements, see figure 2. The symmetry
of the problem allows us to restrict attention to half the fluid domain and symmetry
boundary conditions are applied at x1 = 0.

The deformation of the volume mesh in response to changes in the free surface
is treated by the method of spines (Kistler & Scriven 1983) and is essentially the
same as that described by Hazel & Heil (2002). In brief, the mesh is divided into
three subdomains: the canyon, tip and liquid subdomains, see figure 2. In the liquid
domain, there is no free surface and so the mesh is fixed. In the canyon and tip
regions, every node in the volume mesh is described by its fractional distance along
a spine – a vector with a pre-determined direction, but unknown length h. In the tip
region the spines are all directed towards the point (0, 0, 0) and emanate from the
tube walls or from the plane dividing the liquid and tip subdomains. In the canyon
region, the spines lie in planes perpendicular to the axis of the tube and are directed
from the tube walls to the centre of the tube. The spine lengths parameterize the
position of the free surface and are determined during the solution procedure. As the
free surface deforms, the nodal positions are updated in response to the changes in
the spine lengths. A notable advantage of the scheme is that only a small number
of nearby volume elements are remeshed in response to local changes in the free-
surface position. We note in passing that the translational invariance of the problem
is actually enforced by fixing the length of the spine directed along the axis of the
tube. The end of this spine corresponds to the finger tip in the absence of gravity.

The selection of the axial extent of the mesh is not obvious because there are
generally two different geometric length scales in the system: the height, 2, and
width, 2α, of the tube. In addition, the thickness of the fluid film deposited behind
the finger tip sets another length scale. We note that the simulations are unable to
resolve extremely thin films, which limits the range of capillary numbers that can
be investigated, see § 2.5. However, for high aspect ratios the system behaves like a
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Figure 3. Wet fraction as a function of the capillary number: (a) square tube at Bo =0, the
points represent the numerical data of Hazel & Heil (2002) and are identical to our results to
the three decimal places given in table 3 of their paper; (b) rectangular tubes of aspect ratios
α = 1, 3, 5, 6 at Bo =1.0, the experimental data of de Lózar et al. (2007) are shown as points
and agree with our simulations to within the experimental error of ±1 %. The development of
thin films behind the finger tip sets the lower limit for Ca in our simulations, see § 2.5, and the
range of capillary numbers that can be accurately simulated decreases with increasing aspect
ratio: Ca � 0.003 (α = 1), Ca � 0.016 (α = 3), Ca � 0.04 (α = 5, 6).

Saffman–Taylor system and α is the only important length scale (Reinelt 1987). For
low aspect ratios α is equal to or longer than the typical length scale in the system.
Therefore, we adjust the mesh length based on the tube width. Based on numerical
experiments, the lengths of the liquid, tip and canyon submeshes were chosen to be
2α, α and 3α respectively.

The fluid variables are discretized by using isoparametric Q2P−1 elements (Gresho &
Sani 2000), in which the quadratic fluid velocities are continuous, but the linear fluid
pressures may be discontinuous between neighbouring elements. The spine lengths
are discretized by isoparametric two-dimensional quadratic elements. The discrete
system of equations is constructed by introducing the dynamic boundary condition
(2.4) into the weak form of the momentum equations (2.1) as explained by Ruschak
(1980); and the system is completed by the weak forms of the continuity equation
(2.2), non-penetration boundary condition (2.3) and outlet boundary condition (2.6).
The complete nonlinear system of equations is solved by Newton–Raphson iteration
and the resulting linear system is assembled and solved by the HSLMA42 frontal
solver (Duff & Scott 1996). In our standard resolution we deal with 50 000 degrees of
freedom. An initial guess was generated by following the same procedure as Hazel &
Heil (2002) and once a converged solution had been found other solutions were
obtained by slowly varying α, Bo and Ca.

2.4. Validation of the code

In figure 3(a) we compare our results with those of Hazel & Heil (2002) in a square
tube at Bo = 0. The wet fraction m is the volume of fluid remaining in the tube
after passage of the air finger divided by the volume of the tube. In our numerical
simulations, the cross-sectional area of the fluid far behind the finger tip is given
by the axial flow rate, Q, because u2 → 1 as x2 → ∞ where the fluid is at rest in
the lab frame. The wet fraction is, therefore, calculated by the flow rate divided by
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the cross-sectional area of the tube, m =Q/(4α). Our calculated wet fractions are
indistinguishable from Hazel & Heil’s calculations to the three-digit precision given
in table 3 of their paper. This comparison is important because although the method
used for their simulations is very similar, the code is completely different. We also
compare our results with the experiments of de Lózar et al. (2007), see figure 3(b).
In the experimental setup, the system was driven by extracting fluid from the tube at
a prescribed flow rate QF and the wet fraction was taken to be m =1 − QF /(AUF ),
where A was the cross-sectional area of the tube and UF the measured velocity
of the finger. All calculated wet fractions agree perfectly with the experimental results
to within the experimental error of ±1 %. We have also found good agreement with
the results of Clanet et al. (2004) for the case of ‘free’ rise of bubbles in rectangular
tubes whose axes are parallel to the direction of gravity, see the Appendix.

2.5. The limit of the simulations: contact lines

Far behind the finger tip, the fluid is at rest in the lab frame and the system is
independent of the axial coordinate. Hence, the interface has a non-zero curvature in
the transverse plane only and the curvature is proportional to the pressure difference
across the interface. In the absence of gravity, the curvature must be a constant and
the only possible interface shapes are arcs of circles. If the radius of curvature of the
interface is greater than one, then the interface must intersect the tube walls because
the fluid is wetting, i.e. the contact angle is zero. The final equilibrium configuration
will, therefore, consist of fluid lobes connected by infinitely thin films. The inclusion
of additional physical effects, such as disjoining pressures, would be required to model
the eventual rupture of these films, and is outside the scope of the present study.
The evolution towards the equilibrium configuration is driven by transverse draining
flows that persist over long axial distances, whereas the axial velocity approaches its
undisturbed value a relatively short distance behind the tip. The full details of the
evolution dynamics were given by Wong et al. (1995a , b) in the limit of vanishing
capillary number.

In figure 4 we show a cross-section of the flow domain at a distance 3.92α behind the
tip for Ca = 0.076, Bo = 0 and aspect ratio α = 3. The axial velocity is approximately
uniform and identical to the wall velocity (|u2 − 1| < 0.001, relative error less than
0.1 %). Nonetheless there are considerable pressure variations around the interface,
driving a transverse flow from the fluid films above and below the finger to the edges
of the tube, which causes a decrease in the finger width and concomitant thinning of
the films with increasing axial distance from the tip.

The accurate numerical resolution of the evolution to equilibrium far behind the
finger tip is precluded by the extreme thinning of the films, which leads to local
under-resolution in our finite element method. At a fixed distance behind the finger
tip the film thickness decreases with capillary number and the development of the
thin films at the end of our computational domain sets the lower limit of capillary
number in our simulations. The axial extent of the domain was chosen to be short
enough that the films were sufficiently thick to be well-resolved, yet long enough so
that the approximation of negligible axial variations in axial velocity and pressure was
valid. A number of simulations in longer domains, in which the length of the canyon
subdomain was doubled to 6α, were performed and the bulk properties were found
to be identical to those in our standard domain (differences of the order of 10−5).

Increasing the aspect ratio leads to a decrease in finger pressure at a fixed capillary
number (Hazel & Heil 2002), see also figure 6(b), associated with thinner fluid films.
Hence, the range of capillary numbers that can be simulated decreases with increasing
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Figure 4. Cross-section of the flow domain at a distance 3.92α behind the tip for Ca =0.076,
Bo = 0 and aspect ratio α = 3. The grey scale represents the pressure on the surface-tension
scale, the arrows show the transverse velocities of the liquid and the lines are streamlines. Two
constant-pressure regions separated by a relatively thin liquid film are seen. The pressure drop
between both regions drives a transverse flow that thins the intermediate region. Far from
the tip the film becomes very thin, which eventually leads to a local under-resolution of our
method.

α 1 2 3 4 5 6 7 8

Bo
0 0.002 0.003 0.003 0.005 0.010 0.015 0.015 0.015
1.0 0.003 – 0.016 – 0.040 0.040 0.040 –
2.5 0.005 – 0.022 – 0.15 – 0.15 –

Table 1. The minimum simulated capillary number as a function of aspect ratio and Bond
number. The maximum simulated capillary number was usually Ca = 5, apart from the
validation runs presented in figure 3 when the maximum was Ca = 20.

aspect ratio. The maximum value of the aspect ratio in the simulations was α = 8. For
larger values of α, it was not possible to obtain results at sufficiently low values of
Ca to explore the parameter regime associated with the single-finger Saffman–Taylor
regime. Table 1 shows the minimum values of Ca in our simulations for different
values of α and Bo. For α = 7, we confirmed that the relative error in the bulk
properties remained less than 0.1 % on comparison between our standard resolution
of 50 000 degrees of freedom and a refined mesh of 60 000 degrees of freedom.

3. The influence of aspect ratio
In this section, we shall discuss the influence of the aspect ratio on the system in

the absence of any gravitational effects (Bo = 0). Initially, we discuss changes in the
cross-section of the air finger behind the finger tip, § 3.1. We next turn our attention to
bulk properties of the flow, § 3.2, presenting the wet fraction, the pressure drop across
the finger tip and the relative finger width as functions of aspect ratio and capillary
number. Finally, in § 3.3 we discuss the flow fields and the generic topological changes
that occur with variations in the capillary number and aspect ratio.
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Figure 5. Cross-sections of the flow domain for two capillary numbers (Ca= 0.02, 1.0), three
aspect ratios (α = 1, 3, 7) and Bo = 0, at a distance of 3.92α behind the tip.

3.1. The cross-section of the air finger

In figure 5 we show cross-sections of the flow domain at a distance of 3.92α behind
the tip for two capillary numbers (Ca = 0.02, 1.0) and three aspect ratios (α = 1, 3, 7).
The axial velocity of the fluid is almost uniform and is within 0.1 % of the wall
velocity for the parameter values shown.

At Ca =0.02 and α = 1, the cross-sectional flow domain consists of four corner
regions of constant curvature, connected by thin films. As discussed in § 2.5, the
difference in curvature between the corner regions and the thin films generates a
pressure drop that drives transverse draining flows from the films into the corner
regions. The volume of fluid transported, however, is so small that it does not
measurably deform the interface, and thus the air finger is in quasi-equilibrium.
In fact, a fluid domain consisting of four corner regions of constant curvature is
an equilibrium configuration at Ca = 0 for any value of α (Wong et al. 1995a).
Experimental evidence (Moore et al. 2002) suggests that these configurations may be
unstable for very high aspect ratios α � 250, however.

At Ca = 0.02 and α = 3 and 7, the quasi-equilibrium configuration is altered
compared to α = 1. The interface consists of two end regions of constant curvature
along the short semi-axes of the tube, connected by two thin liquid films along the
longer semi-axes. The thin films ensure that the draining flows are weak; the maximum

magnitude of the transverse velocity,
√

u2
1 + u2

3, is approximately 0.05 (0.048 for α =3
and 0.054 for α = 7) and the minimum film thickness is approximately 0.01, giving
an estimate of the strength of the draining flow as 0.0005, much smaller than the
order-one axial flow. Hence, the variation of the finger width in the axial direction is
negligible (in both cases, the values of dimensionless finger width λ, defined in § 3.2,
measured at cross-sections located at 3.92α and 2.92α behind the finger tip differ by
less than 8 × 10−4). McLean & Saffman (1981) and Reinelt (1987) used this cross-
sectional configuration to derive the boundary conditions for their two-dimensional
simulations of the Saffman–Taylor instability.

As Ca increases, the fluid films thicken and in near-square tubes the ultimate
finger shape becomes axisymmetric at sufficiently high Ca (Ratulowski & Chang
1989; Kolb & Cerro 1991). Hazel & Heil (2002) showed that these axisymmetric
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Figure 6. (a) The wet fraction, (b) pressure drop, and (c) relative finger width plotted against
the capillary number for tubes of aspect ratios α = 1, 2 . . . , 8 in the absence of gravity (Bo =0).
(d) The relative finger width is also plotted as a function of the Saffman–Taylor parameter
1/B =12 α2Ca together with the results of the two-dimensional simulations of McLean &
Saffman (1981) (squares). The data are taken from table 1 in their paper, but we have omitted
the point corresponding to κ = 3.09 because it appears to be in error on comparison with their
figure 4. Note that in (b) and (d) the pressure drops and finger widths (for 1/B < 200) are
almost indistinguishable for α = 7 and α = 8. The finger widths for these values of α are in
excellent agreement with the results of McLean & Saffman (1981) for 1/B � 200, suggesting
that tubes with α � 8 support Saffman–Taylor finger propagation.

configurations were possible for α � 2.04, but for α � 2.04 the axisymmetric
configuration never occurs. Instead, the equilibrium finger shape consists of end
regions of constant curvature connected by thick films along the longer semi-axes of
the tube, as shown for Ca = 1.0 and α =3, 7. The thick films enhance the effect of the
draining flows, resulting in a stronger axial variation of the finger width within our
finite flow domain. (λ measured at cross-sections 3.92α and 2.92α far from the tip
differ by 8 × 10−3 for α = 3 and by 3 × 10−3 for α = 7.) The finger is still expected to
relax into a quasi-equilibrium configuration similar to that shown at Ca = 0.02, but
only at very long distances from the tip (not seen in our simulations).

3.2. Bulk properties

In figure 6 we present results for tubes of aspect ratios α =1, 2 . . . , 8 in the absence
of gravity (Bo =0). The wet fraction m, defined in § 2.4, increases with aspect ratio
at high Ca, while at low Ca the opposite tendency is observed, see figure 6(a). The
behaviour of m at low Ca could be determined only for α � 4 owing to the limitations
imposed by the development of the thin films in high-aspect-ratio tubes, but has
been observed experimentally at higher aspect ratios by de Lózar et al. (2007). These
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opposite variations of m with aspect ratio are associated with different interface
shapes far behind the finger tip, see figure 5 and § 5.1. In the limit of low Ca, and
indeed for Ca =0 (Wong et al. 1995a), the final interface shape consists of four corner
regions, whose constant curvature is not imposed by the geometry of the tube. Thus,
the wetted area does not alter significantly with increasing α, resulting in decreasing
values of m. For higher Ca, the fluid domain far behind the finger tip consists of two
‘side’ regions, whose constant curvature is set by the shorter semi-axis of the tube’s
cross-section. The width of these regions grows more rapidly with α than the width
of the finger, resulting in a net increase in m.

In figure 6(b), we plot the pressure drop across the tip of the finger on the capillary
scale (�pCa = �p∗/(σ/b)) as a function of the capillary number. The pressure drop
decreases with the aspect ratio, reflecting a reduction in tip curvature that is associated
with widening tubes, but the separation between the curves is also reduced as α

increases. Thus, the pressure drops for α = 7 and α = 8 are almost indistinguishable as
the system approaches the Saffman–Taylor regime. At high enough α the curvature
at the tip (which determines �pCa) is dominated by the curvature across the tube
(of order 1/b), which depends only weakly on the aspect ratio. For very high α and
asymptotically low Ca, Park & Homsy (1984) predicted a weak dependence of �pCa

on α, of the form of 1/α2. Our simulations suggest that the α dependence of �pCa

weakens further as Ca increases.
In the literature, the typical parameter used to characterize air fingers in rectangular

tubes of high aspect ratio is the relative finger width, λ, the width of the air finger
divided by the width of the tube’s cross-section. This quantity appears naturally in
the two-dimensional model and is easy to measure experimentally. The definition
of λ in the three-dimensional system is not clear, however. Based on what would
be observed in experiments we define the relative finger width to be the maximum
x1-coordinate of the finger divided by the aspect ratio. The measurement is taken in
the last x1x3-cross-section of our computational domain, at a distance of 3.92α behind
the tip. An example cross-section at Ca = 0.076 is shown in figure 4, for which the
relative finger width is λ= 0.795. At this distance from the tip, λ is independent of the
axial coordinate for low Ca. At high Ca, however, the finger width does not stabilize
until much greater distances. This is because the relatively weak surface-tension forces
require longer axial length scales to restore the interface to a quasi-equilibrium state
after the distortion caused by the non-axisymmetric passage of fluid around the tip,
as explained by Hazel & Heil (2002).

Figure 6(c) shows the relative finger width plotted as a function of the capillary
number Ca. The finger width decreases with Ca as expected, but for sufficiently high
Ca, the width reaches a minimum and starts to increase, a consequence of measuring
the width at a fixed axial distance behind the tip. At high values of the capillary
number the finger’s cross-section is no longer independent of the axial coordinate at
our chosen distance. We expect that the finger width measured sufficiently far behind
the tip does indeed decrease monotonically with increasing Ca, as found by Tabeling,
Zocchi & Libchaber (1987) in experiments at high aspect ratios. Increasing the aspect
ratio leads to reduced relative finger widths for all Ca because the curvature, and
hence the surface-tension forces, decrease as α is raised.

In figure 6(d) we show the relative finger width plotted as a function of the
Saffman–Taylor parameter 1/B =12 α2Ca. This is the typical plot shown in the
literature to characterize the Saffman–Taylor instability, see Homsy (1987). Again,
the separation between the curves decreases as the aspect ratio increases and the
curves corresponding to α =7 and α = 8 are very close for 1/B < 200. These findings
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are in agreement with the experimental results of de Lózar et al. (2007), who found
that at fixed 1/B the relative finger widths were identical to within experimental
error over the range 8 � α � 15, suggesting that the system is Saffman–Taylor-like for
α � 8. Moreover, we find quantitative agreement at α = 8 with the two-dimensional
simulations of McLean & Saffman (1981) for 10 � 1/B � 200, where the relative error
is less than 1.5 %. The separation of the curves for 1/B > 200 is a consequence of the
dependence of λ on axial distance, as explained above. To our knowledge, this is the
first evidence of quantitative agreement between two- and three-dimensional models
of these systems, and our results suggest that tubes with α � 8 support Saffman–Taylor
finger propagation.

The values of Ca and 1/B for which λ reaches its minimum in figures 6(c) and
6(d), respectively, give an indication of the parameter thresholds beyond which the
interface does not reach a quasi-equilibrium configuration within our simulation
domain. Whereas the threshold value of Ca decreases with α, the corresponding
value of 1/B increases with α. This explains why λ has not been found to vary
significantly with the distance from the finger tip in Saffman–Taylor experiments,
which are performed at much higher aspect ratio than our simulations (α � 20).
However, in low-aspect-ratio tubes the relaxation of the interface must be taken into
account when defining λ, which generally depends on the distance from the finger tip.

3.3. Flow fields

The flow field associated with the propagating air finger in rectangular tubes has
important similarities with its analogue in cylindrical tubes. Taylor (1961) showed
that, at sufficiently low flow rates, the velocity of the fluid near the centreline of
a cylindrical tube is faster than the finger velocity, owing to the existence of a
recirculating flow in the moving frame of reference. The centreline velocity changes
sign for increasing flow rates (i.e. increasing Ca), resulting in the disappearance of
the recirculation region ahead of the finger. In the cylinder, the transition between
these two flows involves two topological changes that were conjectured by Taylor
(1961) and observed by Giavedoni & Saita (1997). In near-square tubes, Hazel &
Heil (2002) identified an additional non-axisymmetric regime, resulting in four generic
flow regimes. For larger aspect ratios, α � 3, a total of six flow regimes are generic
as illustrated in figure 7(a–f) for α = 5, where streamlines are plotted both on the
horizontal plane of symmetry (x3 = 0) and on the free surface. At low capillary
numbers, figure 7(a), the flow is characterized by three stagnation points (five in the
whole tube) located on the free surface: one at the tip of the finger and one in each
symmetry plane (horizontal, x3 = 0 and vertical, x1 = 0). This flow regime is similar to
that observed in rectangular tubes of smaller aspect ratio (Hazel & Heil 2002). The
first topological change observed when increasing Ca is the splitting of the stagnation
point in x3 = 0, which leads to a new stagnation point migrating ahead of the finger,
figure 7(b). When increasing Ca further, the original stagnation point in x3 = 0 moves
around the finger to merge with the tip stagnation point, figure 7(c). The stagnation
point in x3 = 0 ahead of the finger also migrates toward the centre of the tube. Once
its reaches the centreline, the flow ahead of the stagnation point is reversed and the
associated ‘global’ recirculation flows vanish, figure 7(d). A localized recirculation
remains, however, between the tip and the axial stagnation point. This new regime,
which is typical of higher-aspect-ratio tubes (α � 3), may be of practical interest,
as the finger tip is effectively shielded by the localized recirculation flow. Further
increases in Ca lead to the merging of the axial stagnation point with the tip and
the associated disappearance of the localized recirculation flow, figure 7(e), followed
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(a) (b)

(c) (d)

(e) (f )

Figure 7. Streamlines in the moving frame of reference for a rectangular tube α = 5 and
Bo = 0. (a) Ca = 0.0111, (b) Ca = 0.0441, (c) Ca = 0.0816, (d) Ca = 0.122, (e) Ca = 0.292,
(f) Ca = 0.792. Streamlines are shown in the horizontal symmetry plane x3 = 0 and on the
free surface.

by the migration of the stagnation point in x1 = 0 to merge with the tip stagnation
point, figure 7(f). This high-Ca flow is topologically equivalent to that observed in the
cylindrical and square tubes.

The transition between regimes (c) and (d), or the equivalent regimes at low aspect
ratios, corresponds to the disappearance of the ‘global’ recirculation flow. Figure 8
shows the capillary number at which this transition occurs, Cac, as a function of the
aspect ratio. The error bars and symbols represent the range and average value of Ca,
respectively, based on the largest value of Ca simulated for which recirculation flows
were observed, and the lowest value of Ca simulated, for which they could not be seen.
Excluding the measurements in the square tube, α exhibits a power-law dependence
on Cac of the form, Caβ

c α = A, where A= 1.21 ± 0.01 and β = 0.66 ± 0.01 were
obtained from a least-square linear fit of the logarithmic data. Note that a lubrication
analysis of thin films implies that the film height scales with Ca2/3 (Landau & Levich
1942), suggesting that the topological change in the flow indicated by Cac is directly
associated with the flow resistance of the thin films present at the top and bottom of
the tube. This explanation is consistent with the deviation observed at low α, when
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c α =1.21.

the change of topology in the square and near-square tubes occurs at large enough
values of Cac that the films are not thin.

4. The effect of gravity
We focus on the influence of transverse gravity (along the x3-direction) that would

apply to experiments performed in a horizontal tube (de Lózar et al. 2007). The effect
of gravity is most pronounced at low Ca, where viscous forces are relatively weak.
For a fixed Bo, the buoyancy-force term in equation (2.1) decreases in magnitude with
increasing Ca and so the influence of gravity on the system is negligible at high Ca.

In figure 9 we show cross-sections of the flow domain at a distance of 3.92α behind
the tip for two values of the Bond number (Bo = 1.0, 2.5) and three aspect ratios
(α = 1, 3, 7) at Ca = 0.2. In the presence of transverse gravity the hydrostatic pressure
that increases linearly with distance from the upper wall of the tube must be balanced
by the pressure drop across the free surface, in order for the pressure inside the finger
to remain constant. Thus, the curvature of the free surface decreases with distance
from the upper wall. For α = 1, as the Bond number is raised from Bo = 1.0 to 2.5, the
finger becomes increasingly distorted from the circular configuration adopted when
Bo= 0. In tubes of higher aspect ratios (α = 3, 7), it is the end regions, of constant
curvature when Bo = 0, that deform to balance the hydrostatic pressure. Jensen et al.
(1987) described the resulting fingers as ‘banana shaped’.

Jensen et al. (1987) also demonstrated that for Bo > 1 static interface shapes were
possible in which the air finger lifts off the bottom wall of the tube, because surface-
tension forces cannot balance the hydrostatic pressure across the entire depth of the
tube. As a result, in our simulations, the bottom film is much thicker than the top
for Bo = 2.5, compared to the case when Bo = 1.0. In the bottom part of the tube,
the effect of the hydrostatic pressure is to drive a flow toward the bottom film, thus
opposing the draining flow due to curvature changes. As fluid is transported from
the upper part of the flow domain toward the bottom, the finger lifts and widens
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α = 1

α = 7

α = 3

Bo = 1.0 Bo = 2.5

Figure 9. Cross-sections of the flow domain at a distance of 3.92α behind the tip and Ca = 0.2,
for Bo = 1.0 and 2.5, and three values of the aspect ratio (α =1, 3, 7). The finger lifts off the
bottom wall for Bo = 2.5.

with distance from the tip until a quasi-equilibrium configuration is reached. The
enhancement of the transverse flows by the hydrostatic pressure gradient means that
the finger widths stabilize over shorter axial distances, but that the upper film is
thinner than the equivalent case in the absence of gravity. Hence, the range of Ca
that can be accurately simulated is reduced as Bo increases.

We note that for intermediate values of the capillary number (large enough that
the interface is not influenced by the sidewalls of the tube, but small enough that the
interface will eventually meet the upper wall) the ultimate equilibrium cross-sections
will be the same as those of two-dimensional sessile droplets resting on a flat plate
under the influence of gravity. In these cases, the axial evolution of the pendent
film on a length scale of Ca−1, see Wong et al. (1995a), should be similar to the
temporal evolution of two-dimensional droplets settling onto a solid surface on the
surface-tension time scale, as described by Lister, Morrison & Rallison (2006). Our
computational domains were not sufficiently long to capture such dynamics, however.

The reduction in the curvature of the free surface in the presence of transverse
gravity also means that the finger occupies a smaller proportion of the cross-section
of the tube. Hence, at fixed Ca, the wet fraction increases with Bo, as shown in
figure 10(a, b) for α = 1 and α = 3, respectively. The considerable increase in the
wet fraction between Bo= 1.0 and Bo = 2.5 is again a consequence of the change
in equilibrium shape for Bo > 1, above which the cross-sectional area of the finger
decreases rapidly with increasing Bo. The finger tip is defined as the point furthest
ahead on the free surface and as the finger lifts with increasing Bo, so does its tip,
leading to an enhanced pressure drop at the tip, see figure 10(c). Finally, the increase
in width of the finger with increasing Bo is shown in figure 10(d). The behaviour of
the bulk properties is similar for all aspect ratios and for clarity we present results
at a single aspect ratio α = 3. In figure 10(d) we also present experimental finger
widths (Bo = 1) measured at the same distance behind the finger tip as the end of
our computational domain (unpublished data from the experiments of de Lózar et al.
2007). The agreement between the simulations and experimental data is excellent
(within the ±1 % experimental error).



188 A. de Lózar, A. Juel and A. Hazel

F
in

ge
r 

w
id

th
, λ

0.5

0.6

0.7

0.8

0.9

(a)

W
et

 f
ra

ct
io

n,
 m

0

0.2

0.4

0.6

Bo

α = 1

(b)

W
et

 f
ra

ct
io

n,
 m

0

0.2

0.4

0.6

Bo

α = 3

α = 3α = 3

(c) (d)

Capillary number, Ca

P
re

ss
ur

e 
dr

op
, Δ

p C
a

10–2 10–1 100

Capillary number, Ca
10–2 10–1 100

2

4

6

8
10

Bo

Bo

Figure 10. Wet fraction as a function of the capillary number for the aspect ratios (a)
α = 1 and (b) α = 3. For α = 3, we also show (c) the pressure drop and (d) relative finger
width as a function of the capillary number. The symbols in (d) correspond to experimental
measurements of the finger width taken at the same distance behind the finger tip as the end
of the computational domain (unpublished data from the experiments of de Lózar et al. 2007).
The lines correspond to different values of the Bond number (Bo = 0, 1.0, 2.5). In the wet
fraction for the square tube (a) the results for Bo = 5 are also presented. Note the considerable
increases in the wet fraction and finger width between Bo = 1.0 and Bo = 2.5 compared to
those between Bo =0 and Bo = 1.0.

Figure 11. Stream lines in the moving frame of reference at α = 5, Ca = 0.292 and Bo = 1.0.
Stream lines are plotted in the vertical symmetry plane, x1 = 0, and on the bubble surface.

The presence of gravity breaks the reflection symmetry about x3 = 0, and
complicates the topology of the flow considerably. The flow field remains simple
for large Ca, however, where it is characterized by a single stagnation point, as shown
in figure 11 for Ca =0.292 and Bo = 1.0. This flow regime is topologically analogous
to that seen in the absence of gravity shown in figure 7(f ), but the stagnation point
is located above the finger tip rather than exactly at the tip as for Bo = 0. Increasing
Ca causes the stagnation point to migrate closer to the tip as the influence of gravity
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Figure 12. Wet fraction as a function of Ĉa = Ca[1+a1(α−1)+a2(α−1)2], the scaled capillary
number, with experimentally determined parameter values (de Lózar et al. 2007). The lines
correspond to aspect ratios α = 1, 3, 5, 7. (a) Bo = 0, (b) Bo = 1, (c) Bo = 2.5.

decreases. Non-zero gravity also reduces the minimum value of the capillary number
for which the flow regime defined by one stagnation point is observed. At Ca = 0.292,
the flow field at Bo =1.0 includes one stagnation point, figure 11, whereas at Bo= 0,
it has three, figure 7(e).

5. The empirical scaling of de Lózar et al. (2007)
One of the most surprising results of the experimental study of de Lózar et al.

(2007) was the discovery that the wet fraction appeared to depend on a single

modified capillary number Ĉa = Ca[1 + a1(α − 1) + a2(α − 1)2] for all aspect ratios

above Ĉa > Ĉat ≈ 0.035. The scaling has obvious practical applications, but its origin
is strictly empirical and it was determined from a set of experiments conducted at a
single Bond number, Bo =1.0.

In figure 12 the wet fraction obtained in tubes of α = 1, 3, 5 and 7 is plotted
against the scaled capillary number, using the experimentally determined parameters
(a1 = 0.12±0.02 and a2 = 0.018 ± 0.001) for three different values of the Bond number.
The curves never collapse perfectly, but the wet fractions differ by less than 0.013

for Ĉat > 0.05 at Bo = 0. Remarkably the curves are almost indistinguishable over

one order of magnitude in Ĉa (0.1 � Ĉa � 1). Therefore, although not exact, the
error in predictions made using the effective scaling is approximately half that of
the typical experimental error (±0.01) given by de Lózar et al. (2007). Following
the same least-squares procedure as de Lózar et al. (2007), but using the data from
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Figure 13. Cross-section of the flow domain at a distance 1.5α behind the tip for
Ca = 0.042, Bo = 0 and aspect ratio α = 7. The grey scale represents the axial velocity.

the simulations at Bo= 0, we find a1 = 0.09 ± 0.01 and a2 = 0.019 ± 0.001, providing
further evidence that the effective scaling is a good approximation when Bo � 1. The
separation between the curves increases with the Bond number, however, indicating
that the physics underlying the scaling no longer applies for large Bo. The most
likely explanation for the increased error is the dramatic change in the equilibrium
configurations of the finger when Bo > 1.

5.1. Interpretation

The wet fraction is a measure of the cross-sectional area occupied by the fluid far
behind the finger tip and, in the absence of gravity, there are only three possible
interface shapes in this region: (i) four quarter-circles, (ii) two semi-circles or (iii) a
complete circle, see § 3.1, in particular figure 5. We believe that the observed scaling
of the wet fraction in rectangular tubes expresses a relationship between situations in
which the interface approaches case (ii) far behind the finger tip.

An alternative scaling has been observed in case (iii), a configuration that is only
possible at high capillary numbers in tubes of low aspect ratio (1 � α � 2). In these
cases, the wet fraction appears to be independent of the aspect ratio, as predicted
by Hazel & Heil (2002) and confirmed experimentally by de Lózar et al. (2007) for
Ca > 0.01.

In contrast, case (ii) is possible over a wide range of aspect ratios and capillary
numbers and we believe it is this configuration that underlies the empirical scaling
of de Lózar et al. (2007). Simulation results indicate that the transverse curvature
(curvature in the (x1, x3)-plane) remains approximately unchanged along the finger
and has a (dimensionless) value of 1, whereas the (dimensionless) lateral curvature
(curvature in the (x1, x2)-plane) is non-zero at the finger tip but becomes zero once
the system is independent of the axial coordinate. Furthermore, the simulations
indicate that the majority of the change in lateral curvature occurs within a short
distance of the finger tip on an axial length scale of α. We approximate the change
in lateral curvature by assuming that the tip’s cross-section in the plane x3 = 0 is a
semi-circle of radius (α −h), where h is the lateral film thickness behind the finger tip,
see figure 13. Thus the lateral curvature near the finger tip is approximately 1/(α − h)
and we assume that it approaches zero in an adjustment region of length α.

After the rapid changes near the tip, variations in the axial direction are assumed
to be small and a standard long-wavelength approximation in the adjustment region
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leads to the governing equations
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∂x2
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=
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,
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=
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∂x3

= 0,

where pCa = p∗/(σ/b), is the fluid pressure on the capillary scale. The fluid pressure is
constant over each cross-section and the axial pressure gradient is approximated by
the change in lateral curvature over the adjustment region
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∼ 1

α(α − h)
. (5.1)

The fluid in the thin films above and below the air finger reaches the velocity of
the wall in very short axial distances and so the viscous term can be approximated
by variations in axial velocity only at the side of the finger, see figure 13. The axial
velocity is constant on the tube walls and reaches its minimum value near the air
finger in the plane x3 = 0, so we approximate(
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)
. (5.2)

The wet fraction in the equilibrium configuration is approximated by h/α, see
figure 13, and so if we wish to relate configurations in which the wet fractions are the
same, we must choose h ∝ α and if h ≈ Kα, then the approximations (5.1) and (5.2)
give

Ca

(
1 +

1

h2

)
∼ 1

α(α − h)
∼ 1

α2(1 − K)
⇒ Ca (K2α2 + 1) ∼ K2

(1 − K)
,

suggesting the putative scaling parameter

Ca(1 + K2α2).

The two components of the viscous term will balance at a transitional aspect ratio,
αt , when h = 1 ≈ Kαt , so K ≈ 1/αt , in which case our scaling becomes

Ca

(
1 +

α2

α2
t

)
, (5.3)

which differs from the previous empirical scaling by the disappearance of the linear
term. On performing a least-squares fit to find αt the collapse of the experimental
data is comparable to that of the three-term relationship proposed by de Lózar et al.
(2007), see figure 14.

The breakdown of the scaling at low Ca is a consequence of the fact that the
interface approaches case (i) and the change in curvature can no longer be estimated
from the finger width. The behaviour in this regime can be approximated by the
lubrication theory approach of Wong et al. (1995a , b), in which case the functional
dependence on α follows from the static wet fraction. For increasing Bond numbers,
the widths of the equilibrium configurations increase at fixed Ca, leading to a change
in the transitional aspect ratio and consequent increase in the error of the scaling.

6. Conclusions
In this paper we have investigated the propagation of long bubbles into tubes of

rectangular cross-sections of moderate aspect ratio (1 � α � 8), including the effects of
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that the Bond number in the experiments (Bo = 1.0) differs from the simulations (Bo =0).

transverse gravity on the flow. The predictions of bulk flow properties are in excellent
agreement with our previous experiments (de Lózar et al. 2007) demonstrating the
accuracy of the method.

In general, at a fixed capillary number the relative finger width and pressure drop
across the finger tip decrease with increasing aspect ratio. For sufficiently large Ca,
the fraction of the cross-section occupied by the fluid after passage of the air finger
increases with aspect ratio, but at low Ca, this so-called wet fraction decreases with
increasing aspect ratio. The pressure drop changes little between α = 7 and α = 8
and for these aspect ratios the relative finger width depends only on the Saffman–
Taylor parameter 1/B = 12 α2Ca, suggesting that the system is approximately two-
dimensional for α � 8. The main influence of a transverse gravitational body force is
to cause an increase in pressure drop, finger width and wet fraction at fixed capillary
number and aspect ratio. A dramatic increase in these quantities is observed from
Bo= 1.0 to Bo = 2.5, as a consequence of the fact that at Bo> 1 it is not possible
to find equilibrium interfaces that touch the bottom wall of the tube and therefore
the finger lifts, as predicted by Jensen et al. (1987). The increase in finger width is
driven by the enhanced draining flows from the film above the finger to that below
it, causing the buoyant finger to be ‘squashed’ up towards the upper wall of the tube,
which also results in an increase in the wet fraction.

The topology of the flow in the high-α tubes presents a wider variety of states
than in the low-α ones. For α � 3 a new flow regime occurs at intermediate capillary
numbers, in which a local counterflow develops ahead of the finger tip, shielding it
from contaminants. We also find that the capillary number above which the centreline
flow velocity far from the tip is always slower than the bubble, Cac, follows the simple
empirical law: Ca2/3

c α =1.21 for α � 2.
Finally, we investigated the influence of gravity on the empirical scaling of de Lózar

et al. (2007) which indicates that the wet fraction depends on a modified capillary

number Ĉa =Ca[1 + a1(α − 1) + a2(α − 1)2] for all aspect ratios and for Ĉa > 0.035.
The simulations confirm that the scaling is not exact, but that the errors in predictions
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using Ĉa are smaller than the typical experimental error (±0.01). The empirical scaling
is applicable for Bo � 1, but loses accuracy as the Bond number increases and the
interface configurations far behind the bubble tip lift off the bottom wall of the tube.
We suggest that the scaling is a consequence of a class of interface configurations
in which the curvature is set by the depth of the tube. These configurations occur
for higher capillary numbers over all aspect ratios α � 2. Simple arguments suggest
that the wet fraction remains constant if the finger width scales with the aspect ratio,
in which case the modified capillary number would not be expected to contain any
linear terms in α. Using a least-squares fit to find the single constant multiplying
the quadratic term leads to errors comparable to those of de Lózar et al. (2007)
and predicts a transitional aspect ratio of αt ≈ 6.4 at which the contributions to the
viscous forces in an adjustment region behind the finger tip are approximately equal
in both transverse directions over a wide range of capillary numbers.

Finally, we have achieved the first quantitative agreement between direct three-
dimensional simulations (for α = 7−8) and the two-dimensional model of McLean &
Saffman (1981). Our results suggest that the two-dimensional model can accurately
describe finger propagation in moderate-aspect-ratio tubes, where the values of 1/B
required for steady Saffman–Taylor finger propagation can be realized with relatively
large values of Ca. For small values of 1/B , we would expect a divergence of the
results of McLean & Saffman (1981) from the three-dimensional simulations, because
the two-dimensional model requires a thin-film correction at low Ca (Tabeling &
Libchaber 1986).
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this work to them.

Appendix. A special case: the free rise of a bubble at high Bo

By changing the orientation of the vector k in equation (2.1) so that k = (0, 1, 0), we
may also study the effects of a gravitational body force along the axis of the tube.
As further validation of our code, we have performed simulations of the ‘free’ rise
of air fingers in rectangular tubes, studied experimentally by Clanet et al. (2004). In
this case, the base is removed from a tube that is completely filled with fluid and
an air finger propagates upwards. In a stationary frame of reference the net axial
flow rate will be zero, but in our moving frame the required flow rate is equal to the
cross-sectional area of the tube, Qc = 4α. The velocity of the finger is fixed by the
Bond number and aspect ratio and the capillary number is an unknown determined
by requiring the flow rate to be Qc.

Following Clanet et al. (2004), we define a dimensionless finger velocity based on
the balance between viscous and buoyancy forces, UF = Ca/(αBo) = μUF /(ρgwb) ∝
μU/(ρgS), where S is the surface area of the tube’s cross-section. In figure 15 we plot
the non-dimensional finger velocity as a function of the aspect ratio for Bo = 5, 22, 42
and 75. At the highest Bond numbers the curves collapse because the effects of surface
tension on the bubble velocity become negligible. As the Bond number decreases the
increasing importance of surface tension reduces the finger velocity at a given aspect
ratio. Our results compare well with the experiments of Clanet et al., performed at
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Figure 15. Dimensionless velocity of a ‘freely’ rising bubble as a function of the aspect
ratio. The solid lines show the simulated results for Bo = 5, 22, 42, 75 and the squares the
experimental results of Clanet et al. (2004) for Bo = 42.

Bo = 42, shown as squares in figure 15. We note, however, that while Clanet et al.
considered UF to be a constant for low α, we observe a well-defined maximum at
α = 2.8.
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Jensen, M. H., Libchaber, A., Pelcé, P. & Zocchi, G. 1987 Effect of gravity on Saffman-Taylor
meniscus: Theory and experiment. Phys. Rev. A 35, 2221.

Kistler, S. F. & Scriven, L. E. 1983 Coating flows. In Computational Analysis of Polymer Processing
(ed. J. R. A. Pearson & S. M. Richardson), p. 243. Applied Science Publishers.

Kolb, W. B. & Cerro, R. L. 1991 Coating the inside of a capillary of square cross section. Chem.
Engng Sci. 46, 2181.



The steady propagation of an air finger into a rectangular tube 195

Landau, L. D. & Levich, V. G. 1942 Dragging of a liquid by a moving plate. Acta Physiocochimica
URSS 17, 42.

Lister, J. R., Morrison, N. F. & Rallison, J. M. 2006 Sedimentation of a two-dimensional drop
towards a rigid horizontal plane. J. Fluid Mech. 552, 345.
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