
Efficient Algorithms for the Matrix Cosine and
Sine

Hargreaves, Gareth I. and Higham, Nicholas J.

2005

MIMS EPrint: 2005.44

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

Efficient Algorithms for the Matrix Cosine and Sine∗

Gareth I. Hargreaves† Nicholas J. Higham‡

February 4, 2005

Abstract

Several improvements are made to an algorithm of Higham and Smith for com-
puting the matrix cosine. The original algorithm scales the matrix by a power of 2
to bring the ∞-norm to 1 or less, evaluates the [8/8] Padé approximant, then uses
the double-angle formula cos(2A) = 2 cos2 A− I to recover the cosine of the origi-
nal matrix. The first improvement is to phrase truncation error bounds in terms of
‖A2‖1/2 instead of the (no smaller and potentially much larger quantity) ‖A‖. The
second is to choose the degree of the Padé approximant to minimize the computa-
tional cost subject to achieving a desired truncation error. A third improvement
is to use an absolute, rather than relative, error criterion in the choice of Padé
approximant; this allows the use of higher degree approximants without worsen-
ing an a priori error bound. Our theory and experiments show that each of these
modifications brings a reduction in computational cost. Moreover, because the
modifications tend to reduce the number of double-angle steps they usually result
in a more accurate computed cosine in floating point arithmetic. We also derive an
algorithm for computing both cos(A) and sin(A), by adapting the ideas developed
for the cosine and intertwining the cosine and sine double angle recurrences.

Key words. matrix function, matrix cosine, matrix sine, matrix exponen-
tial, Taylor series, Padé approximation, Padé approximant, double-angle formula,
rounding error analysis, Schur–Parlett method, MATLAB

AMS subject classifications. 65F30

1 Introduction

The matrix exponential, undoubtedly the most-studied matrix function, provides the
solution y(t) = eAy0 to the first order differential system dy/dt = Ay, y(0) = y0, where

∗Numerical Analysis Report 461, Manchester Centre for Computational Mathematics, February 2005.
†School of Mathematics, University of Manchester, Sackville Street, Manchester, M60 1QD, UK

(hargreaves@ma.man.ac.uk, http://www.ma.man.ac.uk/~hargreaves/). This work was supported by
an Engineering and Physical Sciences Research Council Ph.D. Studentship.

‡School of Mathematics, University of Manchester, Sackville Street, Manchester, M60 1QD, UK
(higham@ma.man.ac.uk, http://www.ma.man.ac.uk/~higham/). This work was supported by Engi-
neering and Physical Sciences Research Council grant GR/T08739 and by a Royal Society-Wolfson
Research Merit Award.

1

A ∈ C
n×n and y ∈ C

n. Trigonometric matrix functions play a similar role in second order
differential systems. For example, the problem

d2y

dt2
+ Ay = 0, y(0) = y0, y′(0) = y′

0 (1.1)

has solution1

y(t) = cos(
√

At)y0 +
(√

A
)−1

sin(
√

At)y′
0, (1.2)

where
√

A denotes any square root of A. More general problems of this type, with
a forcing term f(t) on the right-hand side, arise from semidiscretization of the wave
equation and from mechanical systems without damping, and their solutions can be
expressed in terms of integrals involving the sine and cosine [10]. Despite the important
role played by the matrix sine and cosine in these second order differential systems, their
numerical computation has received relatively little attention. As well as methods for
computing them individually, methods are needed for simultaneously computing the sine
and cosine of the same matrix, as naturally arises in (1.2).

A general algorithm for computing the matrix cosine that employs rational approxi-
mations and the double-angle formula cos(2A) = 2 cos2(A) − I was proposed by Serbin
and Blalock [11]. Higham and Smith [6] developed a particular version of this algorithm
based on Padé approximation and supported by truncation and rounding error analysis.
In this work we revisit the algorithm of Higham and Smith, making several improvements
to increase both its efficiency and its accuracy and adapting it to compute cos(A) and
sin(A) together.

First, we state the original algorithm [6, Alg. 6.1]. This algorithm, and all those
discussed here, are intended for use in IEEE double precision arithmetic, for which the
unit roundoff u = 2−53 ≈ 1.11× 10−16.

Algorithm 1.1 Given a matrix A ∈ C
n×n this algorithm approximates X = cos(A).

1 Find the smallest nonnegative integer m so that 2−m‖A‖∞ ≤ 1.
2 C0 = r88(2

−mA), where r88(x) is the [8/8] Padé approximant to cos(x).
3 for i = 0: m− 1
4 Ci+1 = 2C2

i − I
5 end
6 X = Cm

Cost: (4 + ceil(log2 ‖A‖∞))M + D, where M denotes a matrix multiplication and D the
solution of a linear system with n right-hand side vectors.

The algorithm can be explained as follows. Line 1 determines the scaling needed to
reduce the ∞-norm of A to 1 or less. Line 2 computes the [8/8] Padé approximant of
the scaled matrix; it is evaluated by the technique described in Section 2 (cf. (2.4)) at a
cost of 4M + D. The loop beginning at line 3 uses the double-angle formula cos(2A) =
2 cos(A)2 − I to undo the effect of the scaling.

Higham and Smith [6] show that

‖ cos(A)− r88(A)‖∞
‖ cos(A)‖∞

≤ 3.26× 10−16 ≈ 3u for ‖A‖∞ ≤ 1. (1.3)

1This formula is interpreted for singular A by expanding
(√

A
)−1

sin(
√

At) as a power series in A.

2

Hence in Algorithm 1.1, r88(2
−mA) approximates C0 = cos(2−mA) to essentially full

machine accuracy.
Algorithm 1.1 can optionally make use of preprocessing, which is implemented in the

next algorithm.

Algorithm 1.2 Given a matrix A ∈ C
n×n this algorithm computes X = cos(A) by

preprocessing A and then invoking a given algorithm for computing cos(A).

1 A← A− πqI, where q is whichever of 0, floor(µ) and ceil(µ) yields the
smaller value of ‖A− πqI‖∞, where µ = trace(A)/(nπ).

2 B = D−1AD, where D balances A.
3 if ‖B‖∞ < ‖A‖∞, A = B, end
4 Apply the given algorithm to compute C = cos(A).
5 X = (−1)qC
6 if balancing was performed, X = DXD−1, end

Lines 1-3 carry out preprocessing prior to the main computations; they apply a simi-
larity transformation and a shift in an attempt to reduce the norm. Lines 5 and 6 undo
the effect of the preprocessing. See [6] for an explanation of the preprocessing.

The impetus for this work comes from two observations. First, the analysis of Higham
and Smith focuses on the [8/8] Padé approximant, but the use of an approximant of a
different, A-dependent degree could potentially yield a more efficient algorithm. The
recent work of Higham [5] on the scaling and squaring method for the matrix exponential
shows how to choose the degree of the Padé approximant and the norm of the scaled
matrix at which the approximant is evaluated in order to obtain an optimally efficient
algorithm, and the same approach is applicable to the double-angle algorithm for the
cosine. The second relevant observation is that the double-angle steps in Algorithm 1.1
can potentially magnify both truncation and rounding errors substantially, so reducing
the number of such steps (while not sacrificing the efficiency of the whole algorithm)
could bring an important improvement in accuracy. Indeed it is shown in [6] that the

computed Ĉi =: Ci + Ei satisfies

‖Ei‖∞ ≤ (4.1)i‖E0‖∞‖C0‖∞‖C1‖∞ . . . ‖Ci−1‖∞

+ γn+1

i−1∑

j=0

4.1i−j−1(2.21‖Cj‖2∞ + 1)‖Cj+1‖∞ . . . ‖Ci−1‖∞, (1.4)

where γk = ku/(1 − ku), which warns of error growth exponential in the number of
double-angle steps, but Algorithm 1.1 does not attempt to minimize the number of such
steps.

In this work we show how to choose the degree of the Padé approximant to minimize
the computational effort while at the same time (approximately) minimizing the number
of double-angle steps, and where minimization is subject to retaining numerical stability
in evaluation of the Padé approximant. We also show how to exploit the fact that the
cosine is an even function to reduce the work, possibly by a large amount.

In Section 2 we develop an improved version of Algorithm 1.1 that incorporates these
ideas. In Section 3 we argue that imposing an absolute, rather than relative, error
criterion on the Padé approximant leads to a more efficient algorithm whose accuracy is

3

in general no worse. The numerical experiments of Section 4 compare Algorithm 1.1 with
the two new algorithms derived in this paper and also with MATLAB’s funm applied to
the cosine. These sections concentrate on the cosine. There is no natural analogue of
Algorithm 1.1 for the sine, because the corresponding double-angle recurrence sin(2A) =
2 sin(A) cos(A) would require cosines. However, computing the sine reduces to computing
the cosine through sin(A) = cos(A− π

2
I).

Building on the new algorithms for the cosine, in Section 5 we develop an algorithm
for simultaneously computing cos(A) and sin(A) at lower cost than if they were computed
independently, which is useful when evaluating (1.2), for example. Concluding remarks
are given in Section 6.

Throughout this paper an unsubscripted norm denotes an arbitrary subordinate ma-
trix norm.

2 An Algorithm with Variable Degree Padé Approx-

imants

We denote by rm(x) = pm(x)/qm(x) an [m/m] Padé approximant of a given function
f(x). By definition, pm and qm are polynomials in x of degree at most m and

f(x)− rm(x) = O(x2m+1).

We will normalize so that pm and qm have no common zeros and qm(0) = 1. For later
reference we write

pm(x) =
m∑

i=0

aix
i, qm(x) =

m∑

i=0

bix
i. (2.1)

As discussed in [6], it is not known whether Padé approximants of cos(x) exist for all
m, though formulae of Magnus and Wynn [8] are available that give the coefficients of
pm and qm in terms of ratios of determinants of matrices whose entries involve binomial
coefficients. Since cos is an even function we need consider only even degrees 2m. Both
p2m and q2m are even polynomials and

cos(x)− r2m(x) = O(x4m+2).

Our first task is to bound the truncation error, which has the form

cos(A)− r2m(A) =
∞∑

i=2m+1

c2iA
2i.

Hence

‖ cos(A)− r2m(A)‖ ≤
∞∑

i=2m+1

|c2i|θ2i, (2.2)

where
θ = θ(A) = ‖A2‖1/2.

Note that we have expressed the bound in terms of ‖A2‖1/2 instead of the (no smaller)
quantity ‖A‖. The reason is that ‖A2‖1/2 ≪ ‖A‖ is possible for nonnormal A. Since our

4

Table 2.1: Maximum value θ2m of θ = ‖A2‖1/2 such that the relative error bound (2.3)
does not exceed u = 2−53.

2m 2 4 6 8 10 12 14
θ2m 6.1e-3 1.1e-1 4.3e-1 9.5e-1 1.315 1.317 1.317

algorithm will require the matrix A2 to be computed, it makes sense to use knowledge of
its norm in the derivation; this was not done in [6] and so is one way in which we gain
an improvement over Algorithm 1.1.

It is easy to see that

‖ cos(A)‖ ≥ 1− ‖A
2‖

2!
− ‖A

2‖2
4!
− · · · = 1− (cosh(‖A2‖1/2)− 1) = 2− cosh(θ).

Combining this bound with (2.2), we conclude that

‖ cos(A)− r2m(A)‖
‖ cos(A)‖ ≤

∑∞
i=2m+1

|c2i|θ2i

2− cosh(θ)
for θ < cosh−1(2) ≈ 1.317. (2.3)

To design the algorithm we need to know for each m how small θ = ‖A2‖1/2 must be
in order for r2m to deliver the required accuracy. Adopting the approach used by Higham
[5] for the exponential, we therefore determine the largest value of θ, denoted by θ2m,
such that the relative error bound in (2.3) does not exceed u. To do so we compute the
c2i symbolically and evaluate the bound (2.3) in 250 decimal digit arithmetic, summing
the first 150 terms of the series, all with MATLAB’s Symbolic Math Toolbox. We use a
zero-finder to find θ2m, obtaining the values shown in Table 2.1. We see that θ2m rapidly
approaches cosh−1(2) as m increases: θ14 and θ12 differ by about 10−9.

When we rerun the computation with m = 8, aiming for a relative error bound
3.26 × 10−16, we find that θ8 = 1.005, which shows that the bound (1.3) is close to
optimal (modulo its use of ‖A‖ in place of ‖A2‖1/2).

Now we need to determine the cost of evaluating r2m. Given the absence of any
convenient continued fraction or partial fraction forms, we will explicitly evaluate p2m and
q2m and then solve the multiple right-hand side system q2mr2m = p2m. The most efficient
evaluation scheme we have found is to treat p2m and q2m as degree m polynomials in A2

and apply the Paterson–Stockmeyer method [9], adapted for the simultaneous evaluation
of two polynomials of the same argument and degree as suggested by Higham [4]. Of
equal cost for 8 ≤ 2m ≤ 28 are the schemes of the form illustrated for 2m = 12 by

A2 = A2, A4 = A2

2, A6 = A2A4,

p12 = a0I + a2A2 + a4A4 + a6A6 + A6(a8A2 + a10A4 + a12A6), (2.4)

q12 = b0I + b2A2 + b4A4 + b6A6 + A6(b8A2 + b10A4 + b12A6).

Table 2.2 summarizes the cost of evaluating p2m and q2m for 2m = 2: 2: 30.
In view of Table 2.1 we can restrict to 2m ≤ 12, since θ14 is only slightly larger

than θ12. Since Table 2.2 shows that r12 can be evaluated at the same cost as the less
accurate r10, we can remove 2m = 10 from consideration. Hence we need consider only
2m = 2, 4, 6, 8, 12.

5

Table 2.2: Number of matrix multiplications π2m required to evaluate p2m(A) and q2m(A).

2m 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
π2m 1 2 3 4 5 5 6 6 7 7 8 8 9 9 9

Table 2.3: Upper bound for k(q2m(A)) when θ ≤ θ2m, based on (2.6) and (2.7), where
the θ2m are given in Table 2.1.

2m 2 4 6 8 12
Bound 1.0 1.0 1.0 1.0 1.1

If θ = ‖A2‖1/2 ≤ θ2m, for 2m = 2, 4, 6, 8 or 12, then we should take r2m(A) with the
smallest such m as our approximation to cos(A). Otherwise, we will need to scale: we

simply divide A by 2s, with s chosen minimally so that ‖(2−sA)2‖1/2
∞ ≤ θ2m for some m,

with 2m = 8 and 2m = 12 being the only possibilities (since θ6 < θ12/2, 2m = 6 offers
no computational saving over 2m = 12). This strategy minimizes the number of double-
angle steps, with their potential error magnification, while at the same time minimizing
the total work.

We now need to consider the effects of rounding errors on the evaluation of r2m.
Consider, first, the evaluation of p2m and q2m, and assume initially that A2 is evaluated
exactly. Let g2m(A2) denote either of the even polynomials p2m(A) and q2m(A). It follows
from a general result in [5, Thm. 2.2] that

‖g2m(A2)− fl(g2m(A2))‖ ≤ γ̃mng̃2m(‖A2‖), (2.5)

where g̃2m denotes g2m with its coefficients replaced by their absolute values. We have
determined numerically that ‖g̃2m(A2)‖ ≤ 2 for θ(A) ≤ θ2m and 2m ≤ 16, so the bound
(2.5) is suitably small. However, when we take into account the error in forming A2

we find that the bound (2.5) is multiplied by a term that is approximately µ(A) =
‖|A|2‖/‖A2‖ ≥ 1. The quantity µ can be arbitrarily large. However, µ is large precisely
when basing the algorithm on θ(A) rather than ‖A‖ produces a smaller s, so potentially
increased rounding errors in the evaluation of p2m and q2m are balanced by potentially
decreased error propagation in the double angle phase.

Since we obtain r2m by solving a linear system with coefficient matrix q2m(A), we
require q2m(A) to be well conditioned to be sure that the system is solved accurately.
From (2.1), we have

‖q2m(A)‖ ≤
m∑

k=0

|b2k|θ2k. (2.6)

Using the inequality ‖(I + E)−1‖ ≤ (1− ‖E‖)−1 for ‖E‖ < 1 gives

‖q2m(A)−1‖ ≤ 1

|b0| − ‖
∑m

k=1
b2kA2k‖ ≤

1

|b0| −
∑m

k=1
|b2k|θ2k

. (2.7)

Table 2.3 tabulates the bound for κ(q2m(A)) = ‖q2m(A)‖‖q2m(A)−1‖ obtained by com-
bining (2.6) and (2.7). It shows that q2m is well conditioned for all the m of interest.

The algorithm that we have derived is as follows.

6

Algorithm 2.1 Given a matrix A ∈ C
n×n this algorithm approximates C = cos(A). It

uses the constants θ2m given in Table 2.1. The matrix A can optionally be preprocessed

using Algorithm 1.2.

1 B = A2

2 θ = ‖B‖1/2
∞

3 for d = [2 4 6 8 12]
4 if θ ≤ θd

5 C = rd(A) % Compute Padé approximant, making use of B.
6 quit
7 end
8 end
9 s = ceil(log2(θ/θ12)) % Find minimal integer s such that 2−sθ ≤ θ12.

10 B ← 4−sB

11 if ‖B‖1/2
∞ ≤ θ8, d = 8, else d = 12, end

12 C = rd(2
−sA) % Compute Padé approximant, making use of B = (2−sA)2.

13 for i = 1: s
14 C ← 2C2 − I
15 end

Cost:
(
πd + ceil(log2(‖A‖∞/θd))

)
M + D, where d is the degree of Padé approximant

used and θd and πd are tabulated in Tables 2.1 and 2.2, respectively.
To summarize, Algorithm 2.1 differs from Algorithm 1.1 in two main ways:

1. It supports variable degree Padé approximation, with the degree chosen to minimize
both the work and the number of double-angle steps.

2. It bases its decisions on ‖A2‖1/2
∞ rather than ‖A‖∞ and so uses truncation error

estimates that are potentially much sharper, though the bounds for the effect of
rounding errors on the evaluation of the Padé approximant can be larger.

Note that Algorithm 2.1 requires as input only A2, not A. Consequently, if it is used
to compute the cosine term in (1.2) there is no need for a square root to be computed.

3 Absolute Error-Based Algorithm

Algorithm 2.1 uses a Padé approximant of maximal degree 12. The limitation on degree
comes from requiring the relative error bound (2.3) to be no larger than u: the need
to ensure cos(A) 6= 0 enforces the restriction θ < cosh−1(2), which makes higher degree
Padé approximants uneconomical. If this restriction could be removed then larger degrees,
which would allow fewer double-angle steps and hence potentially more accurate results,
would be competitive in cost. Imposing an absolute error bound on the Padé approximant
achieves this goal, and it can be justified with the aid of the error bound (1.4) for the

computed Ĉi =: Ci + Ei.
In both Algorithm 1.1 and Algorithm 2.1, C0 is a Padé approximant evaluated at

2−sA, and from ‖C0‖∞ = ‖ cos(2−sA)‖∞ ≤ cosh(θ(2−sA)) we have ‖C0‖∞ ≤ cosh(1) ≈

7

Table 3.1: Maximum value θ2m of θ such that the absolute error bound (3.2) does not
exceed u = 2−53.

2m 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
θm 6.1e-3 0.11 0.43 0.98 1.7 2.6 3.6 4.7 5.9 7.1 8.3 9.6 10.9 12.2 13.6

Table 3.2: Upper bound for k(q2m(A)) when θ ≤ θ2m, based on (2.6) and (2.7), where
the θ2m are given in Table 3.1. Bound does not exist for 2m ≥ 26.

2m 2 4 6 8 10 12 14 16 18 20 22 24
Bound 1.0 1.0 1.0 1.0 1.1 1.2 1.4 1.8 2.4 3.5 7.0 9.0e1

1.54 in Algorithm 1.1 and ‖C0‖∞ ≤ cosh(θ12) ≈ 2 in Algorithm 2.1. Hence we have
‖E0‖∞ <∼ u‖C0‖∞ <∼ u, and (1.4) can be written

‖Em‖∞ <∼ (4.1)mu‖C0‖∞‖C1‖∞ . . . ‖Cm−1‖∞

+ γn+1

m−1∑

j=0

4.1m−j−1(2.21‖Cj‖2∞ + 1)‖Cj+1‖∞ . . . ‖Cm−1‖∞. (3.1)

But this is exactly the form that (1.4) takes with an absolute error bound ‖E0‖ ≤
u. Therefore comparing the effect of absolute and relative bounds on C0 reduces to
comparing the norms of the matrices C0, . . . , Cm−1 in the two cases. This is difficult
in general, because these matrices depend on the choice of scaling and on m. Since the
aim of using an absolute criterion is to allow the norm of the scaled matrix to be larger,
we can expect an upper bound for ‖C0‖ to be larger in the absolute case. But if the
absolute criterion permits fewer double-angle steps (a smaller m) then, as is clear from
(3.1), significant gains in accuracy could accrue. In summary, the error analysis provides
support for the use of an absolute error criterion if ‖C0‖ is not too large. We now develop
an algorithm based on an absolute error bound.

Define θ2m to be the largest value of θ such that the absolute error bound in

‖ cos(A)− r2m(A)‖ ≤
∞∑

i=2m+1

|c2i|θ2i (3.2)

(a restatement of (2.2)) does not exceed u. Using the same method of determining the
θ2m as in the previous section we find the values listed in Table 3.1. The corresponding
bounds for the condition number of q2m, which are finite only for 2m ≤ 24, are given in
Table 3.2

Now we consider the choice of m. In view of Table 3.2, we will restrict to 2m ≤ 24.
Table 3.3, which concerns error bounds for the evaluation of p2m and q2m, as discussed
in the previous section, suggests further restricting 2m ≤ 20, say. From Table 2.2 it is
then clear that we need consider only 2m = 2, 4, 6, 8, 12, 16, 20. Recall that dividing A
(and hence θ) by 2 results in one extra matrix multiplication in the double-angle phase,
whereas for θ ≤ θ2m the cost of evaluating the Padé approximant increases by one matrix

8

Table 3.3: Upper bounds for ‖p̃2m‖∞ and ‖q̃2m‖∞ for θ ≤ θ2m.

2m 2 4 6 8 10 12 14 16 18 20 22 24

‖p̃2m‖∞ 1.0 1.0 1.1 1.5 2.7 6.2 1.6e1 4.3e1 1.2e2 3.7e2 1.2e3 3.7e3
‖q̃2m‖∞ 1.0 1.0 1.0 1.0 1.1 1.1 1.2 1.3 1.4 1.6 1.7 2.0

Table 3.4: Logic for choice of scaling and Padé approximant degree. Assuming A has
already been scaled, if necessary, so that θ ≤ θ20 = 7.1, further scaling should be done to
bring θ within the range for the indicated value of d.

Range of θ d
[0, θ16] = [0, 4.7] smallest d ∈ {2, 4, 6, 8, 12, 16} such that θ ≤ θd

(θ16, 2θ12] = (4.7, 5.2] 12 (scale by 1/2)
(2θ12, θ20] = (5.2, 7.1] 20 (no scaling)

multiplication with each increase in m in our list of considered values. Since the numbers
θ12, θ16, θ20 differ successively by less than a factor 2, the value of m that gives the
minimal work depends on θ. For example, if θ = 7 then d = 20 is best, because nothing
would be gained by a further scaling by 1/2, but if θ = 5 then scaling by 1/2 enables us
to use d = 12, and the whole computation then requires one less matrix multiplication
than if we immediately applied d = 20. Table 3.4 summarizes the relevant logic. The
tactic, then, is to scale so that θ ≤ θ20 and to scale further only if a reduction in work is
achieved.

We find, computationally, that with this scaling strategy, ‖C0‖∞ ≤ 583. Since this
bound is not too much larger than 1, the argument at the beginning of this section
provides justification for the following algorithm.

Algorithm 3.1 Given a matrix A ∈ C
n×n this algorithm approximates C = cos(A). It

uses the constants θ2m given in Table 3.1. The matrix A can optionally be preprocessed

using Algorithm 1.2.

1 B = A2

2 θ = ‖B‖1/2
∞

3 for d = [2 4 6 8 12 16]
4 if θ ≤ θd

5 C = rd(A) % Compute Padé approximant, making use of B.
6 quit
7 end
8 end
9 s = ceil(log2(θ/θ20)) % Find minimal integer s such that 2−sθ ≤ θ20.

10 Determine optimal d from Table 3.4 (with θ ← 2−sθ) and increase s as necessary.
11 B ← 4−sB
12 C = rd(2

−sA) % Compute Padé approximant, making use of B = (2−sA)2.
13 for i = 1: s
14 C ← 2C2 − I

9

15 end

Cost:
(
πd + ceil(log2(‖A‖∞/θd))

)
M + D, where d is the degree of Padé approximant

used and θd and πd are tabulated in Tables 3.1 and 2.2, respectively.
Algorithm 3.1 allows the norm ‖(2−sA)2‖1/2

∞ for the scaled matrix 2−sA to be as large
as 7.1, compared with just 1.3 for Algorithm 2.1.

4 Numerical Experiments

Testing of Algorithms 1.1, 2.1, and 3.1 was performed in MATLAB 7 in IEEE double
precision arithmetic. We used a set of 54 test matrices that includes 50 10 × 10 matri-
ces obtained from the function matrix in the Matrix Computation Toolbox [3] (which
includes test matrices from MATLAB itself), together with the four test matrices from
[6]. The norms of these matrices range from order 1 to 107, though more than half have
∞-norm 10 or less. For comparison, we also applied MATLAB’s funm function (invoked
as funm(A,@cos)), which implements the Schur–Parlett method [1]. This method uses
Taylor series evaluations of any diagonal Schur blocks of size greater than 1. It requires
roughly between 28n3 flops and n4/3 flops, so is significantly more expensive than Algo-

rithms 1.1, 2.1, and 3.1 except, possibly, when ‖A2‖1/2
∞ is large: say of order 103.

We evaluated the relative error

‖Ĉ − C‖∞
‖C‖∞

,

where Ĉ is the computed approximation to C, and the exact C = cos(A) is computed
in 50 significant decimal digit arithmetic using MATLAB’s Symbolic Math Toolbox.
The algorithms were applied both with and without preprocessing. The results for no
preprocessing are shown in Figures 4.1; those for preprocessing are very similar so are
omitted. The solid line is the unit roundoff multiplied by an estimate of the relative
condition number

cond(A) = lim
ǫ→0

max
‖E‖2≤ǫ‖A‖2

‖ cos(A + E)− cos(A)‖2
ǫ‖ cos(A)‖2

,

which we estimate using the finite-difference power method of Kenney and Laub [7], [2].
A method that is forward stable should produce errors not lying far above this line on
the graph. Figure 4.2 shows performance profile curves for the four solvers. For a given α
on the x-axis, the y coordinate of the corresponding point on the curve is the probability
that the method in question has an error within a factor α of the smallest error over all
the methods on the given test set.

The results show a clear ordering of the methods for this set of test problems, with
Algorithm 3.1 in first place, followed by funm, Algorithm 2.1, and finally Algorithm 1.1.

The mean of the total number of matrix multiplications and multiple right-hand side
linear system solves over the test set is 10, 9.1 and 8.6 for Algorithms 1.1, 2.1 and
3.1, respectively, without preprocessing, and 9.8, 8.9 and 8.4 with preprocessing. For
the involutory matrix gallery(’invol’,8)*8*pi from [6], Algorithm 1.1 requires 29
multiplies and solves, versus only 10 for Algorithms 2.1 and 3.1.

10

MATLAB’s funm is generally competitive in accuracy with Algorithm 3.1. The worst
case for funm—the matrix giving error about 10−10 on the left of Figure 4.1—is the
Forsythe matrix, which is a 10−8 perturbation of a Jordan block. The computed eigen-
values lie approximately on a circle, and this is known to be a difficult case for funm [1]. In-
creasing the blocking tolerance, through the call funm(A,@cos,struct(’TolBlk’,0.2))
results in an accurate evaluation.

We repeated the experiment with every matrix scaled so that ‖A‖∞ = 25. The results
without preprocessing are shown in Figure 4.3; those with preprocessing are very similar,
with just a modest reduction of up to a factor 3 or so of the maximum and mean error
for Algorithms 1.1, 2.1 and 3.1. The performance profile is shown in Figure 4.4. Clearly
the (generally) larger norm causes difficulty for all the methods, but much less so for
Algorithm 3.1 than for Algorithms 1.1 and 2.1. In this case, the means costs are 10, 9.4
and 9.1 without preprocessing and 9.6, 9.1 and 8.6 with preprocessing.

5 Computing the Sine and Cosine of a Matrix

Suppose now that we wish to compute both sin(A) and cos(A). Since cos(A) = (eiA +
e−iA)/2 and sin(A) = (eiA − e−iA)/(2i), we can obtain both functions from two matrix
exponential evaluations. However, when A is real the arguments of the exponential are
complex, so this approach will not be competitive in cost even with computing sin(A)
and cos(A) separately. A further disadvantage is that these formulas can suffer badly
from cancellation in floating point arithmetic, as shown in [6].

We will develop an analogue of Algorithm 3.1 that scales A by a power of 2, computes
Padé approximants to both the sine and cosine of the scaled matrix, and then applies
the double-angle formulas cos(2A) = 2 cos2(A)− I and sin(2A) = 2 sin(A) cos(A). Com-
putational savings are possible in the evaluation of the Padé approximants and in the
double-angle recurrences by re-using the cos terms.

Denote the [m/m] Padé approximant to the sine function by r̃m(x) = p̃m(x)/q̃m(x).
Then the error in r̃m has the form

sin(A)− r̃m(A) =
∞∑

i=m

c2i+1A
2i+1.

Since this expansion contains only odd powers of A we bound the series in terms of ‖A‖
instead of θ(A) (cf. (2.2)):

‖ sin(A)− r̃m(A)‖ ≤
∞∑

i=m

|c2i+1|β2i, β = ‖A‖. (5.1)

Define βm to be the largest value of β such that the bound (5.1) does not exceed u.
Using the same technique as for the cosine, we computed the values shown in Table 5.1.
These values of βm can be compared with the values of θ2m in Table 3.1. Although θ2m is
defined as the largest value of θ(A) = ‖A2‖1/2 such that the absolute error bound (3.2) for
‖ cos(A)− r2m(A)‖ does not exceed u, θ2m can also (trivially) be regarded as the largest
value of ‖A‖ such that the bound (3.2), with θ interpreted as ‖A‖, does not exceed u.

On comparing Table 5.1 with Table 3.1 we see that for 4 ≤ 2m ≤ 22 we have
β2m < θ2m < β2m+1. We could therefore scale so that ‖2−sA‖ ≤ β2m and then use

11

0 10 20 30 40 50 60
10

−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2 Alg. 1.1

Alg. 2.1

Alg. 3.1

funm

cond*u

Figure 4.1: Errors for Algorithms 1.1, 2.1, and 3.1 without preprocessing.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Alg. 1.1

Alg. 2.1

Alg. 3.1

funm

Figure 4.2: Performance profile for the four methods, without preprocessing, on the test
set.

12

0 10 20 30 40 50 60
10

−17

10
−16

10
−15

10
−14

10
−13

10
−12

Alg. 1.1

Alg. 2.1

Alg. 3.1

funm

cond*u

Figure 4.3: Errors for Algorithms 1.1, 2.1, and 3.1 without preprocessing on matrices
scaled so that ‖A‖∞ = 25.

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Alg. 1.1

Alg. 2.1

Alg. 3.1

funm

Figure 4.4: Performance profile for the four methods, without preprocessing, on the test
set with matrices scaled so that ‖A‖∞ = 25.

13

Table 5.1: Maximum value βm of ‖A‖ such that the relative error bound (5.1) does not
exceed u = 2−53.

m 2 3 4 5 6 7 8 9 10 11 12
βm 1.4e-3 1.8e-2 6.4e-2 1.7e-1 0.32 0.56 0.81 1.2 1.5 2.0 2.3
m 13 14 15 16 17 18 19 20 21 22 23 24
βm 2.9 3.3 3.9 4.4 5.0 5.5 6.2 6.7 7.4 7.9 8.7 9.2

Table 5.2: Number of matrix multiplications π̃2m to evaluate p2m(A), q2m(A), p̃2m+1(A),
and q̃2m+1(A).

2m 2 4 6 8 10 12 14 16 18 20 22 24
π̃2m 2 3 4 5 6 7 8 9 10 10 11 11

the [2m/2m] Padé approximants to the sine and cosine, or scale so that ‖2−sA‖ ≤ θ2m

and use the [2m/2m] Padé approximant to the cosine and the [2m + 1/2m + 1] Padé
approximant to the sine. Since the diagonal Padé approximants to the sine have an odd
numerator polynomial and an even denominator polynomial [8], and since we can write
an odd polynomial in A as A times an even polynomial of degree one less, it is as cheap
to evaluate r̃2m+1 and r2m as to evaluate r̃2m and r2m. Therefore we will scale so that
‖2−sA‖ ≤ θ2m and then evaluate r2m for the cosine and r̃2m+1 for the sine. Evaluating
p2m, q2m, p̃2m+1 and q̃2m+1 reduces to evaluating four even polynomials of degree 2m
if we write p̃2m+1 as A times an even polynomial of degree 2m. This can be done by
forming the powers A2, A4, . . . , A2m, at a total cost of m + 1 multiplications. However,
for 2m ≥ 20 it is more efficient to use the schemes of the form (2.4). We summarize the
cost of evaluating p2m, q2m, p̃2m+1 and q̃2m+1 for m = 2: 2: 24 in Table 5.2.

Now we consider the choice of degree, 2m. Bounds analogous to those in Table 3.2
show that q̃j+1 is well conditioned for 2m ≤ 24, and bounds for p̃j+1 and q̃j+1 analogous
to those in Table 3.3 suggest restricting to 2m ≤ 20 (the same restriction that was made
in Section 3 for the Padé approximants for the cosine). It is then clear from Table 5.2
that we need only consider 2m = 2, 4, 6, 8, 10, 12, 14, 16, 20. Noting that dividing A by 2
results in two extra multiplications in the double-angle phase and that increasing from
one value of 2m to the next in our list of considered values increases the cost of evaluating
the Padé approximants by one multiplication, we can determine the most efficient choice
of 2m by a similar argument to that in the previous section. The result is that we should
scale so that θ ≤ θ20, and scale further according to exactly the same strategy as in
Table 3.4, except for the fact that in the first line of the table “14” is added to the set of
possible d values.

The algorithm can be summarized as follows.

Algorithm 5.1 Given a matrix A ∈ C
n×n this algorithm approximates C = cos(A) and

S = sin(A). It uses the constants θ2m given in Table 3.1. The matrix A can optionally

be preprocessed using an obvious modification of Algorithm 1.2.

1 for d = [2 4 6 8 12 14 16]
2 if ‖A‖∞ ≤ θd

14

0 10 20 30 40 50 60
10

−20

10
−10

10
0

Alg. 5.1 (cos)

funm (cos)

0 10 20 30 40 50 60
10

−20

10
−10

10
0 Alg. 5.1 (sin)

funm (sin)

Figure 5.1: Errors for Algorithm 5.1 without preprocessing and funm.

3 C = rd(A), S = r̃d(A)
4 quit
5 end
6 end
7 s = ceil(log2(θ/θ20)) % Find minimal integer s such that 2−sθ ≤ θ20.
8 Determine optimal d from modified Table 3.4 (with θ ← 2−sθ)

and increase s as necessary.
9 C = rd(2

−sA), S = r̃d(2
−sA)

10 for i = 1: s
11 S ← 2CS, C ← 2C2 − I
12 end

Cost:
(
π̃d + ceil(log2(‖A‖∞/θd))

)
M + D, where d is the degree of the Padé approxi-

mants used and θd and π̃d are tabulated in Tables 3.1 and 5.2, respectively.
How much work does Algorithm 5.1 save compared with separate computation of

cos(A) and sin(A) = cos(A − π
2
I) by Algorithm 3.1? The answer is roughly 2πd − π̃d

matrix multiplies, which rises from 1 when d = 4 to 4 when d = 20; the overall saving is
therefore up to about 27%.

We tested Algorithm 5.1 on the same set of test matrices as in Section 4. Figure 5.1
compares the relative errors for the computed sine and cosine with the corresponding
errors from funm, invoked as funm(A,@sin) and funm(A,@cos). Note that the cost of
the latter two computations can be reduced by using the same Schur decomposition
in both cases. Algorithm 5.1 provides similar or better accuracy to funm on this test
set. Its cost varies from 9 matrix multiplies and solves to 54, with an average of 16,
so the algorithm can require significantly fewer flops than are needed for a single Schur
decomposition.

15

6 Concluding Remarks

We have improved the algorithm of Higham and Smith [6] in two respects: by employing
variable degree Padé approximants, with the degree chosen to minimize the computational
cost, and by employing truncation error bounds expressed in terms of ‖A2‖1/2 in place
of ‖A‖. Our two improved algorithms, Algorithms 2.1 and 3.1, both out-perform the
Higham and Smith algorithm in accuracy and cost. Of the two, Algorithm 3.1, based
on an absolute error bound for the Padé approximant, emerges as the clear winner. By
its design, it allows larger degree Padé approximants to be evaluated at matrices of
significantly larger norm, but in so doing it does not sacrifice accuracy, as we have shown
by analysis (see (3.1)) and experiment. Analogously to our experience with the matrix
exponential [5], designing our algorithms to achieve low cost brings an added benefit of
better accuracy through the need for fewer double-angle steps.

We have also shown how, using the Padé double-angle approach, cos(A) and sin(A)
can be evaluated together at lower cost than if they are evaluated separately.

The design of the algorithms involved making compromises between maximizing effi-
ciency and minimizing the effects of rounding errors. Compared with the Schur–Parlett
method applied to the sine and cosine the algorithms require fewer flops unless ‖A2‖1/2

is large, and on our test set they are generally more accurate; this provides confidence
that the compromises have been well chosen.

References

[1] P. I. Davies and N. J. Higham. A Schur–Parlett algorithm for computing matrix
functions. SIAM J. Matrix Anal. Appl., 25(2):464–485, 2003.

[2] N. J. Higham. Functions of a Matrix. Book in preparation.

[3] N. J. Higham. The Matrix Computation Toolbox. http://www.ma.man.ac.uk/~

higham/mctoolbox.

[4] N. J. Higham. Evaluating Padé approximants of the matrix logarithm. SIAM J.

Matrix Anal. Appl., 22(4):1126–1135, 2001.

[5] N. J. Higham. The scaling and squaring method for the matrix exponential revis-
ited. Numerical Analysis Report No. 452, Manchester Centre for Computational
Mathematics, Manchester, England, July 2004. Revised September 2004. To appear
in SIAM J. Matrix Anal. Appl.

[6] N. J. Higham and M. I. Smith. Computing the matrix cosine. Numerical Algorithms,
34:13–26, 2003.

[7] C. S. Kenney and A. J. Laub. Condition estimates for matrix functions. SIAM J.

Matrix Anal. Appl., 10(2):191–209, 1989.

[8] A. Magnus and J. Wynn. On the Padé table of cos z. Proc. Amer. Math. Soc.,
47(2):361–367, 1975.

[9] M. S. Paterson and L. J. Stockmeyer. On the number of nonscalar multiplications
necessary to evaluate polynomials. SIAM J. Comput., 2(1):60–66, 1973.

16

[10] S. M. Serbin. Rational approximations of trigonometric matrices with application
to second-order systems of differential equations. Appl. Math. Comput., 5(1):75–92,
1979.

[11] S. M. Serbin and S. A. Blalock. An algorithm for computing the matrix cosine.
SIAM J. Sci. Statist. Comput., 1(2):198–204, 1980.

17

