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INFINITE DIMENSIONAL SECOND ORDER
DIFFERENTIAL EQUATIONS VIA T 2M

M. AGHASI, C.T.J. DODSON, G.N. GALANIS, AND A. SURI

Abstract. The vector bundle structure obtained on the second order
(acceleration) tangent bundle T 2M of a smooth manifold M by means of
a linear connection on the base provides an alternative way for the study
of second order differential equations on manifolds of finite and infinite
dimension. Second order vector fields and their integral curves provide a
new way of solving a wide class of second order differential equations on
Fréchet manifolds and may be used also to describe geodesic curves on
a Riemannian manifold. The new technique proposed is illustrated by
concrete examples within the framework of Banach and Fréchet spaces
as well as on Lie groups.

Introduction

Second order differential equations on manifolds have received renewed
geometric attention in recent years from interactions with jet fields, linear
and non-linear connections, Lagrangians and Finsler structures (cf., for in-
stance, [2], [3], [22], [24]). On the other hand, the potential applications
of this subject reach beyond classical Differential Geometry, having, for ex-
ample, a central role in the theory of time-dependent Lagrangian particle
systems (see [21], [23]). Sufficient methods for the study of equations of
such type have so far been developed only for those known as sprays, which
correspond to linear connections.

In the present work we propose an alternative way of studying second
order differential equations on a smooth manifold M . We work mainly with
the second order tangent bundle T 2M of M , consisting of all equivalence
classes of curves in M that agree up to their acceleration. T 2M can be
endowed with a vector bundle structure in the presence of a linear connection
on M (see [5], [6]). Although this bundle structure is strongly dependent on
the choice of the linear connection on the base manifold, the corresponding
local sections can be used to describe in detail second order differential
equations on M .

The proposed methodology is suitable for Banach modelled manifolds,
and serves also as a basis for the study of second order differential equations
on a wide class of Fréchet manifolds. The Fréchet problem is complicated
by lack of a general solvability theory for ordinary differential equations on
the models; that inhibits the establishment of existence and uniqueness of
solutions from initial conditions, analogous to the cases of finite dimensional
and Banach spaces. However, if one restricts to the category of Fréchet
manifolds that can be viewed as projective limits of Banach manifolds, then
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the difficulty is eased. This approach proves to be compatible with the
taking of projective limits, so leading to a new way of studying and solving
second order differential equations on Fréchet manifolds.

Our approach is clarified by some concrete applications-examples in the
last section of the paper: Second order vector fields may be used for the
description of a class of geodesic curves on infinite dimensional Riemannian
manifolds. On the other hand, the case of a Banach or Fréchet space en-
dowed with the canonical flat connection and that of a smooth Lie group
with the direct connection are separately studied.

1. Second Order Vector Fields

In this section we define and study the basic notion for the description
of second order differential equations on a smooth manifold M of finite or
infinite dimension: That of second order vector fields.

The second order tangent bundle of M, T 2M, is the set of all classes
[(c, x)]2 of smooth curves c : (−ε, ε) → M , ε > 0, with respect to the
equivalence:

c1 ≈x c2 ⇔ c1(0) = c2(0), c
′
1(0) = c′2(0) and c′′1(0) = c′′2(0).

In general T 2M fails to be vector bundle over M in contrast to the classical
case of (first-order) tangent bundles, as a result of the incompatibilities
between the nonlinearity of acceleration and the structure of a vector bundle.
However, the presence of a linear connection

∇ : T (TM) −→ TM

on the base manifold M , gives the opportunity to overcome these difficulties
endowing T 2M with a natural vector bundle structure.

To be more precise, let E be the (finite dimensional or Banach) space
model of M , {(Uα, φα)}α∈I a corresponding atlas, {(π−1

M (Uα), τα)}α∈I the
arising local vector coordinate system of the tangent bundle TM of M
and {(π−1

TM (π−1
M (Uα)), τ̃α)}α∈I the analogous trivialization of T (TM). Then,

adopting the formalism of [27], the local expressions

∇α := τα ◦ ∇ ◦ (τ̃α)−1 : φα(Uα)× E× E× E −→ φα(Uα)× E,

of ∇ have the form

∇α(y, u, v, w) = (y, w + Γα(y)(u, v)), a ∈ I,

where {Γα}α∈I is the family of Christoffel symbols of ∇:

Γα : φα(Uα) −→ L2
s(E× E, E); α ∈ I,

L2
s(E× E, E) denoting the space of bilinear symmetric mappings from E× E

to E. Based on the above we have defined in [5] a vector bundle structure on
T 2M over M with fiber type E×E. The corresponding local trivializations
have the form:

Φα : (π2
M )−1(Uα) −→ Uα × E× E

: [(c, x)]2 7→
(
x, (φα ◦ c)′(0), (φα ◦ c)′′(0)

+Γα(φα(x))((φα ◦ c)′(0), (φα ◦ c)′(0))
)

if π2
M stands for the projection π2

M ([(c, x)]2) = x.
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It is obvious that there is a strong dependence of the vector bundle struc-
ture defined on T 2M on the choice of the linear connection ∇ of M . How-
ever, these structures are classified if one enables the notion of conjugate
connections. More precisely, the vector bundle structures induced on T 2M
by two linear connections ∇, ∇′ of M are isomorphic if the connections are
conjugate by means of a diffeomorphism of M (i.e. the connections com-
mute with the first and second differential of the diffeomorphism, see [6] for
details).

Taking into account this characterization, we may proceed with the defi-
nition of the notion of second order vector fields.

Definition 1.1. A section ξ : M → T 2M of the second order vector bundle
T 2M , i.e. a smooth map satisfying

π2
M ◦ ξ = idM ,

where idM denotes the identity map of M , is called a second order vector
field on the base manifold M .

Of course, this property is sensitive also to the choice of the initial con-
nection ∇, and a change of choice causes corresponding changes in the set
of second order vector fields.

The second order vector fields may be viewed also as derivations in the
following way: We consider the set of real numbers R as a 1-dimensional
smooth manifold endowed with the identity total chart and the canonical
flat connection with Christoffel symbols:

Γ : R −→ L(R,L(R, R))

which are vanishing everywhere Γ(y) = 0, y ∈ R. Then, the corresponding
second order tangent bundle T 2R becomes a vector bundle with total vector
chart

Ψ : T 2R −→ R3 : [(c, x)]2 7→
(
x, c′(0), c′′(0)

)
.

Based on this construction we may let each second order vector field on M
act as a derivation on the set of smooth functions C∞(M, R) as follows:

ξ : C∞(M, R) −→ C∞(M, R2) : f 7→ ξ(f),

where

ξ(f)(x) = T 2
xf(ξ(x)).

Here T 2
xf denotes the second order differential of f on the fiber over x:

T 2
xf : T 2

xM −→ T 2
f(x)R ≡ R2 :

: [(c, x)]2 7→ [(f ◦ c, f(x))]2 ≡
(
(f ◦ c)′(0), (f ◦ c)′′(0)

)
.

The above functor is well defined and independent of the choice of the curve
c as one may easily check. However, although the previous definition is a
natural extension of the classical (first-order) case, the existence of a corre-
sponding Lie bracket operator seems to be unreachable due to the fact that
the result of this derivation does not remain in the same space.
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2. Differential Equations of Second Order on a Banach
manifold

Having established in the previous section all the necessary background
notions/mechanisms, we proceed here to the study of second order differen-
tial equations on a smooth manifold M modelled on a Banach space E.

Let ξ be a second order vector field on M .

Definition 2.1. An integral curve of ξ is a smooth map θ : J →M , defined
on an open interval J of R, if it satisfies the condition

(1) T 2
t θ(∂t) = ξ(θ(t)),

where ∂t is the second order tangent vector of T 2
t R induced by a curve

c : R→ R with c′(0) = 1, c′′(0) = 1.

Note that if we restrict ourselves to the case where the base manifold M
is a Banach space E with differential structure induced by the total chart
(E, idE), then the first part of the above condition reduces to the second
derivative of θ:

T 2
t θ(∂t) = θ′′(t) = D2θ(t)(1, 1).

In other words, the previous definition gives a natural generalization of the
notion of second derivative on a manifold M . On the other hand, it offers
the opportunity to approach ordinary differential equations of order two on
M . Namely, the next result holds.

Theorem 2.2. Let ξ be a second order vector field on M . Then, the exis-
tence of an integral curve θ of ξ is equivalent to the solution of a system of
second order differential equations on E.

Proof. Keeping the formalism of Section 1, we consider {(Uα, φα)}α∈I a
smooth atlas of M and {(Uα,Φα)}α∈I the corresponding local trivialization
of T 2M . Then, the local expression of the second derivative T 2

t θ(∂t) takes
the form

Φα(T 2
t θ(∂t)) = Φα([(θ ◦ c, θ(t))]2)

=
(
θ(t), (φα ◦ θ ◦ c)′(0), (φα ◦ θ ◦ c)′(0)′′(0) +

Γa((φα ◦ θ)(t))((φα ◦ θ ◦ c)′(0), (φα ◦ θ ◦ c)′(0))
)

However,

(φα ◦ θ ◦ c)′(0) = D(φα ◦ θ)(c(0))(c′(0)) = Tt(φα ◦ θ)(1) = (φα ◦ θ)′(t),
(φα ◦ θ ◦ c)′′(0) = D2(φα ◦ θ)(c(0))(c′(0), c′(0)) + D(φα ◦ θ)(c(0))(c′′(0))

= D2(φα ◦ θ)(t)(1, 1) + D(φα ◦ θ)(t)(1)
= (φα ◦ θ)′′(t) + (φα ◦ θ)′(t)

As a result,

Φα(T 2
t θ(∂t)) =

(
θ(t), (φα ◦ θ)′(t), (φα ◦ θ)′′(t) + (φα ◦ θ)′(t) +

Γa((φα ◦ θ)(t))((φα ◦ θ)′(t), (φα ◦ θ)′(t))
)
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and the local expression of (1) takes the form

(φα ◦ θ)′(t) = Φ(2)
α (ξ(θ(t))),

(φα ◦ θ)′′(t) + (φα ◦ θ)′(t) +(2)

Γa((φα ◦ θ)(t))((φα ◦ θ)′(t), (φα ◦ θ)′(t)) = Φ(3)
α (ξ(θ(t))), a ∈ I,

where Φ(2)
α ,Φ(3)

α stand for the projection of Φα to the second and third factor
respectively. �

We have proved in this way that integral curves of second order vector
fields generalize the notion of second order differential equations on mani-
folds. Taking also into account that the differentiability of all the involved
functions guarantees the satisfaction of the necessary Lipschitz conditions
we may state that

Theorem 2.3. Every second order vector field ξ on M admits locally a
unique integral curve satisfying an initial condition of the form θ(0) = x,
Ttθ(∂1

t ) = y, for arbitrary choice of x ∈M , y ∈ Tθ(t)M , where ∂1
t stands for

the basic vector field of TtR.

Remark 2.4. It is clear from the proof of Theorem 2.2 that the second
order differential equations described by our approach depend not only on
the choice of the second order vector field but also on the host geometric
background of the manifold, as expressed by the chosen linear connection.

3. The Fréchet case

In this section we expand the methodology proposed for the study of
second order differential equations to the framework of Fréchet modelled
manifolds. The general case of a second (or even first) order differential
equation on this type of manifolds cannot be confronted successfully using
the classical pattern of Banach modeled manifolds. For, on the model spaces
an ordinary differential equation may admit no, one or multiple solutions
for the same initial condition.

These analytical problems with several applications in theoretical physics
(see, e.g. [1], [19, 20], [25]) led a number of authors to propose different
methods for the study of certain types of differential equations in Fréchet
spaces (see [4], [7], [14], [16]).

In a series of previous papers of the third author ([10], [11], [12]) a new
way leading to the solution of a wide class of such types of equations is
proposed. This stems from the fact that every Fréchet space is isomorphic
to a projective limit of Banach spaces, and the taking of projective limits
is compatible with differentiation. These techniques can also be combined
with the new approach of second order differential equations proposed in
the previous sections, to provide a way out of the difficulties described.

More precisely, let M be a smooth manifold modeled on the Frèchet space
F. Since always F can be realized as a projective limit of Banach spaces
F ' lim←−{E

i; ρji}i,j∈N, we assume that the manifold itself is obtained as the
limit of a projective system of Banach modeled manifolds {M i;ϕji}i,j∈N and
that is covered by a system of “projective limit” charts:
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For each x = (xi) ∈ M there exists a projective system of local charts
{(U i

α, φi
α)}i∈N such that xi ∈ U i

α and the corresponding limit lim←−U i
α is open

in M .
Let ∇ be a linear connection on M realized also as a projective limit

of connections on the factors M i. This is equivalent to the fact that the
corresponding Christoffel symbols commute with the connecting morphisms
of the tangent bundles of M which have the form:

gji
k : T kM j → T kM i: [f, x]jk 7−→ [φji ◦ f, φji(x)]ik,

where k = 1, 2 denotes the order of the tangent bundle.
Under these conditions, M can be endowed with a Fréchet manifold struc-

ture modeled on F via the charts {(lim←−U i
α, lim←−φi

α)}a∈I . For the differentia-
bility of mappings in this framework we adopt the definition of J. A. Leslie
([17, 18]).

On the other hand, the tangent bundles TM and T 2M of M are endowed
also with Fréchet manifold structures of the same type modeled on F2, F4

respectively. The corresponding local structures are defined by the differen-
tials {lim←−(Tφi

α)}a∈I for the first order tangent bundle and by the projective
limits of the trivializations

Φi
α : (π2

M i)−1(U i
α) −→ U i

α × Ei × Ei

: [(c, x)]2 7−→
(
x, (φi

α ◦ c)′(0), (φi
α ◦ c)′′(0)

+Γi
α(φi

α(x))((φi
α ◦ c)′(0), (φi

α ◦ c)′(0))
)
,

for T 2M .
Based on the above constructions, we may prove the following main result.

Theorem 3.1. Every second order vector field ξ on M obtained as pro-
jective limit of second order vector fields {ξi on M i}i∈N admits locally a
unique integral curve θ satisfying an initial condition of the form θ(0) =
x and Ttθ(∂t) = y, for every choice of x ∈M, y ∈ Tθ(t)M .

Proof. Since each ξi is a second order vector field on the Banach modeled
manifold M i, Theorem 2.3 ensures the existence of an integral curve θi

satisfying:

(ϕi
αoθi)′(t) = Φ2,i

α (ξi(θi(t))),

(ϕi
αoθi)′′(t) + (ϕi

αoθi)′(t) +

Γi
α(ϕi

αoθi)(t)[(ϕi
αoθi)′(t), (ϕi

αoθi)′(t)] = Φ3,i
α (ξi(θi(t))),

under the initial conditions θi(0) = xi := ϕi(x), and Ttθ
i(∂t) = yi :=

Tθ(t)ϕ
i(y), if ϕi : M = lim←−M i →M i, i ∈ N, are the canonical projections of

the projective limit.
We claim that θ := lim←− θi exists and fulfils the conditions of the theorem.

Indeed, we initially observe that for each pair of indices j ≥ i, ϕji ◦θj is also
an integral curve of ξi since:

(ϕi
α ◦ (ϕji ◦ θj))′(t) = (ρji ◦ ϕj

α ◦ θj)′(t) = ρji((ϕj
α ◦ θj)′(t)) =

= ρji(Φ2,j
α (ξj(θj(t)))) = Φ2,i

α (gji
2 (ξj(θj(t))))

= Φ2,i
α (ξi(ϕjioθj(t))) ;
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and

(ϕi
α ◦ (ϕji ◦ θj))′′(t) + (ϕi

α ◦ (ϕji ◦ θj))′(t)

+Γi
α(ϕi

α ◦ (ϕjioθj)(t))[(ϕi
α ◦ (ϕjioθj))′(t), (ϕi

α ◦ (ϕjioθj))′(t))]

= (ρji ◦ ϕj
α ◦ θj)′′(t) + (ρji ◦ ϕj

α ◦ θj)′(t)+

+Γi
α((ρji ◦ ϕj

α ◦ θj)(t))[(ρji ◦ ϕj
α ◦ θj)′(t), (ρji ◦ ϕj

α ◦ θj)′(t))]

= ρji((ϕj
α ◦ θj)′′(t) + (ϕj

α ◦ θj)′(t)+

+Γj
α((ϕj

α ◦ θj)(t))[(ϕj
α ◦ θj)′(t), (ϕj

α ◦ θj)′(t)])

= ρji(Φ3,j
α (ξj(θj(t)))) = Φ3,i

α (gji
2 (ξj(θj(t))))

= Φ3,i
α (ξi(ϕjioθj(t))) .

On the other hand,
θi(0) = xi and Ttθ

i(∂t) = yi, give (ϕji◦θj)(0) = xi and Tθj(t)ϕ
jioθj(∂t) = yi.

As a result, ϕji ◦θj and θi will coincide as integral curves of the same second
order vector fields over the same initial conditions. Therefore, θ = lim←− θi

exists and is smooth as a projective limit of smooth functions (see [13]).
On the other hand,

(ϕα ◦ θ)′(t) = ((ϕi
α ◦ θi)′(t))i∈N = (Φ2,i

α (ξi(θi(t)))i∈N = Φ2
α(ξ(θ(t)))

and

(ϕα ◦ θ)′′(t) + (ϕα ◦ θ)′(t) + Γα((ϕα ◦ θ)(t))[(ϕα ◦ θ)′(t), (ϕα ◦ θ)′(t)]

= ((ϕi
α ◦ θi)′′(t) + (ϕi

α ◦ θi)′(t) + Γi
α((ϕi

α ◦ θi)(t))[(ϕi
α ◦ θi)′(t), (ϕi

α ◦ θi)′(t)])i∈N

= (Φ3,i
α (ξi(θi(t))))i∈N = Φ3

α(ξ(θ(t)))

We have proved in this way that θ is the desired integral curve of the
second order vector field ξ. The uniqueness of it under the given initial
conditions is obtained following similar reasoning and by checking that each
projection of θ via the canonical mappings ϕi : M → M i is the unique
integral curve of ξi satisfying θi(0) = xi and Ttθ

i(∂1
t ) = yi. �

4. Applications - Examples.

Geodesic curves of Riemannian manifolds.
The new approach to second order differential equations on manifolds

proposed in the previous sections, gives also a very simple way to describe
a class of geodesic curves in a Riemannian manifold. To be more precise
let (M, g) be an infinite dimensional Riemannian manifold endowed with a
smooth atlas {(Uα, φα)}α∈I and ∇ a Riemannian connection characterized
by the Christoffel symbols

{Γα : φα(Uα) −→ L2
s(E× E; E)}α∈I .

Keeping the formalism of Sections 1 and 2, let ξ be a second order vector
field on M induced by a constant curve:

ξ(x) = [(cx, x)]2,

where cx(t) = x, t ∈ [0, 1]. Then, the local expression of ξ takes the form:
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Φα([(cx, x)]2) =
(
x, (φα ◦ cx)′(0), (φα ◦ cx)′′(0)

+Γα(φα(x))[(φα ◦ cx)′(0), (φα ◦ cx)′(0)]
)

= (x, 0, 0).

As a result, equation (2) that provides the corresponding integral curves θ
of ξ through x (see Theorem 2.3) will reduce to

(φα ◦ θ)′′(t) = 0, a ∈ I,

which ensures that θ is a geodesic curve of M . We have proven in this way
that the integral curves of second order vector fields induced by constant
functions are geodesics.

This result holds also for every second order vector field ξ that locally
fulfils

Φ2
α ◦ ξ = Φ3

α ◦ ξ, a ∈ I.

In this case, equation (2) reduces to

(φα ◦ θ)′′(t) + Γa((φα ◦ θ)(t))((φα ◦ θ)′(t), (φα ◦ θ)′(t)) = 0, a ∈ I,

which is exactly the local condition that a geodesic of M has to satisfy.
In the sequel we give two more examples of applications that clarify fur-

ther our method.

Example 1. Second Order Differential Equations on the model
space.

If we consider the manifold M = E endowed with the differential structure
induced by the total chart (E, idE), and consider the canonical flat connec-
tion with trivial Christoffel symbols Γ(x)(u) = 0, for each (x, u) ∈ E× E,
then the second order tangent bundle T 2E becomes a vector bundle with
(total) vector chart

Φ : T 2E→ E× E× E : [(c, x)]2 7−→
(
x, c′(0), c′′(0)

)
.

This is the case either for a Banach or a Fréchet model space. In this way, if
ξ is a second order vector field on E and θ : R→ E a corresponding integral
curve, equations (2) reduce to

θ′(t) = Φ2
α(ξ(θ(t))),

θ′′(t) + θ′(t) = Φ3
α(ξ(θ(t))),

which is an ordinary differential equation of second order on E. Always this
can be solved uniquely under given initial conditions in the case of Banach
spaces as well as in the Fréchet framework if we assume that the vector field
ξ is a projective limit (cf. [12]).

Moreover, the integral curves of a second order vector field induced by a
constant function will satisfy the equation:

θ′′(t) = 0,

therefore, it will be a line θ(t) = at + b, a, b ∈ R.
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Example 2. Second Order Differential Equations on Lie groups.
Let G be a Lie group modelled on E endowed with the so-called direct

connection ∇G, that is the unique connection which is (µ, idG)-conjugate
with the canonical flat connection of the trivial bundle (G×G, pr1, G), where

µ : G× G '→ TG : (g, h) 7→ TeLg(h)

denotes the left parallelization of G and G the Lie algebra of G. If ba(x) gives
the local expression of the isomorphism TeLx : TeG→ TxG with respect to
the chart (Ua, φa), then the Christoffel symbols of ∇G take the form

ΓG
a (x)(k, h) = −Dba(x)(k, b−1

a (x)(h)); x ∈ φa(Ua), k, h ∈ E,

(for a complete presentation of the notion of direct connection and the rele-
vant proofs we refer to [26]). As a result, equations (2) take in this case the
form

(φα ◦ θ)′(t) = Φ2
α(ξ(θ(t))),

(φα ◦ θ)′′(t) + (φα ◦ θ)′(t) −
Db(x)((φα ◦ θ)′(t), b−1(x)((φα ◦ θ)′(t))) = Φ3

α(ξ(θ(t))),

which is the local form of a second order differential equation on G.
As in the first example, always the above equations admit solutions in

the Banach case. For Fréchet Lie groups obtained as projective limits, the
differential equation at hand also can be solved uniquely with respect to
given initial conditions if the second order vector field ξ can be realized as a
projective limit. In this case the problem is equivalent to a countable system
of differential equations on the Banach factors (cf. [9]).
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