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Abstract

Given a Riemannian manifold M with boundary and a torus G which acts by isometries
on M and let X be in the Lie algebra of G and corresponding vector field XM on M, we con-
sider Witten’s coboundary operator dXM = d + ιXM on invariant forms on M. In [1] we intro-
duce the absolute XM-cohomology H∗

XM
(M) = H∗(Ω∗

G, dXM ) and the relative XM-cohomology
H∗

XM
(M, ∂M) = H∗(Ω∗

G,D, dXM ) where the D is for Dirichlet boundary condition and Ω∗
G is the

invariant forms on M. Let δXM be the adjoint of dXM and the resulting Witten-Hodge-Laplacian is
∆XM = dXM δXM + δXM dXM where the space ker∆XM is called the XM-harmonic forms. In this pa-
per, we prove that the (even/odd) XM-harmonic cohomology which is the XM-cohomology of the
subcomplex (ker∆XM ,dXM ) of the complex (Ω∗

G,dXM ) is enough to determine the total absolute
and relative XM-cohomology. As conclusion, we infer that the free part of the absolute and rela-
tive equivariant cohomology groups are determined by the (even/odd) XM-harmonic cohomology
when the set of zeros of the corresponding vector field XM is equal to the fixed point set F for the
G-action.

Keywords: Algebraic topology, equivariant topology, manifolds with boundary, cochain complex,
group actions, equivariant cohomology.
MSC 2010: 57R19, 55N91, 57R91

1 Introduction

In [3], S.Cappell, D. DeTurck et al. present the following main theorem,

Theorem 1.1 [3]. Let M be a compact, connected, oriented smooth Riemannian manifold of dimen-
sion n with boundary. Then the cohomology of the complex (Harm∗(M),d) of harmonic forms on M
is given by the direct sum of the de Rham cohomology:

Hk(Harm∗(M),d)∼= Hk(M,R)+Hk−1(M,R)

for k = 0,1, . . . ,n and Harm∗(M) = ker∆ where ∆ is the Laplacian operator.

The principle idea of this paper is to adapt theorem 1.1 in terms of our operators dXM ,δXM and ∆XM

in order to study the XM-harmonic cohomology when the manifold in question has a boundary and
then we relate the XM-harmonic cohomology with the free part of the relative and absolute equivariant
cohomology.

More precisely, in this paper, we consider a compact, connected, oriented, smooth Riemannian
manifold M (with or without boundary) and we suppose G is a torus acting by isometries on M and
denote by Ωk

G the k-forms invariant under the action of G. Given X in the Lie algebra of G and
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corresponding vector field XM on M, in [1], we consider Witten’s coboundary operator dXM = d+ ιXM .
This operator is no longer homogeneous in the degree of the invariant form: if ω ∈ Ωk

G then dXM ω ∈
Ω

k+1
G ⊕Ω

k−1
G . Note then that dXM : Ω

±
G → Ω

∓
G , where Ω

±
G is the space of invariant forms of even (+)

or odd (−) degree. A Riemannian metric on M leads to an L2-inner product

〈α, β〉=
Z

M
α∧ (?β)

which is defined on Ω∗
G(M), where ? : Ω∗

G → Ω
n−∗
G is the Hodge star operator and then it leads us to

the formal adjoint δXM = −(∓1)n ?dXM? : Ω
±
G → Ω

∓
G of dXM . The resulting Witten-Hodge-Laplacian

is ∆XM = (dXM +δXM)2 = dXM δXM +δXMdXM : Ω
±
G →Ω

±
G .

When the manifold in question M is closed we define the XM-cohomology which is the cohomol-
ogy of the complex (Ω∗

G, dXM) where d2
XM

= 0 because the forms are invariant (see [1] for details)
and we denote it by H±

XM
(M). In this setting, Witten [4] introduces the definition of the XM-harmonic

forms (as we call in [1]) which we denote in this paper by Harm∗
XM

(M) = Harm+
XM

(M)+Harm−
XM

(M);
then it is the kernel of the Witten-Hodge-Laplacian operator ∆XM (following [1]), i.e.

Harm±
XM

(M) = ker∆XM ∩Ω
±
G = {ω ∈Ω

±
G | ∆XM ω = 0}.

Clearly, Harm±
XM

(M)⊂Ω
±
G , but ∆XM and dXM commute which means that the coboundary operator

dXM preserves the XM-harmonicity of invariant forms. i.e.

Harm±
XM

(M)
dXM−−−→ Harm∓

XM
(M).

Hence, (Harm∗
XM

(M),dXM) is a subcomplex of the Z2-graded complex (Ω∗
G,dXM). Therefore, we can

compute the XM-cohomology of this complex which we call the XM-harmonic cohomology and denote
by H±(Harm∗

XM
(M),dXM).

In the boundaryless case, we have proved that the space of XM-harmonic fields H±
XM

= kerdXM ∩
kerδXM equal to the space of XM-harmonic forms [1], i.e.

Harm±
XM

(M) =H±
XM

Thus, we can conclude that all of the maps in the subcomplex (Harm∗
XM

(M),dXM) are zero which
means that

H±(Harm∗
XM

(M),dXM) = Harm±
XM

(M) =H±
XM

.

But, proposition 2.6 of [1] asserts that H±
XM

(M)∼=H±
XM

, hence,

H±(Harm∗
XM

(M),dXM)∼= H±
XM

(M). (1.1)

From another hand, eq.(1.1) is no longer true when the manifold in question has a boundary
because the space of XM-harmonic forms Harm±

XM
(M) no longer coincides with the space of XM-

harmonic fields H±
XM

[1]. Therefore, the main purpose of this paper is to study the XM-harmonic
cohomology when the manifold in question has a boundary and the result is theorem 2.3.

In the remainder of this introduction we recall necessary results from [1] and [2] when ∂M 6= /0.
In [1], we define two types of XM-cohomology, the absolute XM-cohomology H±

XM
(M) and the relative

XM-cohomology H±
XM

(M,∂M). The first is the cohomology of the complex (Ω∗
G, dXM), while the

second is the cohomology of the subcomplex (Ω∗
G,D, dXM), where ω ∈ Ω

±
G,D if it satisfies i∗ω = 0
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(the D is for Dirichlet boundary condition). One also defines Ω
±
G,N(M) =

{
α ∈Ω

±
G(M) | i∗(?α) = 0

}
(Neumann boundary condition). Clearly, the Hodge star provides an isomorphism

? : Ω
±
G,D

∼−→Ω
n−±
G,N

where we write n−± for the parity (modulo 2) resulting from subtracting an even/odd number from n.
Furthermore, because dXM and i∗ commute, it follows that dXM preserves Dirichlet boundary conditions
while δXM preserves Neumann boundary conditions. In fact, the spaceH±

XM
(M) is infinite dimensional

and so is much too big to represent the XM-cohomology, hence, we restrict H±
XM

(M) into each of two
finite dimensional subspaces, namely H±

XM ,D(M) and H±
XM ,N(M) with the obvious meanings (Dirichlet

and Neumann XM-harmonic fields, respectively). There are therefore two different candidates for XM-
harmonic representatives when the boundary is present. This construction firstly leads us to present
the XM-Hodge-Morrey decomposition theorem which states that

Ω
±
G(M) = E±XM

(M)⊕C±XM
(M)⊕H±

XM
(M) (1.2)

where E±XM
(M) = {dXM α | α ∈ Ω

∓
G,D} and C±XM

(M) = {δXM β | β ∈ Ω
∓
G,N}. This decomposition is or-

thogonal with respect to the L2-inner product given above.
In addition, we present the XM-Friedrichs Decomposition Theorem which states that

H±
XM

(M) = H±
XM ,D(M)⊕H±

XM ,co(M) (1.3)

H±
XM

(M) = H±
XM ,N(M)⊕H±

XM ,ex(M) (1.4)

where H±
XM ,ex(M) = {ξ ∈H±

XM
(M) | ξ = dXM σ} and H±

XM ,co(M) = {η ∈H±
XM

(M) | η = δXM α}. These
give the orthogonal XM-Hodge-Morrey-Friedrichs decomposition [1],

Ω
±
G(M) = E±XM

(M)⊕C±XM
(M)⊕H±

XM ,N(M)⊕H±
XM ,ex(M) (1.5)

= E±XM
(M)⊕C±XM

(M)⊕H±
XM ,D(M)⊕H±

XM ,co(M) (1.6)

The two decompositions are related by the Hodge star operator. The consequence for XM-cohomology
is that each class in H±

XM
(M) is represented by a unique XM-harmonic field in H±

XM ,N(M), and each
relative class in H±

XM
(M,∂M) is represented by a unique XM-harmonic field in H±

XM ,D(M). The Hodge
star operator ? induces an isomorphism

H±
XM

(M)∼= Hn−±
XM

(M, ∂M). (1.7)

We call eq.(1.7) the XM-Poincaré-Lefschetz duality.
In order to prove the results for next section we will need the following theorem which is proved

in [2].

Theorem 1.2 [2]. Let M be a compact, oriented smooth Riemannian manifold of dimension n with
boundary and with an action of a torus G which acts by isometries on M. If an XM-harmonic field
λ ∈H±

XM
(M) vanishes on the boundary ∂M, then λ≡ 0, i.e.

H±
XM ,N(M)∩H±

XM ,D(M) = {0} (1.8)

As a consequence of Theorem 1.2, we obtain the following result.

Corollary 1.3 [2]
H±

XM
(M) =H±

XM ,ex(M)+H±
XM ,co(M) (1.9)

where “+ “ is not a direct sum.
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2 Main results

In this section, we use the symbol + between the spaces to indicate a direct sum whereas we re-
serve the symbol ⊕ for an orthogonal (with respect to L2-inner product) direct sum unless otherwise
indicated.

We begin with the following remark.

Remark 2.1 We need to define the following subspaces:

E±
XM

(M) = {dXM α | α ∈Ω
∓
G(M)}

and
cE±

XM
(M) = {δXM α | α ∈Ω

∓
G(M)}.

But, the XM-Hodge-Morrey decomposition (1.2) implies the following decompositions:

E±
XM

= E±
XM

(M) = E±XM
(M)⊕H±

XM ,ex(M)

and
cE±

XM
= cE±

XM
(M) = C±XM

(M)⊕H±
XM ,co(M).

2.1 The image of the Witten-Hodge-Laplacian operator

The image of the Witten-Hodge-Laplacian operator ∆XM will be most important to obtain our main
theorem 2.3. We therefore need first to prove the following lemma 2.2.

Lemma 2.2 Let M be a compact, connected, oriented smooth Riemannian manifold of dimension n
with boundary and with an action of a torus G which acts by isometries on M. Then the Witten-
Hodge-Laplacian operator ∆XM = dXM δXM +δXMdXM : Ω

±
G(M)−→Ω

±
G(M) is surjective.

PROOF: We need to prove that ∆XM(Ω±
G(M)) = Ω

±
G(M). Clearly, ∆XM(Ω±

G(M)) ⊂ Ω
±
G(M), so we

only need to prove the converse. To do so, we will first compute the image of ∆XM on each summand
of the XM-Hodge-Morrey decomposition (1.2).

It is clear that
∆XM(E±XM

(M)) = dXM δXM(E±XM
(M))⊂ E±

XM
.

Now, let β∈ E±
XM

then β = dXM α and by applying the XM-Hodge-Morrey decomposition (1.2) on α we
get α = dXM σ+δXM ρ+λ, so

β = dXM α = dXM δXM ρ

but also by (1.2), ρ can be written as ρ = dXM ε+δXM π+κ which implies that

β = dXM α = dXM δXM ρ = dXM δXMdXM ε ∈ ∆XM(E±XM
(M)).

Hence, ∆XM(E±XM
(M)) = E±

XM
. Likewise, ∆XM(C±XM

(M)) = cE±
XM

. Clearly, ∆XM(H±
XM

(M)) = 0 . Using,
the above equations together with remark 2.1, we obtain

∆XM(Ω±
G(M)) = E±

XM
+ cE±

XM

= (E±XM
(M)⊕H±

XM ,ex(M))+(C±XM
(M)⊕H±

XM ,co(M)). (2.1)
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where “+ “ is not a direct sum.
Finally, let ω ∈ Ω

±
G(M) then the XM-Hodge-Morrey decomposition (1.2) together with corollary

1.3 assert that ω can be decomposed as

ω = dXM αω +δXM βω +(dXM ρω +δXM σω) ∈ E±XM
(M)⊕C±XM

(M)⊕ (H±
XM ,ex(M)+H±

XM ,co(M)) (2.2)

Rearranging eq.(2.2), we get that eq.(2.1) shows that ω ∈ ∆XM(Ω±
G(M)) as desired. Thus, ∆XM is

surjective.
r

Now, it is time to present the following fundamental theorem which is analogues to theorem 1.1.

Theorem 2.3 Let M be a compact, connected, oriented smooth Riemannian manifold of dimension
n with boundary and with an action of a torus G which acts by isometries on M. Then the (even or
odd) XM-harmonic cohomology of the subcomplex (Harm∗

XM
(M),dXM) completely determines the total

XM-cohomology of the complex (Ω∗
G,dXM) and it is given by the direct sum:

H±(Harm∗
XM

(M),dXM)∼= H±
XM

(M)+H∓
XM

(M) = H∗
XM

(M) (2.3)

PROOF: Applying the definition of the XM-cohomology of the subcomplex (Harm±
XM

(M),dXM), we
obtain that

H±(Harm∗
XM

(M),dXM) =
kerdXM |Harm±

XM
(M)

dXM(Harm∓
XM

(M))

where kerdXM |Harm±
XM

(M)= kerdXM ∩Harm±
XM

(M). But, the XM-Hodge-Morrey-Friedrichs decomposi-
tion (1.5) implies the following decomposition

kerdXM |Harm±
XM

(M)= E±XM
(M)⊕H±

XM ,N(M)⊕H±
XM ,ex(M) =H±

XM ,N(M)⊕EXM Harm±
XM

(M)

where EXM Harm±
XM

(M) = E±
XM

(M)∩Harm±
XM

(M). But dXM(Harm∓
XM

(M)) ⊂ kerdXM |Harm±
XM

(M), then
we obtain a direct sum decomposition

H±(Harm∗
XM

(M),dXM) =
kerdXM |Harm±

XM
(M)

dXM(Harm∓
XM

(M))
=H±

XM ,N(M)+
EXM Harm±

XM
(M)

dXM(Harm∓
XM

(M))

However, the XM-Hodge isomorphism theorem [1] asserts that H±
XM

(M)∼=H±
XM ,N(M). Hence, we only

need to prove that
EXM Harm±

XM
(M)

dXM(Harm∓
XM

(M))
∼=

kerdXM

dXM Ω
±
G

∼= H∓
XM

(M).

We define the map δXM as follows :

δXM([ϕ]) = [δXM ϕ] ∈ H∓
XM

(M), ∀[ϕ] ∈
EXM Harm±

XM
(M)

dXM(Harm∓
XM

(M))

To prove δXM is a well-defined:
Let θ1−θ2 = dXM β, for some β ∈ Harm∓

XM
(M). i.e. ∆XM β = (dXM δXM +δXMdXM)β = 0.
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Then

δXM θ1−δXM θ2 = δXMdXM β

= −dXM δXM β

= dXM(−δXM β) ∈ dXM Ω
±
G (2.4)

Moreover, δXM β is XM-harmonic as ∆XM(δXM β) = δXMdXM δXM β = δ2
XM

(θ1 − θ2) = 0. It means that
δXM(θ1−θ2) ∈ dXM Harm∓

XM
. Thus, δXM is a well-defined.

Next, we prove δXM is one-to-one. To this end, let ϕ ∈ EXM Harm±
XM

(M) and δXM ϕ ∈ dXM Ω
±
G . We

only need to prove ϕ ∈ dXM(Harm∓
XM

(M)). So, ϕ = dXM β, and therefore

∆XM β = (dXM δXM +δXMdXM)β = dXM δXM +δXM ϕ ∈ dXM Ω
±
G

Thus, ∆XM β = dXM η for some η ∈ Ω
±
G , but ∆XM is onto by lemma (2.2) then we can write η = ∆XM σ.

Hence, ∆XM β = dXM η = dXM ∆XM σ = ∆XMdXM σ which implies that β− dXM σ ∈ Harm∓
XM

(M). Hence,
we can rewrite ϕ = dXM β as follows, ϕ = dXM(β−dXM σ) ∈ dXM(Harm∓

XM
(M)).

Finally, to prove δXM is onto. Given α ∈ kerdXM , we should find ϕ ∈ EXM Harm±
XM

(M) such that
δXM ϕ−α ∈ dXM Ω

±
G . Applying lemma (2.2) on α, then we can write α = ∆XM β and then we take

ϕ = dXM β. one should notice that ∆XM ϕ = ∆XMdXM β = dXM ∆XM β = dXM α = 0, so α ∈ kerdXM . Thus,
ϕ ∈ EXM Harm±

XM
(M). Now,

δXM ϕ = δXMdXM ϕ = ∆XM β−dXM δXM β = α−dXM δXM β

So, δXM ϕ−α ∈ dXM Ω
±
G , as desired. Hence δXM is bijection map. So, eq.(2.3) holds. r

In addition, ∆XM and δXM commute. Hence, the coboundary operator δXM preserves the XM-
harmonicity of invariant forms. i.e.

Harm±
XM

(M)
δXM−−−→ Harm∓

XM
(M)

Thus, (Harm∗
XM

(M),δXM) is a subcomplex of the Z2-graded complex (Ω∗
G,δXM). Therefore, we

can compute the XM-cohomology of this complex which we denote by H±(Harm∗
XM

(M),δXM). So,
applying the Hodge star to the isomorphism given by theorem 2.3 and replace n− (±) by ± and then
using XM-Poincaré-Lefschetz duality (1.7) to obtain the following corollary.

Corollary 2.4

H±(Harm∗
XM

(M),δXM)∼= H±
XM

(M,∂M)+H∓
XM

(M,∂M) = H∗
XM

(M,∂M)

3 Conclusions

In [1], we elucidate the connection between the XM-cohomology groups and the relative and absolute
equivariant cohomology groups (i.e. H±

G (M) and H±
G (M,∂M)) which are modules over R[u1, . . . ,u`]

and the result is the following theorem.
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Theorem 3.1 [1]. Let {X1, . . . ,X`} be a basis of the Lie algebra g and {u1, . . . ,u`} the corresponding
coordinates and let X = ∑ j s jX j ∈ g. If the set of zeros N(XM) of the corresponding vector field XM is
equal to the fixed point set F for the G-action then

H±
XM

(M, ∂M)∼= H±
G (M,∂M)/mX H±

G (M,∂M)∼= H±(F,∂F), (3.1)

and
H±

XM
(M)∼= H±

G (M)/mX H±
G (M)∼= H±(F) (3.2)

where mX = 〈u1− s1, . . . ,ul − sl〉 is the ideal of polynomials vanishing at X.

We conclude that theorem 3.1, theorem 2.3 and corollary 2.4 prove the following theorem:

Theorem 3.2 With the hypotheses of the theorem 3.1. Then the (even or odd) XM-harmonic coho-
mology of the subcomplexes (Harm∗

XM
(M),dXM) and (Harm∗

XM
(M),δXM) completely determine the free

part of the absolute and relative equivariant cohomology groups, i.e.

H±(Harm∗
XM

(M),dXM)∼= H∗
G(M)/mX H∗

G(M)∼= H∗(F)

and
H±(Harm∗

XM
(M),δXM)∼= H∗

G(M,∂M)/mX H∗
G(M,∂M)∼= H∗(F,∂F).
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