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Abstract. The bifurcation theory of snap-back repellers in hybrid dynamical sys-
tems is developed. Infinite sequences of bifurcations are shown to arise due to the
creation of snap-back repellers in non-invertible maps. These are analogous to the
cascades of bifurcations known to occur close to homoclinic tangencies for diffeo-
morphisms. The theoretical results are illustrated with reference to bifurcations in
the normal form for border-collision bifurcations.
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1. Introduction

One of the few methods available to prove that a map has chaotic behaviour is to
show the existence of a homoclinic orbit, i.e. a fixed point (or equivalently by looking
at a higher iterate, a periodic orbit) which another orbit approaches in both forwards
and backwards time. This implies the existence of a ‘homoclinic tangle’ of the stable
and unstable manifolds of the fixed point, and associated unstable chaos. In param-
eterized families of maps, homoclinic orbits are typically created (as the parameter
varies) by the development of a homoclinic tangency: at some critical parameter the
stable and unstable manifolds of a fixed point intersect tangentially, and on one side
of this critical value there are no intersections, and hence no homoclinic orbit to the
fixed point, and on the other side of this critical value there are two transversal inter-
sections [5,6,8]. Associated with such a tangency there are sequences of bifurcations
which create the orbits which must exist once the stable and unstable manifolds of
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the fixed point intersect transversely, and in low dimensional cases these are well-
understood; it is even possible to show that strange attractors are created during this
process. The general picture for the simplest periodic orbits (those that pass once
through a neighbourhood of the fixed point in each period) is that they are created in
a sequence of saddle-node bifurcations which accumulate on the parameter at which
the tangency exists [4, 6].

These results rely on the existence of stable and unstable manifolds for the fixed
point; it must be a saddle. If the fixed point is repelling, so all the eigenvalues of
the Jacobian matrix lie outside the unit circle, then there is no local stable manifold
and so, at least for invertible maps, there can be no homoclinic orbits. This is
not true of non-invertible maps. In this latter case, the fixed point can have more
than one preimage and so it is possible that there exists a point (other then the
fixed point) which maps to the fixed point and such that a sequence of preimages
can be chosen which tend to the fixed point in reverse time. Thus there can be
a homoclinic orbit to the fixed point even though it has no local stable manifold.
Under some technical assumptions, such a homoclinic orbit implies the existence of
an unstable chaotic set, and this type of homoclinic orbit for a non-invertible map is
often referred to as a snap-back repeller. Although there are many papers describing
the dynamics associated with snap-back repellers (and even some controversy as to
the best definitions to use) and their natural generalizations to heteroclinic loops,
there is no analysis of how snap-back repellers are created, nor a description of the
bifurcations creating the unstable invariant set which must exist.

The aim of this paper is to analyze a codimension one bifurcation by which a
snap-back repeller is created, and to look at the subsidiary bifurcations associated
with this. In particular, it will be shown that an infinite cascade of more complicated
snap-back repellers are created, and that this sequence may be on one side of the
fundamental bifurcation, or on both sides. This infinite cascade is in many ways
analogous to the cascades of bifurcations in the standard homoclinic case [4, 6]. To
do this we define conditions which ensure the persistence of a snap-back repeller in a
family of maps, and then show how the dynamics comes into being as a function of
parameters if the persistence conditions are not satisfied. To some extent this clarifies
the standard definition of Marotto [12, 13], which is persistent, from the conditions
of Lin et al [11] or Shi and Yu [15], which can include non-persistent cases.

Many of the examples of snap-back repellers described in the literature are some-
what contrived, but non-invertible maps are becoming more and more relevant to
engineering applications through their appearance in hybrid systems. Here, the in-
teraction between continuous and discrete variables leads naturally to nonsmooth
systems and non-invertibility. To illustrate the relevance of these results the normal
form for border collision bifurcations will analyzed. Indeed, this is such a good moti-
vating example, and makes some of the technical issues so much clearer, that we will
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start with a brief analysis of the creation of a snap-back repeller in this normal form
before giving the formal definitions for the general case.

Section three then deals with definitions and persistence of snap-back repellers,
and section four contains the main bifurcation results, both for periodic points and
for more complicated snap-back repellers. In section five we return to the example,
showing how the results apply to this case and confirming the natural scaling results
for the cascade of bifurcations.

2. Border collision bifurcations

Border collision bifurcations occur in piecewise smooth systems with discrete time.
Phase space is divided into two regions by a switching surface Σ; in each of the
regions, labelled L and R (for left and right) the dynamics is determined by smooth
maps fα, α = L,R, and the equations are continuous but not differentiable across
Σ. In applications the switching surface can be thought of as some threshold above
which a different control strategy comes into play, or a different physical model is
more appropriate.

The simplest bifurcations of such systems which cannot occur in smooth sys-
tems involves a fixed point (or periodic orbit) on the switching surface Σ. The
two-dimensional normal form for this bifurcation was derived in [1, 14], and if the
switching surface is transformed to be the y−axis (x = 0) then the local evolution
with x = (x, y)T is

xn+1 =

{
ALx + m if x ≤ 0

ARx + m if x ≥ 0
(1)

where the matrices AL and AR, and the vector m are defined as

Aα =

(
Tα 1
−Dα 0

)
, and m =

(
µ
0

)
(2)

for α = L,R. The constants Tα and Dα are the trace and determinant of the Jaco-
bian of the defining equations on the left and right of Σ, whilst µ is the bifurcation
parameter. If µ = 0 then the origin is a fixed point, and this is clearly in Σ. The
question for bifurcation theory is what happens close to the origin when |µ| is small.

If |DR| and |DL| are both less than one then this is a fairly classical situation,
which has been treated in a number of papers [1, 2, 14]. More recently the unstable
case has been considered and the existence of snap-back repellers has been proved
for suitable parameter values [7].

The fixed points of the maps are given by

xα∗ =
µ

1− Tα +Dα

, yα∗ = −Dαx
α
∗ , α = L,R (3)
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and xR∗ exists provided xR∗ > 0, with a similar inequality for the existence of xL∗ .
Given Tα and Dα these inequalities define the sign of µ for which these fixed points
exist. The fixed points in x ≥ 0 and x ≤ 0 coincide at the origin (on Σ) if µ = 0. To
get interesting dynamics we assume that the signs of DR and DL are different (since
yn+1 = −Dαxn the images of the left and right half planes overlap if the in this case,
but not if the signs are the same). We shall assume that DR is positive and DL is
negative.

Glendinning and Wong [7] assume further that the eigenvalues of AR are real and
distinct and greater than one, so xR∗ is an unstable node. This corresponds to the
additional conditions

DR > 1, TR > 2, T 2
R > 4DR, 1− TR +DR > 0 (4)

which implies that the fixed point in x > 0 given by (3) exists if µ > 0 and the images
of the half planes x > 0 and x < 0 lie in the lower half plane. Since yR∗ < 0 the fixed
point in x > 0 has a preimage in x < 0 and this point, xL0 = (x0, y0), is given by

x0 =
DR

DL

xR∗ , y0 =
1

DL

(TRDL − TLDR −DLDR)xR∗ (5)

If this point is itself to have a preimage in x > 0 (with a set of preimages converging
on the fixed point) then we need y0 < 0. So a necessary condition for the existence
of a snap-back repeller is

TRDL − TLDR −DLDR ≥ 0. (6)

Glendinning and Wong [7] analyze the conditions which ensure that there is a snap-
back repeller which implies chaos, and in particular give sufficient conditions for the
preimage of (x0, y0) in x > 0 to tend to the fixed point (xR∗ , y

R
∗ ) in backwards time

without leaving x > 0. In the context of the present paper, the real question is what
happens if µ > 0 (in which case, by rescaling we may assume µ = 1 if we wish)
and TRDL − TLDR −DLDR changes sign, so we use this expression as a bifurcation
parameter.

If
TRDL − TLDR −DLDR = 0 (7)

then the preimage of (xR∗ , y
R
∗ ) in x < 0 is(

DR

DL

xR∗ , 0
)

(8)

and the preimage of this point under the map in x > 0 is (x1, y1) where

x1 = 0, y1 =
1

DL

(DR −DL −DRDL + TRDL)xR∗ . (9)

Since y1 = (DRx
R
∗ /DL) − µ it is always negative provided the fixed point in x > 0

exists, and in particular, has preimages in x > 0. The local structure of the map
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in x > 0 is determined by the eigenvalues and eigenvectors of the linear part of the
map. The eigenvalues are the roots of

s2 − TRs+DR = 0 (10)

which, by assumption (4) has two real solutions λ± with 1 < λ− < λ+. The corre-
sponding eigenvectors are lines

y = −DR

λ±
(x− xR∗ )− yR∗ (11)

and so both have negative slope with the eigenvector of λ− below that of λ+ in
x > xR∗ . The approach of the solution through (x1, y1) to the fixed point in reverse
time is determined by its position relative to the intersections of the lines (11) with
the y−axis. These are the points (0, y±) with

y± = −DR

(
1− 1

λ±

)
xR∗ (12)

So, if y+ < y1 < y− then backwards iterates tend to the fixed point in x > 0 tangential
to the branch of the eigenvector of λ− above and to the left of the fixed point, whilst
if y1 < y+ then the accumulation is to the right and below the fixed point. We shall
return to these conditions in more detail below.

Now consider a family of disjoint closed (but with non-empty interior) neighbour-
hoods of the preimages of (x1, y1) in x > 0, chosen so that they map onto each other.
The image of these sets maps to a region around (x1, y1) part of which lies in x > 0
and part in x < 0. Both of these sets will be mapped to y < 0 close to (x0, y0), i.e.
the image is ‘folded over’ and (x0, y0) will be on the boundary of the image. In the
standard argument for the existence of chaos in a snap-back repeller neighbourhoods
can be chosen to map over the original sets in a small neighbourhood of the fixed
point in x > 0 allowing a symbolic description of orbits using established techniques.
If the preimage is on the boundary of the set, however, there is a chance that the im-
age of this set does not contain a countable number of the preimages which converge
on the fixed point, making it impossible to argue for chaotic solutions.

To understand the geometry of the image of a neighbourhood of (x0, y0) in y < 0
at the bifurcation point (recall that here y0 = 0) we consider the image of a half-disc
of radius ε and with boundary

x0 − ε ≤ x ≤ x0 + ε, y = 0 (13)

and
(x0 + ε cos θ, y0 − ε sin θ), 0 ≤ θ ≤ π (14)

for some small ε > 0 as shown in Figure 2. The image of the straight line through
(x0, y0) is the line

y − yR∗ = −DL

TL
(x− xR∗ ) (15)
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Figure 1. Schematic diagram of phase space at the bifurcation point
with xL0 = (x0, 0), xR1 = (0, y1), F (xL0 ) = xR∗ and F (xR1 ) = xL0 . The
half disc with xL0 on its boundary maps to the half disc with xR∗ on its
boundary, which in this case is on the opposite side of the fixed point
from the preimages of xR1 .

which has positive slope if TL > 0 and negative slope if TL < 0, whilst the image of
the semi-circle is (

x
y

)
=

(
xR∗
yR∗

)
+ ε

(
TL cos θ − sin θ
−DL cos θ

)
(16)

It is useful to see the straight line (13) as (x0 + ε cos θ, 0), 0 ≤ θ ≤ π for comparison
with the semi-circle. In this formulation the image of the line segment is

(
x
y

)
=

(
xR∗
yR∗

)
+ ε

(
TL cos θ
−DL cos θ

)
(17)

and comparison with (16) shows that at the same value of y, the image of the semi-
circle is to the left of the line. Hence if the gradient of the line is greater than (i.e.
more positive than) the gradient of the eigenvector corresponding to λ− the region
will contain preimages accumulating on the fixed point in x > 0 tangential to the
branch of the eigenvector of λ− above and to the left of the fixed point, whilst if the
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gradient is more negative then it will contain the accumulation to the right and below
the fixed point.

Four different cases arise depending on whether preimages of (x0, y0) accumulate
on the fixed point from above or below, and depending on whether the image of a
half-disc containing (x0, y0) contains this accumulation or not. To determine the con-
ditions, and which, if any, can be realized, the conditions alluded to in the preceding
paragraphs need to be given explicitly.

First let us return to the question of which branch of the unstable eigenvector of λ−
the backwards iterates of (x1, y1) converge on. Recall that it is the left hand branch
if y+ < y1 < y−, and the right hand branch if y1 < y+.

Thus convergence is on the left branch (above and to the left of the fixed point) if
(

1− 1

λ−

)
< −DR −DL −DRDL + TRDL

DRDL

<

(
1− 1

λ+

)
(18)

whilst convergence is on the right branch if

−DR −DL −DRDL + TRDL

DRDL

>

(
1− 1

λ+

)
(19)

with λ± = (TR ±
√
T 2
R − 4DR)/2. (Note that there are many different ways of

writing these equations – the choice here is one which makes it very obvious that all
the collected terms are positive, except for the factor of DL which is negative.)

Now, the image of a half-disc in y ≤ 0 about (x0, y0) contains part of the left
branch of the eigenvector of λ− if −DL/TL > −DR/λ−. If TL > 0 this inequality
always holds, whilst if TL < 0 then the condition is λ−|DL| < DR|TL|; if this condition
does not hold, i.e. if

TL < 0, λ−|DL| > DR|TL| (20)

then the image of a half-disc in y ≤ 0 about (x0, y0) contains part of the right branch
of the eigenvector of λ−.

Thus if (19) and (20) hold, or if (18) holds but (20) does not hold, then preimages
converge to the fixed point on the same side of the fixed point as is covered by the
image of a neighbourhood of (x0, y0) in y < 0. In this case the standard arguments
for the existence of chaos can be made. On the other hand, if these combinations do
not hold, the preimages converge on the opposite side of the fixed point as is covered
by the neighbourhood of (x0, y0) and we cannot use standard arguments to create
infinitely many recurrent points.

This then, is the situation at the bifurcation point defined by (7), and corresponds
to the satisfying or not of condition three in [11]. The aim of the next sections is
to give general arguments as to what can happen in general systems near such a
bifurcation point. The border-collision normal form will be re-considered in section
five in the light of the theoretical results obtained.
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3. Snap-back repellers and their persistence

The idea of a snap-back repeller, a natural extension of homoclinic orbits to non-
invertible maps, was first considered by Marotto [12] and there has been renewed
interest recently in the light of a small technical error in Marotto’s original paper
(an error which does not change the basic topological argument of the paper [9, 13])
and a desire to apply the idea to more general systems and to more complicated
orbits [3, 10, 11, 15]. The definitions used below are motivated by a wish to develop
a bifurcation theory of snap-back repellers, so the most general definitions are not
necessarily the most appropriate for this setting – in particular we want the definition
of a regular snap-back repeller to be such that such objects are robust to small
perturbations of the system.

Definition 1: hybrid map. A map F : Rn → Rn will be called a hybrid map
if Rn can be partitioned into a finite number J of disjoint open regions Ri, i =
1, . . . J , with nonempty interior; and a boundary, Σ, which is made up of a union of
continuously differentiable surfaces which separate these regions: Rn =

(∪J1Ri

) ∪ Σ;
and F restricted to Ri is C2. Note that we do not need to impose any continuity
conditions for F across Σ, although the example of border-collision bifurcations in
the previous section has continuity of the map (but not of the Jacobian) across the
boundary.

Definition 2: regular snap-back repeller. A hybrid map F : Rn → Rn has a regular
snap-back repeller if there is a fixed point x∗ ∈ Rk (for some k) such that all the
eigenvalues of DF (x∗) lie outside the unit circle and there is a homoclinic orbit to x∗

which does not intersect Σ, i.e. a set of points {pr}∞0 and a map i : N → {1, . . . , J}
such that pr ∈ Ri(r), F (pi+1) = pi, i ≥ 0, F (p0) = x∗ and limr→∞ pr = x∗ (which
implies that there exists N > 0 such that pr ∈ Rk for all r > N). In addition DF (pr)
is non-singular, r = 0, 1, 2, . . . .

This is effectively the definition of regular snap-back repellers of [15], though our
assumption of the existence of the homoclinic orbit means we do not need the explicit
expansion conditions used there.

The sets Ri make it possible to set up a simple symbolic dynamics for orbits which
do not intersect Σ: let a(x) = i if x ∈ Ri and then define the symbol sequence of x,
s(x) as

s(x) = a(x)a(F (x))a(F 2(x)) . . . (21)

so that the nth term of the sequence gives the index of the set in which F n−1(x) is
contained. Clearly

s ◦ F (x) = σ ◦ s(x) (22)

where σ is the standard shift operator on symbol sequences: σ(a0a1a2 . . . ) = a1a2 . . . .
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Theorem 1. (Marotto) Suppose that a hybrid map F : Rn → Rn has a regular snap-
back repeller with fixed point x∗ ∈ Rk. Then there is an unstable, chaotic invariant
set close to the homoclinic orbit. Moreover, there exists M > 0 and a finite word A
of symbols in {1, . . . , J} such that the symbolic description of points in this invariant
set contains all sequences of the form

kn1Akn2Akn3Akn4A . . . , ni > M (23)

and their shifts, and the possibility that ni =∞ is allowed.

Proof: Let k, N and (pr) be as in the definition of the regular snap-back repeller.
Choose a closed neighbourhood of pN+2, B(N+2), which contains pN+2 in its interior
and no other point pr, which is always possible as the pr are disjoint and have a unique
accumulation point. By choosing B(N + 2) smaller if necessary we can ensure that
B(N + 2) ⊂ Rk and B(N + 2) ∩ F (B(N + 2)) = ∅ (the former is possible as Rk is
open, the latter is by continuity of F and the fact that the pr are distinct).

For m < N + 2 define B(m) inductively by B(m) = F (B(m + 1)). Reducing the
size of the set B(N + 2) further if necessary we can assume that B(m) ⊂ Ri(m) for
m = 0, . . . , N + 1 and B′ = F (B(0)) ⊂ Rk. By continuity of F each of the subsets
B(m) has pm in its interior, and x∗ lies in the interior of B′. Moreover, for m > N+2
we can define closed, disjoint sets B(m) ⊂ Rk by F (B(m)) = B(m − 1); these are
disjoint by the condition imposed earlier that B(N + 2) ∩ F (B(N + 2)) = ∅, and
converge on x∗ as B(m) contains the point pm in their interior.

Now, int(B′) contains x∗, and hence there exists M > 0 such that it contains
B(m) for all m > M . By definition, B′ = Fm+1(B(m)) and hence for all u > M ,
B(u) ⊂ Fm+1(B(m)) and in particular, there is a close set B(m,u) ⊂ B(m) such
that Fm+1(B(m,u)) = B(u). More generally, let m1, . . . ,mj be a sequence of integers
greater than M , then by defining B(m1, . . . ,mj) ⊂ B(m1, . . . ,mj−1) by

Fm1+1B(m1, . . . ,mj) = B(m2, . . . ,mj) (24)

we have a nested sequence of closed sets, and so

B(m1, . . . ,mj, . . . ) =
∞⋂
j=1

B(m1, . . . ,mj) (25)

is non-empty. The symbolic description comes from re-interpreting the indices in
terms of a time spent within Rk followed by a finite sequence of indices before re-
turning to B′.

�
To introduce a parameter µ, we need to describe how the hybrid map, and in

particular the partition of Rn of definition 1, varies as parameters are varied.

Definition 3: continuous family of hybrid maps. Let M be an open interval. A
continuous family of hybrid maps F : Rn × M → R is a set of hybrid maps on
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Rn =
(∪J1Ri

) ∪ Σ, where this partition is independent of µ, such that the maps
F (x, µ) are hybrid maps for each µ ∈M, the maps F (x, µ) restricted to Ri are C2 in
their first argument and continuous in the second, and the Jacobian DF of F with
respect to x is also continuous in µ.

In other words a continuous family of hybrid maps is a family of hybrid maps
such that the maps and their Jacobians with respect to x vary continuously in the
parameter µ on each of the sets Ri. We will often write the parameter as a subscript,
so the family is (Fµ), with Fµ : Rn → Rn.

Note that we could allow the regions themselves to vary with µ whilst retaining the
same basic topology of the partition (neighbours etc), but provided these variations
are sufficiently smooth, small and maintain this topology, then by a change of coor-
dinates we may assume that the family has Σ fixed. Thus every result below which
assumes that (Fµ) is a continuous family of hybrid maps actually holds for any family
(Gµ) of hybrid maps which, after a smooth µ−dependent change of coordinates can
be transformed into a continuous family. The restriction to continuous families as
defined above makes the proofs considerably simpler, and, as noted, there is in fact
no loss of generality in so doing.

Theorem 2. If (Fµ) is a continuous family of hybrid maps and F0 has a regular
snap-back repeller, then there is an open neighbourhood M of µ = 0 such that Fµ has
a regular snap-back repeller for all µ ∈M.

Proof: Note that standard hyperbolicity arguments using the implicit function
theorem imply that if x∗(0) ∈ Rk is a fixed point of F0 and all the eigenvalues of
the Jacobian matrix (with respect to x) lie outside the unit circle, then for all µ in
a neighbourhood N0 of zero, Fµ will also have a continuously differentiable curve of
fixed points x∗(µ) ∈ Rk, and all the eigenvalues of the Jacobian matrix at x∗(µ) will
also lie outside the unit circle.

Now consider the homoclinic orbit (pr(0)); we wish to show that there will be a
homoclinic orbit to x∗(µ) for µ sufficiently close to zero. Since F0(p0(0)) = x∗(0),
the implicit function theorem again implies the existence of a unique, continuously
differentiable solution y = p0(µ) satisfying

G0(µ, y) = Fµ(y)− x∗(µ) = 0 (26)

for µ ∈ N1 ⊂ N0 provided DF0(p0(0)) is invertible. Moreover, by the continu-
ity of DF (x, µ) in µ we may assume (restricting the size of N1 if necessary) that
DF (p0(µ), µ) 6= 0 for all µ ∈ N1.

For m ≥ 1, the implicit function theorem on

Gm(µ, y) = Fµ(y)− pm−1(µ) = 0 (27)

with known solution F0(pm(0)) = pm−1(0), guarantees the existence of a unique
continuously differentiable solution on an open neighbourhood Nm+1 ⊂ Nm of µ = 0
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and on which DF does not vanish. Thus for any finite set (pr(0))N0 there is an open
neighbourhood NN+1 such that pm(µ) is defined, close to pm(0) and Fµ(pm+1(µ)) =
pm(µ).

Of course, once m is sufficiently large, m > M ′ say, pm(µ) is close to x∗(0) which
is close to x∗(µ), and so the existence of the infinite set of points converging on x∗(µ)
in backwards time with non-singular Jacobian follows directly from the nature of the
fixed point, so we do not need to take infinite intersections of the Nm and can set
M = ∩M ′1 Nj.

�
This theorem establishes the persistence of a regular snap-back repeller. The next

step is to describe the simplest bifurcations creating snap-back repellers which do not
involve a change of stability of the fixed point x∗ itself.

4. Bifurcation to snap-back repellers

Suppose that Fµ is a continuous family of hybrid maps for µ in a neighbourhood
M of µ = 0, and that F0 has the following properties:

(i) there exist k and x∗0 ∈ Rk such that F0(x∗0) = x∗0 and all the eigenvalues of
DF0(x∗0) lie strictly outside the unit circle;

(ii) there exists m ≥ 0 and pm(0) ∈ Σ, such that the intersection of Σ with a
small neighbourhood of pm(0) has a single connected component, and a sequence
(qn) ∈ Ri(m) such that limn→∞ qn = pm(0), and if pm−1(0) = limn→∞ F0(qn) then
pm−1(0) /∈ Σ and pk−1(0) = F0(pk)(0) /∈ Σ, k = m− 1, . . . , 1, with F (p0(0)) = x∗0 and
DF0(pk(0)) is non-singular, k = 0, . . . ,m− 1;

(iii) there exist pr(0) ∈ Ri(r), r > m, such that pr(0) = F (pr+1(0)) and limr→∞ pr(0) =
x∗0 and DF (pr(0)) is non-singular.

Thus the points (pr(0)) almost satisfy the conditions for the existence of a snap-
back repeller, but the homoclinic orbit intersects the discontinuity set Σ at a single
point. Note that by the Implicit Function Theorem, (i) implies that there is an open
neighbourhood M′ of zero and a continuously differentiable function x∗ :M′ → Rn
such that x∗(µ) is a repelling fixed point in Rk for all µ ∈M′ and x∗(0) = x∗0.

The final condition we impose ensures that the desired bifurcation to a regular
snap-back repeller occurs as µ passes through zero:

(iv) if µ > 0 is sufficiently small then there exists pm(µ) ∈ Ri(m) such that
Fm
µ (pm(µ)) = x∗(µ) and

lim
µ↓0

pm(µ) = pm(0)

and if µ < 0 then there is no point x in Ri(m) such that Fm
µ (x) = x∗(µ).
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This condition could have been replaced by conditions on the derivatives of Fµ
with respect to both x and µ which would ensure these conditions using the Implicit
Function Theorem again. The more transparent condition (iv) is preferred here, but
it would usually be verified using the Implicit Function Theorem. The condition on
µ < 0 could have been made less strong – it is enough that this holds locally to
pm(0), but the additional restrictions on the neighbourhoods considered below create
additional complications to the arguments which make the condition as stated more
convenient, and we leave the minor generalization to local non-existence to the reader.
A few simple consequences of these conditions are fairly immediate.

Lemma 3. Suppose that (Fµ) is a continuous family of hybrid maps which satisfies
the conditions (i)-(iv) above. If µ > 0 is sufficiently small then Fµ has a regular
snap-back repeller to the fixed point x∗(µ) containing a point close to pm(0) in Ri(m).
If µ < 0 then there is no homoclinic orbit to x∗(µ) which passes close to pm(0) in
Ri(m).

Before proving the main theorem (Theorem 6 below), we give a simple lemma which
emphasizes the connection between maps of the interval and more general maps with
snap-back repellers. The condition (28) in the Lemma 4 is precisely the condition
for a topological horseshoe in one-dimensional dynamics; it is likely that variants of
this lemma exist in the literature for expanding maps of Rn, the novelty here is the
interpretation in terms of snap-back repellers.

Lemma 4. Let Vi ⊂ Rn, i = 1, 2, be closed, disjoint sets with non-empty interiors
and F a function from Rn to Rn. If there exist positive integers ki such that F ki|Vi
is continuously differentiable, i = 1, 2, and

V1 ∪ V2 ⊆ F ki(Vi), i = 1, 2 (28)

and if all fixed points of F ki in Vi are repelling, then there exists a periodic point x∗i
in Vi such that there is a homoclinic orbit in V1 ∪ V2, biasymptotic to x∗i , i = 1, 2.

Proof: Since Vj ⊂ F ki(Vi), there exists a closed region Vij ⊂ Vi with non-empty
interior such that F ki(Vij) = Vj, {i, j} ∈ {1, 2}2. By induction, for any i1 . . . iN ∈
{1, 2}N there exists Vi1...iN ⊂ Vi1 such that if Kr =

∑r
1 kir

FKr(Vi1...iN ) ⊂ Vir+1 , r = 1, . . . , N − 1; FKN−1(Vi1...iN ) = ViN .

Taking countable intersections, Vi 6= ∅ for all i ∈ {1, 2}N.
Now, V1∞ is non-empty and must contain a fixed point x∗1 ∈ V1 of F k1 ; a periodic

orbit for F , and by assumption this is repelling (so all eigenvalues of the Jacobian
matrix of F k1 evaluated at x∗1 lie outside the unit circle. Hence it has a local unstable
manifold and there exists R > 0 such that V1Rj lies in the local unstable manifold of
x∗1, i.e. there exist for all x ∈ V1R2 there exists (xn)∞1 in V1 with xn → x∗1 such that
F k1(xi+1) = xi i = 1, 2, . . . and F k1(x1) = x.
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Since F k2(V21) = V1 there exists p ∈ V2 such that F k2(p) = x∗1. Similarly, there
exists x ∈ V1R2 such that F k1(x) = p. This, together with its preimages in V1 provides
the homoclinic orbit to x∗1; the case for a homoclinic orbit to x∗2 ∈ V2 is proved by
interchanging the roles of the two subscripts.

�

This lemma has an obvious but interesting corollary about the existence of snap-
back repellers to periodic orbits.

Corollary 5. If F has a regular snap-back repeller then it has infinitely many peri-
odic orbits which are regular snap-back repellers, and infinitely many different regular
snap-back repellers to the same periodic orbits.

Proof: Simply consider pairs of sets B(j) (for large enough j) in the proof of
Theorem 1 as the Vi of the lemma.

�

Finally we are in a position to prove the main theorem, the creation of infinitely
many snap-back repellers involving higher periods as part of the creation of a regular
snap-back repeller.

Theorem 6. Let (Fµ) be a continuous family of hybrid maps satisfying properties
(i)-(iv) above. Then there exists L > 0 and a sequence (µk)

∞
L with limµk → 0 such

that if µ > µj then Fµ has a regular snap-back repeller to a periodic orbit of period j.

Proof: Fix δ > 0 and et Um be a closed disc of radius δ around pm(0), and note
that for µ > 0 sufficiently close to zero, pm(µ) ∈ Um ∩ Ri(m). Let M be an open
neighbourhood of zero such that for all µ ∈ M, Um ∩ Ri(m) is a connected set with
non-empty interior and let Dµ be a closed subset with non-empty interior with the
property that it has preimages in the correct sets going backwards and forwards,
which do not intersect boundaries, and the boundary of Dµ varies continuously with
µ for µ ∈M.

Now, choose µm < 0 < µM in M, and consider first µ = µm. By construction
the image under Fm of any subset of Ri(m) containing Dµm which does not intersect
Σ does not contain x∗(µm), and hence contains a finite number (possibly zero) of
the preimages of Dµm . In particular there exists L1 > 0 such that there can be no
snap-back repellers involving orbits of period greater than L1 close to x∗(µm).

Let Eµ = Fm
µ (Dµ). If µ < 0, x∗(µ) /∈ Eµ, and hence Eµ contains a finite number

(possibly zero) of the preimages of Dµ. If µ > 0 then x∗(µ) ∈ Eµ and hence Eµ
contains an infinite number of these preimages. Let j = L, . . . label those preimages
which correspond to periods greater than Lm (and so which cannot have snap-back
repellers if µ = µm) but which are in EµM . Applying Lemma 4 to pairs of these,
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establishes the existence of regular snap-back repellers of given sufficiently high pe-
riods, and then the robustness results show that there is a last time that these are
created, providing the sequence (µj)

∞
L .

�
Note that if the eigenvalue of DFµ(x∗(0)) with smallest modulus is real and positive

then µk will accumulate typically on one side of µ = 0 and |µr| > |µr+1|; otherwise
the convergence will typically be on both sides of µ = 0. This follows from the fact
that if the eigenvalue is real and positive then the preimages typically converge to x∗

on one branch of the weakest unstable eigenvector of the Jacobian matrix.
As is the case with homoclinic tangencies in reversible systems, a simpler result

holds for the creation of the periodic points which are the snap-back repellers in the
previous theorem.

Corollary 7. Let (Fµ) be a continuous family of hybrid maps satisfying properties
(i)-(iv) above. Then there exists L > 0 and a sequence (µ̃k)

∞
L with lim µ̃k → 0 such

that if µ̃ > µ̃j then Fµ has a periodic orbit of period j; as µ̃ ↓ µ̃j one point on this
orbit tends to Σ.

The proof is essentially exactly as in Theorem 6 except that we only need Eµ to
contain a preimage of Dµ in order to have a fixed point of the appropriate iterate of
the map. In the case of a real and positive weakest eigenvalue λu a simple scaling
argument suggests that

lim
n→∞

µ̃n+1 − µ̃n
µ̃n − µ̃n−1

= λ−1
u (29)

as in the case of saddlenode bifurcations near homoclinic tangencies [4] and a similar
rate of convergence should be observed for the µn in Theorem 6.

5. Bifurcation for the Border-Collision Normal Form

We return to our discussion of the bifurcations in the normal form (1) with a view
to seeing how the results above apply there, and to confirm the expectations on the
scaling likely to be observed.

To fix ideas we will consider

TR = 7, DR = 10, DL = −1/3, TL > 0 (30)

in which case (4) is automatically satisfied, λ− = 2, λ+ = 5, and the condition (6)
for the existence of a second preimage of the fixed point is

1− 10TL > 0 (31)

so the bifurcation occurs at TL = 0.1 with a regular snap-back repeller if TL < 0.1.
Comparison with (18), (19) and (20) shows that at the bifurcation parameter, the
preimages of (x0, y0) converge to the fixed point tangential to the right hand branch
of the weaker unstable direction, whilst the image of a neighbourhood of (x0, y0) in
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Figure 2. Locus of periodic points which are involved in border col-
lision bifurcations close to TL = 0.1 The x−coordinate is shown as a
function of TL in the (TL, x) plane. The points are on orbits with codes
RLRk+2, with, from left to right, k = 2, 3, 4, 5, 6, 7, 8.

x > 0 lies to the left of the fixed point. In particular, we expect there to be no
bifurcations before the creation of the regular snap-back repeller; all the bifurcations
associated with the creation of this repeller will be in TL < 0.1.

Thinking of ν = 1− 10TL as the natural bifurcation parameter, dictating how far
to the right of the fixed points iterates can reach, and elementary consideration of
the geometric convergence of the preimages on the right hand branch of the fixed
point at a rate λ−1

− shows that the creation of new periodic orbits with codes RLRn

by border collisions will occur at parameters ν̃n which tend to zero from above with
scaling given by (29), or put another way

ν̃n ∼ Kλ−n− = K2−n as n→∞ (32)

Figure 5 shows the creation of some of these orbits, whilst Table 1 provides strong
evidence for the scaling results expected.

As shown earlier, each of these orbits become snap-back repellers in their own right
as TL decreases.

6. Conclusion

The snap-back repeller is the natural extension of homoclinic orbits to hybrid
non-invertible maps with repelling regions. Their existence provides a proof of the
existence of a chaotic set. In this paper we have established a definition of regular
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Table 1. Parameter values for the creation of periodic orbits (Tk is
the value of TL at which an orbits with code RLR2+k is created by
border collision) together with confirmation of the general scaling (29)
and a version of (32) with a final column indicating that this is con-
verging.

k Tk
Tk+1−Tk
Tk−Tk−1

uk = 2k−1(1− 10Tk) uk/uk+1

1 0.0059601686 0.9403983 1.0167351
2 0.05375401694 0.4888559 0.9249197 1.0105461
3 0.07711831980 0.4926944 0.9152672 1.0062112
4 0.08862978210 0.4955881 0.9096174 1.0035012
5 0.09433472620 0.4974720 0.9064438 1.0019146
6 0.09717277619 0.4986025 0.9047116 1.0010245
7 0.09858783488 0.4992467 0.9037857 1.0005396
8 0.09929429821 0.4996012 0.9032983 1.0002808
9 0.09964724816 0.4997917 0.9030447 1.0001449
10 0.09982364962 0.4998923 0.9029139 1.0000742
11 0.09991183136 0.4999456 0.9028469 1.0000399
12 0.09995591743 0.9028109

snap-back repellers which implies persistence of the snap-back repeller under per-
turbation of the system. This has made it possible to described one mechanism by
which such a regular snap-back repeller comes into existence, and some of the bifur-
cation phenomena associated with this. In particular we find an infinite sequence of
bifurcations creating more complicated snap-back repellers associated with periodic
orbits which converge to the fixed point. These bifurcations are analogous to similar
cascades in the standard theory of homoclinic tangencies in invertible systems. A
motivating example from bifurcation theory was used to show how the more general
mechanism described arises in border-collision bifurcations.
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