
Stability of learning dynamics in two-agent,
imperfect-information games

Butterworth, John M. and Shapiro, Jonathan L.

2009

MIMS EPrint: 2009.32

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

Stability of Learning Dynamics in Two-Agent,
Imperfect-Information Games

John M. Butterworth
School of Computer Science

University of Manchester
jbutterworth@cs.man.ac.uk

Jonathan L. Shapiro
School of Computer Science

University of Manchester
jls@cs.man.ac.uk

ABSTRACT

One issue in multi-agent co-adaptive learning concerns con-
vergence. When two (or more) agents play a game with
different information and different payoffs, the general be-
haviour tends to be oscillation around a Nash equilibrium.
Several algorithms have been proposed to force convergence
to mixed-strategy Nash equilibria in imperfect-information
games when the agents are aware of their opponent’s strat-
egy. We consider the effect on one such algorithm, the lag-
ging anchor algorithm, when each agent must also infer the
gradient information from observations, in the infinitesimal
time-step limit. Use of an estimated gradient, either by op-
ponent modelling or stochastic gradient ascent, destabilises
the algorithm in a region of parameter space. There are two
phases of behaviour. If the rate of estimation is low, the
Nash equilibrium becomes unstable in the mean. If the rate
is high, the Nash equilibrium is an attractive fixed point in
the mean, but the uncertainty acts as narrow-band coloured
noise, which causes dampened oscillations.

Categories and Subject Descriptors

I.2.6 [Computing Methodologies]: Artificial Intelligence—
Learning

General Terms

Theory

Keywords

Co-adapting agents, game theory, reinforcement learning

1. INTRODUCTION
A challenging problem in learning algorithm design is the

problem of convergence in learning algorithms for multi-
agent co-adaptation. In many multi-agent scenarios, agents
must produce behaviours independently (or autonomously),
and the fitness of a given agent depends both on the be-
haviour it chooses and also on the behaviours chosen by the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FOGA’09, January 9–11, 2009, Orlando, Florida, USA.
Copyright 2009 ACM 978-1-60558-414-0/09/01 ...$5.00.

other agents. In the simplest case (considered here) there
are two agents who are each choosing actions in order to
try to optimise the payoff they receive, but the payoff each
achieves when performing an action depends on the actions
performed by the other agent. The agents try to learn the
actions which optimise their payoff. When the agents em-
ploy population-based algorithms, such a situation is called
co-evolutionary learning. For general learning algorithms,
we shall call such a situation “co-adaptive learning”.

In order to determine whether a co-adaptive learning al-
gorithm is effective, we need to define what constitutes a so-
lution to the learning problem. If only one agent is learning
and the others are fixed, the problem reduces to an optimi-
sation problem. In this case, the goal of the learning agent
is to learn the best-response to the other agents, which is
a behaviour that optimises the learning agent’s payoff. An
effective learning algorithm should find such an optimum in
this situation.

When all agents are learning simultaneously, game theory1

provides a formal description for multi-agent interactions, as
well as a precise definition of solution points. Game theory
defines a Nash equilibrium point as one where all agents
are playing best-response to all the other agents. In other
words, a Nash equilibrium point is one from which no agent
can deviate unilaterally and improve its payoff. The cele-
brated result of Nash is that finite games always have such
equilibria [12], but only when the possibility of probabilistic
or “mixed” behaviours is included. It is sensible to assume
that when all agents are endowed with the same learning al-
gorithm, the system should converge to a Nash equilibrium.
In this state, all agents will be performing in a way which is
mutually optimal.

Unfortunately, devising co-adapting learning algorithms
that converge to an attracting or asymptotically stable state
can be problematic even for the simplest structure of ac-
tions and rewards [20]. The issue is particularly acute when
learning agents must employ mixed strategies in order to
locate a Nash equilibrium point. One instance where the
convergence problem can occur is a two-player imperfect-
information game. In this paper, we consider two-player
games in which states during play are only partially ob-
served, and agents must learn best-response to their oppo-
nent’s strategy. Environments of this nature often require
agents to undertake strategies containing a stochastic ele-
ment in order to act optimally, and we consider only the
hard problem of converging to mixed-strategy solutions. We
study the convergence of gradient ascent in the small time-

1more specifically, non-cooperative game theory

step limit. We show that a specific algorithm which is stable
when the opponents strategies are known, can become un-
stable when those strategies must be learned or estimated.

2. RELATED WORK
The issue of non-convergence in adaptive games has a long

history, in a variety of learning approaches. The issue was
first raised by Crawford, who showed in a series of papers
that for a two-player game endlessly repeated, seemingly
natural adaptation rules did not converge to mixed-strategy
Nash equilibria: in zero-sum matrix games [4], in general-
sum games [5], and in evolutionary games [6]. The problem
of non-convergence in this context is sometimes referred to
as the “Crawford Puzzle”.

Much theoretical work in evolutionary learning in games
has been done in the limit of infinite population, selection
only, and continuous time, a limit also known as the repli-
cator dynamics. For symmetric games, there is a special
class of Nash equilibria, called evolutionary stable strategies
(ESS), for which the learning dynamics converges. However,
many games do not contain ESS equilibria; for example in
zero-sum games the replicator dynamics is typically oscilla-
tory or divergent. For asymmetric two-player games, which
includes the games considered here, there are no asymptot-
ically stable fixed points in the replicator dynamics [9, 10].

Another class of learning algorithms include those based
on gradient ascent. Here the agent employs a probabilis-
tic strategy, and learns by moving the probabilities in a
direction which most increases its payoff. This moves the
behaviour in a direction towards, but not all the way to,
the best-response behaviour. Gradient ascent dynamics is
similar to the evolutionary dynamics, in that it does not
converge to mixed-strategy Nash equilibria in general. An
in-depth study which reveals this was performed by Singh et
al., in which the behaviour of infinitesimal gradient ascent
(IGA) learning on simple two-player two-action games [20]
was shown to result either in limit-cycle behaviour around a
Nash equilibrium, or divergence. Other studies of IGA were
carried out by Zinkevich [24].

Several solutions to dampen the oscillatory or divergent
behaviour observed by seemingly natural adaptation rules
have been proposed. Selten [18] introduced the concept
of “anticipatory learning” in which two agents learning via
gradient ascent do not update with respect to the current
strategy of the opponent, but update instead to the antici-
pated strategy of the opponent. The anticipated strategy is
obtained by calculating the next gradient ascent update of
the opponent. This converges to mixed-strategy equilibrium
points, but requires learning agents not only to possess the
opponent’s precise strategy upon each update, but also the
opponent’s update method.

Related to this is the stabilisation method used in this
paper — the lagging-anchor algorithm of Dahl [7] for two-
player games of imperfect information. The basis of the
algorithm is gradient ascent, but with an added attractor
on each update - the player’s “lagging anchor”. The anchor
is simply a weighted average of all of the strategies that the
player has employed during learning so far. The anchor acts
by lagging behind the present state of the player’s strategy,
drawing the strategy towards it slightly. By doing so, the an-
chor dampens the oscillation found in basic gradient ascent,
drawing the players toward the mixed-strategy Nash equi-
librium. Dahl showed that for a subset of matrix games, the

lagging anchor algorithm achieves exponential convergence
when the agents are aware of the opponent’s strategy [7].

More recent work on a related problem was performed by
Bowling and Veloso [2]. They developed an algorithm for
stochastic games - games where the only imperfection in an
agent’s state information is due to simultaneous moves by
the players. Their algorithm was based on the principle that
an agent should learn slowly if “winning” and learn quickly
if “losing”. They devised a method for agents to estimate
whether to use the fast or slow learning rates without the
need of knowing a Nash payoff, combining the technique
with policy hill-climbing. Another algorithm for stochastic
games was proposed by Conitzer and Sandholm [3]. They
developed an algorithm for repeated games; stochastic games
with a single state. The algorithm works on the principle
that it plays a predetermined Nash equilibrium strategy un-
less it finds other players are stationary, in which case it
adapts to the best-response strategy. We assume that a
Nash equilibrium cannot be computed a priori, and so a
group of learning agents cannot rely on a commonly chosen
equilibrium before playing the game.

In the past, it has often been different communities who
have studied the different approaches: population-based co-
evolution and gradient-based or other reinforcement learning
co-adaptation. However, there seem to be similarities in the
results, and there are benefits in viewing the two approaches
in a unified way. One of the great successes of reinforcement
learning was the development of a backgammon-playing pro-
gram by Tesauro [22]. It used TD-learning and self-play
to achieve top-10 human level performance However, it has
been argued that what was essential was not the form of
the learning algorithm, but the fact that the system learned
through self-play and co-adaptation [13]. Hence, it has been
proposed that self-play can be used to compute effective ac-
tions in multi-agent environments. This can only be true
if we find effective algorithms which can converge to useful
behaviours.

3. RELATIONS TO OTHER WORK IN

EVOLUTIONARY LEARNING AND

REINFORCEMENT LEARNING
As FOGA is a venue for reporting work on evolutionary

algorithms, and since we consider only two agents and do
not use population-based methods, it is worth stating why
we think this work is relevant and how it fits into other work.
This is done in this section.

We reiterate the main feature of this work; we study the
co-adaptation of two agents where the fitness of each de-
pends on the behaviour of both. We are interested in learn-
ing algorithms which can converge to Nash equilibria that
require mixed strategies for both players, which means that
the agents need to be able to learn to produce probabilistic
behaviour. We also assume that the two agents have dif-
ferent and incomplete information about the environment.
This makes it difficult for an agent to infer the strategy that
its opponent is using from the opponent’s behaviour. It has
been difficult to devise learning methods which learn prob-
abilistic behaviour for multiple agents, and is particularly
difficult in the case of imperfect information.

Let us start with the following question: what learning
algorithm should an individual learning agent employ in the
situation described above? The learning algorithm could

be population-based, in which case the agent’s mixed strat-
egy would be represented as a population of pure strategies
and the learning algorithm could be a genetic algorithm.
Alternatively, the mixed strategy could be represented as a
vector of probabilities, and stochastic gradient ascent [23] or
some other reinforcement learning algorithm could be used.
The key point is that learning probabilistic behaviour in
heterogeneous agents is a challenging and unsolved prob-
lem in either approach. For example, consider the simple
case where there are two agents and each agent has a single
binary choice to make and there is no hidden information.
Assume there is a Nash equilibrium in which each agent has
a non-zero probability of each action. In the replicator dy-
namics, the Nash equilibrium is a fixed point, but it is not
asymptotically stable (the dynamics will not converge to it).
The fixed point is either a saddle point — stable in some di-
rections and unstable in others, or is stable but not asymp-
totically stable — the dynamics oscillates (see, for example,
section 10.4, page 119 of Hofbauer and Sigmund [10]). This
is true in general for two-player, asymmetric games using
the replicator equation. The replicator dynamics is equiv-
alent to a genetic algorithm in two limits: the limit of a
large population and the continuous-time limit, which is es-
sentially the limit of a large number of generations with low
selection pressure per generation. There is no evidence that
relaxing these assumptions stabilises the fixed points, and
oscillations in heterogeneous two-population co-evolving ge-
netic algorithms have been shown experimentally (for ex-
ample [16]). These oscillations may also partially explain
the “mediocre states” phenomena found in early attempts at
co-evolving problem-solvers and their test problems [8, 19]

Now consider the same two-agent, two-action, fully-mixed
equilibrium problem using gradient ascent learning, also in
the continuous-time limit. The result is exactly the same.
Interior fixed points are either saddles or are stable but not
asymptotically stable (i.e. they are oscillatory). This has
been shown by Singh et al [20]. In that work, the authors
assume the gradient can be computed exactly by the agent,
which requires knowledge of the opponent’s strategy, which
we don’t assume here. However, that unrealistic assump-
tion is not the cause of the lack of asymptotic stability, and
several authors have modified gradient-based algorithms to
induce stability. The lagging anchor algorithm of Dahl [7] is
one such algorithm; it stabilizes gradient ascent learning, al-
though it requires the ability to compute the gradient. One
of the contributions of our work is to study how the al-
gorithm behaves when combined with gradient estimation
methods.

Neither of the basic mechanisms of learning, evolutionary
or gradient-based, will converge to mixed strategies. An-
other possible class of algorithms from the reinforcement
learning community are value-estimation methods (e.g. Q-
learning or TD-learning) [21]. These algorithms are not de-
signed to learn probabilistic strategies, and modifications
have been proposed to solve this, but none that work in
the general case. In addition, it has been shown that Q-
learning using a soft-max policy during learning is equiva-
lent in the continuous-time limit to the replicator equations
with a memory term [17]. The memory term does not sta-
bilize the mixed equilibria. Rather, in examples studied, it
destabilizes the oscillatory trajectories and can cause them
to become chaotic.

Thus, returning to the original question: what learning al-

gorithm should we use in this co-evolutionary setting? There
is no easy answer. We consider gradient-estimation meth-
ods, because we can extend Dahl’s algorithm which works
for gradient ascent, and because it has the simplicity of lin-
earity in normal-form games. Extension to population-based
algorithms would be more difficult.

With respect to this work’s place in with other work on
co-evolution, another important distinction is between“com-
petitive co-evolution” and “cooperative co-evolution”. The
current work falls under the first heading. The goal here is
to address the question of which learning algorithm to put
into an individual learning agent which is interacting with
other agents on whose behaviour its fitness depends. We do
not assume that the strategies or learning behaviour of the
other agent(s) are known or can be controlled. The learning
problem is viewed as being local to the agent. This is quite
general. Such a learning agent can compete with agents sim-
ilar to itself, or compete with instances of the problem it is
trying to solve. It can be also be used in adversarial environ-
ments (e.g. a virus detector or spam filter competing with
virus or spam designers) or a game-playing program com-
peting with human players or programs designed by other
programmers. For this reason, we do not assume that the
player can use any information about its opponent that is
not observable. In particular, we assume that the strategy
used by the opponent cannot be observed; only the oppo-
nent’s actions can be observed.

A lot of the work on co-evolving systems in the EA com-
munity is about building a global system to solve a problem
out of co-evolutionary parts. This is called “cooperative co-
evolution” [14]. In some approaches, each population repre-
sents a component of the global solution and the fitness of
an individual is the average of fitnesses of itself combined
with all (or a sample) of those sub-populations contributing
different components. In this scenario, there is no reason
that the learners cannot use information about the other
systems. These systems have a global designer and are de-
signed to satisfy a global goal. In addition, most of the work
on cooperative co-evolution searches for pure strategies (al-
though in the case of function optimization, they may be on
a continuous space). In games with complete information
and deterministic strategies, the classical methods, such as
genetic algorithms and TD-learning, do work.

4. PROBLEM DEFINITION
In their study on multi-agent learning, Bowling and Veloso

proposed two desirable criteria that a rational learning al-
gorithm should fulfil [2]:

1. Against a stationary opponent, the algorithm should
converge to the best-response strategy.

2. In self-play, the algorithm converges to a fixed point at
which each agent is playing best-response to the other;
i.e. a Nash equilibrium2.

2Bowling and Veloso propose a more general criterion here,
where the algorithm is required to converge to a stationary
policy in general. They specify this is possible when the al-
gorithm is pitted against another ‘useful’ learning algorithm
(with similarly rational behaviour), or a stationary oppo-
nent as in the first criterion. Since we cannot prove that the
algorithm converges against all other algorithms considered
rational, a necessary but not sufficient condition for this be-
haviour is that the algorithm will converge against itself.

These criteria motivate the current work. It is clear that
a learning agent should execute the first requirement when
trying to maximise its reward, since playing best-response
maximises the expected payoff for the agent by taking ad-
vantage of any suboptimal play by the opponent. The sec-
ond criterion states that a group of agents, all of which are
attempting to maximise their reward, and all using the same
resources for learning, should converge to a stable fixed point
where no agent may improve any further.

In addition to the above objectives, we believe the goal of
a learning agent should be to optimize the amount of time
spent playing best-response; hence maximising the payoff
it receives. There is a weaker condition than those stated,
which is; when playing against a slow-learning opponent (or
quasi-stationary one), the agent should track the opponent’s
strategy and play best-response against it for as much of the
time as possible. In other words, if the agent has sufficient
learning resources to track its opponent, it should spend as
much time as possible playing best-response. It may not be
able to spend all its time doing so, because it may require
some time to learn what the best-response is.

It must be recognised, however, that for any learning agent
it may be possible to create another learning agent which can
learn sufficiently quickly to defeat it. It would be interesting
to find the learning agent for which no other learning agent
can take advantage of in this way. However, this might not
be possible. All we can do is consider learning algorithms
which cannot be defeated by other learning algorithms which
we can think of, a necessary but not sufficient condition for
the agent to learn in this manner against arbitrary oppo-
nents.

A system which satisfies the above objectives will only
converge to certain Nash equilibria; those with a special
property which we will call local learnability. A Nash equi-
librium is by definition a point at which no improvement
is possible for any agent with the other agents strategies
held fixed. We are interested in equilibria which are at-
tractive when all strategies deviate slightly. Call an equi-
librium point locally unlearnable if there exists a direction
in the product of the strategy spaces of the agents which
allows all agents to improve their payoff with a small move
in that direction. A Nash equilibrium is locally learnable
if it is not unlearnable. Whereas a Nash equilibrium dis-
allows improvement through unilateral and global changes
of strategies, locally learnable Nash equilibria also rule out
improvement through multilateral local changes3.

We assume a two-player game in which each player ob-
serves only part of the environment, Ek is observed by player
k. Thus, an agent has information which is hidden from the
other agent. The agents may have different objectives, and
therefore unrelated payoff functions, which are denoted Ui

for the expected payoff to the ith agent. Other assumptions
we make are as follows:

1. An agent is aware of the rules of the game governing
his possible action space.

2. Agents play a game repeatedly, learning and adapting
their behaviour.

3Note that all mixed-strategy equilibria in zero-sum games
are locally learnable since no direction can exist in which
all players may adjust their strategies and each receive a
greater payoff. In general-sum games, unlearnable mixed-
strategy equilibria are possible.

3. At the end of each game, each payoff received is ob-
served by the player who receives it.

4. There is a locally-learnable genuinely-mixed Nash equi-
librium.

5. Each game is treated independently by each agent (e.g.
by taking an independent draw from its probabilistic
strategy).

6. Agents are unaware of the opponent’s strategy.

An example of such a game is poker. Poker is a turn-based
game, so the agent sees what the opponent does at each turn
and responds accordingly. The hidden information is the
private cards which are seen only by the player who holds
them. The equilibrium solutions to poker which are known
only in very simplified games are almost always mixed, which
correspond to some degree of “bluffing”. However, poker is a
zero-sum game; one player’s winnings are the others losses.
We do not assume here that the game is zero sum.

We will consider two mathematical representations for
player strategies from game theory. These are known as
normal form and extensive form. A pure strategy is one in
which a given action is always taken when faced with the
same observable state. In normal form, a pure strategy is
represented as a list of choices for all possible decisions which
may be faced during play. A mixed strategy (one in which
actions may be taken probabilistically), is then represented
as a probability function over the set of pure strategies. In
extensive form, we assign a probability function over all of
the allowed actions from each (observably equivalent) state.
It is more natural for a learning agent to express its strat-
egy in extensive form, and also its model of the opponent,
because single actions at decision nodes are precisely what
are encountered during play. Normal form is preferred for
analysis however, yielding simpler mathematics.

The learning algorithms we consider will be based on gra-
dient ascent on the payoff function. In order for an agent
to compute this gradient, it needs to know: the mathemati-
cal form of the payoff function, the strategy its opponent is
playing, and all hidden information. Although this has been
assumed in previous papers, we do not think this is realistic.
The main focus of this paper is to investigate the conver-
gence when the gradient needs to be estimated. However,
we start by assuming that the gradient can be estimated by
each player, to set notation and methods of analysis. Even
in this case, convergence is an issue, as is shown in the next
section.

5. CONVERGENCE WITH PERFECT

KNOWLEDGE OF THE OPPONENT
To illustrate the issue of convergence and stability in gra-

dient ascent learning, we first consider the situation where
both agents know their opponent’s strategy. We define a ba-
sic gradient ascent algorithm and analyse it in the infinites-
imal time-step limit. This analysis builds on the approach
developed in Singh et al. [20]. In a real game with knowledge
of the opponent’s strategy, there may be better ways to find
the most effective best response than gradient ascent. This
serves to illustrate the method and the issues.

5.1 Gradient ascent learning
Let v be the vector of parameters denoting the probabilis-

tic strategy of player 1, and U1(v,w) be a function which
returns the expected payoff to player 1 if playing strategy
v whilst the opponent plays strategy w. The expectation
is over the stochasticity of the environment as well as the
agent behaviours. We restrict v and w to the spaces repre-
senting valid strategies for the players; they must represent
valid probabilities.

We can now express the updates for both players using
simple gradient ascent as follows:

vt+τ = vt + τ∇vU1(vt,wt) ,

wt+τ = wt + τ∇wU2(vt,wt) , (1)

where ∇vU1(vt,wt) is the directional derivative of the payoff
function for player 1, with respect to his strategy v, similarly
evaluated for player 2. The step-size, τ could be 1.0 in an
algorithm, but we will consider the small τ limit in analysing
this system. It is clear that a learning agent following such
an update rule adjusts its strategy in a direction which in-
creases its expected payoff. In case equation (1) takes the
strategy outside the probability simplex, it is projected back
to the boundary.

At a Nash equilibrium, a necessary requirement is that
neither agent may improve its payoff locally. Therefore, a
Nash equilibrium must be a fixed point for a system obeying
these dynamics, since a fixed point must possess the prop-
erty that the gradient for both players is zero.

We are interested in the case where the strategies are gen-
uinely mixed, which means at least two strategies for each
player have non-zero probability. We project our equations
into that space and do not consider the dynamics of the
deterministic parts of the strategy. In normal form repre-
sentation, the payoff functions are quadratic forms,

U1(vt,wt) = vT
t E1wt + J1wt + K , (2)

where Ek is a matrix of expected payoff to player k when
player 1 plays pure strategy i and player 2 plays pure strat-
egy j, and the i (j)th component of the vector v (w) is the
probability that player 1 (2) plays pure strategy i (j). In the
above, linear terms in player 1’s strategy have been removed
by a shift in the zero point to the Nash equilibrium, and the
superscript T denotes matrix transpose.

5.2 Infinitesimal gradient ascent (IGA) does
not converge

In the limit τ → 0, (1) and (2) yield,

d

dt

„

vt

wt

«

=

„

0 E1

E2 0

«„

vt

wt

«

. (3)

As the above is a linear set of first-order differential equa-
tions, of the form dx/dt = Ex, the solutions will be modes
defined by the eigenvectors of E. The character of each so-
lution is determined by the corresponding eigenvalue. Imag-
inary parts of eigenvalues lead to oscillations; while the neg-
ative real parts lead to exponential decay, and the positive
real parts result in exponential growth.

Since E is real and has zero trace, its eigenvalues come in
complex conjugate pairs and the real parts must sum to zero.
Thus, either: 1) all of the eigenvalues are pure imaginary,
or 2) some of the eigenvalues have positive real part. Case
1 results in dynamics which oscillate around the Nash equi-
librium but are not attracted toward it. Case 2 corresponds

to dynamics which deviate away from the equilibrium. Case
2 also corresponds to the locally unlearnable situation de-
scribed in Section 4. Thus, from here on, we will consider
only matrices with pure imaginary eigenvalues. Hence, IGA
does not result in a learning algorithm which converges to
the equilibrium point even when the agents know each oth-
ers strategies. It is marginally stable (neither converges nor
diverges). This was shown by Singh et al. for two-action
strategies [20].

The above analysis assumed normal form representation
of the strategy. The analysis can be extended to extensive-
form representations, but only locally by Taylor expanding
around the equilibrium point to linear order. Let Fv be the
map from the extensive form representation to the normal
form representation for player 1, and let ∂Fv be its deriva-
tive, and likewise for player 2. If these maps are invertible
and their Jacobians are non-zero4, then the payoff equa-
tions can be expanded around the equilibrium value. The
result is of the same form as (3), where E1 is transformed by
the congruency transformation ∂Fv

T E1∂Fv and likewise for
E2. This system has the same structure locally, and so the
same conclusions about stability can be drawn. However,
the transient behaviour may be very different.

5.3 The lagging anchor: a mechanism for
stabilising gradient ascent

In the previous section we showed that even when the
players know each others strategies, gradient ascent in the
small time-step size limit did not converge to the Nash equi-
librium, either in normal or extensive form representations.
The difficulty of convergence in multi-player games has been
known for some time, and several mechanisms have been
proposed to address this, including: WoLF [2], anticipatory
learning [18] and the lagging anchor algorithm [7], which
we now consider. We analyse this algorithm here using the
same techniques as in the previous section, before provid-
ing our extension and analysis of the algorithm to when it
must learn the gradient without knowledge of the opponent’s
strategy in Section 6.

Two additional terms are required for the definition of
the lagging anchor algorithm to extend basic gradient as-
cent learning. Firstly, we use v̄ to denote the anchor for
player 1’s strategy v, similarly for player 2. Secondly, we
now introduce a new parameter, the anchor drawing factor,
represented by η. The update equations now become:

vt+τ = vt + τ∇vU1(vt,wt) + τη(v̄t − vt) ,

wt+τ = wt + τ∇wU2(vt,wt) + τη(w̄t − wt) ,

v̄t+τ = v̄t + τη(vt − v̄t) ,

w̄t+τ = w̄t + τη(wt − w̄t) . (4)

Now, on each learning iteration, a strategy is adjusted to
increase expected payoff as before, but is also drawn toward
its anchor by a factor η. In addition, each anchor is drawn
toward its corresponding strategy in proportion to the dif-
ference between the current strategy and the anchor.

It is assumed that τη < 1

2
, so that it is not necessary to

restrict v̄ and w̄ to valid strategies. A point (v,w, v̄, w̄)T is
only a fixed point of the lagging anchor dynamics if (v,w)T

4In general, normal form is over-parametrized whereas ex-
tensive form is not; and this over-parametrization must be
removed for the map to be invertible.

is a fixed point of the gradient ascent dynamics, and also
v = v̄ and w = w̄.

5.4 Infinitesimal Lagging Anchor (ILA)
Dahl showed that due to the dampening of the oscillation

caused by the anchors, these dynamics achieve exponential
convergence to genuinely-mixed strategy equilibrium points
in a subset of matrix games [7]. This can be shown in the
infinitesimal time-step limit as follows. We assume that the
IGA matrix E in (3) has pure imaginary eigenvalues ±ibn,
since this corresponds to local learnability. Here n indexes
the eigenvalues. The differential equation corresponding to
the lagging anchor equation has the following coupling ma-
trix,

E − ηI ηI

ηI −ηI

!

,

where E is the matrix for IGA and I is the identity matrix.
Eigenvalues of this partitioned matrix can be found using
the identity,

det

„

A B

C D

«

= detD det
`

A− BD−1C
´

, (5)

to simplify the characteristic equation det (M − λI) = 0,
which factorises into quadratic equations involving the eigen-
values of IGA. The result is that each complex conjugate pair
of IGA eigenvalues ±ibn splits into four,

−η ±

q

η2 − (bn/2)2 ± i
bn

2
, (6)

the real part of which is always negative. Thus, ILA always
converges to the Nash equilibrium.

6. STABILITY OF GRADIENT ASCENT

USING AN UNBIASED ESTIMATE OF

THE GRADIENT
In the above, we found that even with perfect knowledge

of the opponent’s strategy, gradient ascent is only marginally
stable; it does not converge to locally-learnable mixed-strategy
equilibria (in the infinitesimal time-step limit). However, us-
ing the lagging anchor mechanism it always converges. From
here on we remove the assumption that the agent knows the
opponent’s strategy. The player must learn how to respond
to the opponent by observing results of repeated play. We
show under a fairly generic set of assumptions, gradient as-
cent is always unstable in the mean.

We assume that after each game, the player can obtain
information through observations which allows the player to
infer a contribution to the gradient which is unbiased (two
ways to do this will be explained momentarily). This means
that the player observes a random variable whose mean is
the gradient of that player’s payoff function. However, be-
cause this contribution will come from only one game, it will
be very noisy. Although the estimate is unbiased, it has a
large variance, too large to be useful. Thus, it is necessary to
average this gradient by accumulating it over several games.

To accumulate these contributions and smooth the esti-
mate, we use what we believe to be the standard approach
from on-line stochastic approximation [15]. If q̃t is the es-
timate of a quantity whose real value is qt, and Ot is an
observation which gives unbiased information, i.e.

〈Ot〉 = qt , (7)

where 〈·〉 denotes expectation, a standard on-line update
equation is,

q̃t+τ = (1 − τφt)q̃t + τφtOt . (8)

Here the time-step τ is introduced so that the infinitesimal
limit can be taken. If the value of q was constant in time, it
would be appropriate to reduce the modelling rate τφt over
time, e.g. by using an on-line updating procedure for counts
or pseudo-counts in the case of Bernoulli variables. How-
ever, in the current situation, the player will be estimating
quantities which depend on the opponent’s behaviour which
will change as the two players co-adapt. Thus the modelling
rate must not reduce too quickly; a standard approach is
to keep it constant (see, for example [21]). We assume that
from now on, and drop the t subscript from φ.

If τφ = 1, the estimate is based on information from the
most recent observation only; the estimate is unbiased by
assumption but is very noisy. As τφ decreases, the variance
in the estimate is expected to decrease in proportion to φ,
but q̃ is not unbiased because it is based on observations
after which q may have changed.

6.1 Opponent modelling
The most straightforward way for the player to infer gra-

dient information from game play is to explicitly model the
player’s strategy. This requires that the player can observe
the opponent’s actions and, after each game has completed,
the hidden state information. (We do not assume that the
information is observed during play, because that would
change the nature of the game.) In order for a learning agent
to be capable of explicitly modelling its opponent, we must
introduce two additional assumptions to those in Section 4:

1. Agents are aware of the action spaces of both players.

2. An agent can observe the actions taken by the oppo-
nent during play.

The agents play a game repeatedly, learning their oppo-
nent’s strategy on-line. The agents then use the opponent
model, which is an estimate of the true behaviour of the
opponent, in their update calculations. The goal of oppo-
nent modelling is to track the probabilistic behaviour of the
opponent in real time, so as to play best-response to the
strategy being executed.

Each player has a variable which represents the current
estimate of the opponent’s strategy. So, player 1 has a vec-
tor w̃ which is the estimate of player 2’s strategy vector
w. The players update their estimates by observing the op-
ponent’s actions and using equation (8). Since the player
knows what action the opponent used and after the fact the
hidden state, the player observes a single unbiased sample
from the probabilistic strategy. In computing the gradient,
the estimate w̃ rather than the actual strategy w is used,
i.e. ∇vU1(vt, w̃t) in equation (1).

6.2 Stochastic gradient ascent
It is also possible to estimate the gradient without assum-

ing that the player observes hidden environment or has an
explicit model of its payoff function. The idea is to estimate
the gradient directly from the payoffs received in each game.
Consider this from the perspective of player 1.

If the strategies of the two players and the environment
was fully known, the utility to each player would be deter-
mined. Let α and β denote the pure strategies played by

players 1 and 2 respectively in a particular game with envi-
ronment E . (The environment variable E describes the entire
environment, the parts seen by both players, as well as the
parts private to one or the other.) The payoff to player 1 in
this particular game is u1(α, β, E). The probability of the
two players playing these strategies depends on their param-
eters, and on the environment. Thus, we can write that the
expected payoff to player 1 obeys,

U1(vt, wt) =
X

αβE

P (α, β|vt, wt, E)P (E)u1(α, β, E) . (9)

An obvious point is that one could use the payoff of a single
game, u1(α, β, E), as an unbiased estimate of the expected
payoff U1(vt,wt). This is because the former occurs with
probability P (α, β|vt,wt, E)P (E), so averaging u1(α, β, E)
is equivalent to taking the sum in equation (9).

The gradient of the payoff with respect to the player 1
parameter vj is a similar sum,

∇vt
U1(vt, wt)

=
X

αβE

P (E)∇vt
P (α, β|vt,wt, E)u1(α, β, E) (10)

Since each game samples one term in the sum, approximat-
ing the sum by individual terms is an example of stochastic
gradient ascent. However, in order to make the estimate
unbiased, we must approximate the gradient by,

∇vt
U1 ≈ u1(α, β, E)

∇vt
P (α, β|vt,wt, E)

P (α, β|vt,wt, E)
. (11)

The denominator is needed to correct the probability of
reaching each term in the gradient sum, equation (10). Here
we use ≈ to denote our approximation or estimate. This is
our estimate of the gradient to use in equation (8). It can
also be written,

∇vt
U1 ≈ u1(α, β, E)∇vt

log P (α, β|vt,wt, E).

(This approach is closely related to the REINFORCE algo-
rithm proposed by Williams [23] and shown to give unbiased
estimates of gradient ascent.)

This approach does not at first sight appear practical,
however. The probability in the above equation, appears to
be unknown to a player, because it depends upon the oppo-
nent’s strategy. However, in both normal form and extensive
form, the ratio in equation (11) is observable. This is be-
cause the probability P (α, β|vt,wt, E) factorises into factors
which depend only on one player’s strategy or the other’s
and is linear in components of the parameter vt. The fac-
torisation is due to the fact that each player makes decisions
independently of the other player when conditioned on the
observed behaviour up to the point of the decision. The
factors depending on the opponent’s strategy cancel in the
ratio.

Thus, to get an unbiased estimate of the gradient sums,
one needs to play a game, observe the payoff at the end of
the game and multiply this by a weight given by the gradient
of the probability as given in equation (11) to estimate the
gradient. Each player maintains the vector of estimates gi

which are computed from equation (11) and are updated
using equation (8). This is then used instead of the gradient
in equation (1).

Using either method for estimating the gradient, either
by estimating the opponent’s strategy from its behaviour or

by estimating the gradient using stochastic gradients, and
taking the infinitesimal limit, one gets a stochastic differ-
ential equation. We can derive the dynamics for the mean
behaviour. Because the system is linear in normal form,
or by approximating it as linear around the Nash equilib-
rium in extensive form, the mean of the dynamical equa-
tions describes the dynamics for the mean of the variables.
In the infinitesimal time-step limit, using the same methods
used in Section 5.4, the eigenvalues of this system can be
expressed in terms of the eigenvalues of the original IGA
system. Opponent modelling and stochastic gradient ascent
are essentially equivalent in that both methods result in the
same characteristic equation and the same eigenvalues. Each
complex conjugate pair of IGA, ±ibn splits into four,

−φ ±
p

φ2 ± i4bnφ

2
; (12)

the real parts of these are respectively:

−φ

2
+

√
2

2

q

φ2 +
p

φ4 + 16bn
2φ2 ,

−φ

2
−

√
2

2

q

φ2 +
p

φ4 + 16bn
2φ2 .

(13)

For all positive φ the first one is positive and the second is
negative. Since there are always eigenvalues with positive
real parts in the coupling matrix, using stochastic approxi-
mation to update the estimates of the gradient always results
in unstable dynamics in the mean and in the small time-step
limit. Therefore, the system diverges from the Nash equi-
librium.

6.3 Stabilising estimated gradients with the
lagging anchor algorithm

Since use of an estimated gradient destabilises gradient
ascent and the lagging anchor algorithm stabilises it, it is
natural to combine the two in the hope of producing a stable
algorithm. Dahl does not consider the task of estimating the
gradient without knowledge of the opponent’s strategy [7],
and here we extend the algorithm to allow this, analysing
the resulting dynamics. This new algorithm which combines
lagging anchor with gradient estimation that requires no
knowledge of the opponent’s strategy may compete against
an arbitrary opponent, since observations during play are
all it requires to learn. This allows the algorithm to be ap-
plied more generally, but we still wish to retain the desired
behaviours specified in Section 4.

Strategy updates and estimate updates are as before, but
now there are anchors associated with the strategy variables
but not with the estimates. Again the characteristic equa-
tion holds for opponent modelling and stochastic gradient
ascent.

This system can be analysed using the techniques of pre-
vious sections. This set of stochastic equations is solved
in the mean by taking the infinitesimal time-step limit and
finding the eigenvalues. The matrices form a 3 × 3 block
matrix system, rather than the 2 × 2 blocks shown in Sec-
tion 5.4. Opponent modelling and stochastic gradient both
yield the same characteristic equation. The characteristic
equation factorises into cubic equations involving the eigen-
values of IGA and the two parameters, φ and η. Thus, each
eigenvalue of IGA splits into three, the solutions (for λ) of,

λ3 + (2η + φ)λ2 + φ (2η ± ibn)λ ± ibnηφ = 0 . (14)

It is found that the eigenvalues can have real parts which

are either positive or negative, depending on the value of
the parameter η and the opponent modelling rate φ. The
dividing point is a phase boundary, which is where the real
part of the eigenvalue associated with the largest bn becomes
0. Figure 1 shows this boundary and the two phases. This
figure also shows asymptotic approximations to the curve:
for large η it is approximately φ = 2η, independent of the
eigenvalues of IGA. This observation can facilitate setting
these parameters for general problems — η needs to be set
sufficiently large, then φ can be taken as 3η or similar. For
small η it is approximately φ = b2

n/η.
Thus, the lagging anchor algorithm with estimated gra-

dient can have two behaviours. In the region labelled “di-
vergent in the mean”, the expected values of the strategies
diverge away from the Nash equilibrium. It will oscillate,
but with increasing amplitude (oscillations due to the imag-
inary part of the eigenvalues; divergence due to the posi-
tive real parts). In the region labelled mean convergence,
the expected values of the strategies converge to the Nash
equilibrium. However, this does not ensure that the system
converges in individual runs. The noise caused by the prob-
abilistic behaviours being modelled results in dampened (or
noisy) oscillations about the equilibrium. Figure 6.4 shows
results of a simulation.

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

convergence in the mean

divergent in the mean

anchor drawning factor η

m
od

el
lin

g
ra

te
 φ

exact
φ ≈ 2η
φ ≈ b

n
2/η

Figure 1: The phase boundary between divergent
behaviour and convergence in the mean for ILA with
estimated gradient.

6.4 The nature of the phase transition
In the previous section we found a phase transition in

the mean behaviour of lagging anchor gradient ascent, using
an estimated gradient. The mean behaviour is stable in
one region of parameter space and unstable in the other.
However, mean behaviour does not necessary tell us about
what happens in the real system, particularly in the “stable
region” since stability in the mean does not necessarily imply
stability in individual runs. In fact, simulations show the
divergent nature of the unstable region, but in the stable
region the system is still noisy and it is hard to tell from
simulations whether the system is oscillating.

To address this question, we consider a temporal covari-
ance function

C(∆) =
DD

(x(t + ∆) − 〈x(t + ∆)〉)(x(t) − 〈x(t)〉)T
EE

t
.

Here x is the column vector of variables, superscript T de-

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Player 1 strategy variable

P
la

ye
r

2
st

ra
te

gy
 v

ar
ia

bl
e

0 2 4 6 8 10

x 10
4

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

Number of learning time steps

P
ay

of
f t

o
pl

ay
er

 1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Player 1 strategy variable

P
la

ye
r

2
st

ra
te

gy
 v

ar
ia

bl
e

0 2 4 6 8 10

x 10
4

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

Number of learning time steps

P
ay

of
f t

o
pl

ay
er

 1

Figure 2: Results of lagging anchor algorithm with
opponent modelling on Kuhn poker [11] using an
extensive form representation. Strategy plots show
single runs of 150,000 games for strategy variables
against each other: one for each player, whose equi-
librium is at (1/3, 1/3). Payoff plots show the payoff
to player 1 over the same run of games. Top plots are
in the divergent phase (φ = 1.0). Bottom plots are
in the phase which converges in the mean (φ = 9.0).
Other parameters are for all plots: τ = 0.01; η = 2.0.
The phase boundary is located at φ = 4.

notes matrix transpose and 〈·〉
t
denotes time average. Thus

C(0) is the covariance matrix and C(·) generally shows the
correlation between variables at different times. If the sys-
tem behaves like white noise, this will be a delta-function at
∆ = 0; if the system is periodic, C will show peaks separated
by ∆ equal to the period of oscillations.

The temporal correlation function obeys the same differ-
ential equation with respect to ∆ as that of the mean of the
variables with respect to t. It has the same eigenvalues. As
the phase boundary is approached from above, there is only
one eigenvalue pair with a positive real part; where that real
part changes sign defines the phase boundary. The inverse
of the real part of that eigenvalue is a diverging timescale as
the boundary is approached.

Let λ = a ± ib denote this eigenvalue and er ± iei the
associated eigenvector. A property of the mean dynamics is
that if the variables start in the space spanned by the two
real vectors er and ei, it will stay in that subspace. This
holds for the temporal covariance, which obeys the same
dynamics. A useful statistic is the trace of the covariance
projected into this subspace. Call that ΠC(∆), it obeys

ΠC(∆) = ea∆ [A cos(b∆) + B sin(b∆)] . (15)

Here A and B are constants. Thus, as a changes sign, this
goes from diverging with time constant 1/a to decaying with
characteristic time 1/|a|. When a = 0 it oscillates with pe-
riod 2π/b. This result shows that in the mean convergent
region, where a < 0, there is still temporal correlation in
the form of narrow-band coloured noise, which is found in
damped harmonic motion [1]. In fact, the system is much
like an damped harmonic oscillator coupled to a white noise
source. It continues to oscillate because the noise continu-
ously kicks the system.

7. CONCLUSIONS
We have considered two agents competing in a general-

sum game of imperfect information using gradient ascent,
in the infinitesimal time-step limit. The learning dynamics
around a mixed-strategy Nash equilibrium are oscillatory,
but can be made stable using the lagging anchor algorithm.
This assumes the opponent strategies are known and the
gradient can be computed. In the more realistic situation
in which the gradient must be inferred from observation, we
show that gradient ascent is always unstable in the small
time-step limit. Using lagging anchor, however, there is a
phase transition in parameter space. The gradient estimate
lags the actual gradient due to the need to accumulate ob-
servations. If the lag time is too great, the Nash equilibrium
becomes unstable, otherwise it is stable in the mean, but
stochasticity introduces damped oscillations.

8. REFERENCES
[1] Moshe Bitterman. The Noisy Oscillator. World

Scientific, 2005.

[2] Michael H. Bowling and Manuela M. Veloso.
Multiagent learning using a variable learning rate.
Artificial Intelligence, 136(2):215–250, 2002.

[3] Vincent Conitzer and Tuomas Sandholm. Awesome: A
general multiagent learning algorithm that converges
in self-play and learns a best response against
stationary opponents. Machine Learning,
67(1-2):23–43, 2007.

[4] Vincent P. Crawford. Learning the optimal strategy in
a zero-sum game. Econometrica, 42(5):885–891, 1974.

[5] Vincent P. Crawford. Learning behavior and
mixed-strategy nash equilibria. Journal of Economic
Behavior and Organization, 6(1):69–78, 1985.

[6] Vincent P. Crawford. Learning and mixed-strategy
equilibria in evolutionary games. Journal of
Theoretical Biology, 140:537–550, 1989.

[7] Fredrik A. Dahl. The lagging anchor algorithm:
Reinforcement learning in two-player zero-sum games
with imperfect information. Machine Learning,
49(1):5–37, 2002.

[8] Sevan G. Ficici and Jordan B. Pollack. Challenges in
coevolutionary learning: Arms-race dynamics,
open-endedness, and mediocre stable states. In
Christopher Adami, editor, Proceedings of the Sixth
International Conference on Artificial Life, pages
238–247. MIT Press, 1998.

[9] Drew Fudenberg and David K. Levine. The Theory of
Learning in Games. MIT Press, 1998.

[10] Josef Hofbauer and Karl Sigmund. Evolutionary
Games and Population Dynamics. Cambridge
University Press, 1998.

[11] H. W. Kuhn. A simplified two-person poker. In
Contributions to the Theory of Games, volume 1,
pages 97–103. Princeton University Press, 1950.

[12] John F. Nash. Equilibrium points in n-person games.
In Proceedings of the National Academy of Sciences,
volume 36, pages 48–49, 1950.

[13] Jordan B. Pollack and Alan D. Blair. Why did
TD-Gammon work? In Advances in Neural
Information Processing Systems 9. MIT Press, 1996.

[14] Mitchell A. Potter and Kenneth A. De Jong.
Cooperative coevolution: An architecture for evolving
coadapted subcomponents. Evolutionary Computation,
8:1–29, 2000.

[15] H. Robbins and S. Munro. A stochastic approximation
method. Ann. Math. Stat., 1951.

[16] David Salamon and Peter Salamon. Cycling
co-evolution resulting from genetic adaptation in
two-person zero-sum games. Open Systems &
Information Dynamics, 12, Number 3 / September,
2005(3):265–271, 2005.

[17] Yuzuru Sato and James Crutchfield. Coupled
replicator equations for the dynamics of learning in
multiagent systems. Physical Review E,
67(1):015206(4), 2003.

[18] Reinhard Selten. Anticipatory learning in games. In
Game Equilibrium Models, volume 1, New York, 1991.
Springer-Verlag.

[19] J. L. Shapiro. Does data-model co-evolution improve
generalization performance of evolving learners? In
LNCS, volume 1498, pages 540–549, 1998.

[20] Satinder Singh, Michael Kearns, and Yishay Mansour.
Nash convergence of gradient dynamics in general-sum
games. In Proceedings of the Sixteenth Conference on
Uncertainty in Artificial Intelligence, pages 541–548.
Morgan Kaufmann, 2000.

[21] Richard S. Sutton and Andrew G. Barto.
Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA, 1998.

[22] G. J. Tesauro. TD-gammon, a self-teaching
backgammon program, achieves master-level play.
Neural Computation, 6(2):215–219, 1994.

[23] Ronald J. Williams. Simle statistical
gradient-following algorithms for connectionist
reinforcement learning. Machine Learning, 1992.

[24] M. Zinkevich. Online convex programming and
generalized infinitesimal gradient ascent. In
International Conference on Machine Learning
(ICML), pages 928–936, Washington, DC, USA, 2003.

