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LINEARIZATIONS OF SINGULAR MATRIX POLYNOMIALS AND
THE RECOVERY OF MINIMAL INDICES ∗

FERNANDO DE TERÁN† , FROILÁN M. DOPICO‡ , AND D. STEVEN MACKEY §

Abstract. A standard way of dealing with a regular matrix polynomial P (λ) is to convert it into
an equivalent matrix pencil – a process known as linearization. Two vector spaces of pencils L1(P )
and L2(P ) that generalize the first and second companion forms have recently been introduced by
Mackey, Mackey, Mehl and Mehrmann. Almost all of these pencils are linearizations for P (λ) when
P is regular. The goal of this work is to show that most of the pencils in L1(P ) and L2(P ) are still
linearizations when P (λ) is a singular square matrix polynomial, and that these linearizations can
be used to obtain the complete eigenstructure of P (λ), comprised not only of the finite and infinite
eigenvalues, but also for singular polynomials of the left and right minimal indices and minimal bases.
We show explicitly how to recover the minimal indices and bases of the polynomial P (λ) from the
minimal indices and bases of linearizations in L1(P ) and L2(P ). As a consequence of the recovery
formulae for minimal indices, we prove that the vector space DL(P ) = L1(P ) ∩ L2(P ) will never
contain any linearization for a square singular polynomial P (λ). Finally, the results are extended to
other linearizations of singular polynomials defined in terms of more general polynomial bases.

Key words. singular matrix polynomials, matrix pencils, minimal indices, minimal bases,
linearization
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1. Introduction. Throughout this work we consider n× n matrix polynomials
with degree k of the form

P (λ) =
k∑

i=0

λiAi , A0, . . . , Ak ∈ Fn×n, Ak 6= 0 , (1.1)

where F is the field of real or complex numbers. Our focus is on singular matrix
polynomials. A matrix polynomial P (λ) is said to be singular if det P (λ) is identically
zero, and it is said to be regular otherwise. Square singular polynomials appear in
practice, although not as frequently as regular polynomials. One well-known example
is the study of differential-algebraic equations (see for instance [7] and the references
therein). Other sources of problems involving singular matrix polynomials are control
and linear systems theory [22], where the problem of computing minimal polynomial
bases of null spaces of singular matrix polynomials is still the subject of intense
research (see [3] and the references therein for an updated bibliography). In this
context, it should be noted that the matrix polynomials arising in control are often full-
rank rectangular polynomials. However square singular polynomials are also present
in applications connected with linear systems [31].
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The standard way to numerically solve polynomial eigenvalue problems for regular
polynomials P (λ) is to first linearize P (λ) into a matrix pencil L(λ) = λX + Y with
X, Y ∈ Fnk×nk, and then compute the eigenvalues and eigenvectors of L(λ). The
classical approach is to use as linearizations the first and second companion forms
[17]. However, companion forms may not share the structure of the original matrix
polynomial. For instance, if the original polynomial is symmetric, skew-symmetric,
or palindromic, the companion forms are not. Therefore the rounding errors inherent
to numerical computations may destroy qualitative aspects of the spectrum. This has
motivated the recent development of new classes of linearizations in [25] that have
been further analyzed in [19, 20, 21, 26]. More recently, other classes of linearizations
have been studied in [1, 2], some of which are closely connected to the ones in [25]. A
different family of linearizations was introduced in [4, 5].

All of the new classes of linearizations introduced in [2, 4, 25] have been studied
only for regular matrix polynomials. It has been an open problem to determine
if these pencils are linearizations when the square polynomial P (λ) is singular, and,
when they are, to investigate if they can be used to obtain the complete eigenstructure
of P (λ), i.e., the finite and infinite elementary divisors together with the left and right
minimal indices [14, 22], and also to obtain the corresponding minimal bases. It is
also an open problem to study if the new families of linearizations can be extended
to rectangular matrix polynomials, a problem that may have relevant applications in
structured problems in control and differential-algebraic equations. In this context
it is interesting to note that minimal indices and bases arise in many problems in
control [14, 22], and that their numerical computation is a hard problem that can
be addressed in several different ways [3]. Among them, the companion linearization
approach is one of the most reliable methods from a numerical point of view [6, 30].

In this work, we initiate the study of the extension of the new classes of lineariza-
tions to the case of square matrix polynomials that are singular. To keep the paper
concise, we consider only the vector spaces of pencils introduced in [25] and those lin-
earizations in [2] that are connected to the ones in [25]. Results concerning the family
of linearizations introduced in [4] will be presented in the forthcoming paper [12]. In
[25], two vector spaces of pencils L1(P ) and L2(P ) that generalize the first and second
companion forms of the square polynomial P (λ) were defined, and it was proved that
almost all of the elements in these vector spaces are linearizations for P (λ) when P (λ)
is regular. We will prove that this is also true when P (λ) is a singular square matrix
polynomial. In addition, we will show that the left and right minimal indices and
bases of P (λ) can be easily recovered from the minimal indices and bases of the lin-
earizations in L1(P ) and L2(P ). All these results can be transferred to those pencils
in [2, Sections 2 and 3] that are defined in terms of degree-graded polynomial bases,
by showing that each of these pencils is strictly equivalent to some pencil in [25].

Finally, we will use the properties of the minimal index recovery formulae to prove
that the vector space of pencils DL(P ) = L1(P ) ∩ L2(P ) does not contain any lin-
earization of a square singular polynomial P (λ). This result contrasts sharply with
the situation for regular polynomials P , where almost every pencil in DL(P ) is a
(strong) linearization for P . The pencils in DL(P ) also play a crucial role in the con-
struction of all structure-preserving pencils in L1(P ) or L2(P ) for polynomials P that
are either symmetric, Hermitian, alternating, or palindromic [20, 26]. Consequently
our results show that neither L1(P ) nor L2(P ) can ever provide any structured lin-
earization for a singular polynomial P with symmetric, Hermitian, alternating, or
palindromic structure.
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The paper is organized as follows. In Section 2 we recall some basic concepts
that are used throughout the paper. In addition, we show that strong linearizations
of a singular matrix polynomial P (λ) are the only matrix polynomials of degree one
that allow even the possibility of recovering the complete eigenstructure of P (λ). In
Section 3 we establish relationships between the minimal indices and bases of a matrix
polynomial and those of its reversal polynomial, and also between the left and right
minimal indices and bases of symmetric, Hermitian, alternating, and palindromic
polynomials; these relationships may be useful in other contexts. We prove in Section
4 that given a square singular matrix polynomial P (λ), almost all pencils in the
vector spaces L1(P ) and L2(P ) are strong linearizations for P (λ), and then in Section
5 show how to recover the minimal indices and bases of P (λ) from the corresponding
quantities of these linearizations. These recovery results enable us to prove in Section 6
that none of the pencils in DL(P ) is ever a linearization for a singular P (λ). Recovery
of minimal indices and bases of a singular polynomial from those of the linearizations
introduced in [2, Sections 2 and 3] is then studied in Section 7; other related but
more general linearizations are also considered. We close with some conclusions and
discussion of future work in Section 8.

2. Basic definitions and results.

2.1. Null spaces, elementary divisors, and linearizations. We denote by
F(λ) the field of rational functions with coefficients in F, and by F(λ)n the vector
space of n-tuples with entries in F(λ). The normal rank of a matrix polynomial P (λ),
denoted nrank P (λ) , is the rank of P (λ) considered as a matrix with entries in F(λ),
or equivalently, the size of the largest non-identically zero minor of P (λ) [15]. A finite
eigenvalue of P (λ) is a complex number λ0 such that

rank P (λ0) < nrank P (λ) .

We say that P (λ) has an infinite eigenvalue if the reversal polynomial

revP (λ) := λkP (1/λ) =
k∑

i=0

λiAk−i (2.1)

has zero as eigenvalue.
An n×n singular matrix polynomial P (λ) has right and left null vectors, that is,

vectors x(λ) ∈ F(λ)n and y(λ) ∈ F(λ)n such that P (λ)x(λ) ≡ 0 and yT (λ)P (λ) ≡ 0,
where yT (λ) denotes the transpose of y(λ). This leads to the following definition.

Definition 2.1. The right and left nullspaces of the n × n matrix polynomial
P (λ), denoted by Nr(P ) and N`(P ) respectively, are the following subspaces of F(λ)n :

Nr(P ) := {x(λ) ∈ F(λ)n : P (λ)x(λ) ≡ 0} ,

N`(P ) :=
{
y(λ) ∈ F(λ)n : yT (λ)P (λ) ≡ 0

}
.

Note that we have the identity

nrank(P ) = n− dimNr(P ) = n− dimN`(P ), (2.2)

and, in particular, dimNr(P ) = dimN`(P ).
It is well known that the elementary divisors of P (λ) (see definition in [15])

corresponding to its finite eigenvalues, as well as the dimensions of Nr(P ) and N`(P ),
are invariant under equivalence with respect to unimodular matrices, i.e., under pre-
and post-multiplication by matrix polynomials with nonzero constant determinant
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[15]. The elementary divisors of P (λ) corresponding to the infinite eigenvalue are
defined as the elementary divisors corresponding to the zero eigenvalue of the reversal
polynomial [18, Definition 1].

Next we recall the definition of linearization as introduced in [17], and also the
related notion of strong linearization introduced in [16] and named in [23].

Definition 2.2. A matrix pencil L(λ) = λX + Y with X, Y ∈ Fnk×nk is a lin-
earization of an n×n matrix polynomial P (λ) of degree k if there exist two unimodular
nk × nk matrices E(λ) and F (λ) such that

E(λ)L(λ)F (λ) =
[

P (λ) 0
0 I(k−1)n

]
,

or in other words, if L(λ) is equivalent to diag(P (λ), I(k−1)n). A linearization L(λ)
is called a strong linearization if revL(λ) is also a linearization of revP (λ).

These definitions were introduced in [16, 17] only for regular polynomials; we
are extending them here to square singular polynomials. In linear systems theory,
some linearizations closely related to the companion forms have already been used for
singular matrix polynomials [6, 30]. Recently [7], linearizations of possibly singular
polynomials that may have smaller dimension than the ones in Definition 2.2 have
been introduced in the context of differential algebraic equations. Following this
idea, the minimal dimension for linearizations of a given matrix polynomial has been
determined in [11].

Since Definition 2.2 was originally introduced only for regular matrix polyno-
mials, one may wonder if linearizations are appropriate tools with which to study
singular (square) matrix polynomials. The following result strongly indicates that
the only nk × nk pencils from which one can reasonably hope to recover the complete
eigenstructure of a singular polynomial P are the strong linearizations of P .

Lemma 2.3. Let P (λ) be an n × n matrix polynomial of degree k and L(λ) an
nk × nk matrix pencil, and consider the following conditions on L(λ) and P (λ):

(a) dimNr(L) = dimNr(P ) ,
(b) the finite elementary divisors of L(λ) and P (λ) are identical ,
(c) the infinite elementary divisors of L(λ) and P (λ) are identical .

Then L(λ) is
• a linearization of P (λ) if and only if conditions (a) and (b) hold,
• a strong linearization of P (λ) if and only if conditions (a), (b) and (c) hold.

Proof. Suppose first that L(λ) is a linearization of P (λ). Since nrank is preserved
by unimodular transformations, it is immediate from (2.2) and Definition 2.2 that
dimNr(L) = dimNr(diag(P, I)) = dimNr(P ). Furthermore it is well known that
elementary divisors associated to finite eigenvalues of a matrix polynomial are invari-
ant under unimodular equivalence, so any linearization L(λ) of a (regular or singular)
matrix polynomial P (λ) must have the same finite elementary divisors as P (λ), but
not necessarily the same infinite ones. When L(λ) is a strong linearization, revL(λ)
and revP (λ) must also have the same finite elementary divisors, and so L(λ) and
P (λ) have the same infinite elementary divisors. Thus we see that conditions (a) and
(b) are necessary for an nk× nk pencil L(λ) to be a linearization for P (λ), while (a),
(b) and (c) are necessary for L(λ) to be a strong linearization.

Now suppose instead that L(λ) is not a linearization of P (λ). If the normal ranks
of L(λ) and diag(P (λ), I) differ, then dimNr(L) 6= dimNr(P ) immediately follows,
and condition (a) is violated. If, on the other hand, nrankL(λ) = nrank diag(P (λ), I),
then the number of invariant polynomials (see definition in [15]) of L(λ) must be the
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same as the number of invariant polynomials of diag(P (λ), I), since for any matrix
polynomial Q this number is equal to nrankQ. But the set of invariant polynomials of
diag(P (λ), I) is just the invariant polynomials of P (λ) together with (k − 1)n trivial
invariant polynomials equal to one. By [15, Corollary 1, p. 141] two matrix polyno-
mials are equivalent if and only if they have exactly the same invariant polynomials,
so L(λ) not being a linearization of P (λ) means that the invariant polynomial sets
of L(λ) and diag(P (λ), I) must differ. Consequently the finite elementary divisors of
P (λ) and L(λ) must also differ in some way, and so condition (b) is violated.

Finally suppose that L(λ) is not a strong linearization of P (λ). If this is because
L(λ) isn’t even a linearization, then either condition (a) or (b) is violated. The only
other possibility is that L(λ) is a linearization of P (λ) but not a strong linearization
of P (λ), i.e. revL(λ) is not a linearization of revP (λ). Since

nrank (revL(λ)) = nrankL(λ) = nrank diag(P (λ), I) = nrank diag(revP (λ), I) ,

we have dimNr(revL) = dimNr(diag(revP, I)) = dimNr(revP ), so condition (a) is
satisfied for revL(λ) and revP (λ). But revL(λ) is not a linearization of revP (λ), so
it must be that condition (b) is violated, and the finite elementary divisors of revL(λ)
and revP (λ) must differ in some way. However, it is not hard to see that if L(λ) is a
linearization of P (λ) then the elementary divisors of revL(λ) and revP (λ) associated
with any nonzero finite eigenvalue are the same.1 Thus the only possibility remaining
is that the elementary divisors associated with the eigenvalue zero of revL(λ) and
revP (λ) are different. Hence the infinite elementary divisors of L(λ) and P (λ) are
different, and condition (c) is violated.

Lemma 2.3 shows that strong linearizations of P (λ) are the only matrix pencils
of dimension nk × nk with both the same finite and infinite elementary divisors and
the same null-space dimensions as P (λ). Consequently for singular polynomials P (λ),
strong linearizations of P (λ) seem to be the only good candidates among polynomials
with degree one and dimension nk×nk from which to try to simultaneously recover all
the spectral information of P (λ), i.e., both the elementary divisors and the minimal
indices. We will see in the remainder of this paper that this can in fact be achieved
for at least some strong linearizations.

Remark 1. In this paper we consider only the classical definition of linearization
introduced in [17], i.e., linearizations with dimension nk×nk. Recently [7], lineariza-
tions of dimension s with s ≤ nk have been considered. The reader can easily check
that the proof presented here for Lemma 2.3 remains valid for linearizations of dimen-
sion smaller than nk. The linearizations presented in [7] are not necessarily strong,
indeed, they may have elementary divisors associated with the infinite eigenvalue of
smaller degree than the corresponding ones in P (λ). This means that the lineariza-
tions in [7] may be not useful for recovering the infinite elementary divisors of P (λ),
although they are still very interesting for other purposes.

2.2. Minimal indices and minimal bases. Eigenstructure of a singular
polynomial. A vector polynomial is a vector whose entries are polynomials in the
variable λ. For any subspace of F(λ)n, it is always possible to find a basis consisting
entirely of vector polynomials; simply take an arbitrary basis and multiply each vector
by the denominators of its entries. The degree of a vector polynomial is the greatest

1Recall that if λ0 6= 0 is a finite eigenvalue of P (λ) then the number and degrees of the elementary
divisors of P (λ) associated with λ0 coincide with number and degrees of the elementary divisors of
revP (λ) associated with 1/λ0.
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degree of its components, and the order of a polynomial basis is defined as the sum
of the degrees of its vectors [14, p. 494]. Then the following definition makes sense.

Definition 2.4. [14] Let V be a subspace of F(λ)n. A minimal basis of V is
any polynomial basis of V with least order among all polynomial bases of V.

It can be shown [14] that for any given subspace V of F(λ)n, the ordered list of
degrees of the vector polynomials in any minimal basis of V is always the same. These
degrees are then called the minimal indices of V. Specializing V to be the left and
right nullspaces of a singular matrix polynomial gives Definition 2.5; here deg(p(λ))
denotes the degree of the vector polynomial p(λ).

Definition 2.5. Let P (λ) be a square singular matrix polynomial, and let the
sets {y1(λ), . . . , yp(λ)} and {x1(λ), . . . , xp(λ)} be minimal bases of, respectively, the
left and right nullspaces of P (λ), ordered such that deg(y1) ≤ deg(y2) ≤ · · · ≤ deg(yp)
and deg(x1) ≤ deg(x2) ≤ · · · ≤ deg(xp). Let ηi = deg(yi) and εi = deg(xi)for
i = 1, . . . , p. Then η1 ≤ η2 ≤ · · · ≤ ηp and ε1 ≤ ε2 ≤ · · · ≤ εp are, respectively, the
left and right minimal indices of P (λ).

For the sake of brevity, we will call minimal bases of the left and right nullspaces
of P (λ) simply left and right minimal bases of P (λ).

An alternative approach to defining the concepts of minimal indices and minimal
bases of a subspace V of F(λ)n can be found in [15, Chap. XII, Sec. 5], based on
the following “greedy algorithm” for constructing a polynomial basis for V. Begin by
choosing any nonzero vector polynomial z1(λ) in V of minimal degree. Next choose any
nonzero minimal degree vector polynomial z2(λ) in the complement V \ span{z1(λ)}.
Repeat the process with the complement V \ span{z1(λ), z2(λ)}, and so on, picking a
nonzero minimal degree vector polynomial in the remaining complement at each step,
until we get a basis of V. The bases constructed in this way are clearly not unique,
but the sequence of degrees of the vectors in any such basis is unique. Furthermore
it can be shown [10, Lemma 2.4] that bases of V constructed in this way are in fact
always minimal bases in the sense of Definition 2.4.

In the case of matrix pencils, the left (right) minimal indices coincide with the
dimensions of the left (right) singular blocks of the Kronecker canonical form of the
pencil [15, Chap. XII]. This canonical form can be stably computed through unitary
transformations that lead to the GUPTRI form [28, 8, 9, 13]. Therefore it is natural
to look for relationships (if any) between the minimal indices of a singular matrix
polynomial P and the minimal indices of a given linearization, since this would provide
a numerical method for computing the minimal indices of P . From the definition of
linearization, one immediately sees that the number of left and right minimal indices
of a matrix polynomial and the number of left and right minimal indices of any of
its linearizations are the same. However, the values of these minimal indices may
not coincide even for classical linearizations such as the companion forms. This is
illustrated in the following example.

Example 1. Let P (λ) be the 2× 2 singular matrix polynomial of degree 2

P (λ) =
[

λ2 λ
λ 1

]
= λ2A + λB + C .

Then the first companion form of P (λ), written C1(λ) = λ

[
A 0
0 I

]
+

[
B C
−I 0

]
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as in [25, p. 974], is

C1(λ) = λ




1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1


 +




0 1 0 0
1 0 0 1

−1 0 0 0
0 −1 0 0


 =




λ 1 0 0
1 0 0 1

−1 0 λ 0
0 −1 0 λ


 .

It is easy to see that [1,−λ]T is a minimal basis ofNr(P ), so P (λ) has exactly one right
minimal index ε1 = 1. By contrast

[
λ,−λ2, 1,−λ

]T is a minimal basis of Nr(C1), so
the single right minimal index of C1(λ) is ε1 = 2.

Although the minimal indices of a matrix polynomial P may differ from those
of a given linearization, and in different ways for different linearizations, we will see
that the minimal indices of P are always related in a simple and uniform way to the
minimal indices of any linearization in the families introduced in [25] and [2, Sections
2 and 3]. In addition, for these particular families of linearizations the minimal bases
of the polynomial P can always be easily recovered from the minimal bases of the
linearizations. Recall that the linearizations in [25] include the companion forms.

In this paper we adopt the following definition.
Definition 2.6. The complete eigenstructure of a matrix polynomial P (λ) con-

sists of
1. its finite and infinite elementary divisors, and
2. its left and right minimal indices.

This definition extends to matrix polynomials the one introduced in [29] for pencils. It
should be remarked that in linear systems theory other structural components related
to the eigenvalues are also of interest [30].

Our overall goal, then, is given a singular matrix polynomial P (λ), to find matrix
pencils from which the complete eigenstructure of P (λ) may be recovered. As Lemma
2.3 shows, it is natural to consider strong linearizations of P (λ), because they allow
us to obtain at least the elementary divisors and the nullspace dimensions. The
remaining question for any given strong linearization is whether the minimal indices
of P (λ) may also be recovered.

3. Relationships among minimal indices. We start by establishing relation-
ships between the minimal indices and bases of a matrix polynomial and those of
its reversal polynomial. Although the reversal operation rev as defined in (2.1) is
a straightforward notion, there are some simple but subtle aspects of this operation
that should be kept firmly in mind. For example, rev is almost (but not quite) an
involution. And viewed as a map on the space of all m× n matrix polynomials, rev
is neither surjective nor injective. The extent to which these properties fail to hold
is made precise in the next lemma, which is stated for general rectangular matrix
polynomials so as to include the reversal of vector polynomials. We omit the proof,
since all three parts are straightforward consequences of the definition of rev .

Lemma 3.1 (Properties of reversal). Let P (λ) =
∑k

i=0 λiAi be an m× n matrix
polynomial of degree k, i.e., Ak is the highest degree nonzero coefficient of P (λ), and
consider the operation rev defined by revP (λ) := λkP (1/λ) =

∑k
i=0 λiAk−i.

(a) If k = deg P (λ) and ` = deg(revP (λ)), then ` ≤ k, with equality if and only
if P (0) 6= 0m×n. Furthermore P (λ) = λk−` · rev(

revP (λ)
)
.

(b) There exists an m× n matrix polynomial Q(λ) such that revQ(λ) = P (λ) if
and only if P (0) 6= 0m×n .
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(c) Suppose P (0) 6= 0m×n . Then an m × n matrix polynomial Q(λ) satisfies
revQ(λ) = P (λ) if and only if Q(λ) = λt · revP (λ) for some integer t ≥ 0.

Observe that part (a) describes exactly the extent to which rev is (and isn’t) an
involution, part (b) characterizes the image of rev and its lack of surjectivity, while
part (c) delineates the lack of injectivity of rev by characterizing the pre-image of any
polynomial in the image of rev . In short, Lemma 3.1 shows that rev is an involutive
bijection exactly if we restrict to the space of all m×n matrix polynomials P (λ) such
that P (0) 6= 0m×n. With these properties of rev in hand, we now develop the basic
relationships between the minimal indices and bases of P and those of revP . In the
remainder of this section we use the following notation: for a set of vector polynomials
B = {x1(λ), . . . , xp(λ)} in F(λ)n, the set {revx1(λ), . . . , revxp(λ)} of the reversals of
all the polynomials from B will be denoted by Brev .

Theorem 3.2. Let P (λ) be an n×n matrix polynomial of degree k, let x(λ), y(λ),
z(λ), w(λ) be vector polynomials in F(λ)n, and let B and E be subsets of polynomials
of F(λ)n. Then:

(a) x(λ) ∈ Nr(P ) ⇐⇒ revx(λ) ∈ Nr(revP ),
and z(λ) ∈ Nr(revP ) ⇐⇒ revz(λ) ∈ Nr(P ).

(b) y(λ) ∈ N`(P ) ⇐⇒ revy(λ) ∈ N`(revP ),
and w(λ) ∈ N`(revP ) ⇐⇒ revw(λ) ∈ N`(P ).

(c) B is a right (left ) minimal basis of P (λ) =⇒ Brev is a right (left ) minimal
basis of revP (λ), and the orders of the bases B and Brev are the same.
Also, E is a right (left ) minimal basis of revP (λ) =⇒ Erev is a right (left )
minimal basis of P (λ), and the orders of the bases E and Erev are the same.

(d) The right (left ) minimal indices of P (λ) are equal to the right (left ) minimal
indices of revP (λ).

Proof. We prove only the results pertaining to right null vectors, minimal indices
and minimal bases; the arguments for left null vectors, minimal indices and minimal
bases are similar. Begin by observing that even though the rev operation is not an
involution, we have by Lemma 3.1(a) that P (λ) = λs · rev(

revP (λ)
)

for some s ≥ 0;
as a consequence Nr(P ) = Nr

(
rev(revP )

)
always holds.

Now suppose that x(λ) ∈ Nr(P ) has degree q. Then the equivalences

P (λ)x(λ) = 0 ⇐⇒ P (1/λ)x(1/λ) = 0 ⇐⇒ λk P (1/λ) · λq x(1/λ) = 0
⇐⇒ revP (λ) · revx(λ) = 0.

establish the first half of part (a). The second half of part (a) follows by applying the
first half to the polynomial Q(λ) = revP (λ).

z(λ) ∈ Nr(revP ) ⇐⇒ revz(λ) ∈ Nr

(
rev(revP )

)
= Nr(P ) .

Next we turn to part (c), and start by showing that rev transforms any basis
of Nr(P ) into a basis of Nr(revP ), and vice versa. Consider first any set of vectors
B = {x1(λ), . . . , xp(λ)} in F(λ)n with εi = deg(xi(λ)), with the property that Brev is
linearly dependent. Hence there are rational functions α1(λ), . . . , αp(λ), not all zero,
such that α1(λ) revx1(λ) + · · ·+ αp(λ) revxp(λ) = 0. Then

p∑

i=1

αi(λ) revxi(λ) = 0 =⇒
p∑

i=1

αi(λ)λεi xi(1/λ) = 0

=⇒
p∑

i=1

λ−εiαi(1/λ)xi(λ) = 0 =⇒
p∑

i=1

α̃i(λ)xi(λ) = 0
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with α̃i(λ) := λ−εiαi(1/λ) not all zero, showing that B = {x1(λ), . . . , xp(λ)} must
also be a linearly dependent set in F(λ)n. Thus we may conclude that rev preserves
the property of linear independence; if B is any linearly independent set of vector
polynomials, then Brev is also linearly independent.

Next suppose that B = {x1(λ), . . . , xp(λ)} with εi = deg(xi(λ)) is a spanning set
for Nr(P ); we aim to show that Brev is a spanning set for Nr(revP ). Letting z(λ) ∈
Nr(revP ) with deg z = ` be arbitrary, then revz(λ) ∈ Nr(P ) by part (a). Hence
for some rational functions βi(λ) we have revz(λ) = β1(λ) x1(λ) + · · ·+ βp(λ)xp(λ).
Then

λ`z(1/λ) =
p∑

i=1

βi(λ) xi(λ) =⇒ λ−`z(λ) =
p∑

i=1

βi(1/λ)xi(1/λ)

=⇒ z(λ) =
p∑

i=1

λ`−εiβi(1/λ) · λεixi(1/λ)

=⇒ z(λ) =
p∑

i=1

β̃i(λ) revxi(λ) ,

where β̃i(λ) := λ`−εiβi(1/λ), showing that Brev spans Nr(revP ). Thus for any basis
B of Nr(P ), we see that Brev will be a basis for Nr(revP ).

Going in the other direction, let E = {z1(λ), . . . , zp(λ)} be any basis forNr(revP ).
Then by the above argument Erev is a basis for Nr

(
rev(revP )

)
, which was earlier

shown to be the same as Nr(P ).
Finally suppose that B = {x1(λ), . . . , xp(λ)} is a minimal basis for Nr(P ). Then

each xi(λ) satisfies xi(0) 6= 0, since otherwise xi(λ) = λ · x̃i(λ) for some vector
polynomial x̃i(λ), and replacing xi(λ) by x̃i(λ) would give a polynomial basis of lower
order. Thus deg

(
revxi(λ)

)
= deg xi(λ) for i = 1, . . . , p, and the order of the basis

Brev for Nr(revP ) is the same as the order of B. To see that Brev is a minimal basis
for Nr(revP ), suppose there was a basis E of Nr(revP ) of lower order. Then Erev

would be a basis for Nr(P ) of order strictly less than that of B, contradicting the
minimality of B; this completes the proof of the first half of part (c). The second half
of part (c) is established by a similar argument.

Part (d) now follows immediately from part (c) and the fact that deg
(
revxi(λ)

)
=

deg xi(λ) for each vector polynomial xi(λ) in a minimal basis for Nr(P ).
In the next definition we introduce several types of structured matrix polynomial

that arise in a number of interesting applications [20, 26, 27]. For conciseness, the
symbol ? is used as an abbreviation for transpose T in the real case and for either T
or conjugate transpose ∗ in the complex case.

Definition 3.3. Let P (λ) be the n×n matrix polynomial as in (1.1), and define
the associated polynomial P?(λ) by

P?(λ) :=
k∑

i=0

λi A?
i .

Then P (λ) is said to be
• ? -symmetric if P?(λ) = P (λ) ,
• ? -alternating if P?(−λ) = ±P (λ) ,
• ? -palindromic if revP?(λ) = P (λ) .

Theorems 3.4, 3.5, and 3.6 now establish relationships between the left and right
minimal indices and bases of ? -symmetric, ? -alternating, and ? -palindromic matrix
polynomials. Note in particular the structural feature common to all six types of
matrix polynomial — the equality of left and right minimal indices.
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The following notation is used for these three theorems. If x(λ) is a vector polyno-
mial, let x(λ) denote the vector polynomial obtained from x(λ) by complex conjuga-
tion of the coefficients. And for any set of vector polynomials B = {x1(λ), . . . , xp(λ)}
in F(λ)n, let B, B−, and Brev denote the related sets B := {x1(λ), . . . , xp(λ)},
B− := {x1(−λ), . . . , xp(−λ)}, and Brev := {revx1(λ), . . . , revxp(λ)}.

Theorem 3.4. Let P (λ) be an n × n matrix polynomial, and B a set of vector
polynomials in F(λ)n. If P (λ) is T -symmetric, then

(a) x(λ) ∈ Nr(P ) ⇐⇒ x(λ) ∈ N`(P ),
(b) B is a minimal basis of Nr(P ) ⇐⇒ B is a minimal basis of N`(P ),
(c) the right minimal indices and left minimal indices of P (λ) are the same.

If P (λ) is ∗-symmetric, then
(d) x(λ) ∈ Nr(P ) ⇐⇒ x(λ) ∈ N`(P ),
(e) B is a minimal basis of Nr(P ) ⇐⇒ B is a minimal basis of N`(P ),
(f) the right minimal indices and left minimal indices of P (λ) are the same.
Proof. When P (λ) is T -symmetric, parts (a),(b), and (c) follow immediately from

the equivalence P (λ)x(λ) = 0 ⇔ xT (λ)P (λ) = 0. Parts (d), (e), and (f) follow from
P (λ)x(λ) = 0 ⇔ xT (λ)P (λ) = 0, which holds when P (λ) is ∗-symmetric.

Theorem 3.5. Let P (λ) be an n × n matrix polynomial, and B a set of vector
polynomials in F(λ)n. If P (λ) is T -alternating, then

(a) x(λ) ∈ Nr(P ) ⇐⇒ x(−λ) ∈ N`(P ),
(b) B is a minimal basis of Nr(P ) ⇐⇒ B− is a minimal basis of N`(P ),
(c) the right minimal indices and left minimal indices of P (λ) are the same.

If P (λ) is ∗-alternating, then
(d) x(λ) ∈ Nr(P ) ⇐⇒ x(−λ) ∈ N`(P ),
(e) B is a minimal basis of Nr(P ) ⇐⇒ B− is a minimal basis of N`(P ),
(f) the right minimal indices and left minimal indices of P (λ) are the same.
Proof. When P (λ) is T -alternating, parts (a), (b), and (c) follow immediately

from the equivalence P (λ)x(λ) = 0 ⇔ xT (−λ)PT (−λ) = 0 ⇔ xT (−λ)P (λ) = 0,
together with the fact that deg x(λ) = deg x(−λ). Parts (d), (e), and (f) follow from
P (λ)x(λ) = 0 ⇔ x∗(−λ)P ∗(−λ) = 0 ⇔ xT (−λ)P (λ) = 0, which holds when P (λ)
is ∗-alternating, and deg x(λ) = deg x(−λ).

Theorem 3.6. Let P (λ) be an n × n matrix polynomial, and B a set of vector
polynomials in F(λ)n. If P (λ) is T -palindromic, then

(a) x(λ) ∈ Nr(P ) ⇐⇒ revx(λ) ∈ N`(P ), y(λ) ∈ N`(P ) ⇐⇒ revy(λ) ∈ Nr(P ),
(b) B is a right (left ) minimal basis of P (λ)

=⇒ Brev is a left (right ) minimal basis of P (λ),
(c) the right minimal indices and left minimal indices of P (λ) are the same.

If instead P (λ) is ∗-palindromic, then results analogous to those above hold, but with
revx(λ) replacing revx(λ) and revy(λ) replacing revy(λ) in part (a), and Brev re-
placing Brev in part (b).

Proof. Theorem 3.6 can be proved directly, but it can also be seen as a corollary
of Theorem 3.2, because revPT (λ) = P (λ) implies Nr(revP ) = Nr(PT ) = N`(P )
and N`(revP ) = N`(PT ) = Nr(P ).

4. Linearizations for singular P in the spaces L1(P ) and L2(P ). For the
rest of the paper we follow the notation used in [25]: Λ :=

[
λk−1, λk−2, . . . , λ, 1

]T

is the vector of decreasing powers of λ and ⊗ denotes the Kronecker product. Now
let P (λ) be the matrix polynomial in (1.1), and consider the three vector spaces of
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nk × nk pencils L(λ) = λX + Y associated with P that were introduced in [25]:

L1(P ) :=
{
L(λ) : L(λ)(Λ⊗ In) = v ⊗ P (λ), v ∈ Fk

}
,

L2(P ) :=
{
L(λ) : (ΛT ⊗ In)L(λ) = wT ⊗ P (λ), w ∈ Fk

}
, (4.1)

DL(P ) := L1(P ) ∩ L2(P ).

The vectors v and w in (4.1) are referred to, respectively, as the “right ansatz” and “left
ansatz” vectors of L(λ). It is proved in [25] that, for any square matrix polynomial
P (λ), regular or singular, the sets in (4.1) are vector subspaces of the vector space of
all nk × nk matrix pencils over F. Letting X1 = X2 = diag(Ak, In, . . . , In), and

Y1 =




Ak−1 Ak−2 · · · A0

−In 0 · · · 0
. . .

. . .
...

0 −In 0


 , Y2 =




Ak−1 −In 0
Ak−2 0

. . .
...

...
. . . −In

A0 0 · · · 0


 , (4.2)

then C1(λ) := λX1 + Y1 and C2(λ) := λX2 + Y2 are respectively the first and second
companion forms of P (λ). It is not hard to see that C1(λ) ∈ L1(P ) with right ansatz
vector v = e1 (here e1 denotes the first column of Ik), and C2(λ) ∈ L2(P ) with left
ansatz vector w = e1. Indeed, the spaces L1(P ) and L2(P ) were specifically designed
to be generalizations of C1(λ) and C2(λ).

In what follows we will see that the companion forms are far from being the only
linearizations in L1(P ) and L2(P ), even in the case that P (λ) is singular. It was
shown in [25] that dimL1(P ) = dimL2(P ) = k(k − 1)n2 + k, and we will prove in
Theorem 4.4 that in fact almost all pencils in L1(P ) and L2(P ) are strong lineariza-
tions of P , regardless of whether P (λ) is singular or not. The next result, which is
a slight generalization of Theorem 4.1 in [25], gives us a simple way to detect strong
linearizations in L1(P ).

Theorem 4.1. Let P (λ) =
∑k

i=0 λiAi with Ak 6= 0 be a (regular or singular )
n×n matrix polynomial and L(λ) = λX + Y ∈ L1(P ) with right ansatz vector v 6= 0.
Suppose M ∈ Fk×k is any nonsingular matrix such that Mv = αe1 for some number
α 6= 0. Then the pencil (M ⊗ In)L(λ) can be written as

(M ⊗ In)L(λ) = λ

[
αAk X12

0 −Z

]
+

[
Y11 αA0

Z 0

]
, (4.3)

with Z ∈ F(k−1)n×(k−1)n. If Z is nonsingular then L(λ) is a strong linearization of
P (λ).

Proof. Since (M ⊗ In) is a constant nonsingular matrix, clearly L(λ) is a strong
linearization of P (λ) if and only if (M ⊗ In)L(λ) is too. Since L(λ) ∈ L1(P ) with
right ansatz vector v, we have L(λ)(Λ⊗In) = v⊗P (λ), so that multiplying by M⊗In

yields

(M ⊗ In)L(λ)(Λ⊗ In) = Mv ⊗ P (λ) = αe1 ⊗ P (λ) .

The result now follows by applying Theorem 4.1 in [25], valid for regular and singular
P (λ), to the matrix pencil (M ⊗ In)L(λ).

Theorem 4.1 shows that the nonsingularity of matrix Z in (4.3) is a sufficient con-
dition for L(λ) ∈ L1(P ) to be a strong linearization of P (λ). In particular it shows
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that the first companion form C1(λ), with Z = −I, is always a strong linearization2,
for regular or singular P . For regular polynomials this nonsingularity-of-Z condi-
tion was also shown to be necessary in [25, Theorem 4.3], but this is no longer true
when P (λ) is singular, as the following example shows. This highlights an important
difference between the cases of P (λ) being regular or singular.

Example 2. Consider P (λ) = λ2A2 with A2 =
[
1
0

0
0

]
, a singular matrix polyno-

mial with one right minimal index ε1 = 0 and one left minimal index η1 = 0. Let
X12 =

[
0
0

0
1

]
and Z =

[−1
0

0
0

]
. Then the pencil

L(λ) = λ

[
A2 X12

0 −Z

]
+

[ −X12 0
Z 0

]

is in L1(P ) with right ansatz vector e1, which can be verified using either (4.1) or
[25, Lemma 3.4]. Clearly L(λ) has a singular Z matrix, but it nevertheless is a strong
linearization for P (λ), because a single interchange of rows 2 and 4 turns L(λ) into
the first companion form C1(λ), which is always a strong linearization.

Given L(λ) ∈ L1(P ) with right ansatz vector v 6= 0, the matrix M in the statement
of Theorem 4.1 is not unique, so it is natural to ask whether different matrices M1

and M2 might lead to different matrices Z1 and Z2 in (4.3) with Z1 being singular
but Z2 being nonsingular. It turns out that this is not possible. Indeed, the next
result shows that for any given L(λ) ∈ L1(P ), all the matrices that can ever appear
in the block labelled Z in (4.3) have the same rank.

Lemma 4.2. Let P (λ) =
∑k

i=0 λiAi with Ak 6= 0 be an n× n matrix polynomial
and L(λ) = λX + Y ∈ L1(P ) with right ansatz vector v 6= 0. Let M1,M2 ∈ Fk×k be
two nonsingular matrices such that M1v = α1e1 and M2v = α2e1, for some numbers
α1 6= 0, α2 6= 0. Let Z1, Z2 ∈ F(k−1)n×(k−1)n be the corresponding matrices in the
block labelled Z in (4.3) associated with, respectively, (M1, α1) and (M2, α2). Then
rankZ1 = rank Z2.

Proof. Let (α1,M1, Z1) and (α2,M2, Z2) be two triples as in the statement of
Theorem 4.1. The equality (4.3) can be applied to both triples, leading to two different
expressions for L(λ). Equating the coefficients of the first degree terms in these two
expressions, we obtain

(M−1
1 ⊗ In)

[
α1Ak X12

0 −Z1

]
= (M−1

2 ⊗ In)
[

α2Ak X̃12

0 −Z2

]
,

or equivalently
[

α1Ak X12

0 −Z1

]
= (M1M

−1
2 ⊗ In)

[
α2Ak X̃12

0 −Z2

]
. (4.4)

Note that M1v = α1e1 and M2v = α2e1 imply α1M
−1
1 e1 = α2M

−1
2 e1, so (α1/α2)e1 =

(M1M
−1
2 )e1. This means that the first column of M1M

−1
2 is equal to [α1/α2, 0, . . . , 0]T .

Then

M1M
−1
2 ⊗ In =

[
α1
α2

In Q12

0 Q22

]
,

2That C1(λ) is always a strong linearization for regular P was first shown in [16].
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where Q22 ∈ F(k−1)n×(k−1)n is nonsingular because M1M
−1
2 is nonsingular. Now (4.4)

implies Z1 = Q22 Z2, so rank(Z1) = rank(Z2) as claimed.
Lemma 4.2 shows that the rank of the block labelled Z in (4.3) constitutes a

well-defined property of pencils in L1(P ). Thus we introduce the following notions,
that will be useful in Section 5.

Definition 4.3. The Z-rank of L(λ) ∈ L1(P ) is the rank of any matrix appearing
in the block labelled Z in (4.3) under any reduction of L(λ) of the form (4.3). If Z in
(4.3) is nonsingular, then we say that L(λ) ∈ L1(P ) has full Z-rank.

Theorem 4.1 shows that once a nonsingular matrix M with Mv = αe1 is fixed,
a sufficient condition for a matrix pencil L(λ) ∈ L1(P ) with right ansatz vector v to
be a linearization of P (λ) is that Z in (4.3) is nonsingular. Since nonsingularity is a
generic condition in matrix space, this suggests that most pencils in L1(P ) with right
ansatz vector v are linearizations of P (λ), and, since v is arbitrary, also that most
pencils in L1(P ) are linearizations of P (λ). It is known [25, Theorem 4.7] that this
is true for regular P (λ), that is: “almost every” pencil in L1(P ) is a linearization of
P (λ), where “almost every” means “for all but a closed, nowhere dense set of measure
zero” in L1(P ). We will prove that this is also true for singular matrix polynomials.
More precisely, we will exhibit a proper algebraic subset A of L1(P ) containing all the
pencils in L1(P ) that are not linearizations of P (λ), together with some linearizations.
This will imply the result because proper algebraic sets are always closed, nowhere
dense, and have measure zero. The subset A will be realized as the set of zeroes of a
certain multivariate scalar-valued polynomial.

Theorem 4.4 (Linearizations are generic in L1(P )).
For any n×n matrix polynomial P (λ) of degree k (regular or singular ), almost every
pencil in L1(P ) is a strong linearization for P (λ).

Proof. Recall the following characterization of pencils in L1(P ) [25, Theorem 3.5].
Let P (λ) =

∑k
i=0 λiAi with Ak 6= 0 be an n × n matrix polynomial and v ∈ Fk any

vector. Then the set of pencils in L1(P ) with right ansatz vector v consists of all
L(λ) = λX + Y such that

n (k−1)n

X =
[

v ⊗Ak −W
]

(k−1)n n

and Y =
[

W +
(

v ⊗ [
Ak−1 . . . A1

] )
v ⊗A0

]
(4.5)

with W ∈ Fkn×(k−1)n chosen arbitrarily.
This characterization allows us to parameterize L1(P ) by means of the isomor-

phism

L1(P ) ≈−→ Fk × Fkn×(k−1)n

λX + Y 7−→ (v, W )
.

Our goal is to find a single scalar-valued polynomial ℘ in the k + k(k − 1)n2 vari-
ables from v and W of Fk × Fkn×(k−1)n such that all pencils in L1(P ) that are not
linearizations are contained in the zero set A of ℘, and such that for some pencil in
L1(P ) this polynomial is nonzero. Thus A will be a proper algebraic subset of L1(P ),
and every pencil in the complement of A will be a strong linearization for P (λ). The
following construction gives a suitable polynomial ℘.

Suppose L(λ) = λX + Y is in L1(P ) with right ansatz vector v = [v1, . . . , vk]T .
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Let

Ẽv :=




1 0
−v2

... v1Ik−1

−vk




and Ev := Ẽv ⊗ In. Observe that Ẽvv = v1e1, so if v1 6= 0, then Ẽv is a particular
selection of matrix M in Theorem 4.1 with α = v1. Now EvL(λ) = Ev(λX + Y ) =
λ(EvX) + (EvY ), and from (4.5) we see that

n (k−1)n

EvX =
[

Ẽvv ⊗Ak −EvW
]

=
[

v1e1 ⊗Ak −EvW
]

.

Deleting the topmost n rows of −EvW yields a (k− 1)n× (k− 1)n submatrix B such
that

EvX =
[

v1Ak ∗
0 B

]
,

i.e., −B is a Z-matrix as in (4.3). Now define ℘ := v1 ·det B, which gives a polynomial
in the k + k(k − 1)n2 variables defining v and W ; thus we may write ℘(v,W ). As
a simple example note that the pair (v, W ) corresponding to the first companion
form C1(λ) ∈ L1(P ) has v = e1 and W =

[
0(k−1)n×n −I(k−1)n

]T , and hence
B = I(k−1)n. Thus ℘(v, W ) = 1 6= 0 for C1(λ), showing that the zero set of ℘ defines
a proper algebraic subset A of L1(P ).

Clearly any pair (v, W ) such that ℘(v, W ) 6= 0 has v1 6= 0 and nonsingular B,
so the corresponding L(λ) will have full Z-rank and hence be a strong linearization
by Theorem 4.1. Thus the complement of A contains only strong linearizations of P ,
and the proof is complete.

Corollary 4.5 follows immediately from the proof of Theorem 4.4. We will see in
Section 5 that linearizations of full Z-rank are important in the recovery of minimal
indices and bases. Therefore it is useful to know that full Z-rank pencils constitute
almost all of L1(P ).

Corollary 4.5. For any (regular or singular ) n×n matrix polynomial P (λ) of
degree k, almost every pencil in L1(P ) has full Z-rank.

It is worth noting that results analogous to Theorem 4.1, Lemma 4.2 and The-
orem 4.4 also hold for matrix pencils in L2(P ). This is not surprising in light of
the isomorphism of L1(P ) and L2(P ) via block transposition [20, Theorem 2.2]. We
state without proof the analog of Theorem 4.1 for pencils in L2(P ) because this result
will be used later. Note how block transposition establishes a simple correspondence
between the statements of Theorem 4.1 and Theorem 4.6.

Theorem 4.6. Let P (λ) =
∑k

i=0 λiAi with Ak 6= 0 be a (regular or singular )
n × n matrix polynomial and L(λ) ∈ L2(P ) with left ansatz vector w 6= 0. Suppose
K ∈ Fk×k is any nonsingular matrix such that wT K = αeT

1 for some number α 6= 0.
Then the pencil L(λ)(K ⊗ In) can be written as

L(λ)(K ⊗ In) = λ

[
αAk 0
X21 −Z

]
+

[
Y11 Z

αA0 0

]
(4.6)

with Z ∈ F(k−1)n×(k−1)n. If Z is nonsingular then L(λ) is a strong linearization of
P (λ).
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Theorem 4.6 together with the analog of Lemma 4.2 allows us to extend the notion
of Z-rank to pencils in L2(P ): the Z-rank of L(λ) ∈ L2(P ) is the rank of any matrix
appearing in block Z in (4.6) under any reduction of L(λ) of the form (4.6).

We conclude this section with a brief discussion of linearizations versus strong
linearizations in L1(P ). It was shown in [25, Theorem 4.3] that when P (λ) is regular,
any linearization in L1(P ) is necessarily a strong linearization. However, this is no
longer true in the singular case. The following example provides a linearization for a
singular polynomial P (λ) that is in L1(P ), but is not a strong linearization.

Example 3. Let P (λ) be the 2× 2 quadratic matrix polynomial of Example 1.
Then the matrix pencil

L(λ) =




λ 1 0 0
1 0 0 1
1 0 −λ 0
0 0 0 0




is in L1(P ) because L(λ)(Λ⊗ I2) = e1 ⊗ P (λ) , and it is also a linearization of P (λ),
because E(λ)L(λ)F (λ) = diag

(
P (λ), I2

)
with

E(λ) =




0 0 λ 1
0 0 1 0
1 0 0 0
0 1 0 0


 and F (λ) =




0 1 0 0
0 −λ 1 0
−1 0 0 0
0 −1 0 1


 ,

which are unimodular. On the other hand, the reversal pencil

revL(λ) =




1 λ 0 0
λ 0 0 λ
λ 0 −1 0
0 0 0 0




has only one finite elementary divisor equal to λ, whereas the reversal polynomial
revP (λ) has no finite elementary divisors. Therefore by Lemma 2.3 revL(λ) cannot
be a linearization for revP (λ), and so L(λ) is not a strong linearization for P (λ). As
a consequence of Theorem 4.1 we know that L(λ) cannot have full Z-rank; indeed,
taking M = I2 in (4.3) we have Z =

[
1
0

0
0

]
, which is a singular matrix.

5. Recovery of minimal indices and bases from L1(P ) and L2(P ). As we
have seen in Section 2 and Example 1, any linearization of an arbitrary (regular or
singular) matrix polynomial P (λ) will preserve the dimensions of the left and right
nullspaces of P (λ), that is, the number of left and right minimal indices, but not
necessarily the values of these minimal indices. The main goal of this section is to
analyze the relationship between the minimal indices and bases of P (λ) and those of
its linearizations in L1(P ) and L2(P ). We will prove that the right minimal indices
of any linearization in L1(P ) (resp., the left minimal indices of any linearization
in L2(P )) are all “shifted” from those of P (λ) by k − 1, where k is the degree of
the polynomial. We will also show that, for any linearization L(λ) having full Z-
rank, the left minimal indices of L(λ) ∈ L1(P ) (resp., the right minimal indices of
L(λ) ∈ L2(P )) coincide exactly with those of P (λ). These results will, in particular,
allow us to recover the complete eigenstructure of any matrix polynomial from that
of an arbitrary linearization of full Z-rank in L1(P ) or L2(P ). Finally we present
some particular examples of linearizations in L1(P ) having defective Z-rank, but that
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still allow the recovery of the minimal indices of P (λ). This shows that full Z-rank
is a sufficient but not necessary condition for recovering the complete eigenstructure
of a polynomial from linearizations in L1(P ) or L2(P ). All the results for recovering
minimal indices are based on simple ways of recovering minimal bases of P (λ) from
those of its linearizations in L1(P ) and L2(P ).

5.1. Right minimal indices in L1(P ) and left minimal indices in L2(P ).
We begin by establishing the basic relationship between right null vectors of P (λ)
and right null vectors of a linearization L(λ) ∈ L1(P ), extending the eigenvector
recovery result for regular polynomials P described in [25, Theorem 3.8] to singular
polynomials P .

Lemma 5.1. Let P (λ) be an n× n matrix polynomial of degree k, L(λ) ∈ L1(P )
with nonzero right ansatz vector v, and x(λ) ∈ F(λ)n. Then Λ⊗ x(λ) is a right null
vector of L(λ) if and only if x(λ) is a right null vector of P (λ). Moreover, if L(λ) is
a linearization of P (λ), then every right null vector of L(λ) can be uniquely written
as Λ⊗ x(λ) for some right null vector x(λ) of P (λ), i.e., the mapping

RΛ : Nr(P ) −→ Nr(L)
x(λ) 7−→ Λ⊗ x(λ)

(5.1)

is a linear isomorphism of F(λ)-vector spaces. Furthermore, RΛ induces a bijection
between the vector polynomials in Nr(P ) and the vector polynomials in Nr(L), i.e.,
x(λ) ∈ Nr(P ) is a vector polynomial if and only if Λ ⊗ x(λ) ∈ Nr(L) is a vector
polynomial.

Proof. By the definition of L1(P ) in (4.1) we have L(λ)(Λ ⊗ In) = v ⊗ P (λ);
multiplying on the right by x(λ) = 1⊗ x(λ) yields

L(λ)(Λ⊗ x(λ)) = v ⊗ P (λ)x(λ) ,

from which it then follows that Λ ⊗ x(λ) ∈ Nr(L) if and only if x(λ) ∈ Nr(P ). The
map RΛ is thus well-defined, and easily checked to be linear.

To prove the rest of the lemma, first recall that if L(λ) is a linearization, then by
Lemma 2.3 we have dimNr(P ) = dimNr(L). Thus RΛ is an isomorphism if and only
if kerRΛ = {0}. So suppose x(λ) ∈ kerRΛ, i.e. 0 = RΛ(x(λ)) = Λ ⊗ x(λ). Clearly
this implies x(λ) = 0, since x(λ) comprises the bottom n entries of Λ⊗ x(λ), and so
kerRΛ = {0}.

Finally, observe that the structure of Λ guarantees that the F(λ)-linear isomor-
phismRΛ restricts to a bijection between the vector polynomials in Nr(P ) and Nr(L);
once again this follows from the fact that the bottom n entries of Λ ⊗ x(λ) are just
x(λ) itself, together with the entries of Λ being polynomials.

The definition of Λ also implies that deg (Λ ⊗ x(λ)) = (k − 1) + deg x(λ) for
any vector polynomial x(λ), from which we obtain the following minimal index and
minimal basis recovery result as an immediate consequence of Lemma 5.1.

Theorem 5.2. Let P (λ) be an n × n matrix polynomial of degree k, and let
L(λ) ∈ L1(P ) be a linearization of P (λ) with nonzero right ansatz vector.

(a) If ε1 ≤ ε2 ≤ · · · ≤ εp are the right minimal indices of P (λ), then

(k − 1) + ε1 ≤ (k − 1) + ε2 ≤ · · · ≤ (k − 1) + εp

are the right minimal indices of L(λ).
(b) Every minimal basis of Nr(L) is of the form {Λ⊗ x1(λ), . . . , Λ⊗ xp(λ)},

where {x1(λ), . . . , xp(λ)} is a minimal basis of Nr(P ).
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Clearly the structure of Λ allows us to easily obtain a right minimal basis of P (λ),
simply by extracting the bottom n entries from the p vectors of any right minimal
basis of L(λ).

Analogous results for left minimal indices and bases of linearizations in L2(P ) are
stated without proof, since the arguments proceed in a similar way.

Lemma 5.3. Let P (λ) be an n× n matrix polynomial of degree k, L(λ) ∈ L2(P )
with nonzero left ansatz vector w, and y(λ) ∈ F(λ)n. Then Λ ⊗ y(λ) is a left null
vector of L(λ) if and only if y(λ) is a left null vector of P (λ). Moreover, if L(λ) is
a linearization of P (λ), then every left null vector of L(λ) can be uniquely written as
Λ⊗ y(λ) for some left null vector y(λ) of P (λ), i.e., the mapping

LΛ : N`(P ) −→ N`(L)
y(λ) 7−→ Λ⊗ y(λ)

(5.2)

is a linear isomorphism of F(λ)-vector spaces. Furthermore, LΛ induces a bijection
between the vector polynomials in N`(P ) and the vector polynomials in N`(L), i.e.,
y(λ) ∈ N`(P ) is a vector polynomial if and only if Λ ⊗ y(λ) ∈ N`(L) is a vector
polynomial.

Theorem 5.4. Let P (λ) be an n × n matrix polynomial of degree k, and let
L(λ) ∈ L2(P ) be a linearization of P (λ) with nonzero left ansatz vector.

(a) If η1 ≤ η2 ≤ · · · ≤ ηp are the left minimal indices of P (λ), then

(k − 1) + η1 ≤ (k − 1) + η2 ≤ · · · ≤ (k − 1) + ηp

are the left minimal indices of L(λ).
(b) Every minimal basis of N`(L) is of the form {Λ⊗ y1(λ), . . . , Λ⊗ yp(λ)},

where {y1(λ), . . . , yp(λ)} is a minimal basis of N`(P ).
The results in this section hold for any linearization L(λ) in L1(P ) or in L2(P ),

but they are incomplete because they do not provide any information on either the
relationship between the left minimal indices and bases of P and those of L(λ) ∈
L1(P ), or the relationship between the right minimal indices and bases of P and
those of L(λ) ∈ L2(P ). These relationships are studied in the next section, but we
will need to impose the mild condition of full Z-rank on the linearizations.

5.2. Left minimal indices in L1(P ) and right minimal indices in L2(P ).
First we state two technical lemmas which are the analogs for left and right null
vectors of Theorems 3.2 and 3.3 in [21].

Lemma 5.5. Let P (λ) be an n × n matrix polynomial of degree k, and suppose
L(λ) ∈ L1(P ) has full Z-rank and right ansatz vector v 6= 0. Then the mapping

Lv : N`(L) −→ N`(P )
y(λ) 7−→ (vT ⊗ In) y(λ)

(5.3)

is a linear isomorphism of F(λ)-vector spaces. Furthermore, Lv induces a bijection
between the vector polynomials in N`(L) and the vector polynomials in N`(P ), i.e.,
y(λ) ∈ N`(L) is a vector polynomial if and only if (vT ⊗ In) y(λ) ∈ N`(P ) is a vector
polynomial.

Proof. Since L(λ) has right ansatz vector v we have L(λ)(Λ ⊗ In) = v ⊗ P (λ).
Now if y(λ) ∈ N`(L), then

0 = yT (λ)L(λ)(Λ⊗ In) = yT (λ)(v ⊗ P (λ)) = yT (λ)(v ⊗ In)P (λ) ,
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and so (vT ⊗ In)y(λ) ∈ N`(P ). Thus the mapping Lv is well defined, and easily
checked to be a linear map between F(λ)-vector spaces.

To verify the rest of the lemma, it is helpful to make use of the simplifying
transformation provided by Theorem 4.1. Letting M ∈ Fk×k be any nonsingular
matrix such that Mv = e1, then by Theorem 4.1 we have

L̂(λ) := (M ⊗ In)L(λ) = λ

[
Ak X12

0 −Z

]
+

[
Y11 A0

Z 0

]
,

where Z ∈ F(k−1)n×(k−1)n is nonsingular because L(λ) is assumed to have full Z-rank.
Now for y(λ) ∈ N`(L), define

z(λ) := (M−T ⊗ In)y(λ) . (5.4)

Then zT (λ)L̂(λ) = yT (λ)L(λ), so z(λ) ∈ N`(L̂) ⇔ y(λ) ∈ N`(L). Furthermore, if
z(λ) is partitioned as

[
zT
1 (λ) z̃ T (λ)

]T with z1(λ) ∈ F(λ)n and z̃(λ) ∈ F(λ)(k−1)n,
then

Lv(y(λ)) = (vT ⊗ In)y(λ) = (vT ⊗ In)(MT ⊗ In)z(λ)
= (eT

1 ⊗ In)z(λ) = z1(λ) . (5.5)

Thus if y(λ) ∈ N`(L), then z(λ) ∈ N`(L̂), which can be rewritten as

[
zT
1 (λ) z̃ T (λ)

] (
λ

[
Ak X12

0 −Z

]
+

[
Y11 A0

Z 0

])
= 0 .

Multiplying blockwise then yields

zT
1 (λ)

(
λ

[
Ak X12

]
+

[
Y11 A0

])
+ z̃ T (λ)

(
λ

[
0 −Z

]
+

[
Z 0

])
= 0 ,

from which it follows that

z̃ T (λ)
(
λ

[
0 −Z

]
+

[
Z 0

])
= −zT

1 (λ)
(
λ

[
Ak X12

]
+

[
Y11 A0

])
,

or equivalently

z̃ T (λ) · Z ·
(
Sk(λ)⊗ In

)
= −zT

1 (λ)
(
λ

[
Ak X12

]
+

[
Y11 A0

])
, (5.6)

where Sk(λ) is the rectangular (k − 1)× k pencil

Sk(λ) = λ
[
0 −Ik−1

]
+

[
Ik−1 0

]
=




1 −λ
1 −λ

. . .
. . .

1 −λ


 .

But Sk(λ) has a polynomial k × (k − 1) Toeplitz right inverse given by

S]
k(λ) =




1 λ λ2 · · · λk−2

0 1 λ
. . .

...
. . .

. . . λ2

...
. . . λ

1
0 · · · 0




,
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so that Sk(λ)S]
k(λ) = Ik−1. Hence we can solve (5.6) for z̃ T (λ) to get

z̃ T (λ) = −zT
1 (λ)

(
λ

[
Ak X12

]
+

[
Y11 A0

]) ·
(
S]

k(λ)⊗ In

)
· Z−1 . (5.7)

From (5.7) the rest of the lemma now quickly follows. Since L(λ) has full Z-
rank, Theorem 4.1 guarantees that L(λ) is a strong linearization of P (λ), and so
dimN`(L) = dimN`(P ). Thus to conclude that Lv is an isomorphism, it suffices to
show that kerLv = {0}. So suppose y(λ) ∈ kerLv. Then 0 = Lv(y(λ)) = z1(λ)
by (5.5), which by (5.7) implies that z̃(λ) = 0, and hence that z(λ) = 0. Therefore
0 = (MT ⊗ In)z(λ) = y(λ) by (5.4), and so kerLv = {0}.

Finally, we see why Lv induces a bijection on vector polynomials. First observe
that the structure of the mapping Lv immediately implies that for any vector polyno-
mial y(λ) ∈ N`(L), Lv(y(λ)) will also be a vector polynomial. For the reverse direc-
tion, suppose that Lv(y(λ)) = z1(λ) is a vector polynomial. Then by (5.7) it is clear
that z̃(λ) is also a vector polynomial, and hence so is z(λ). Thus y(λ) = (MT⊗In)z(λ)
is a vector polynomial, and the proof is complete.

A counterpart of Lemma 5.5 for the right null vectors of linearizations in L2(P )
with full Z-rank can be proved in an analogous fashion. This is Lemma 5.6.

Lemma 5.6. Let P (λ) be an n × n matrix polynomial of degree k, and suppose
L(λ) ∈ L2(P ) has full Z-rank and left ansatz vector w 6= 0. Then the mapping

Rw : Nr(L) −→ Nr(P )
x(λ) 7−→ (wT ⊗ In)x(λ)

(5.8)

is a linear isomorphism of F(λ)-vector spaces. Furthermore, Rw induces a bijection
between the vector polynomials in Nr(L) and the vector polynomials in Nr(P ), i.e.,
x(λ) ∈ Nr(L) is a vector polynomial if and only if (wT ⊗In)x(λ) ∈ Nr(P ) is a vector
polynomial.

Now we can state the main result concerning the recovery of left minimal indices
and bases of a matrix polynomial P (λ) from full Z-rank linearizations in L1(P ); this
is Theorem 5.7. The analogous result for recovering right minimal indices and bases
of P (λ) from full Z-rank linearizations in L2(P ) is then Theorem 5.8. Since the
arguments for both theorems are similar, we prove only Theorem 5.8.

Theorem 5.7. Let P (λ) be an n × n matrix polynomial of degree k, and let
L(λ) ∈ L1(P ) have full Z-rank and nonzero right ansatz vector v. Then:

(a) The left minimal indices of L(λ) and P (λ) are the same.
(b) Every minimal basis of N`(P ) is of the form {(vT ⊗ In)y1(λ), . . . , (vT ⊗

In)yp(λ)}, where {y1(λ), . . . , yp(λ)} is a minimal basis of N`(L).
Theorem 5.8. Let P (λ) be an n × n matrix polynomial of degree k, and let

L(λ) ∈ L2(P ) have full Z-rank and nonzero left ansatz vector w. Then:
(a) The right minimal indices of L(λ) and P (λ) are the same.
(b) Every minimal basis of Nr(P ) is of the form {(wT ⊗ In)x1(λ), . . . , (wT ⊗

In)xp(λ)}, where {x1(λ), . . . , xp(λ)} is a minimal basis of Nr(L).
Proof. We know from Lemma 5.6 that the mapping Rw defined in (5.8) is a linear

isomorphism that induces a bijection between the vector polynomials in Nr(L) and
those in Nr(P ). Therefore Rw also induces a one-to-one correspondence between the
polynomial bases of Nr(L) and those of Nr(P ). If we can show that Rw preserves
the degree of all vector polynomials in Nr(L), then it follows that this mapping
establishes a bijection between minimal bases of Nr(L) and Nr(P ), and the theorem
will be proved. The following argument shows that Rw is indeed degree-preserving.
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Let K ∈ Fk×k be a nonsingular matrix such that wT K = eT
1 . Then by Lemma 5.6

every vector polynomial z(λ) ∈ Nr(P ) can be written as

z(λ) = Rw

(
x(λ)

)
= (wT ⊗ In)(K ⊗ In)(K−1 ⊗ In)x(λ) ,

where x(λ) ∈ Nr(L) is also a vector polynomial. Hence

z(λ) = (eT
1 ⊗ In)(K−1 ⊗ In)x(λ) = (eT

1 ⊗ In)x̂(λ) , (5.9)

where x̂(λ) := (K−1 ⊗ In)x(λ) is again a vector polynomial. Consideration of the
leading coefficient vectors of x̂(λ) and x(λ) shows that deg x̂(λ) = deg x(λ). Par-
titioning x̂(λ) as

[
x̂T

1 (λ), . . . , x̂T
k (λ)

]T with x̂i(λ) ∈ F(λ)n , we see from (5.9) that
z(λ) = x̂1(λ). Now the proof will be complete once we show that deg z(λ) = deg x̂1(λ)
is the same as deg x̂(λ) = deg x(λ), i.e., once we show that deg x̂1(λ) and deg x̂(λ)
are equal. Now clearly deg x̂1(λ) ≤ deg x̂(λ), so all that remains is to establish that
deg x̂1(λ) < deg x̂(λ) is impossible. For purposes of contradiction, then, let us assume
that deg x̂1(λ) < deg x̂(λ) holds, and let d := deg x̂(λ). Then we can write

x̂(λ) =
[

0
t

]
λd + ( lower order terms ) ,

where t ∈ F(k−1)n in the leading coefficient is a nonzero constant vector. Now since
x(λ) ∈ Nr(L), we have 0 = L(λ)x(λ) = L(λ)(K ⊗ In)x̂(λ); using Theorem 4.6 on
L(λ)(K ⊗ In) this can be written as

(
λ

[
Ak 0
X21 −Z

]
+

[
Y11 Z
A0 0

])
· x̂(λ) ≡ 0 . (5.10)

Extracting the coefficient of the highest degree (i.e. degree d + 1) term from the left
hand side of (5.10), we see that

[
Ak 0
X21 −Z

] [
0
t

]
=

[
0
−Zt

]
= 0 .

But Z is nonsingular since L(λ) has full Z-rank, so t = 0; this contradiction to t being
nonzero then completes the proof.

The results in Theorems 5.2, 5.4, 5.7, and 5.8 allow us to recover the whole singular
structure of a matrix polynomial P (λ) from that of a full Z-rank linearization in either
L1(P ) or L2(P ). But it turns out that full Z-rank is not a necessary condition for these
relationships between minimal indices to hold. Example 2 exhibits a linearization in
L1(P ) with deficient Z-rank having the same left and right minimal indices as a full
Z-rank linearization from L1(P ) would have; the left minimal indices are the same as
those of P , and the right minimal indices are shifted by k − 1 from those of P . It is
easy to check that L(λ) in that example has one right minimal index ε̃1 = ε1 + 1 = 1
and one left minimal index η̃1 = η1 = 0. On the other hand, the fact that the left
minimal index of L(λ) in that example is equal to zero is not an accident, as the
following elementary result shows.

Lemma 5.9. Suppose L(λ) ∈ L1(P ) has deficient Z-rank; i.e., the Z-rank is equal
to r and r < (k − 1)n, so that d := (k − 1)n − r is the Z-rank deficiency of L(λ).
Then L(λ) has at least d left minimal indices equal to zero.

Proof. Since the matrix Z ∈ F(k−1)n×(k−1)n in (4.3) has rank r, there are d
linearly independent constant vectors y1, . . . , yd satisfying yT

j Z = 0 for j = 1, . . . , d.
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Set ỹj =
[

0 yT
j

]T
, where the first 0 block consists of n zero entries, and define

zj = (M⊗In)T ỹj for j = 1, . . . , d, where M is the matrix in (4.3). Then z1, . . . , zd are
linearly independent constant vectors satisfying zT

j L(λ) ≡ 0 for j = 1, . . . , d. Thus
L(λ) has at least d linearly independent left null vectors with degree zero, and hence
at least d left minimal indices equal to zero.

As a consequence of Lemma 5.9, we see that a pencil L(λ) in L1(P ) with Z-rank
deficiency d can have the same left minimal indices as P (λ) only if P (λ) itself has at
least d left minimal indices equal to zero.

As usual, there is a counterpart of Lemma 5.9 for pencils in L2(P ) and right
minimal indices.

5.3. Summary of main results. For the convenience of the reader we gather
together here the main results from Sections 5.1 and 5.2 on minimal index and minimal
basis recovery, focusing on the generic case of “full Z-rank” linearizations in L1(P )
and L2(P ). Note that this includes the important special cases of the companion
forms C1(λ) ∈ L1(P ) and C2(λ) ∈ L2(P ) described in (4.2). We restrict attention to
full Z-rank linearizations in the interest of simplicity, so as to more clearly highlight
the similarities and differences between linearizations in L1(P ) and those in L2(P ).

Theorem 5.10 (Minimal indices and bases of full Z-rank linearizations).
Let P (λ) be an n×n matrix polynomial of degree k. Suppose L1(λ) ∈ L1(P ) with right
ansatz vector v 6= 0 and L2(λ) ∈ L2(P ) with left ansatz vector w 6= 0 are linearizations
of P (λ) with full Z-rank. Then:

(a) The minimal indices of P (λ), L1(λ), and L2(λ) are related as follows.

Left minimal indices Right minimal indices

P (λ) η1 ≤ η2 ≤ · · · ≤ ηp ε1 ≤ ε2 ≤ · · · ≤ εp

L1(λ) ∈ L1(P ) η1 ≤ η2 ≤ · · · ≤ ηp ε1 + k − 1 ≤ · · · ≤ εp + k − 1

L2(λ) ∈ L2(P ) η1 + k − 1 ≤ · · · ≤ ηp + k − 1 ε1 ≤ ε2 ≤ · · · ≤ εp

(b) The following table displays correspondences between minimal bases of P (λ)
and those of full Z-rank linearizations in L1(P ) with right ansatz vector v.
(Note that the first companion form C1(λ) is one such linearization, with
right ansatz vector v = e1.)

Left minimal bases Right minimal bases

P (λ) (vT ⊗ In)y1(λ), . . . , (vT ⊗ In)yp(λ) x1(λ), . . . , xp(λ)
l l

L1(λ) ∈ L1(P ) y1(λ), . . . , yp(λ) Λ⊗ x1(λ), . . . , Λ⊗ xp(λ)

Each indicated correspondence describes a bijection between the set of all pos-
sible (left or right) minimal bases of the polynomial P (λ) and the correspond-
ing set of all possible (left or right) minimal bases of L1(λ) ∈ L1(P ). The
following table gives analogous correspondences for full Z-rank linearizations
in L2(P ) with left ansatz vector w. (This includes the second companion form
C2(λ), with w = e1.)
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Left minimal bases Right minimal bases

P (λ) y1(λ), . . . , yp(λ) (wT ⊗ In)x1(λ), . . . , (wT ⊗ In)xp(λ)
l l

L2(λ) ∈ L2(P ) Λ⊗ y1(λ), . . . , Λ⊗ yp(λ) x1(λ), . . . , xp(λ)

Proof. The results follow from Theorems 5.2, 5.4, 5.7, and 5.8.

A striking consequence of Theorem 5.10(a) concerns the relationship between the
companion forms C1(λ) and C2(λ) of a singular polynomial. It is well known that any
two strong linearizations of a regular polynomial P (λ) are strictly equivalent [16, 23],
i.e., equivalent in the sense of Definition 2.2 but with nonsingular constant matrices
E and F . In particular, the first and second companion forms of a regular P (λ)
are always strictly equivalent. The situation for singular P (λ), though, is completely
different.

Corollary 5.11. For a singular n×n matrix polynomial P (λ) of degree k ≥ 2,
the first and second companion forms C1(λ) and C2(λ) are never strictly equivalent.

Proof. It is easy to see that strictly equivalent polynomials must have exactly
the same minimal indices. But from Theorem 5.10(a) it is clear that for any singular
polynomial P of degree k ≥ 2, any full Z-rank linearization from L1(P ) will have
different minimal indices from those of any full Z-rank linearization from L2(P ).
Since C1(λ) ∈ L1(P ) and C2(λ) ∈ L2(P ) both have full Z-rank, they have different
minimal indices, and therefore cannot be strictly equivalent.

6. Linearizations in DL(P ) for singular P? . For a matrix polynomial P (λ)
of degree k, it was proved in [20, 25] that the dimension of DL(P ) := L1(P ) ∩ L2(P )
is k, and furthermore that if P (λ) is regular then almost all pencils in DL(P ) are
linearizations of P (λ). This is in stark contrast with the situation when P (λ) is
singular, as we show in Theorem 6.1.

Theorem 6.1. If P (λ) is an n× n singular matrix polynomial of degree k ≥ 2,
then none of the pencils in DL(P ) is a linearization of P (λ).

Proof. Suppose L(λ) ∈ DL(P ) is a linearization of P (λ). The only pencil in DL(P )
with either left or right ansatz vector being zero is the zero pencil [20, Thm. 3.4], which
by Definition 2.2 can clearly never be a linearization for P (λ). Thus both the left and
right ansatz vectors of L(λ) must be nonzero. Since L(λ) ∈ L2(P ), Theorem 5.4
implies that the left minimal indices of L(λ) are 0 < (k− 1)+ η1 ≤ · · · ≤ (k− 1)+ ηp,
where η1 ≤ · · · ≤ ηp are the left minimal indices of P (λ). But L(λ) is also in L1(P ),
which leads to a contradiction with Theorem 5.7 if L(λ) has full Z-rank, or with
Lemma 5.9 if L(λ) does not have full Z-rank.

7. Linearizations defined via other polynomial bases. In some contexts it
may be useful to consider polynomial bases other than the standard monomial basis{
1, λ, . . . , λk−1

}
(see, for instance, [2] and the references therein). In this section, we

begin by generalizing the vector space L1(P ) as in [24, Section 4.2], modifying the
defining right ansatz condition in (4.1) by using an arbitrary scalar polynomial basis
to replace the standard monomial basis in the vector Λ =

[
λk−1, λk−2, . . . , λ, 1

]T .
Then we show that these new pencils are strictly equivalent to the pencils in L1(P ),
and so most of them are strong linearizations of P (λ) that can be used to recover
the minimal indices and bases of P (λ). This new class of pencils includes ones that
are associated with matrix polynomials expressed in non-monomial polynomial bases.
In particular, it follows from our results that the pencils introduced in [2, Sections 2
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and 3] using degree-graded polynomial bases are strong linearizations of P (λ) even
for singular P (λ); note that in [2] only the regular case was considered. We focus here
only on generalizing the pencils in L1(P ), but similar results can be obtained for an
analogous generalization of the pencils in L2(P ).

Let φ0(λ), φ1(λ), . . . , φk−1(λ) be any basis for the space of all scalar polynomials
of degree less than k, and set Λφ :=

[
φ0(λ) φ1(λ) . . . φk−1(λ)

]T . Let Φ be the

unique (nonsingular) constant matrix such that Λφ = ΦΛ = Φ
[
λk−1, . . . , λ, 1

]T . Then
the following theorem provides the foundation for the main results in this section. It
was stated and proved in [24], but we include it here for completeness.

Theorem 7.1. [24, Prop. 4.9] Let P (λ) be an n× n matrix polynomial of degree
k and let L(λ) = λX + Y be any kn× kn pencil such that L(λ) satisfies the modified
right ansatz

L(λ) · (Λφ ⊗ In) = v ⊗ P (λ) (7.1)

for some nonzero v ∈ Fk. Let M be any nonsingular matrix such that Mv = e1. If
the lower right (k − 1)n× (k − 1)n principal submatrix of X̃ in

L̃(λ) = λX̃ + Ỹ := (M ⊗ In) · L(λ) · (Φ⊗ In) (7.2)

is nonsingular, then L(λ) is a strong linearization for P (λ).
Observe that in Theorem 7.1 the pencil L̃(λ) is in L1(P ), with right ansatz vector

e1. Thus we see that any pencil L(λ) satisfying the modified right ansatz (7.1) will
be strictly equivalent to a pencil in L1(P ).

Now we can state the first of the main results of this section, a generalization of
Theorem 5.2 for linearizations satisfying the modified right ansatz (7.1).

Theorem 7.2. Let P (λ) be an n×n matrix polynomial of degree k, and let L(λ)
be a linearization of P (λ) satisfying the modified right ansatz (7.1) with v 6= 0.

(a) If ε1 ≤ · · · ≤ εp are the right minimal indices of P (λ), then

(k − 1) + ε1 ≤ (k − 1) + ε2 ≤ · · · ≤ (k − 1) + εp.

are the right minimal indices of L(λ).
(b) Every minimal basis of Nr(L) is of the form {Λφ ⊗ x1(λ), . . . , Λφ ⊗ xp(λ)},

where {x1(λ), . . . , xp(λ)} is a minimal basis of Nr(P ).
Proof. As noted right after Theorem 7.1, L(λ) is strictly equivalent to a lineariza-

tion in L1(P ), and so must have the same right minimal indices as any linearization
in L1(P ). Part (a) then follows from Theorem 5.2(a).

Using Theorem 5.2 again on the pencil L̃(λ) in (7.2), we see that every mini-
mal basis of Nr(L̃) is of the form {Λ⊗ x1(λ), . . . , Λ⊗ xp(λ)} for some minimal basis
{x1(λ), . . . , xp(λ)} of Nr(P ). Now (7.2) implies that multiplying any basis of Nr(L̃)
on the left by the nonsingular matrix Φ⊗In will produce a basis of Nr(L), and that all
bases of Nr(L) can be obtained in this way. Since Φ⊗ In is nonsingular and constant,
left multiplication does not change the degree of any vector polynomial, so minimal
bases of Nr(L̃) turn into minimal bases of Nr(L). Part (b) then follows, because
Λφ = ΦΛ.

Note that according to Theorem 7.2, the recovery of a minimal basis of Nr(P )
from a minimal basis of Nr(L) requires division of np scalar polynomials by one of
the basis polynomials φj(λ). This is not a trivial task if there are no monomials in
the basis {φ0(λ), φ1(λ), . . . , φk−1(λ)}.

There is also an analog of Theorem 5.7 for pencils satisfying the modified right
ansatz (7.1). This is Theorem 7.3.



24 F. DE TERÁN, F. M. DOPICO AND D. S. MACKEY

Theorem 7.3. Let P (λ) be an n×n matrix polynomial of degree k, and let L(λ)
be a matrix pencil satisfying all the hypotheses of Theorem 7.1. Then:

(a) The left minimal indices of L(λ) and P (λ) are the same.
(b) Every minimal basis of N`(P ) is of the form {(vT ⊗ In)z1(λ), . . . , (vT ⊗

In)zp(λ)}, where {z1(λ), . . . , zp(λ)} is a minimal basis of N`(L).
Proof. As in Theorem 7.2, part (a) is a consequence of Theorem 5.7(a) and the

invariance of minimal indices under strict equivalence, since L̃(λ) in (7.2) is in L1(P )
with nonzero right ansatz vector and full Z-rank. To prove part (b), first observe from
(7.2) that ỹ(λ) is a left null vector of L̃(λ) if and only if z(λ) = (M⊗In)T ỹ(λ) is a left
null vector of L(λ). Applying Theorem 5.7 to L̃(λ), we see that every minimal basis of
N`(P ) is of the form {(eT

1 ⊗ In)ỹ1(λ), . . . , (eT
1 ⊗ In)ỹp(λ)}, where {ỹ1(λ), . . . , ỹp(λ)} is

a minimal basis of N`(L̃), equivalently, where {(M ⊗ In)T ỹ1(λ), . . . , (M ⊗ In)T ỹp(λ)}
is a minimal basis of N`(L). Part (b) now follows by taking zi(λ) to be (M⊗In)T ỹi(λ)
for i = 1, . . . , p, and recalling that eT

1 M−T = vT .
We finish by applying the results in this section to show that the pencils in

[2, Sections 2 and 3] defined in terms of degree-graded polynomial bases are strong
linearizations of P (λ), and that they can be used to recover the minimal indices and
bases of P (λ) through Theorems 7.2 and 7.3. The phrase “degree-graded” here refers
to polynomial bases φ0(λ), φ1(λ), . . . , φk−1(λ) with the property that deg φj(λ) = j
for j = 0, . . . , (k − 1). The pencils in [2, Section 2] satisfy a generalized left ansatz
version of (7.1). However, the block transposes of the pencils in [2, Section 2] satisfy
(7.1) with v = cek, where c is a nonzero constant and ek is the kth column of Ik.
So for these pencils the matrix M in (7.2) can be taken as M = c−1R, where R is
the matrix obtained by reversing the order of the rows of Ik, and the change of basis
matrix Φ is nonsingular and lower anti-triangular (because of the degree-grading).
In addition, if L(λ) = λX + Y is the block transpose of a pencil in [2, Section 2]
then X = diag(In(k−1), b Ak), with b a nonzero constant. As a consequence of these
arguments, the matrix X̃ in (7.2) satisfies

X̃ = c−1 (R⊗ In) · diag(In(k−1), b Ak) · (Φ⊗ In)

= c−1 diag(bAk, In(k−1)) · (R⊗ In) · (Φ⊗ In)

= c−1 diag(bAk, In(k−1)) · (RΦ⊗ In),

where RΦ is nonsingular upper triangular. Thus the lower right (k − 1)n× (k − 1)n
principal submatrix of X̃ is also nonsingular, so that Theorems 7.1, 7.2, and 7.3 hold
for the block transposes of the pencils in [2, Section 2 and 3].

Note that results similar to Theorems 7.1, 7.2, and 7.3 may also be developed for
pencils satisfying a modified left ansatz analogous to (7.1), showing how such pencils
are closely connected to pencils in L2(P ), and how recovery from them of minimal
indices and bases for P may be achieved. Such results can then be applied directly
(without any block transposing) to the pencils in [2, Section 2 and 3].

8. Conclusions and future work. We have proved that almost all of the pen-
cils in the vector spaces L1(P ) and L2(P ) introduced in [25], and all of the pencils
introduced in [2, Sections 2 and 3], are strong linearizations for any n × n singular
matrix polynomial P (λ), but that none of the pencils in DL(P ) is ever a linearization
for such a P (λ). In addition, we have shown how to recover the minimal indices and
bases of P (λ) from the minimal indices and bases of linearizations in L1(P ), in L2(P ),
and in [2, Sections 2 and 3]. This suggests the possibility of computing these quanti-
ties from the GUPTRI form of a linearization, as was done in [6] for the companion
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form of full-rank rectangular matrix polynomials that have minimal indices only on
one side.

The results in this paper on linearizations from L1(P ) and L2(P ) for singular
polynomials have been extended to include the companion-like pencils that were in-
troduced in [4] as linearizations for regular polynomials. These extended results will
be presented in the forthcoming paper [12].
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