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Abstract

Given a Riemannian manifold M with boundary and a torus G which acts by isometries
on M and let X be in the Lie algebra of G and corresponding vector field Xj; on M, we con-
sider Witten’s coboundary operator dy,, = d + 1x,, on invariant forms on M. In [1] we intro-
duce the absolute Xy-cohomology Hy (M) = H*(Qg, dx,,) and the relative Xj-cohomology
Hy, (M,0M) = H*(Qg p, dx,,) where the D is for Dirichlet boundary condition and Qg is the
invariant forms on M. Let 8y,, be the adjoint of dx,, and the resulting Witten-Hodge-Laplacian is
Ax, = dxMSXM + SXdeM where the space kerAy,, is called the Xj/-harmonic forms. In this pa-
per, we prove that the (even/odd) Xj,-harmonic cohomology which is the Xj/-cohomology of the
subcomplex (kerAy,,,dx,,) of the complex (Qf;,dx,,) is enough to determine the total absolute
and relative Xjs/-cohomology. As conclusion, we infer that the free part of the absolute and rela-
tive equivariant cohomology groups are determined by the (even/odd) Xj,-harmonic cohomology
when the set of zeros of the corresponding vector field Xy, is equal to the fixed point set F* for the
G-action.

Keywords: Algebraic topology, equivariant topology, manifolds with boundary, cochain complex,
group actions, equivariant cohomology.
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1 Introduction
In [3], S.Cappell, D. DeTurck et al. present the following main theorem,

Theorem 1.1 [3]. Let M be a compact, connected, oriented smooth Riemannian manifold of dimen-
sion n with boundary. Then the cohomology of the complex (Harm*(M),d) of harmonic forms on M
is given by the direct sum of the de Rham cohomology:

H*(Harm*(M),d) = H*(M,R) + H* (M, R)
fork=0,1,...,n and Harm* (M) = ker A where A is the Laplacian operator.

The principle idea of this paper is to adapt theorem 1.1 in terms of our operators dy,,,dx,, and Ay,,
in order to study the Xy;-harmonic cohomology when the manifold in question has a boundary and
then we relate the Xj,-harmonic cohomology with the free part of the relative and absolute equivariant
cohomology.

More precisely, in this paper, we consider a compact, connected, oriented, smooth Riemannian
manifold M (with or without boundary) and we suppose G is a torus acting by isometries on M and
denote by Q’(‘; the k-forms invariant under the action of G. Given X in the Lie algebra of G and



corresponding vector field Xjs on M, in [1], we consider Witten’s coboundary operator dx,, = d +1y,,.
This operator is no longer homogeneous in the degree of the invariant form: if ® € Q’& then dy,, o €
QL @ QF!. Note then that dy,, : QF — QF, where QF is the space of invariant forms of even (+)
or odd (—) degree. A Riemannian metric on M leads to an L’-inner product

.B) = [ anGp)

which is defined on Qg;(M), where x : Qf;, — Qi " is the Hodge star operator and then it leads us to
the formal adjoint 8x,, = —(F1)" xdx, * : QF — QF of dx,,. The resulting Witten-Hodge-Laplacian
is Ax,, = (dx,, + 8x,,)% = dx,,dx,, + dx,,dx,, : QF — QF.

When the manifold in question M is closed we define the Xj;-cohomology which is the cohomol-
ogy of the complex (g, dx, ) where d%M = 0 because the forms are invariant (see [1] for details)
and we denote it by H;{M (M). In this setting, Witten [4] introduces the definition of the Xy;-harmonic
forms (as we call in [1]) which we denote in this paper by Harmy, (M) = Harm;M (M) + Harmy (M);
then it is the kernel of the Witten-Hodge-Laplacian operator Ay,, (following [1]), i.e.

Harmy, (M) =kerAx, N Qg = {0 € Q; | Ay, 0=0}.

Clearly, Harm}ng (M) C QL. but Ay,, and dx,, commute which means that the coboundary operator
dx,, preserves the Xj/-harmonicity of invariant forms. i.e.

d
Harme (M) —, Harmy (M)

Hence, (Harmy, (M),dx,,) is a subcomplex of the Z-graded complex (Q;,dy,,). Therefore, we can
compute the Xj;-cohomology of this complex which we call the Xj;-harmonic cohomology and denote
by H*(Harmy, (M),dx,, ).

In the boundaryless case, we have proved that the space of Xy,-harmonic fields H;EM = kerdy,, N
ker 8y,, equal to the space of Xj;-harmonic forms [1], i.e.

Harmiw (M) = H%M

Thus, we can conclude that all of the maps in the subcomplex (Harmy, (M),dy,,) are zero which
means that
H*(Harmj, (M),dy,) = Harm%M (M) = H;EM.

But, proposition 2.6 of [1] asserts that H)?M (M) = H;M, hence,
H*(Harmy, (M),dx,,) = Hy. (M). (1.1)

From another hand, eq.(1.1) is no longer true when the manifold in question has a boundary
because the space of Xjs-harmonic forms Harm}fM (M) no longer coincides with the space of Xj-
harmonic fields H)j(EM [1]. Therefore, the main purpose of this paper is to study the Xj,-harmonic
cohomology when the manifold in question has a boundary and the result is theorem 2.3.

In the remainder of this introduction we recall necessary results from [1] and [2] when oM # 0.
In [1], we define two types of Xj,;-cohomology, the absolute Xj;-cohomology H;{M (M) and the relative
Xjr-cohomology H;M (M,0M). The first is the cohomology of the complex (Qg;, dx,, ), while the
second is the cohomology of the subcomplex (Qg; p, dx, ), where ® € QéD if it satisfies i*® = 0
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(the D is for Dirichlet boundary condition). One also defines Qg (M) = {a € Q5 (M) | i* (xat) = 0}
(Neumann boundary condition). Clearly, the Hodge star provides an isomorphism
.0 ™~ —+
*: QG, p— Q&N

where we write n — = for the parity (modulo 2) resulting from subtracting an even/odd number from n.
Furthermore, because dy,, and i* commute, it follows that dy,, preserves Dirichlet boundary conditions
while Jy,, preserves Neumann boundary conditions. In fact, the space H;M (M) is infinite dimensional
and so is much too big to represent the Xjs-cohomology, hence, we restrict H?M (M) into each of two
finite dimensional subspaces, namely H}?M’ p(M) and H;EM N (M) with the obvious meanings (Dirichlet
and Neumann Xj,-harmonic fields, respectively). There are therefore two different candidates for Xj,-
harmonic representatives when the boundary is present. This construction firstly leads us to present
the Xjs-Hodge-Morrey decomposition theorem which states that

Qg (M) =&y (M) ®Cy, (M) & Hy,, (M) (1.2)

where EJ%M (M) = {dx, 0 | @ € Qf ,} and C;(EM (M) = {8x,,B | B € Qf y}. This decomposition is or-
thogonal with respect to the L2-inner product given above.
In addition, we present the Xj,-Friedrichs Decomposition Theorem which states that

Hy, (M) = Hy, (M) ®Hy, oo(M) (1.3)
Hy, (M) = HffM,N(M)@HfM,eX(M) (1.4)

where 5, (M) = {§ € M3, (M) | & = dy, 0} and M, (M) = {n € My, (M) | n = By, 01}. These
give the orthogonal Xy;-Hodge-Morrey-Friedrichs decomposition [1],

Qs(M) = & (M)®Cy, (M)®Hy, y(M)DHy, (M) (1.5)

Ex, (M) ©Cx., (M) & Hy, (M) ®Hy, (M) (1.6)

The two decompositions are related by the Hodge star operator. The consequence for Xj,-cohomology
is that each class in H;{M (M) is represented by a unique X),-harmonic field in H;EM’N(M), and each

relative class in H)?M (M,0M) is represented by a unique Xy;-harmonic field in 'H)%M, p(M). The Hodge
star operator x induces an isomorphism

Hy (M) = Hy (M, oM). (1.7)

We call eq.(1.7) the Xjs-Poincaré-Lefschetz duality.
In order to prove the results for next section we will need the following theorem which is proved
in [2].

Theorem 1.2 [2]. Let M be a compact, oriented smooth Riemannian manifold of dimension n with
boundary and with an action of a torus G which acts by isometries on M. If an Xy-harmonic field
AE H;M (M) vanishes on the boundary OM, then A = 0, i.e.

H§M,N(M)HH§M,D(M) = {0} (1.8)
As a consequence of Theorem 1.2, we obtain the following result.

Corollary 1.3 [2]
H;(EM (M) = H§M,BX (M) + H}%M,CO (M) (1 9)

where “ 4+ is not a direct sum.
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2 Main results

In this section, we use the symbol 4 between the spaces to indicate a direct sum whereas we re-
serve the symbol @ for an orthogonal (with respect to L2-inner product) direct sum unless otherwise
indicated.

We begin with the following remark.

Remark 2.1 We need to define the following subspaces:
Ey,, (M) = {dx, 0| o€ QG (M)}
and
cEx, (M) = {8x,0| o € QE(M)}.
But, the X3,-Hodge-Morrey decomposition (1.2) implies the following decompositions:
E):(EM = E):(‘:M (M) = g):(tM (M) @ H;(tM,GX (M)

and
cEy, = cEy, (M) = Cx, (M) & Hy,, .,(M).

2.1 The image of the Witten-Hodge-Laplacian operator

The image of the Witten-Hodge-Laplacian operator Ay,, will be most important to obtain our main
theorem 2.3. We therefore need first to prove the following lemma 2.2.

Lemma 2.2 Let M be a compact, connected, oriented smooth Riemannian manifold of dimension n
with boundary and with an action of a torus G which acts by isometries on M. Then the Witten-
Hodge-Laplacian operator A, = dx,,8x,, + 8x,,dx,, : Q5 (M) — Q5 (M) is surjective.

PROOF:  We need to prove that Ay, (QF(M)) = Q& (M). Clearly, Ay, (Q5(M)) C QZ(M), so we
only need to prove the converse. To do so, we will first compute the image of Ax,, on each summand
of the Xj,-Hodge-Morrey decomposition (1.2).
It is clear that
Axy, (Ex,, (M) = dx,,8x, (Ex,, (M) C Ex,,.

Now, let B € EfM then = dy,, & and by applying the Xj;-Hodge-Morrey decomposition (1.2) on o we
get o = dx,, 6 + Ox,,p + A, so
[3 - dXMO(‘ = dXMSXMp

but also by (1.2), p can be written as p = dy,, €+ dx,, ©+ Kk which implies that
B = dXMa = dXMSXMp = dXM8)('1\4(:{)%8 € AXM(S):(EM (M))

Hence, Ay, (S)Q—LM (M)) = EfM. Likewise, AXM(C;EM (M)) = CE;(EM. Clearly, Ay,, (HfM (M)) =0. Using,
the above equations together with remark 2.1, we obtain

Ax, (Q5(M)) = Ex, +cEg,
= (&, (M) ML, o (M) + (Cx, (M) & Hy, oo(M)). (2.1)
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where “+ ““ is not a direct sum.
Finally, let ® € Qé (M) then the X);-Hodge-Morrey decomposition (1.2) together with corollary
1.3 assert that ® can be decomposed as

0= dXM(X‘(D + 6XM B(D + (dXM Po+ SXMG(D) € S%M (M) @C):(tM (M) ¥ (Hj(tM,ex (M) + H;(tM,co (M)) (2.2)

Rearranging eq.(2.2), we get that eq.(2.1) shows that ® € Ay,, (Q (M)) as desired. Thus, Ay,, is
surjective.
0

Now, it is time to present the following fundamental theorem which is analogues to theorem 1.1.

Theorem 2.3 Let M be a compact, connected, oriented smooth Riemannian manifold of dimension
n with boundary and with an action of a torus G which acts by isometries on M. Then the (even or
odd) Xy -harmonic cohomology of the subcomplex (Harmy, (M),dx,,) completely determines the total
Xu-cohomology of the complex (Q;,dx,, ) and it is given by the direct sum:

H* (Harmy, (M), dx,,) = Hy, (M) + H5, (M) = H, (M) 23)

PROOF:  Applying the definition of the X3;-cohomology of the subcomplex (Hannf(EM (M),dx,, ), we
obtain that
kerdy, |Harm,i(M (M)

H*(Harmy  (M),dy,,) =
( armXM( )7 XM) dXM(Harm):?M(M))

where kerdy,, |Harm§M ()= kerdy, N Harme (M). But, the X);-Hodge-Morrey-Friedrichs decomposi-
tion (1.5) implies the following decomposition

kerdy, lamg ()= Ex,, (M) & Hi, v (M) &M, o (M) =Hy,, (M) & Ex, Harmy, (M)

where Ey,, Harme (M) = EffM (M)N Harme (M). But dy,, (Harmy, (M)) C kerdy,, |Harm? (11)» then
M
we obtain a direct sum decomposition

Ex,, Harm)j([M (M)

X * kerdyy, |samy ()
H (Harme (M)deM) = dX (Harmi (M))
M M

N dx,, (Harm}FM (M))

= H}%M,N(M) +

However, the X;;-Hodge isomorphism theorem [1] asserts that H%M (M) = H§M7 ~(M). Hence, we only
need to prove that
Ex,, Harm%M (M) _ kerdy,,
X o~ (53
iy, (Harmy, (M) d, 2

(M).

We define the map Jy,, as follows :

Ex,, Harme (M)
dx,, (Harm)fM (M))

Bx, ([0]) = [8x, 9] € HY, (M), Vo] €

To prove Jy,, is a well-defined:
Let0; — 06, = dXMB, for some [.)) € Harm)fM(M) 1.€. AXMB = (dXMBXM +8XMdXM)B =0.



Then

SXMel - 8XM92 - 6XMdXMB
= _dXMSXMB
= dXM<_5XMB) € dXMgz (24)

Moreover, Jx,,B is Xy-harmonic as Ay, (dx,,B) = dx,,dx,,Ox,,B = S)Z(M(Gl —0,) = 0. It means that
dx,, (01 —62) € dx,, Harm}FM . Thus, SXM is a well-defined.

Next, we prove Jy,, is one-to-one. To this end, let ¢ € Ey,, Harm)j([M (M) and 8y, ¢ € d ngg- We
only need to prove ¢ € dy,, (Harmy, (M)). So, ¢ = dx,, B, and therefore

AXMB = (dXMSXM + 6X/\/ICIXM)[-)) = dXMSXM + 5XM(p € dXM'Qg

Thus, Ay, = dx,,n for some 1 € Qé, but Ay, is onto by lemma (2.2) then we can write 1| = Ay, C.
Hence, Ay, B = dy,m = dx,Ax, 6 = Ax,,dx, 6 which implies that § — dx, 6 € Harmy (M). Hence,
we can rewrite ¢ = dy,, 3 as follows, ¢ = dx,, (B —dx,,0) € dx,, (Harmy, (M)).

Finally, to prove SXM is onto. Given o € kerdy,,, we should find ¢ € Ey,, Harm,fM (M) such that
dx,p—aed xMQé- Applying lemma (2.2) on «, then we can write @ = Ay, B and then we take
¢ = dx,,B. one should notice that Ax,, ¢ = Ax,,dx, B = dx,,Ax, B = dx,, 00 = 0, so a € kerdy,,. Thus,
¢ € Ex, Harm)j(EM (M). Now,

6XM(p = SXMdXM(p = AXMB - dXMSXMB =0— dXMSXMB
So, 8x,¢—a € dXMQa as desired. Hence SXM is bijection map. So, eq.(2.3) holds. )
In addition, Ay,, and Jdx,, commute. Hence, the coboundary operator dy, preserves the Xj-
harmonicity of invariant forms. i.e.

)
Harm}%M (M) —2, Harmy, (M)

Thus, (Harmy, (M),3dyx,,) is a subcomplex of the Z,-graded complex (L;,8x,,). Therefore, we
can compute the Xy-cohomology of this complex which we denote by H*(Harmy, (M),8y,,). So,
applying the Hodge star to the isomorphism given by theorem 2.3 and replace n — (£) by + and then
using Xjs-Poincaré-Lefschetz duality (1.7) to obtain the following corollary.

Corollary 2.4

H™*(Harmy,, (M), 8y,,) = Hy, (M,0M)+ Hy{ (M,0M) = Hy, (M,0M)

3 Conclusions

In [1], we elucidate the connection between the Xj,-cohomology groups and the relative and absolute
equivariant cohomology groups (i.e. Hz (M) and Hz (M,0M)) which are modules over Ruy, ..., u]
and the result is the following theorem.



Theorem 3.1 [1]. Let {X,...,X¢} be a basis of the Lie algebra g and {u,, ... ,us} the corresponding
coordinates and let X =Y ;s;X; € g. If the set of zeros N(Xy) of the corresponding vector field Xy is
equal to the fixed point set F for the G-action then

Hy (M,0M) = H (M,0M) /mxHg (M,0M) = H*(F,0F), (3.1)
and
Hy (M) = Hg (M)/mxH; (M) = H*(F) (3.2)
where my = (uj — s1,...,u; — 1) is the ideal of polynomials vanishing at X.

We conclude that theorem 3.1, theorem 2.3 and corollary 2.4 prove the following theorem:

Theorem 3.2 With the hypotheses of the theorem 3.1. Then the (even or odd) Xy-harmonic coho-
mology of the subcomplexes (Harmy, (M),dy,,) and (Harmy, (M), 0x,,) completely determine the free
part of the absolute and relative equivariant cohomology groups, i.e.

H™(Harmy,, (M), dx,,) = H¢,(M) /myxHi(M) = H* (F)

and
Hi(Harm}*(M (M),8x,,) = H;(M,0M)/mxH;(M,0M) = H*(F,0F).
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