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ABSTRACT 
 
The present status of electrical impedance tomography (EIT) is such that many successful laboratory 
based studies and pilot plant demonstrators are generating interest in developing the technology.  
However, while the EIT problem is inherently 3D, many studies make 2D assumptions in order to 
simplify the problem.  Proportionately less work has been carried out on the true 3D EIT problem, 
outside of the mathematical development of the problem.  This paper aims to provide a comparison of 
the performance of 3D EIT image reconstruction algorithms applied to real data, and assess whether 
the extra effort and complexity involved in 3D EIT is worthwhile.  Measurement data are taken from a 
pilot-scale mixing vessel.  The performance of five common EIT reconstruction algorithms is compared 
and the best performing algorithm for this arrangement is identified.  This work is part of the ongoing 
efforts at Manchester to pursue the true 3D EIT problem under the EIDORS-3D framework.   
 
Keywords EIT, Image Reconstruction, Comparison of algorithms, EIDORS 3D. 
 

1 Introduction 
 
Electrical impedance tomography (EIT) is an inherently 3D problem.  Since Calderón proved the 
uniqueness of the conductivity inverse boundary value problem in 1980 (Calderón, 1980), the vast 
majority of work undertaken in EIT has utilised 2D measurements and reconstruction techniques in an 
attempt to interrogate a 3D domain.  Historically, 2D assumptions were made in order to overcome 
electrical hardware and computational issues.  Recent advances in both hardware and computational 
power have enabled further research into the true 3D problem.  Much of the recent understanding of 
the mathematics involved in 3D EIT has been as a result of simulated EIT experiments (Borsic, 2002; 
Molinari et al, 2002).  2D assumptions have enabled a body of work to be undertaken since the mid 
1980’s within the medical, geophysical and process fields (Brown, 2001; Daily et al 1995; Dickin et al 
1993).  However, a survey of the literature on EIT confirms that relatively few studies within the 
process tomography arena have employed both 3D data collection and image reconstruction, notable 
exceptions include Davidson et al (2004) and Pinheiro (1998).  The work reported in this paper aims to 
form a comparison of the performance of five popular image reconstruction algorithms, Linear Back-
Projection, Linear Landweber, Linear Conjugate Gradients, Linear Regularised Gauss-Newton and 
Non-Linear Regularised Gauss-Newton.  The performance of the algorithms is compared using 
voltage measurements taken from a pilot-scale laboratory vessel containing mains tap water, in which 
various phantoms were placed. 
 
As 2D EIT has witnessed many successful applications within the process sector over the past fifteen 
years (Dyakowski et al, 2000), one could legitimately ask is the extra effort and complexity involved in 
3D EIT worthwhile?  The motivation for this work is to attempt to answer this question, using 
measurements from real experiments.  The increased accuracy of 3D EIT over 2D EIT promises to 
offer better estimation of materials distribution within processes.  This would imply that better 
estimation of materials distribution within processes leads to improved estimation of process 
parameters, and ultimately, an increased understanding of processes impacting on bottom line 
profitability.   
 

2 Mathematical Setting 
 
EIT belongs to a family of non-invasive, soft field electrical tomographic modalities.  In EIT, the internal 
complex admittivity (electrical conductivity and permittivity) distribution of a domain is determined by 
injecting low frequency (typically below 100kHz) AC current and measuring the amplitude and phase 
of the potentials on electrodes placed on the periphery of the domain.  In forward EIT calculations, an 
estimation of the interior scalar potential field is made given the internal admittivity distribution, under 
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mixed Neumann and Dirichlet boundary conditions, typically using a finite element discretisation of the 
domain.  The inverse EIT calculation involves estimating an admittivity distribution given the measured 
amplitude and phase on periphery electrodes. 
 
2.1 The Forward Problem and Jacobian Calculations   
 
In order to solve the inverse admittivity boundary value problem, one requires a forward operator that 
predicts voltage observations for a given admittivity distribution.  For EIT, the forward operator is 
required to calculate boundary voltages (and the scalar potential distribution for determining the 
Jacobian, a matrix of partial derivatives), given the current stimuli and an admittivity distribution.  For 
this operator, a mathematical model is derived from Maxwell’s equations.  Underlying assumptions are 
that the admittivity is linear and isotropic, and also that the electric and magnetic fields described by 
Maxwell’s equations are slowly varying.  The application of the above assumptions to Maxwell’s 
equations results in the derivation of the Laplacian elliptic partial differential equation shown in (1), 
where γ is the complex admittivity and u is the scalar potential distribution.  The forward problem is 
formulated when (1) is solved (often by finite element discretisation) using a set of boundary 
conditions, a common choice is the complete electrode model (Somersalo et al, 1992). 
 

                                                                       ( )u 0γ∇ ∇ =i                                                                  (1) 
 

A common technique for calculating the admittivity update (the inverse problem) is to approximate the 
non-linear EIT problem to a linearised problem derived from a Taylor series expansion.  Then an 
iterative admittivity update algorithm can be used to solve the non-linear problem.  This method is 
often referred to as the Gauss-Newton method (if second order terms are neglected).  If F is the 
forward operator that gives ( )V F γ= , the voltages on the electrodes given an admittivity distribution, 
then a linear approximation is given by (2), where γo represents the initial admittivity distribution. 
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The first derivative, or Jacobian, in (2) can be calculated by the perturbation of power approach (3) 
(Polydorides, 2002). 
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Where u(Id) is the potential field created when current is injected and u(Im) is the potential field that 
would be created if the measurement electrodes were injecting current.  The Jacobian matrix is used 
in all of the image reconstruction algorithms compared in this paper.  A brief description of each 
algorithm is given in the following section. 
 
2.2 The Inverse Problem 
 
Given the complex vectors  and , and a complex matrix nx∈^ mb∈^ m nA ×∈^ , the aim of the 
inverse problem is to find x, given b and A  ( Ax b= ).  In the case of EIT, b is the measurement vector, 
x the admittivity vector and A the Jacobian matrix.  Ideally one would solve a system of equations of 
this type by determining the inverse of the matrix A, however, due to its compact nature, it has an 
unbounded (discontinuous) inverse.  This causes A-1 to be unstable against variations in the data, 
hence violating Hadamard’s third criterion for well posedness.  Several techniques exist for updating 
the admittivity distribution once the Jacobian matrix has been computed, many using regularisation 
techniques in order to make the problem less ill-posed. 
 
Perhaps the simplest to implement and one of the most common image reconstruction techniques 
used in electrical tomography is the back-projection method suggested by Kotre (1989).  In Kotre’s 
linear back-projection method, the normalised transpose of the Jacobian is applied to voltage 
difference data (4), yielding the admittivity update.  It can be seen from (4) that Kotre approximated the 
inverse of the Jacobian matrix with its transpose. 
 

                                                                                                                                  (4) Td J dγ = v
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The Landweber iteration has been adapted for solving the linear inverse problem by Yang et al (1999).  
While the admittivity distribution estimated by the algorithm is far from the true distribution, the residual 
is dominated by the Jγn term, rather than the noise in the measurement data, v.  The Landweber 
iteration regularises by iteration, with the iteration index being the regularisation parameter.  It is 
important to cease the iterations when the residual becomes comparable to the noise in the 
measurements (Morozov’s discrepancy principle), before the algorithm converges to the unstable 
least-squares solution.  The Landweber algorithm is shown by (5) below, where the relaxation 
parameter, τ , satisfies 1

 20 2( TJ Jτ )−< < & & . 
 

                                                              1 (T
n n J v J )nγ γ τ γ+ = + −                                                       (5) 

 

Another technique for solving the EIT inverse problem is the linear conjugate gradients method, a 
more detailed description of which is provided by Polydorides (2002).  The obvious problem of 
applying a conjugate gradients algorithm to the EIT inverse problem is that the coefficients matrix 
(Jacobian) is neither square nor positive definite.  One solution is to multiply the systems of equations 
by the transpose of the Jacobian, thus forming a system of normal equations (6).  However, a downfall 
of this formulation is in the calculation of JTJ, which for large systems is computationally expensive.  
The system of equations shown in (6) can be readily solved using the MATLAB in-built preconditioned 
conjugate gradients function.  Like the Landweber algorithm, linear conjugate gradients regularise by 
iteration, and the procedure is controlled by Morozov’s discrepancy principle. 
 

                                                                                                                                         (6) TJ J J vγ = T

))

 

An alternative to regularisation by iteration is provided by Tikhonov regularisation, where a priori 
information is incorporated into the algorithm, constraining the solution obtained via the prior 
information included.  A linear Tikhonov regularised Gauss-Newton solution is shown in (7) below. 
 

                                             2 1 2( ) ( (T T T T
ref oJ J L L J v L Lδγ α δ α γ−= + + −γ

))

                               (7) 
 

Where L is a smoothing matrix containing the a priori information, α is the regularisation (Tikhonov) 
parameter and γref is an admittivity distribution containing known geometric structures.  The use of 
linear solutions is only valid for small deviations from the admittivity at which the Jacobian is 
calculated.  For large deviations in admittivity, non-linear reconstruction algorithms are required.  An 
example of a non-linear Tikhonov regularised Gauss-Newton solution is shown in (8) below. 
 

                               2 1 2
1 ( ) ( ( ( )) (T T T T

n n n n n m n ref nJ J L L J v F L Lγ γ α γ α γ−
+ = + + − + − γ                  (8) 

 

A discussion of this family of regularised algorithms has been presented by Lionheart et al (2005). 
 

3 Methodology 
 
Experiments were carried out in a 61cm diameter Perspex vessel, filled with mains tap water 
(conductivity ~0.1 S m-1).  The vessel was fitted with four planes of 16, equally spaced, rectangular 
electrodes of size 6cm2.  The vessel contained four Perspex baffles, 1cm wide and penetrating 6cm 
into the vessel.  The spacing between the electrode planes was 4cm, with a 20cm distance between 
the base of the vessel and the bottom electrode plane and a 4cm head of water above the top 
electrode plane.  The vessel used is illustrated in Figure 1 below. 
  

  
 

Figure 1:  The 61cm diameter Perspex vessel used in experiments. 
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The EIT instrument used for data collection was the University of Manchester/Syngenta LCT2.  The 
LCT2 is capable of injecting current and measuring the amplitude and phase angle of the potential on 
electrodes in any configuration, up to a present maximum of 64 electrodes.  The LCT was chosen for 
the experiments due to its open architecture, allowing custom measurement strategies and ready 
access to measurement data.  A full description of the LCT2 instrument is provided by York (2005).  
Measurements were collected using a three-dimensional adjacent strategy.  Currents were injected 
between adjacent electrodes in a plane, starting with the lowest plane and ending with the highest. For 
each current injection differential measurements were taken between all pairs of adjacent electrodes in 
each plane. This strategy yields 3904 measurements per measurement frame (“3904” strategy).   
 
Ten repeat measurement frames were taken in order to perform basic statistical analysis, including the 
calculation of the noise level present in the measurements.  The forward problem and Jacobian 
calculations were performed using the EIDORS-3D toolkit, for further information the reader is referred 
to Polydorides and Lionheart (2002).  Discretisation of the domain (for both the FEM forward problem 
and the inverse problem) was performed using Netgen, an automatic mesh generator, and the 
visualisation of results was performed in MayaVi, an open source scientific visualisation package.  
 

4 Image Reconstruction Results 
 
A comparison of the performance of five image reconstruction algorithms described in (4) to (8) will be 
presented, alongside a typical 3D image reconstruction result obtained from reconstructing a 3D 
phantom arrangement by making only in-plane voltage measurements.  Finally, a reconstruction result 
obtained using a custom 3D strategy will be presented. 
 
4.1 Reconstruction of a Four Phantom Arrangement  
 
It is common practice in EIT to perform simple rod experiments, using metallic and plastic phantoms, 
within vessels in order to test image reconstruction algorithms.  In this paper, we reconstruct voltage 
data obtained from the vessel within which four phantoms of various materials of construction and 
geometry were placed.  Figure 2, below, is a schematic of the position of the phantoms within the 
vessel.  The dark phantoms represent plastic rods and the light phantoms metallic rods.  Rods 
positioned approximately half way down the vessel were suspended from vessel furniture by thin 
plastic coated wire.  Figure 3 shows the results of the reconstruction algorithms under examination.  
Only the real component of the complex admittivity (conductivity) was reconstructed from the data.  
This was due to the increased computational requirements of conductivity and permittivity imaging and 
significant noise levels present in the measurement of phase angles caused by uncalibrated 
measurements (e.g. varying cable lengths). 
 

 (a)   (b) 
 

                                                  (c) 
 

Figure 2:  Arrangement of phantoms in the vessel, (a) isometric view showing electrode planes and baffles, (b) plan 
view illustrating the position of the phantoms, (c) side view illustrating the height of the phantoms.  Dark objects 

are plastic phantoms and light objects are metal phantoms.  
 
Figure 3(a) shows the reconstruction of the measured voltage data by the linear back-projection 
algorithm (4).  The orientation of the image has been selected to give the best view of the phantoms 
and corresponds, loosely, with that in Figure 2(c). It is clear that the algorithm has reconstructed four 
phantoms, two plastic and two metal, in approximately the correct spatial positions as indicated by 
Figure 2.  However, the linear back-projection algorithm is not capable of successfully identifying the 
boundaries of the phantoms, and shifts the phantom positions into the boundary of the domain.  
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Although still widely used, it is well understood that the normalised transpose of the Jacobian, 
suggested by Kotre in the linear back-projection algorithm, is a crude approximation to its inverse and 
the results presented confirm this. Figure 3(b) shows the reconstruction result from the Landweber 
iteration (5), with a relaxation parameter of 1x10-6, the algorithm being controlled by Morozov’s 
discrepancy principle.  The results from the Landweber algorithm are similar to the linear back-
projection algorithm, successfully predicting the approximate spatial positions of the phantoms.  
However, as with linear back-projection, the Landweber algorithm does not accurately reconstruct the 
boundaries of the phantoms and over-estimates the diameter of the full-length plastic phantom in the 
five o’clock position in Figure 2, compared to other algorithms. 
 

(a) (b) (c) 

(d) (e) (f)
 

Figure 3:  Reconstructed three-dimensional images of the internal conductivity distribution within the vessel for (a) linear 
back-projection, (b) Landweber, (c) linear regularised Gauss-Newton, (d) non-linear regularised Gauss-Newton, (e) linear 

conjugate gradients and (f) linear conjugate gradients using only 2D measurements.  Dark shading represents less 
conductive material.   

 
Figure 3(c) shows the conductivity distribution reconstructed by the linear Tikhonov regularised Gauss-
Newton algorithm (7).  The regularisation parameter used was 1x10-6 and the regularisation matrix 
employed was a first-order smoothing operator on the nodes of the finite element mesh.  As can be 
seen in Figure 3(c), the linear Tikhonov regularised algorithm does reconstruct the four phantoms 
within the vessel.  However, the reconstructed conductivity distribution clearly shows artefacts around 
the top of the vessel and also close to the baffles.  Compared to the linear back-projection and 
Landweber algorithms, the linear Tikhonov regularised algorithm more closely predicts the spatial 
position and boundaries of the phantoms, but exhibits increased artefacts, especially towards the 
extremes of the finite element discretisation.  The reconstructed conductivity distribution estimated by 
the non-linear Tikhonov regularised Gauss-Newton algorithm, (8), is presented in Figure 3(d).  The 
regularisation parameter used was 1x10-6, the maximum number of iterations was 5, and the 
regularisation matrix employed was a first-order smoothing operator on the nodes of the finite element 
mesh.  Figure 3(d) shows that the non-linear nature of the reconstruction algorithm reduces the 
artefacts shown by the linear Tikhonov solution.  The non-linear Tikhonov solution does predict both 
the spatial position and boundaries of the phantoms more successfully than the linear back-projection, 
Landweber and linear Tikhonov solutions.  However, when compared to Figure 2, it can be see that 
the smoothing prior used in the non-linear Tikhonov algorithm does significantly smooth the 
conductivity distribution.  The algorithm predicts the boundaries of the phantoms with limited success, 
the limitations being caused by attempting to reconstruct a sharp conductivity distribution, whilst using 
a smoothing prior. 
 
Figure 3(e) shows the reconstructed conductivity distribution predicted by the linear conjugate 
gradients algorithm (6).  This is clearly the most successful algorithm in reconstructing the actual 
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conductivity profile within the vessel.  The success of the linear conjugate gradients algorithm in 
reconstructing the phantoms is a result of regularising by iteration and not by applying smoothing 
priors to a non-smooth target distribution.  An interesting result is shown by Figure 3(f), where the 
linear conjugate gradients algorithm was applied to a “2D” measurement strategy. Current injection 
and voltage measurement are restricted to in-plane electrodes for each of the four planes resulting in 
416 measurements (“416” strategy).  The performance of the algorithm using 2D measurements is 
comparable to the performance with 3D measurements.  This result comes as a surprise to the 
authors, as it represents a severely under-determined problem, solving for approximately 5000 
unknown conductivity values, using only 416 equations. 
 
Figure 3 illustrates the reconstructed conductivity profiles as 3D isosurfaces, with each surface 
representing a surface of constant conductivity.  This method of presenting 3D results on a 2D 
medium is, perhaps, the most effective method in conveying the true three-dimensionality of the 
solution, however, a method for determining the conductivity value of the isosurface is required.  One 
common technique is to take the steepest gradient in conductivity values between adjacent voxels and 
plot that surface.  While this may be a reasonable technique for selecting isosurfaces when the 
internal distribution is unknown, for the purposes of comparing reconstruction algorithms where the 
target conductivity profile was known a priori, isosurfaces were set at values that most closely 
represented the target distribution.  Figure 4 illustrates the reconstructed conductivity profile from the 
linear conjugate gradients algorithm, shown as 3D isosurfaces in Figure 3(e), as slices through the 
vessel.  Figure 4 perhaps represents the purest method of displaying reconstruction results, however 
the images do not have the immediacy of interpretation that 3D isosurfaces offer. 
 

(a)  (b)  (c)  (d)  (e)
 

Figure 4:  Slice plots showing the reconstructed conductivity distribution within the vessel using linear conjugate 
gradients at heights of (a) 15cm, (b) 20cm, (c) 40cm, (d) 50cm and (e) 60cm, from the base of the vessel. 

 
The results presented in this paper are only a selection of the results gained from a more widespread 
comparison of the algorithms with many different phantom arrangements and measurement strategies.  
Table 1 presents a summary of the algorithm comparison work, where the algorithms are ranked, 
subjectively, by their ability to reconstruct the target distribution, 1 being the best performer, 5 the 
worst performer. 
 

Phantom 
Arrangement 

Linear Back 
Projection Landweber

Linear 
Conjugate 
Gradients 

Linear Tikhonov 
Regularised 

Gauss-Newton 

Non-Linear 
Tikhonov 

Regularised 
Gauss-Newton 

Single cylinder 5 4 2 3 1 

Multiple 
cylinders 4 5 1 3 2 

Suspended 
cylinder 4 5 1 3 2 

 

Table 1:  Summary of the performance of the reconstruction algorithms using various phantom arrangements. 
 
Table 1 shows that both the non-linear Tikhonov regularised method and the linear conjugate 
gradients method perform consistently well, with the linear conjugate gradients algorithm out-
performing the non-linear Tikhonov method for multiple phantoms, where a sharp conductivity 
distribution is present in the vessel. 
 
4.2 A Custom Measurement Strategy 
 
The voltage measurements made in the previous section were collected using a 3D adjacent strategy, 
taking only horizontal differential voltage measurements.  Previous work has suggested the 
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importance of both horizontal and vertical differential voltage measurements for optimum EIT 
experiments.  The measurement strategy employed in data collection for the reconstructed images 
shown in Figure 5(b) was a 3D opposite strategy, utilising both horizontal and vertical differential 
voltage measurements.  Current was applied between opposite electrodes between two planes at a 
time (i.e. electrodes 1-25, 2-26, 33-57 etc) current was not driven between non-adjacent electrode 
planes.  Voltage measurements were then made between all non-driving horizontal and vertical 
electrode pairs on the periphery.  This strategy yields 6720 voltage measurements for four planes of 
16 electrodes (“6720” strategy).  The reconstructed conductivity profile of a flanged plastic cylinder 
suspended half way down the vessel is shown in Figure 5(b). 
 

  
 

Figure 5:  Image reconstruction of a measurement using the ‘’6720’’ strategy, (a) schematic of 
the position of the phantom within the vessel, (b) reconstructed conductivity distribution using 

linear conjugate gradients. 
 
The reconstruction algorithm employed was linear conjugate gradients, as the target distribution 
contained a sharp conductivity distribution.  As Figure 5 shows, the combination of the custom 
measurement strategy and linear conjugate gradients algorithm successfully predict the internal 
conductivity distribution within the vessel.  Attempting to repeat this result using the “416” and “3904” 
strategies and the linear conjugate gradients algorithm was not successful.  The reasons for the 
success of the “6720” strategy, over the “416” and “3904” strategies, are currently under investigation.  
It is believed that the “6720” strategy offers increased vertical information not available in the “416” or 
“3904” strategies.  Early results suggest that vertical information is important in reconstructing the type 
of arrangement shown by Figure 5. 
 

5 Conclusion 
 
The work presented summarises a comparison of 5 common EIT image reconstruction techniques 
using three-dimensional algorithms and both in-plane and out-of-plane voltage measurements.  
Results indicate that for the simple situation of high-contrast cylindrical phantoms, the best performing 
algorithm is linear conjugate gradients.  For this arrangement, it is believed that the linear conjugate 
gradients algorithm performs better than Tikhonov regularised techniques due to sharp boundaries.  
Smoothing priors currently used in Tikhonov regularisation are more suited to the smooth property 
profiles more commonly found in industrial processes.  It was also found that 2D voltage 
measurements were comparable to 3D voltage measurements when used in the linear conjugate 
gradients algorithm.  The question “is the extra effort involved in 3D EIT worthwhile?” requires further 
investigation.   Early indications are that for some arrangements, the increased levels of information 
offered by true 3D EIT are worth the added complexity involved. 
 
Future work in this area will continue to develop improved three-dimensional reconstruction techniques 
within the EIDORS-3D framework, such as interior point methods for total regularisation, adaptive 
meshing for increased spatial resolution and customised measurement strategies using singular value 
decomposition analysis for identifying optimum measurement strategies and reconstruction 
parameters. 
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