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A POSTERIORI ERROR BOUNDS FOR DISCRETE BALANCED

TRUNCATION∗

YOUNES CHAHLAOUI†

Abstract. Balanced truncation of discrete linear time-invariant systems is an automatic method
once an error tolerance is specified and yields an a priori error bound, which is why it is widely used
in engineering for simulation and control. We present some new insight into this method. We derive
a discrete version of Antoulas’s H2-norm error formula [1, p.218] and show how to adapt it to some
special cases. This error bound is an a posteriori computable upper bound for the H2-norm of the
error system defined as the system whose transfer function corresponds to the difference between the
transfer function of the original system and the transfer function of the reduced system. The main
advantage of our results is that we use the information already available in the balanced truncation
algorithm in order to compute the H2-norm instead of computing one gramian of the corresponding
error system. There is always a computational restriction on solving high-dimensional Stein equations
for gramians. The a posteriori bound gives insight into the quality of the reduced system and can
be used to solve many problems accompanying the order reduction operation.
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1. Introduction. Modeling real world physical processes gives rise to mathe-
matical systems of increasing complexity. Good mathematical models have to repro-
duce the original process as precisely as possible but the computing time and the
storage resources needed to simulate the mathematical model are limited. As a con-
sequence, there must be a tradeoff between accuracy and computational constraints.
One often has to deal with systems that have an unacceptably high level of complex-
ity. It is then desirable to approximate such systems by systems of lower complexity.
This is the model reduction problem.

Balanced truncation is one of the best known method for model reduction of lin-
ear systems [4, 7, 8, 9]. It is characterized by the principle of projection of dynamics.
Balanced truncation is widely used in practice for three main reasons. First, for a
reasonably small system order, say a few hundred, it gives a satisfactory approxi-
mation in the majority of cases without having to solve a complicated minimization
problem or having to choose a set of essential system parameters first. Second, this
approximation can be obtained at relatively reasonable computational cost. Third, an
a priori upper bound for the error between the original plant and the reduced-order
model exists for the H∞-norm, the preferred measure of approximation accuracy in
engineering. Recently, an a posteriori error bound for balanced truncation was pre-
sented by Antoulas [1]. Here we will derive a discrete version of this error bound and
show how to adapt it to some special cases. This error bound is a computable up-
per bound for the H2-norm of the error system defined as the system whose transfer
function corresponds to the difference between the transfer function of the original
system and the transfer function of the reduced system. The main advantage of our
results is that we use the information already available in the balanced truncation
algorithm in order to compute the H2-norm instead of computing one gramian of the
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corresponding error system. There is always a computational restriction on solving
high-dimensional Lyapounov equations for gramians.

The a posteriori bound gives insight into the quality of the reduced system and
can be used to solve many problems accompanying the order reduction operation. For
example in the problem of choosing the reduced order, the purpose of the model de-
termines the “acceptable” order reduction in an implicit way; an explicit criterion for
acceptable reduced order is hard to give, as we need to analyze a priori the dynamics
involved in order to obtain some sort of dynamics ranking. For systems of reasonable
orders (in general a few hundred), this analysis can be done at a reasonable cost,
including the problem of finding an appropriate value of the reduced order by the
use of the Hankel singular values [1]. But for large-scale models this pre-treatment
is prohibitive. Our error formulas and bounds could be implemented into the loop of
the model order-reduction method in order to check if the chosen reduced order is the
best choice or needs to be modified before stopping the reduction algorithm.

For large scale problems one has to use iterative methods to find an adequate ap-
proximation. In this respect, ideas based on balanced reduction methods are interest-
ing since they offer the possibility to perform order selection during the computation
of the projection spaces and not in advance. However, serious drawbacks of balanced
truncation (and all direct methods in general) are that it ignores any sparsity of the
system, and that it is not easy to parallelize (note however the work of Benner and al.
[2, 3] who parallelize some traditional model reduction methods). Its use is therefore
limited if large, sparse systems have to be reduced.

In this paper we consider discrete-time systems

S
{

Exk+1 = Axk + Buk

yk = Cxk
(1.1)

with input uk ∈ Rm, state xk ∈ RN and output yk ∈ Rp, and m, p ≪ N . The input
sequence is assumed to be square-summable, i.e., uk ∈ lm2 [10], and we assume that
the matrices A, B, and C are of appropriate dimensions. We will assume also the
system (1.1) to be stable (i.e., all eigenvalues of the matrix A are strictly inside the
unit circle). The transfer function corresponding to the system S is

H(z) = C(zI − A)−1B.

This paper is organized as follow. We introduce first in Section 2 the principle of
projection of dynamics. In Section 3, we review the balanced truncation method and
give some new insight into the principle behind it. Section 4 is the main contribution
of this paper. It is dedicated to the presentation of the new error formulas and some
new a posteriori bounds of the H2 norm of the error system corresponding to the
balanced truncation method. We also discuss some features of these formulas and
bounds. We end this section by the presentation of some special cases for which the
bounds are better. We finish with some further discussion and concluding remarks in
Section 5.

2. Projection of dynamics. Let T be a desired coordinate (similarity) trans-
formation of the system S and consider the following partition of the transformed
system matrices:

T−1ET =

[

E11 E12

E21 E22

]

, T−1AT =

[

A11 A12

A21 A22

]

, T−1B =

[

B1

B2

]

,
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CT =
[

C1 C2

]

,

where E11, A11 ∈ Cn×n, B1 ∈ Cn×m, C1 ∈ Cp×n, and n ≪ N . Then the system

Ŝ
{

E11x̂k+1 = A11x̂k + B1uk,

ŷk = C1x̂k,

is an nth order truncation of S. The truncation is obtained by applying the projection

Π =

[

In

0

]

[

In 0
]

to the transformed system. The combination of applying a similarity transformation
and a subsequent truncation is often referred to as projection of dynamics (also known
as transform and truncate). Let Πl, Πr ∈ CN×n satisfy Π∗

l Πr = In.1 The projected

system Ŝ matrices are obtained as follows:

E11 = Π∗

l EΠr, A11 = Π∗

l AΠr, B1 = Π∗

l B, C1 = CΠr.

Thus transformation by T and truncation by Π are merged in the projection pair
(Πl, Πr) as follows:

Πr = T

[

In

0

]

, Π∗

l =
[

In 0
]

T−1.

It can be verified easily that this definition satisfies Π∗
l Πr = In and hence ΠrΠ

∗
l is a

projector.

A projection method is in fact a choice of two subspaces Pr, Pl ⊂ CN of dimension
n, so that x̂k ∈ Pr and the residual is orthogonal to Pl. The columns of Πr and Πl

form bases for Pr and Pl, respectively:

Im(Πr) = Pr, Im(Πl) = Pl.

If Pl = Pr, the projection is orthogonal, otherwise it is oblique. The choice of basis of
Pr and Pl is not important in theory but unfortunately very important numerically.
If we take any two other bases of these subspaces, say P̄r and P̄l, then there exist two
invertible matrices X, Y ∈ Cn×n such that

Π̄r = ΠrX, Π̄l = ΠlY.

It is easy to see that for these two projector matrices we have:

H̄(z) := CΠ̄r(zΠ̄∗

l EΠ̄r − Π̄∗

l AΠ̄r)
−1Π̄∗

l B = CΠr(zΠ∗

l EΠr − Π∗

l AΠr)
−1Π∗

l B =: Ĥ(z),

which means that the two reduced order models will be equivalent.

Indeed the main dilemma is how to find an adequate states transformation. This
transformation should rank and sort the states in order to truncate question that one
has to face in model reduction is how to choose these projection matrices. A special
case of projection of dynamics is balanced truncation.

1The subscripts r and l refer to right and left, respectively
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3. Balanced truncation. The method of balanced truncation of linear systems
is well established for model reduction. It is a special case of the transform and
truncate methods described above. It is a balancing then truncate method. It is based
on a balanced realization2 {T−1AT, T−1B, CT} of the system. This realization has
some desirable sensitivity properties with respect to poles, zeros, truncation errors in
digital filter implementations, and so on [7, 10]. It is therefore recommended whenever
the choice of a realization is not specified by the user.

For linear time-invariant systems, the approach requires standard matrix compu-
tations, and has been successfully used in control systems design. The main idea is to
rewrite the system S, which we suppose stable, controllable and observable3 [7, 10],
using a similarity transformation T called the balancing transformation and then use
a truncation to obtain the reduced model. In this coordinate system one has [5]

TGcT
∗ = T−∗GoT

−1 = Σ = diag(σ1, σ2, . . . , σN ),

where the σi are the Hankel singular values of S and Gc and Go are the controllabil-
ity and observability gramians of S [10]. These gramians are solutions of the Stein
equations

EGcE
T − AGcA

T − BBT = 0, ETGoE − ATGoA − CT C = 0.

A natural question now arises: what is the use of balancing, i.e., diagonalizing
Gc and Go? This can be explained using energy functions. The controllability and
observability gramians measure to what degree each state is excited by an input, and
each state excites future outputs, respectively. Given a stable linear system S, it well
known that for any state x

ǫc(x) = (x∗G−1
c x)

1

2 , ǫo(x) = (x∗Gox)
1

2

are respectively the smallest amount of energy needed to steer the system from 0 to x,
and the largest amount of energy obtained by observing the output of the free system
with the initial condition x. If we define the energy storage efficiency by

ǫ(x0) =
x∗

0Gox0

x∗
0G−1

c x0

, (3.1)

then the maximization of ǫ(x0) with respect to x0 yields the generalized eigenproblem

Gox0 = G−1
c ǫ(x0)x0.

And so ǫ(x0) takes an extremal value for x0 an eigenvector of GcGo (or equivalently
a generalized eigenvector of the pair (Go,G−1

c )). The extremal value of ǫ(x0) corre-
sponds thus to the maximal eigenvalue of GcGo and hence to the square of the largest
Hankel singular value σ1 of the considered system. Another interpretation is that the
transformation T solves the minimization problem

min
T

trace
(

TGcT
∗ + T−∗GoT

−1
)

.

2In the system theory context refers to a state space model implementing a given input-output
behavior. For a linear time-invariant system specified by a transfer matrix, H(z), a realization is any
quadruple of matrices (A, B, C, D) such that C(zI − A)−1B + D = H(z).

3This means essentially that the gramians are full rank.
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The minimum of this expression is 2
∑N

i=1
σi, and a balancing transformation turns

out to provide a minimizing similarity transformation T [1].
The balancing transformation T ensures that each state is as controllable as it is

observable in the new coordinate system. It is also shown in [7] that for non-minimal
systems the controllable subspace and the unobservable subspace are the image and
the kernel of Gc and Go, respectively. And so, T transforms the observability and
controllability ellipsoids to an identical ellipsoid aligned with principal axes along the
coordinate axes as shown in Figure 3.1.

Fig. 3.1. The effect of a balancing transformation T on the controllability and observability
ellipsoids.

After balancing the system, a reduced model is obtained by truncating the new
state x = (x1, . . . , xN )T to x̂ = (x1, . . . , xn)T , where n ≪ N . The truncated states
are the least controllable and observable states, corresponding to the smallest Hankel
singular values and having little effect on the input/output behavior. This truncation
is equivalent to projecting the system with a rank n projection Π := ΠrΠ

∗

l . The so-
called truncation matrices Πr and Πl can be obtained from the Cholesky factorizations

Gc = S∗S, Go = R∗R,

where Gc and Go are related to the gramians by Gc = Gc, and Go = E∗GoE. Compute
the singular value decomposition

SE∗R∗ =
[

U1 U2

]

[

Σ1 0
0 Σ2

]

[

V1 V2

]∗
(3.2)

where Σ1 = diag(σ1, . . . , σn), Σ2 = diag(σn+1, . . . , σN ) and define

Πl = E∗R∗V1Σ
−1/2

1 , Πr = S∗U1Σ
−1/2

1 . (3.3)

We can easily see that Π∗

l Πr = In (i.e., Π = ΠrΠ
∗

l is a projector) and Π∗

l GcGoΠr = Σ2
1.

It follows that the singular values σi of SE∗R∗ are the (nonzero) Hankel singular values
[10].

By this approach the gramians Gc and Go (or equivalently the matrices Gc and
Go) are not needed to construct the projector Π = ΠrΠ

∗
l , but only the factors S and

R, which can be obtained e.g. using Hammarling’s method [6]. One then obtains the
reduced model for the system S := {E, A, B, C} as Ŝ := {π∗

l Eπr, π
∗

l Aπr, π
∗

l B, Cπr}.
We summarize the procedure in the following algorithm.
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Algorithm 1 Balanced truncation

Input the original system S .
= {E, A, B, C} and a reduced order n.

• Solve the Stein equations

EGcE
T − AGcA

T − BBT = 0, ETGoE − ATGoA − CT C = 0

for S and R where Gc = S∗S and Go = R∗R are Cholesky factorizations.
• Compute the SVD SE∗R∗ = UΣV ∗.
• The projection matrices are given by

Πl = E∗R∗VnΣ−1/2
n , Πr = S∗UnΣ−1/2

n ,

where Un = U(:, 1 : n), Vn = V (:, 1 : n) and Σn = Σ(1 : n, 1 : n).
• And the reduced order model is given by the matrices

Ê = Π∗

l EΠr, Â = Π∗

l AΠr, B̂ = Π∗

l B, Ĉ = CΠr.

An a priori error bound in the induced 2-norm can be given for the error between
the original and the reduced system [10]

σn+1 ≤ ‖S − Ŝ‖H∞
≤ 2(σn+1 + · · · + σN ). (3.4)

This result says that the H∞-norm of the error system is bounded above by twice the
sum of the neglected Hankel singular values.

More recently, a new result was derived by Antoulas [1, p. 218] for the H2 norm.
It is a computable H2 norm of the error system which yields also a computable upper
bound for this norm. A convenient way to determine the H2 norm is to use the
formula:

‖S‖2
H2

= trace(B∗GoB) = trace(CGcC
∗),

where Gc and Go are respectively the controllability and observability gramians of the
system.

If the original system is of order4 N and the reduced order is n, the order of the
error system will be N + n. To compute the H2 norm of the error system we have to
solve again another Lyapunov equation for one gramian of this error system, and so
the cost will be of the order of (N +n)3 added to the cost of the model order reduction
method. With Antoulas’s formula, one needs only the gramian of the original system.
This gramian is supposed to be available already by the balanced truncation method.
So the cost will be only the cost of the double product of the gramian by the input
matrix (or equivalently the output matrix) and its transpose, and the computation of
the trace of that product.

In the following section we give a discrete-time version of this formula, and show
how to adapt it to some special cases. The discrete-time version present some inter-
esting features that we will discuss later.

4. H2 norm of the error system for balanced truncation. In this section
we derive a computable a posteriori upper bound for the H2 norm of the error system
for balanced truncation. For simplicity, let us assume henceforth that the matrix E

4Also called the McMillan degree.
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is the identity (i.e., E = IN ), which means that we have a simple state-space model
and the system S is already in balanced form, and partition the matrices A, B and
C as follows:

A =

[

A11 A12

A21 A22

]

, B =

[

B1

B2

]

, C =
[

C1 C2

]

,

where Â
.
= A11 ∈ Cn×n, B̂

.
= B1 ∈ Cn×m and Ĉ

.
= C1 ∈ Cp×n. Since the system S is

balanced its controllability and observability gramians are diagonal and equal

Gc = Go = G =

[

G1 0
0 G2

]

, where G1 ∈ R
n×n.

We have G1 = diag(σ1, . . . , σn) and G2 = diag(σn+1, . . . , σN ), where σi are the Hankel
singular values. The unified gramian G then solves the Stein equations

AGA∗ − G + BB∗ = 0, A∗GA − G + C∗C = 0. (4.1)

To obtain the result, we consider the error system Se, defined as the system which has
the transfer function He(z) := H(z) − Ĥ(z) = C(zI − A)−1B − C1(zI − A11)

−1B1,
where H(z) is the transfer function of S and Ĥ(z) is the transfer function of Ŝ. A
realization of the system Se is given by

{[

A 0
0 A11

]

,

[

B

−B1

]

,
[

C C1

]

}

. (4.2)

The bound on the approximation error ‖S − Ŝ‖H2
= ‖Se‖H2

is obtained directly
by bounding the H2 norm of Se. Let us first note that the controllability gramian Gce

and the observability gramian Goe
of Se are given by

Gce
=

[ G −Y

−Y ∗ Ĝc

]

, Goe
=

[ G Z

Z∗ Ĝo

]

,

where Ĝc and Ĝo are the controllability and observability gramians of the reduced
model Ŝ, respectively, which solve

A11ĜcA
∗

11 − Ĝc + B1B
∗

1 = 0, A∗

11ĜoA11 − Ĝo + C∗

1C1 = 0, (4.3)

and where Z =

[

Z1

Z2

]

and Y are solutions of

AY A∗

11 − Y + BB∗

1 = 0, A∗ZA11 − Z + C∗C1 = 0. (4.4)

The H2 norm of the error system is given by

‖Se‖2
H2

.
= trace

(

[

B∗ −B∗
1

]

[ G Z

Z∗ Ĝo

] [

B

−B1

])

= trace
(

B∗GB − 2B∗ZB1 + B∗

1 ĜoB1

)

= trace
(

B∗GB − 2B∗

1Z1B1 − 2B∗

2Z2B1 + B∗

1 ĜoB1

)

. (4.5)

Now, from (4.1), we obtain

A11G1A
∗

21 + A12G2A
∗

22 + B1B
∗

2 = 0,
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and consequently

trace(−2B∗

2Z2B1) = trace(−2B1B
∗

2Z2) = trace(2A11G1A
∗

21Z2 + 2A12G2A
∗

22Z2).

Substituting in (4.5) yields

‖Se‖2
H2

= trace
(

B∗GB−2B∗

1Z1B1+2A11G1A
∗

21Z2+2A12G2A
∗

22Z2+B∗

1 ĜoB1

)

.

From (4.4), we have

A∗

11Z1A11 + A∗

21Z2A11 − Z1 + C∗

1C1 = 0,

and consequently

trace(2A11G1A
∗

21Z2) = trace(2G1A
∗

21Z2A11)

= trace(−2G1A
∗

11Z1A11 + 2G1Z1 − 2G1C
∗

1C1).

Combining this with the definition of the H2 norm of S and Ŝ,

‖S‖2
H2

= trace(B∗GB) = trace(CGC∗),

and

‖Ŝ‖2
H2

= trace
(

B∗

1 ĜoB1

)

= trace
(

C1ĜcC
∗

1

)

,

gives

‖Se‖2
H2

= trace
(

2A12G2A
∗

22Z2 + C2G2C
∗

2 − C1G1C
∗

1 + C1ĜcC
∗

1

)

+

trace(−2B1B
∗

1Z1 − 2A11G1A
∗

11Z1 + 2G1Z1).

The (1, 1) block of (4.1) gives

A11G1A
∗

11 + A12G2A
∗

12 − G1 + B1B
∗

1 = 0,

from which it follows that

trace(−2B1B
∗

1Z1 − 2A11G1A
∗

11Z1 + 2G1Z1) = trace(2A12G2A
∗

12Z1).

Finally, we obtain

‖Se‖2
H2

= trace

(

C2G2C
∗

2 + C1(Ĝc − G1)C
∗

1 + 2A12G2

[

A∗
12 A∗

22

]

[

Z1

Z2

])

= trace(C2G2C
∗

2 ) + trace
(

C1(Ĝc − G1)C
∗

1

)

+ 2trace
(

A12G2

[

A∗
12 A∗

22

]

Z
)

Theorem 4.1. Let S =

{[

A11 A12

A21 A22

]

,

[

B1

B2

]

,
[

C1 C2

]

}

be a balanced

system and Ŝ = {A11, B1, C1} be the n-truncated model. The H2 norm of the error

system is given either by

‖Se‖2
H2

= trace(C2G2C
∗

2 ) + trace
(

C1(Ĝc − G1)C
∗

1

)

+ 2trace
(

A12G2

[

A∗
12 A∗

22

]

Z
)
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or

‖Se‖2
H2

= trace(B∗

2G2B2) + trace
(

B∗

1 (Ĝo − G1)B1

)

+ 2trace
(

A12G2

[

A∗
12 A∗

22

]

Y
)

where G2 is the (N − n)× (N − n) trailing principal submatrix of the unified gramian

of S, Ĝc and Ĝo are respectively the controllability and the observability gramians of

Ŝ, and Z and Y are the solutions of the Stein equations

A∗ZA11 − Z + C∗C1 = 0, AY A∗

11 − Y + BB∗

1 = 0.

The second formula is obtained if we used the C matrices instead of the B matrices
in the definition of the H2 norm of the error system (4.5).

From the Cauchy–Schwarz inequality we obtain

|trace(C2G2C
∗

2 )| ≤ σn+1‖C2‖2
2, where σn+1 = ‖G2‖2,

∣

∣

∣
trace

(

C1(Ĝc − G1)C
∗

1

)
∣

∣

∣
≤ ‖Ĝc − G1‖2‖C1‖2

2,

|trace(2A12G2A
∗

:2Z)| ≤ 2σn+1‖A12‖2‖A:2‖2‖Z‖2.

As Z is the solution of the Stein equation (4.4), it has the form

Z =
∞
∑

i=0

(A∗)iC∗C1(A11)
i,

and so

‖Z‖2 ≤ ‖C‖2
2

∞
∑

i=0

‖Ai‖2‖(A11)
i‖2.

Moreover, the difference E := Ĝc − G1 satisfies the Stein equation

A∗

11EA11 − E + A∗

21G2A21 = 0, (4.6)

which yields the formula

E = Ĝc − G1 =

∞
∑

i=0

(A∗

11)
iA∗

21G2A21(A11)
i.

Finally, we have

‖Ĝc − G1‖2 ≤ σn+1

∞
∑

i=0

‖(A11)
i‖2

2‖A21‖2
2.

This analysis yields the following result.
Lemma 4.2. The H2 norm of the error system satisfies the a posteriori bound

σn+1 ≤ ‖Se‖2
H2

:= ‖S − Sn‖2
H2

≤ cσn+1‖C‖2
2
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where

c = 1 + 3‖A‖2
2

∞
∑

i=0

‖Ai‖2‖(A11)
i‖2.

Another bound could be obtained as follows. Reconsider the Stein equations (4.4)
and (4.6)

A∗ZA11 − Z + C∗C1 = 0, A∗

11EA11 − E + A∗

21G2A21 = 0,

and let A = UDU−1, and A11 = U1D1U
−1

1 be the eigenvalue decompositions of A

and A11. The Stein equations can be rewritten as

DU−1ZU1D1 − U−1ZU1 + U−1C∗C1U1 = 0,

and

D1U
−1

1 EU1D1 − U−1

1 EU1 + U−1

1 A∗

21G2A21U1 = 0.

From this, it can be easily seen that

‖Z‖2 ≤ ‖C‖2
2

1 − ρ(A)ρ(A11)
, ‖E‖2 ≤ σn+1‖A21‖2

2

1 − ρ(A11)2
, (4.7)

where ρ(·) denotes the spectral radius. We have

ρ(A) = max
i

|dii|, ρ(A11) = max
i

|d̂ii|,

where D = (dij)
N
i,j=1 and D1 = (d̂ij)

n
i,j=1.

Lemma 4.3. The H2 norm of the error system satisfies the a posteriori bound

σn+1 ≤ ‖Se‖2
H2

:= ‖S − Sn‖2
H2

≤ c1σn+1‖C‖2
2

where

c1 = 1 + 3
‖A‖2

2

1 − ρ(A)2
.

Proof. Recall that

‖Se‖2
H2

= trace(C2G2C
∗

2 ) + trace
(

C1(Ĝc − G1)C
∗

1

)

+ 2trace(A12G2A
∗

:2Z)

≤ ‖C2‖2
2‖G2‖2 + ‖C1‖2

2‖E‖2 + 2‖A12‖2‖G2‖2‖A:2‖2‖Z‖2

And using the bounds (4.7) we have

‖Se‖2
H2

≤ ‖C2‖2
2‖σn+1‖2 + ‖C1‖2

2

σn+1‖A21‖2
2

1 − ρ(A11)2
+ 2‖A12‖2‖G2‖2‖A:2‖2

‖C‖2
2

1 − ρ(A)ρ(A11)

≤ ‖C‖2
2‖σn+1‖2 + ‖C‖2

2

σn+1‖A‖2
2

1 − ρ(A)2
+ 2‖A‖2

2‖σn+1

‖C‖2
2

1 − ρ(A)2

which gives the result.
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4.1. Discussion. First, notice that in Lemmas 4.2 and 4.3, the term ‖C‖2
2 could

be replaced by ‖B‖2
2 as a result of Theorem 4.1. Moreover, as {A, B, C} is balanced

we have

AΣAT − Σ + BBT = 0, AT ΣA − Σ + CT C = 0,

where Σ is diagonal. We can see easily that BBT = CT C and so ‖B‖2 = ‖C‖2. The
discussion will focus then on the results with C.

In Theorem 4.1, the first term trace(C2G2C
∗
2 ) is the H2-norm of the neglected sub-

system of the original system; the second term trace
(

C1(Ĝc − G1)C
∗
1

)

is the difference

between the H2-norms of the reduced order system and the dominant subsystem of
the original system; finally the third term trace(A12G2A

∗
:2Z) is the inner product of

the non-dominant block of the gramian with the Z (non square matrix) weighted by
non-dominant submatrices of A. G2 is diagonal and its spectral norm is supposed to
be negligible compared to the spectral norm of G1. Then as the first and last terms are
proportional to G2, they will be very small; the mid-term has the major contribution
to the value of the norm. As E = Ĝc − G1 is solution of the Stein equation

A∗

11EA11 − E + A∗

21G2A21 = 0,

if either the non dominant gramian G2 or the off-diagonal block of A are small (zero),
then E will be small (zero). As a conclusion, the quality of the reduced model will be
function of the smallness of the off-diagonal blocks of A and the smallness of σn+1,
the largest neglected Hankel singular value. The last dependence is known but the
first one is quite unusual. It can be interpreted as follow. The reduced order model
will be a very good approximation of the original system if and only if firstly there is a
gap between the kept Hankel singular values of the original system and the neglected
ones and secondly if the truncated states have no major contribution to the dynamics
of the other states.

In Lemmas 4.2 and 4.3, if the matrix A is close to normal we will have

‖A‖2 ≈ ρ(A) ≈ ρ(A11) < 1, lim
i7→∞

‖Ai‖2 = 0.

The two constants c and c1 should be of the same order in this case. Note that
usually the matrix A results from the finite-element method applied to a partial
differential equation, which yields in general a matrix that is close to being normal
or symmetric. In Lemma 4.2, the matrix Z is a non square matrix solution of a Stein
equation. As Z is not symmetric, in some of our numerical tests, the trace of the term
involving Z shows an imaginary term nevertheless neglectable. Moreover, the term

trace
(

C1(Ĝc − G1)C
∗
1

)

even very small could be negative sign. This is related to the

still open problem of over-approximation and under-approximation of the gramians.
We end this discussion by discussing the utility of these formulas and bounds, and

even more specifically the utility of the discrete case. First, a relationship between the
discrete and continuous time H2 norms can be derived by introducing the relationship
between discrete and continuous time gramians. One obtains

‖Sc‖2
H2

=
1√
∆t

‖Sd‖2
H2

,

where Sc is a continuous system, Sd its discretization corresponding to the sampling
time ∆t. As a result of this formula, the discrete time H2 norm does not converge to
the continuous time H2 norm when the sampling time approaches zero.
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One key utility of the discrete case is that the spectral radii of the matrices A

and A11 are smaller than 1. This is resulting from the stability of both systems: the
original and the reduced. If A is close to be normal, this property will make both
coefficients c and c1 in Lemmas 4.2 and 4.3 reasonably small. For c, notice that the
terms ‖Ai‖2 and ‖Ai

11‖2 will vanish very quickly as A has its spectral radius smaller
than 1 and A11 is a sub matrix of A. Both coefficients c and c1 are only functions of
A and A11. Moreover we can bound c as follows:

c ≤ 1 + 3‖A‖2
2

∞
∑

i=0

‖Ai‖2
2.

This leads to the conclusion that our error bounds are only functions of σn+1, the
matrix A (its 2-norm and spectral radius) and the matrix C. Contrary to the con-
tinuous case [1] where one has to consider another residual system and computes its
H∞-norm. Moreover, the quality of the bound will be only function of the smallness
of σn+1 as the term c‖C‖2 is constant and not function of the reduced order system.

Our formula in 4.1 is (like the Antoulas’s formula) computable. We use the data
already available from balanced truncation and solve a Stein equation for a thin matrix
which is still much less expensive than evaluating directly the H2-norm. The direct
evaluation of the H2-norm, as for example the function normh2 of MATLAB’s Control
System Toolbox, means that one has to compute the error system, find a realization
of this error system, then solve a Lyapunov or a Stein equation for one gramian in
order to evaluate the H2-norm.

4.2. A special case: square system. For square systems (m = p) one can
define the cross gramian X of S as the solution of the Stein equation

AXA − X + BC = 0. (4.8)

The H2 norm of the system S is given in this case by

‖S‖2
H2

= trace(CXB).

In this case, the H2 norm of the error system Se (4.2) is

‖Se‖2
H2

= trace

(

[

C C1

]

[

X Y

Z −X̂

] [

B

−B1

])

, (4.9)

where Y and Z are solutions of the Stein equations

AY A11 − Y + BC1 = 0, A11ZA − Z − B1C = 0, (4.10)

and X̂ is the cross gramian of the n reduced system by balanced truncation Ŝ. X̂ is
also solution of a Stein equations given by

A11X̂A11 − X̂ + B1C1 = 0. (4.11)

Theorem 4.4. The H2 norm of the error system is given by

‖Se‖2
H2

= trace(C2X22B2) + trace
(

C1(X̂ − X11)B1

)

+ trace
(

A12

[

X21 X22

]

AY
)

−trace

(

A21ZA

[

X12

X22

])

.
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Proof. To show this result we need to expand the formula (4.9) as

‖Se‖2
H2

= trace(C1X11B1 + C2X21B1 + C1Z1B1 + C1X12B2 + C2X22B2)

+trace
(

C1Z2B2 − C1Y1B1 − C2Y2B1 + C1X̂B1

)

.(4.12)

From the (1,2) and (2,1) blocks of (4.8) we have respectively

B2C1Z2 = (X21 − A21X11A11 − A22X21A11 − A21X12A21 − A22X22A21)Z2,

and

B1C2Y2 = (X12 − A11X11A12 − A12X21A12 − A11X12A22 − A12X22A22)Y2.

Then from the second blocks of the equations (4.10) we have

(A11X12A22 − X12)Y2 = −X12A21Y1A11 − X12B2C1,

and

(X21 − A22X21A11) Z2 = X21A11Z1A12 − X21B1C2.

Collecting all this in the formula (4.12) we get

‖Se‖2
H2

= trace
(

C1X11B1 + C1Z1B1 + C2X22B2 − C1Y1B1 + C1X̂B1

)

−trace(A21X11A11Z2 − A21X12A21Z2 − A22X22A21Z2 + A11X11A12Y2)
+trace(A12X21A12Y2 + A12X22A22Y2 − X12A21Y1A11 + X21A11Z1A12).

(4.13)

From the (1,1) block of (4.8) we have

B1C1 = X11 − A11X11A11 − A12X21A11 − A11X12A21 − A12X22A21

Injecting this in (4.13) and using the first leading blocks of (4.10), i.e.,

Z1 − A11Z1A11 − A11Z2A21 = −B1C1,

and

−Y1 + A11Y1A11 + A12Y2A11 = −B1C1,

we get finally

‖Se‖2
H2

= trace
(

−C1X11B1 + C2X22B2 + C1X̂B1 − A11X12A21Z1 − A12X22A21Z1

)

+trace(A12X21A11Y1 + A12X22A21Y1 − A21X12A21Z2 − A22X22A21Z2)
+trace(A12X21A12Y2 + A12X22A22Y2)

= trace
(

C1(X̂ − X11)B1 + C2X22B2 − A21Z1A11X12 − A21Z1A12X22

)

−trace(A21Z2A21X12 − A21Z2A22X22 + A12X21A11Y1 + A12X22A21Y1)
+trace(A12X21A12Y2 + A12X22A22Y2)

= trace

(

C1(X̂ − X11)B1 + C2X22B2 − A21

[

Z1 Z2

]

[

A11 A12

A21 A22

] [

X12

X22

])

+trace

(

A12

[

X21 X22

]

[

A11 A12

A21 A22

] [

Y1

Y2

])

,
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which proves the result.
In this theorem, the first term is the H2-norm of the neglected subsystem of

the original system; the second term is the difference between the H2-norms of the
reduced order system and the dominant subsystem of the original system; finally the
third term is the difference of the inner product of the second block row of the cross
gramian with Y and that of Z with the second block column of the cross gramian
(each term weighted by the block off-diagonal terms of A and A).

Notice that the difference X̂ − X11 satisfies the Stein equation

A11(X11 − X̂)A11 − (X11 − X̂) + A12X21A11 + A11X12A21 + A12X22A21 = 0,

if the cross gramian is block diagonal, i.e., X12 = 0 and X21 = 0. The first consequence
of this assumption is that X11 = X̂, hence the second term vanishes. As for the last
term it becomes A12X22A2:Y − A21ZA:2X22. The previous theorem becomes

Corollary 4.5. If the cross gramian is block diagonal, the H2 norm of the error

system is given by

‖Se‖2
H2

= trace(C2X22B2)+trace
(

C1(X̂ − X11)B1

)

+trace(A12X22A2:Y − A21ZA:2X22).

Using the same analysis as the previous section (for Lemmas 4.2 and 4.3) we
obtain the following results.

Lemma 4.6. The H2 norm of the error system satisfies the following a posteriori

bound

σn+1 ≤ ‖Se‖2
H2

:= ‖S − Sn‖2
H2

≤ cσn+1‖C‖2‖B‖2

where

c = 1 + 3‖A‖2
2

∞
∑

i=0

‖Ai‖2‖(A11)
i‖2.

Lemma 4.7. The H2 norm of the error system satisfies the following a posteriori

bound

σn+1 ≤ ‖Se‖2
H2

:= ‖S − Sn‖2
H2

≤ c1σn+1‖C‖2‖B‖2

where

c1 =

(

1 + 3
‖A‖2

2

1 − ρ(A)2

)

.

Here also our error bounds are only functions of the matrix A (its 2-norm and spectral
radius) and the matrices B and C. We will illustrate later all this discussion in the
numerical examples.

5. Concluding remarks. We have reviewed the most used projection based
method in model reduction of linear time-invariant dynamical systems, balanced trun-
cation. Moreover, we have presented computable error formulas and bounds for the
response approximation. The advantage of these results is that we are using the al-
ready given results by balanced truncation and we don’t need anything else. This has
the feature that it can be included into the order reduction loop in order to improve
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the quality of the reduced order model by choosing the optimal reduced order before
ending the model reduction algorithm.

Many open questions remain. Particularly, what will be the expression for the
error bounds if instead of balanced truncation method we use some other projection
method? In other words, given two projection matrices Πr, Πl ∈ RN×n, with ΠT

l Πr =
In, the reduced-order system is given by {ΠT

l AΠr, Π
T
l B, CΠr} and can we substitute

A12 by ΠT
l AΠ̂r, G2 by Π̂T

l GΠr , and so on, in all presented formulas, where Π̂r and Π̂l

are defined from Πl and Πr?

Acknowledgements. I gratefully acknowledge the helpful remarks and sugges-
tions of Nick Higham and Françoise Tisseur which significantly improved the presen-
tation of this paper.

REFERENCES

[1] Antoulas, A. C. Approximation of Large-Scale Dynamical Systems. SIAM, Philadelphia,
USA, 2005.

[2] Benner, P., Castillo, M., Quintana-Ort́ı, E. S., and Hernández, V. Parallel partial
stabilizing algorithms for large linear control systems. J. Supercomput. 615, 2 (2000),
193–206.

[3] Benner, P., Quintana-Ort́ı, E. S., and Quintana-Ort́ı, G. Parallel Algorithms for Model
Reduction of Discrete-Time Systems. International Journal of System Sciences 34, 5
(2003), 319–333.

[4] Enns, D. F. Model reduction with balanced realizations: An error bound and frequency
weighted generalization. Proc. of the IEEE Conference on Decision and Control (1981),
127–132.

[5] Glover, K. All optimal Hankel norm approximations of linear multivariable systems and their
L∞-error bounds. Internat. J. Control 39 (1984), 1115–1193.

[6] Hammarling, S. J. Numerical solution of the stable, non-negative definite Lyapunov equation.
Eds. R. V. Patel, A. J. Laub, and P. Van Dooren, Numerical Linear Algebra Techniques
for Systems and Control, IEEE Press, New York, NY, USA (1994), 500–516.

[7] Moore, B. C. Principal component analysis in linear systems: controllability, observability,
and model reduction. IEEE Trans. Automat. Control 26 (1981), 17–31.

[8] Pernebo, L., and Silverman, L. M. Model reduction via balanced state space representations.
IEEE Trans. Automat. Control 27, 2 (1982), 382–387.

[9] Safonov, M. G., and Chiang, R. Y. A Schur method for balanced-truncation model reduction.
IEEE Trans. Automat. Control 34(7) (1989), 729–733.

[10] Zhou, K., Doyle, J. C., and Glover, K. Robust and optimal control. Prentice Hall, 1995.


