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a b s t r a c t

Advances in the field of bioinformatics have led to reconstruction of genome-scale networks for a

number of key organisms. The application of physicochemical constraints to these stoichiometric

networks allows researchers, through methods such as flux balance analysis, to highlight key sets of

reactions necessary to achieve particular objectives. The key benefits of constraint-based analysis lie in

the minimal knowledge required to infer systemic properties. However, network degeneracy leads to a

large number of flux distributions that satisfy any objective; moreover, these distributions may be

dominated by biologically irrelevant internal cycles. By examining the geometry underlying the

problem, we define two methods for finding a unique solution within the space of all possible flux

distributions; such a solution contains no internal cycles, and is representative of the space as a whole.

The first method draws on typical geometric knowledge, but cannot be applied to large networks

because of the high computational complexity of the problem. Thus a second method, an iteration of

linear programs which scales easily to the genome scale, is defined. The algorithm is run on four recent

genome-scale models, and unique flux solutions are found. The algorithm set out here will allow

researchers in flux balance analysis to exchange typical solutions to their models in a reproducible

format. Moreover, having found a single solution, statistical analyses such as correlations may be

performed.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Recent advances in genome sequencing techniques and
bioinformatic analyses have led to an explosion of systems-wide
biological data. In turn the reconstruction of genome-scale
networks for micro-organisms has become possible. Whilst the
first stoichiometric model of E. coli was limited to the central
metabolic pathways (Varma and Palsson, 1993), the most recent
reported model is much more comprehensive, consisting of 2077
reactions and 1039 metabolites (Feist et al., 2007). Reaction
networks for S. cerevisiae have been similarly expanded through
incorporation of more genes and their corresponding metabolites
—a recent consensus model consists of 1761 reactions and 1168
metabolites (Herrgård et al., 2008). Genome-scale stoichiometric
models for other micro-organisms (Kim et al., 2008) and even H.

sapiens (Duarte et al., 2007) have been developed.
The ability to analyse, interpret and ultimately predict cellular

behaviour has been a long sought-after goal. The genome
sequencing projects are defining the molecular components

within the cell, and describing the integrated function of these
molecular components will be a challenging task (Edwards and
Palsson, 2000). Ideally, one would like to use kinetic modelling to
characterize fully the mechanics of each enzymatic reaction, in
terms of how changes in metabolite concentrations affect local
reaction rates. However, a considerable amount of data is required
to parameterize even a small mechanistic model; the deter-
mination of such parameters is costly and time-consuming, and
moreover many may be difficult or impossible to determine
experimentally. Instead, genome-scale metabolic modelling has
relied on constraint-based analysis (Beard et al., 2002; Covert
et al., 2003; Kim et al., 2008; Price et al., 2004), which uses
physicochemical constraints such as mass balance, energy
balance, and flux limitations to describe the potential behaviour
of an organism. In particular, flux balance analysis (FBA) (Kauffman
et al., 2003) highlights the most effective and efficient paths
through the network in order to achieve a particular objective
function, such as the maximization of biomass or ATP production.
The key benefit of FBA and similar techniques lies in the minimal
amount of biological knowledge and data required to make
quantitative inferences about network behaviour (Bonarius et al.,
1997).

In general there is degeneracy in stoichiometric networks,
leading to an infinite number of flux distributions satisfying the
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given optimality criteria. It is a great focus of the FBA community
to reduce the size of this optimal flux space, through imposing
tighter limits on each flux based, for instance, on measurements
of intracellular fluxes with nuclear magnetic resonance, or other
additional constraints (Kim et al., 2008). Despite use of these
techniques, the resultant solution remains a space of fluxes, rather
than a unique flux. In a recent paper, Price et al. (2004) do not view
this as a problem, stating

The mathematical notion of equivalent optimal states is
coincident with the biological notion of silent phenotypes.
This property distinguishes in silico modelling in biology from
that in the physicochemical sciences where a single and unique
solution is sought.

While it is true that equivalent solutions may be important in
representing biological reality, at the same time we also believe
that the ability to state a well-defined, single solution that is
representative of the space of all possible fluxes would be of great
benefit to the modelling community. From a practical perspective,
researchers often do quote a single flux that results from their
analysis; since this is chosen randomly from a large space of
possible fluxes, their results are irreproducible and entirely
dependent on the software or algorithm used to solve the linear
programming (LP) problem. From a scientific perspective, the
ability to extract a representative solution from the space would
allow us to perform typical analyses, for example correlating flux
with associated protein levels.

In this paper we show that, by examining the geometry
underpinning the problem, we may find a well-defined, unique
flux through application of a well-known and fundamental
mathematical theorem. Unfortunately, this method proves im-
practicable for large, genome-scale models. Thus, we define a
second method that gives similar results to the first, and moreover
is computationally feasible. The algorithm is applied to a range of
existing genome-scale models.

2. Methods

The problems encountered when performing constraint-based
analysis, and the methods we propose to overcome these
problems are best described through referral to a simple example.
Consider the small metabolic network presented in Fig. 1, whose
fluxes we wish to estimate. This may be addressed through
appealing to FBA. This method allows us to identify the optimal
path through the network in order to achieve a particular
objective; quantitative predictions will then hold true if the cell
optimizes its growth under the conditions considered. When
applying LP to predict flux distributions it is assumed that the cell
has found an ‘‘optimal solution’’ for survival through natural
selection, where we equate survival with growth (Edwards and
Palsson, 2000).

For our example network, FBA would involve maximizing
output flux ðv5Þ subject to a limited nutrient consumption rate
(v1p1, say). The maximal solution to the problem here is clear

ðv5 ¼ 1Þ, but such ‘‘back of the envelope’’ calculations would
not be possible in a genome-scale network with thousands
of reactions and species. Rather, we must formulate the problem
in matrix form

maximize Z ¼ f T v

subject to N v ¼ 0,

vminpvpvmax,

where

f ¼
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The FBA problem is now well-defined, in that it leads to a unique,
finite objective value Z ¼ Z%

¼ 1; however, even for this small
network there is degeneracy, leading to an infinite number of flux
distributions v with the same optimal value. Returning to Fig. 1,
we can see that this occurs because the flux may be delivered
through any of reactions 2, 3 or 4, or any combination thereof.
Indeed the actual non-unique flux solution found will be entirely
dependent on the underlying algorithm of one’s software. For
example, one possible solution is given by v% ¼ ð1;1;1000;
�1000;1ÞT . Such an answer is unappealing—the result is
dominated by an internal cycle between fluxes 3 and 4; whilst
cells are known to demonstrate such profligacy with regard to flux
(Westerhoff et al., 1983), it is unlikely to occur to such an extent.
The problem we shall address through the remainder of this paper
is how to extract a solution from the space of flux distributions
that is both unique (and hence reproducible) and sensible, from a
biological perspective.

2.1. Method one

The set of all possible solutions to the FBA problem is given by
the equation and constraints

Av ¼ b; vminpvpvmax, (1)

where

A ¼
N

f T

 !
; b ¼

0

Z%

� �
.

From a geometric perspective, Eq. (1) defines a polyhedron;
appealing further to geometric understanding (and using the fact
that ba0), the representation theorem (Minkowski, 1910) tells us
that polyhedra such as these may be naturally decomposed as the
sum of a convex hull and a pointed cone as shown in Fig. 2.
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pointed cone

.

The hull is uniquely defined by its vertices xi while the cone is
uniquely (up to multiplication) defined by its extremal rays yj.
These vertices and rays may be found through application of
Chernikova’s algorithm (Chernikova, 1965; Le Verge, 1992).
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Fig. 1. A small metabolic network that admits multiple solutions: the output flux

may be delivered through any of reactions 2, 3 or 4.
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For our example we have three vertices and six rays given by
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It is clear from this result that the extremal rays define the
internal cycles in the network. Rather, the interesting potential
solutions are to be found within the hull. Since the vertices of the
hull are uniquely defined, so the centre of the solution hull is
uniquely defined as

v% ¼
1

n

Xn

i¼1

xi ¼

1

1=3

1=3

1=3

1

0
BBBBBB@

1
CCCCCCA.

This is indeed a natural solution to our FBA problem. No flux is
wasted through internal cycles. Moreover, in the absence of
experimental information as to which of reactions 2, 3 or 4 are
used preferentially, the result unbiassedly assumes an equal flux
through each.

Choosing the centre of the convex hull seems an ideal method
for fixing a unique FBA solution. Unfortunately, Chernikova’s
algorithm is exponential in the number of reactions (Le Verge,

1992), and hence is computationally infeasible for genome-scale
systems; indeed, the related problem of determining elementary
flux modes has only proved possible in systems with tens, rather
than thousands, of species and reactions (Klamt and Stelling,
2002). Thus we turn to an alternative, but related, method for
dealing with such large systems.

2.2. Method two

The algorithm we propose to define a unique flux balance
solution may be visualized as follows: whilst it is not computa-
tionally possible to define the vertices of a convex hull for a
genome-scale network, the problem of finding the smallest box
that may contain that hull may be posed as a (soluble) set of LP
problems.

We first define the method, then explain its workings by
means of application to the example of Fig. 1. Starting with Eq. (1),
the algorithm may be stated in pseudocode as:

n:¼1

m1:¼ð0; . . . ;0Þ

while D4e do

Zn:¼ minimize kv� mnk1 subject to

Av ¼ b, vminpvpvmax, kv� mik1 ¼ Zi , i ¼ 1; . . . ;n� 1

for each j do

vmax
j % maximize vj subject to

Av ¼ b, vminpvpvmax, kv� mik1 ¼ Zi , i ¼ 1; . . . ;n

vmin
j % minimize vj subject to

Av ¼ b, vminpvpvmax, kv� mik1 ¼ Zi , i ¼ 1; . . . ;n

n%nþ 1

mn:¼
1
2 ðv

max � vminÞ

D%maxijv
max
i � vmin

i j

where kvk1 ¼
P

ijvij denotes the taxicab—norm and e is some
specified tolerance.

Let us examine the workings of the algorithm through its
application to our example.

2.2.1. Iteration 1

For the first iteration we make the sensible assumption that
the cell will minimize the total flux ð

P
ijvijÞ required to produce its

objective Z ¼ Z%, which by decomposing v into its positive and
negative parts may be posed as a LP problem. This idea for flux
minimization was first suggested by Holzhütter (2004); assuming
that flux is proportional to enzyme concentration, this is
equivalent in some sense to the cell minimizing the amount of
enzyme required. The step further ensures that internal cycles
that can produce fluxes vi ¼ 1 are removed, a result also found in
previous methods (Price et al., 2006; Qian and Beard, 2005).
Indeed, returning to Fig. 1, the solution space to this new problem
is now given exactly by the convex hull, and the cone is empty.
Having found the minimal total flux through the network Z1 ¼ 3,
we now find the bounds on each flux subject to this additional
constraint (a new take on flux variability analysis, Mahadevan and
Schilling, 2003). Naturally, vi ¼ 1, for i ¼ 1;5, whilst 0pvip1 for
i ¼ 2;3;4. These limits are set as the new upper and lower bounds
for the problem. The centre is set as the mean of these new
bounds, namely m2 ¼ ð1;

1
2 ;

1
2 ;

1
2 ;1Þ

T, as this is most representative
of all solutions.

2.2.2. Iteration 2

In the first method, we were able to choose the centre of the
convex hull ðv%Þ as a solution. Here we have placed a box around
the hull (defining new bounds); unfortunately the centre of the
box ðm2Þ is not necessarily a solution to the original problem. Thus
we instead minimize the distance between the flux and the
centre, subject to the new constraint Z1 found in the previous
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Fig. 2. The set of all optimal solutions of a FBA problem may be decomposed as the

sum of the convex hull of its vertices (red, top) and the pointed cone of its extreme

rays (blue, bottom). A natural choice of solution is given by the centre of the hull

(black). (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)
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iteration. In turn this leads to new bounds 0pvip 1
2, for i ¼ 2;3;4

and corresponding centre m3 ¼ ð1;
1
4 ;

1
4 ;

1
4 ;1Þ

T .

2.2.3. Iteration n

Each iteration of the algorithm adds an additional constraint,
as the flux is drawn towards the centre of the bounds. Hence, with
each iteration, the box surrounding the allowable flux space
shrinks in size. After a finite number of iterations the bounds will
converge to a single solution, within a given tolerance; this
process takes 22 iterations for our simple example, with tolerance
e ¼ 10�6. The final solution v% ¼ ð1; 1

3 ;
1
3 ;

1
3 ;1Þ

T coincides with the
solution found by the first method.

3. Results and discussion

We run the algorithm presented in method two on genome-
scale metabolic models for four organisms to test its efficacy. The
four models—with known biomass representations and nutrient
limitations—were imported to MATLABs using libSBML (Born-
stein et al., 2008) and solved with GLPK (GNU Linear Program-
ming Kit) (Makhorin, 2001).

The results may be found in Table 1. The maximal biomass
yield was found and flux variability analysis performed to find
the number of non-fixed fluxes (presented as ‘‘iteration 0’’).
The algorithm was then run until convergence at our specified
tolerance e ¼ 10�6. The first point of note is that, in most cases,
the algorithm converges very quickly to a solution; three of the
four networks converge in less than three iterations. Indeed, the
motif of our small example network proves to be a worst-case
scenario.

Let us consider the application of the algorithm to the
S. cerevisiae network iND750 (Duarte et al., 2004), consisting of
1266 reactions. The assumption that the network maximizes its
biomass production forces 1086 of the reactions to have a fixed
value. Two iterations further and we have defined the unique
central point; 978 of the reactions are fixed at zero, leaving only
1266� 978 ¼ 288 taking a non-zero value. These reactions may
be considered those critical for cellular growth and greatly
simplify the problem of investigating metabolic function. Similar
benefits are found when the method is applied to other models.

Our flux solution for the S. cerevisiae network is compared to
the flux given in the original paper and is presented in Fig. 3.
Whilst the vast majority of fluxes are identical, this is due to the
assumption of maximal biomass production; indeed 108 of the
1266� 1086 ¼ 180 fluxes not forced to have a specific value
are found to be different. Moreover, some of these differences are
large—of the same order as the cell’s glucose consumption rate
ð1 mmol g�1 h�1

Þ. These differences illustrate the wide solution
space typically found in FBA.

Where available, each reaction in the S. cerevisiae network
is associated with a protein or proteins. Thus we may compare
our flux solution with the protein copy number as given by

Ghaemmaghami et al. (2003). Where a reaction is associated with
multiple proteins, we sum their copy numbers. The correlation
between flux and protein levels is small (0.13), but significant
ðpo10�3

Þ, and compares slightly favourably to the flux given in
the original paper (Duarte et al., 2004, correlation 0.12). We admit
this correlation is not evidence of the correctness of our flux
solution—such can only be shown with direct measurement—but
do believe it to show the flux to be reasonable.

4. Conclusion

The algorithm presented in this paper allows researchers from
the flux balance community to choose a unique and well-defined
flux from the space of all possible solutions. In turn, any results
produced with the use of this algorithm will be fully reproducible
and allow the exchange of typical solutions to models in a
reproducible format.

From a biological perspective, the exact flux utilized by the cell
will be dependent on a wide range of stimuli, and thus impossible
to predict from network structure alone. Nonetheless, the solution
chosen by our algorithm is sensible in a number of respects.
The algorithm picks out the minimal solution required to satisfy
the given objective; assuming that flux correlates with enzyme
levels, this is equivalent to the cell minimizing the amount of
enzyme required to satisfy this objective. Moreover, any fluxes
representing thermodynamically infeasible internal cycles are
removed. From the remaining set of solutions, our chosen flux is in
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Table 1

The results of the algorithm when applied to a selection of genome-scale models, with tolerance e ¼ 10�6.

Model Reactions Species Iteration 0 Iteration 1 Iteration n

Fixed At zero Fixed At zero n At zero

Example 5 2 2 0 2 0 22 0

H. plyori iIT341 (Thiele et al., 2005) 554 562 0 0 328 130 3 272

M. tuberculosis iNJ661 (Jamshidi and Palsson, 2007) 1028 911 863 530 996 599 3 599

S. cerevisiae iND750 (Duarte et al., 2004) 1266 1177 1086 890 1240 978 2 978

E. coli iAF1260 (Feist et al., 2007) 2382 1972 2251 1897 2358 1967 13 1967
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Fig. 3. Our flux solution for the S. cerevisiae network iND750 (Duarte et al., 2004)

is compared to the flux presented in the original paper. 108 of a possible 180 fluxes

were found to differ. Note that glucose consumption is defined as 1 mmol g�1h�1.

K. Smallbone, E. Simeonidis / Journal of Theoretical Biology ] (]]]]) ]]]–]]]4

Please cite this article as: Smallbone, K., Simeonidis, E., Flux balance analysis: A geometric perspective. J. Theor. Biol. (2009),
doi:10.1016/j.jtbi.2009.01.027

dx.doi.org/10.1016/j.jtbi.2009.01.027


a sense ‘‘central’’, and hence can be considered unbiassedly
representative of all possible solutions.

Whilst a similar result may be obtained through application of
Chernikova’s algorithm, our method easily scales to networks
with thousands of reactions and reactants. Thus, as network size
increases and objectives gain in complexity, the method will
continue to find application within the community.
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Duarte, N.C., Herrgård, M.J., Palsson, B.Ø., 2004. Reconstruction and validation of
Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale
metabolic model. Genome Res. 14, 1298–1309.

Edwards, J.S., Palsson, B.Ø., 2000. The Escherichia coli MG1655 in silico metabolic
genotype: its definition, characteristics, and capabilities. Proc. Natl. Acad. Sci.
USA 97, 5528–5533.

Feist, A.M., Henry, C.S., Reed, J.L., Krummenacker, M., Joyce, A.R., Karp, P.D.,
Broadbelt, L.J., Hatzimanikatis, V., Palsson, B.Ø., 2007. A genome-scale

metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for
1260 ORFs and thermodynamic information. Mol. Syst. Biol. 3, 121.

Ghaemmaghami, S., Huh, W., Bower, K., Howson, R.W., Belle, A., Dephoure, N.,
O’Shea, E.K., Weissman, J.S., 2003. Global analysis of protein expression in
yeast. Nature 425, 737–741.
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