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Abstract

This paper considers the problem and appropriateness of filling-in miss-
ing conditional probabilities in causal networks by the use of maximum en-
tropy. Results generalizing earlier work of Rhodes, Garside & Holmes are
proved straightforwardly by the direct application of principles satisfied by
the maximum entropy inference process under the assumed uniqueness of
the maximum entropy solution. It is however demonstrated that the im-
plicit assumption of uniqueness in the Rhodes, Garside & Holmes papers
may fail even in the case of inverted trees. An alternative approach to
filling in missing values using the limiting centre of mass inference process
is then described which does not suffer this shortcoming, is trivially com-
putationally feasible and arguably enjoys more justification in the context
when the probabilities are objective (for example derived from frequencies)
than by taking maximum entropy values.

Keywords: Missing Information, Causal Networks, Maximum Entropy, Centre of
Mass.

1 Introduction

In papers [1],[3],[5],[6],[21], Rhodes, Garside and Holmes described efficient algo-
rithms for filling in missing conditional probabilities in various classes of causal
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networks by the maximum entropy method. Whilst their main interest, appar-
ently, was the formulation of algorithms a key step in their methods is to first
isolate comparatively simple, computationally manageable, subsets of the set of
probabilistic independence constraints associate with such causal networks whose
maximum entropy solution (hereafter shortened to maxent solution) is the unique
solution of the full set of constraints. Once this has been achieved missing con-
ditional probabilities can be ‘filled-in’ by computing the maxent solution of the
existing conditional probability constraints plus the above mentioned computa-
tionally manageable subsets of the independence constraints, now a computation-
ally relatively tractable task, and using the conditional probabilities provided by
this solution to fill-in any omissions. The point here being that this maxent solu-
tion remains the maxent solution even after this filling-in, and will, by the choice
of these manageable subsets, still satisfy the necessary full set of independence
conditions. In other words these filled-in values are exactly the ones that would
have been obtained by using the maxent solution of the original set of constraints,
with the full set of independencies, in the first place.

The initial aim of this paper is to give straightforward proofs, under the
assumption of a unique maxent solution, of some of the Rhodes-Garside-Holmes
results by arguing directly from well known general principles that the maximum
entropy inference process satisfies. We shall then show that unfortunately there
need not be a unique maxent solution, even in the case of inverted trees1. In the
final section we shall show however that there is an alternative to maxent, the so
called limiting centre of mass inference process (see [12]), CM∞, which does enjoy
uniqueness, is trivially computationally tractible and is, in the context where the
existing conditional probabilities are objective (for example when obtained from
frequencies), arguably more justified than maxent.

2 Background and Notation

To fit in best with the formulation of the maxent paradigm (also referred to as
the maximum entropy inference process) as given in [16], [12], [13], [18] we shall
adopt the notation of [12], limiting ourselves to networks whose vertices take
just two values, 0 and 1, the generalization to more values being straightforward.
So let L = L(p1, p2, ..., pn) be a finite propositional language with propositional
variables p1, p2, ..., pn and let SL be the set of sentences formed from L, using say
the connectives ¬, ∨, ∧. For a propositional variable p let p1, p0 stand for p, ¬p
respectively. As usual a probability function on SL is a function w : SL → [0, 1]
such that for all all θ, φ ∈ SL:

(P1) If |= θ then w(θ) = 1.

1In this case Rhodes et al incorrectly assumed that the maxent solution was unique on the
basis of results of Garside in [2]
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(P2) If |= ¬(θ ∧ φ) then w(θ ∨ φ) = w(θ) + w(φ).

Such a function is uniquely determined by its values on the atoms of L, that
is the sentences of L of the form

pǫ1
1 ∧ pǫ2

2 ∧ ... ∧ pǫn
n

where ǫ1, ǫ2, ..., ǫn ∈ {0, 1}. For w(θ) 6= 0 the conditional probability function
w(.|θ) is defined as usual by

w(φ|θ) =
w(θ ∧ φ)

w(θ)
.

Since it will also be convenient to use this notation even when possibly w(θ) = 0
we shall adopt the convention that expressions such as w(φ|θ) = X are shorthand
for

w(θ ∧ φ) = Xw(θ). (1)

A causal network (on L) is (or can be taken to be) a set of probabilistic
constraints on a probability function w on SL of the form

w(pi|p
ǫ1
1 ∧ pǫ2

2 ∧ ... ∧ p
ǫi−1

i−1 ) = w(pi|p
ǫi1
i1 ∧ pǫi2

i2 ∧ ... ∧ p
ǫimi
imi

) (2)

w(pi|p
ǫi1
i1 ∧ pǫi2

i2 ∧ ... ∧ p
ǫimi
imi

) = b(i; ǫi1, ǫi2, ..., ǫimi
) (3)

where i = 1, 2, ..., n, the ǫi1, ǫi2, ..., ǫimi
come from {ǫ1, ǫ2, ..., ǫi−1} ∈ {0, 1} and

the b(i; ǫi1, ǫi2, ..., ǫimi
) ∈ [0, 1].

Such a set of constraints (2), (3) has a unique solution given by

w(pǫ1
1 ∧ pǫ2

2 ∧ ... ∧ pǫn
n )

=

n
∏

i=1

w(pǫi
i |p

ǫi1
i1 ∧ pǫi2

i2 ∧ ... ∧ p
ǫimi
imi

) (4)

=
n

∏

i=1

(ǫib(i; ǫi1, ǫi2, ..., ǫimi
) + (1 − ǫi)(1 − b(i; ǫi1, ǫi2, ..., ǫimi

))) .

It is usual to think of the pi as vertices of a directed graph with an edge from
pj to pi if pj = pir for some 1 ≤ r ≤ mi and to classify the network in terms of
this graph. As far as this paper is concerned we shall limit ourselves to networks
where the graph is acyclic, that is there are no cycles pj1, pj2, ..., pjs with edges
from pjs to pj1 and from pjr to pjr+1

for r = 1, 2, ..., s − 1. In particular we shall
be interested in trees, which are acyclic graphs in which no vertex has more than
one edge directed to it, inverted trees, which are acyclic graphs in which no vertex
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has more than one edge directed from it, and singly connected graphs where there
are no undirected cycles.

In this paper we are interested in the case where the graphical structure is fully
known but some of the conditional probabilities b(i; ǫi1, ǫi2, ..., ǫimi

) are missing.
Filling-in missing values is necessary if one wishes to access the computationally
efficient algorithms for solving for probabilities which such a complete causal
network permits, see for example the seminal works, [10],[20].

Filling-in using maxent

Of course ‘filling-in’ values is just another way of saying ‘guessing’, or even ‘in-
venting’ values. Nevertheless one might hope to adopt some procedure with a
vestige of justification. One general procedure for supplying missing probabilities
with such pretentions is the maxent paradigm, that is, take the (assumed unique)
probability function satisfying the remaining constraints with the maximum en-
tropy, where in our context the entropy is given by the sum over the atoms α of
L

E(w) = −
∑

α

w(α) logw(α), (5)

and use the values given by this function. The popular justification here being
that from Shannon’s arguments, see [24], entropy is a measure of lack of informa-
tion, so that by choosing the maxent value one is choosing the least informative
possibility, the value which goes as little as possible beyond what is actually
known. We shall return to this point later, but for the moment we should point
out that, presumably in consequence, there are already in the literature a num-
ber of papers on filling in missing values using various applications of maxent,
in particular [7], [11], [22], [23], [25] in addition to the already cited works of
Rhodes-Garside-Holmes.

From a theoretical standpoint the only possible problem with filling-in the
missing values using the maxent solution of the constraints of type (2) and those
of type (3) that we do have, is that there may not be a unique such solution (a real
possibility as we shall see later). Even assuming uniqueness however, the number
of constraints of type (2) will in practice tend to be prohibitively large, rendering
actual calculation of the missing values infeasible. A possible alternative might be
to drop the constraints of type (2) and simply take the maximum entropy solution
of the existing constraints of type (3). [In real, tractable, cases the mi would not
be so large as cause a repeat of these same computational headaches.] A possible
problem with this approach is that the resulting maximum entropy solution (now
unique alright because the solution space is convex – see, for example, [12] p66)
may not satisfy the constraints of type (2), see for example [20] p463-464, [7] (and
also section 6 of [26] for further illumination). What seems to be needed then is
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some canonical set of constraints which follows from those of types (2) and (3),
is computationally acceptable and whose maximum entropy solution satisfies all
the existing constraints of types (2) and (3). What Rhodes, Garside and Holmes
show (under the running assumption of uniqueness) in a series of papers is that
for certain families tree-like graphs such a set exists.

Specifically, in the case of trees they show that this canonical set can be taken
to be empty whilst in the case of singly connected graphs the set of constraints

w(p
ǫi1
i1

∧ p
ǫi2
i2

∧ ... ∧ p
ǫimi
imi

) =

mi
∏

j=1

w(p
ǫij

ij
) (6)

suffices (and for such networks is directly derivable from (4) by marginalization).

Their results of this form (on which they ground their main objective of
formulating feasible algorithms) will follow from Theorems 1 and 3 and Corollary
2 below. Before proving this result however we need to introduce some notation
and a key property (Separation) that maxent satisfies..

Hybridizing somewhat the notation given in [12] and [18] let CL be the collec-
tion of finite, satisfiable, sets of constraints, on a probability function w : SL →
[0, 1], of the form

fj(w(θ1), w(θ2), ..., w(θm)) = 0, j = 1, 2, ..., r,

where the fj are continuous functions over the reals, the θij ∈ SL and by sat-
isfiable we mean that there is a probability function w on SL satisfying these
constraints. For K ∈ CL let V L(K) denote the set of probability functions on
SL satisfying K and let MEL(K) denote the set of probability function on SL
satisfying K whose entropy is maximal amongst all such functions in V L(K). In
general there will not be a unique such probability function. However when the
fj are linear V L(K) is convex and MEL(K) is unique. In this case the inference
process ME which picks out this unique solution (thought of as a function both
of L and K ∈ CL) has been studied extensively (see for example [12]) and is well
known to be uniquely characterized by a number of ‘common sense principles of
uncertain reasoning’2.

This characterization was extended to the case of (continuous) non-linear
constraints in [18]. For the purposes of this paper however it will be enough to
point out a handful of key properties, or principles, that carry over even to the
case where there is not necessarily a unique maxent solution.

The first such property is Language Invariance, namely that if L1 ⊆ L2 and
K ∈ CL1(⊆ CL2) and w ∈ MEL2(K) then w restricted to SL1 is in MEL1(K)3.

2Indeed we have repeatedly argued that in this context it exactly coincides with what we
mean by common sense uncertain reasoning.

3We shall endeavor to use w for the variable, or ‘unknown’, probability function appearing
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The second key property is Obstinacy; if K1, K2 ∈ CL and w ∈ MEL(K1)
satisfies K2 then w ∈ MEL(K1 ∪ K2) ⊆ MEL(K1).

The third property we shall need is not explicitly stated in the above men-
tioned papers so we state it as a lemma. [This, and related properties of maxent,
are folklore in the subject, see for example also the conditional independence
properties in [27], sections 4 and 5 of [26], [28] and the atomicity principle in
[12].]

The Separation Property Suppose that L0, L1, L2, ..., Lm are finite, pairwise
disjoint, propositional languages, L = L0 ∪ L1 ∪ ... ∪ Lm, Ki ∈ C(L0 ∪ Li) for
i = 1, 2, ..., m. Let w ∈ MEL(

⋃m
i=1 Ki), let K0 be the set of constraints

w(α0) = w(α0),

as α0 ranges over the atoms of L0, and for i = 1, 2, ..., m let wi be the restriction
of w to S(Li ∪ L0). Then wi ∈ MELi∪L0(Ki ∪ K0) and for αi atoms of Li,
i = 0, 1, ..., m,

w(α0 ∧ ... ∧ αm) · w(α0)
m−1 =

m
∏

i=1

w(α0 ∧ αi) =
m
∏

i=1

wi(α0 ∧ αi). (7)

Conversely if vi ∈ MELi∪L0(Ki) for i = 1, 2, ..., m and

v1(α0) = v2(α0) = ... = vm(α0)

for all atoms α0 of L0 then the probability function v on SL defined by

v(α0 ∧ ... ∧ αm) · v1(α0)
m−1 =

m
∏

i=1

vi(α0 ∧ αi)

is in MEL(
⋃m

i=1 Ki).

Proof. For i = 1, 2, ..., m let ui ∈ MELi∪L0(Ki ∪ K0) and define the probability
function u on S(

⋃m
i=0 Li) by

u(

m
∧

i=0

αi) = w(α0)
1−m ·

m
∏

i=1

ui(α0 ∧ αi).

Then since ui satisfies K0, ui(α0) = w(α0) and

E(u) = −
m

∑

i=1

∑

α0,αi

ui(α0 ∧ αi) log ui(α0 ∧ αi)

−(m − 1)
∑

α0

w(α0) log w(α0) (8)

in the sets of constraints and to use an w for actual probability function, though at times the
distinction may unavoidably become rather blurred.
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whereas

E(w) = −
∑

α0,...,αm

w(
m
∧

i=0

αi) log w(
m
∧

i=0

αi)

= −
∑

α0,...,αm

w(

m
∧

i=0

αi) log

{

w(
∧m

i=0 αi) · w(α0)
m−1

∏m
i=1 w(α0 ∧ αi)

·

∏m
i=1 w(α0 ∧ αi)

w(α0)m−1

}

= −
m

∑

i=1

∑

α0,αi

w(α0 ∧ αi) {log w(α0 ∧ αi) − (m − 1) log w(α0)}

−
∑

α0,...,αm

w(
m
∧

i=0

αi) log

{

w(
∧m

i=0 αi) · w(α0)
m−1

∏m
i=1 w(α0 ∧ αi)

}

(9)

where summands for which w(α0) = 0 are taken to be zero. The last term in (9)
is actually a cross entropy, so non-negative (see for example [12], p119). Also the
wi ∈ V Li∪L0(Ki∪K0) so by comparing (8) and (9), E(u) will strictly exceed E(w)
if any E(ui) > E(wi). Since u satisfies

⋃m
i=1 Ki it follows then from the choice of w

that E(ui) = E(wi), and hence wi ∈ MEL0∪Li(Ki ∪ K0), for each i = 1, 2, ..., m.
Similarly the above mentioned cross-entropy term cannot be strictly positive,
from which we conclude (see again, for example, [12], p119) that

w(

m
∧

i=0

αi) · w(α0)
m−1 =

m
∏

i=1

w(α0 ∧ αi).

The last part now follows by reversing the above arguments, noticing that as
defined v ∈ V L(

⋃m
i=1 Ki). �

Notice that the same proof goes through with L0 = ∅ to give in this case that

w(α1 ∧ ... ∧ αm) =

m
∏

i=1

w(αi) =

m
∏

i=1

wi(αi). (10)

We now prove a result for general acyclic graphs. The results of Rhodes-
Garside-Holmes will follow as corollaries under the assumption of uniqueness. So
assume that our graph is acyclic and for 1 ≤ i ≤ n let Ci be the set of j < i such
that there is an edge in the graph from pj to some pr with r ≥ i. In particular
then pi1, pi2, ..., pimi

∈ Ci. Let qi1, qi2, ..., qigi
list the remaining elements of Ci and

let Li = {pj | j ∈ Ci}.

Theorem 1 In the case where the graph of the constraint set given by (2), (3)
is acyclic, if w is a maxent solution to the set K of constraints of type (3) and
of type

w(pi|
mi
∧

j=1

p
ǫij

ij
∧

gi
∧

j=1

q
δij

ij
) = w(pi|

mi
∧

j=1

p
ǫij

ij
), (11)
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for ǫi1 , ..., ǫimi
, δi1 , ..., δigi

∈ {0, 1}, then w already satisfies the constraints of type
(2).

[Notice that the constraints of type (11) are derivable from the constraints of
type (2).]
Proof. Let K−

i be the set of constraints

w(pk|
∧mk

j=1 p
ǫkj

kj ∧
∧gk

j=1 q
δkj

kj ) = w(pk|
∧mk

j=1 p
ǫkj

kj ),

w(pk|p
ǫk1

k1 ∧ pǫk2

k2 ∧ ... ∧ p
ǫkmk
kmk

) = b(k; ǫk1, ǫk2, ..., ǫkmk
),

of types (11), (3) for k < i. Similarly let K+
i be the set of such constraints for

k ≥ i.
Let w be a maxent solution to K and let K0

i be the set of constraints

w(

mi
∧

j=1

p
ǫij

ij ∧

gi
∧

j=1

q
δij

ij ) = w(

mi
∧

j=1

p
ǫij

ij ∧

gi
∧

j=1

q
δij

ij ), (12)

for ǫi1, ..., ǫimi
, δi1, ..., δigi

∈ {0, 1}.

Let L−
i = {pj|j < i, j /∈ Ci}, L+

i = {pj|i ≤ j ≤ n}. It is easy to check that
K−

i ∈ C(L−
i ∪Li), K+

i ∈ C(L+
i ∪Li). Then by Separation, w−, w+, the restrictions

of w to S(L−
i ∪Li), S(L+

i ∪Li) respectively, are in MEL−
i (K−

i ∪K0
i ), MEL+

i (K+
i ∪

K0
i ) respectively and

w(α+ ∧ α0 ∧ α−) · w(α0) = w(α+ ∧ α0) · w(α− ∧ α0) (13)

for atoms α+, α0, α
− of L+

i , Li, L
−
i respectively.

Summing (13) over literals ±pk with k > i now gives

w(pǫi
i ∧ α0 ∧ α−) · w(α0) = w(pǫi

i ∧ α0) · w(α0 ∧ α−), (14)

and hence
w(pǫi

i |α0 ∧ α−) = w(pǫi
i |α0). (15)

Combining this with the constraint (11), which w of course satisfies, gives (2), as
required. �

Notice that the particular conclusion of this proof for pi, that

w(pi|p
ǫ1
1 ∧ pǫ2

2 ∧ ... ∧ p
ǫi−1

i−1 ) = w(pi|p
ǫi1
i1 ∧ pǫi2

i2 ∧ ... ∧ p
ǫimi
imi

),

did not require that all constraints of type (11) were actually present in K, only
that the particular constraint of that form for pi, that is,

w(pi|
mi
∧

j=1

p
ǫij

ij
∧

gi
∧

j=1

q
δij

ij
) = w(pi|

mi
∧

j=1

p
ǫij

ij
),

was present. This observation leads to the following corollary which appears in
the work of Rhodes-Garside-Holmes (see specifically [3], [5]) under the implicit
assumption of uniqueness.
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Corollary 2 In the case where the graph is a tree any maxent solution to the
constraints of type (3) also satisfies all the constraints of type (2).

Proof. Take a particular vertex pi and renumber the vertices so that in this
new numbering the only vertices with numbers higher than pi are those that can
be reached by a directed path from pi. Then, since our graph is a tree, for this
numbering the constraint of type (11) for pi is trivial (there are no qij) so by the
above observation the constraint of type (2) for pi and this new numbering holds.
But then since any vertex with a lower number than i retains this property in
the new numbering the constraint of type (2) for pi in the old numbering must
also hold. �

The next theorem (under an implicit uniqueness assumption) appears, with
a different proof, in the paper [6] of Holmes.

Theorem 3 In the case where the graph is singly connected any maxent solution
to the constraints of type (3) together with the constraints

w(p
ǫi1
i1

∧ p
ǫi2
i2

∧ ... ∧ p
ǫimi
imi

) =

mi
∏

j=1

w(p
ǫij

ij
) (16)

of type (6) also satisfies the constraints of type (2).

Notice that the constraints of type (6) do follow from those of type (2).

Proof. Let w be a maxent solution to these constraints of types (3) and (6). In
view of Theorem 1 it would be enough to show that w satisfies the constraints of
type (11). However it turns out to be just as easy (or hard) to prove the result
directly.

Towards this end, we first introduce a little notation. For vertices pi, pj such
that there is an edge from pj to pi let L[j, i] be those verticess pk for which there
is a path (not necessarily directed) from pj to pk which does not pass through pi.
Notice then that pij ∈ L[ij, i] since the graph is singly connected the L[ij, i] are
all disjoint.

By Separation with L0 = {pi1} we have

w(
∧

pk∈L[i1,i]

pǫk
k ∧

∧

pk /∈L[i1,i]

pǫk
k ) ·w(pǫi1

i1 ) = w(
∧

pk∈L[i1,i]

pǫk
k ) ·w(pǫi1

i1 ∧
∧

pk /∈L[i1,i]

pǫk
k ), (17)

which, by summing over a suitable set of literals, gives

w(
∧

pk∈L[i1,i]

pǫk
k ∧

mi
∧

k=2

pǫk
k ) · w(pǫi1

i1 ) = w(
∧

pk∈L[i1,i]

pǫk
k ) · w(

mi
∧

k=1

pǫik
ik ). (18)

Similar identities hold of course for the other pij.
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Again by Separation with L0 = {pi1, pi2, ..., pimi
}, Lj = L[ij, i], j = 1, 2, ..., mi,

J the remaining vertices, and summing over the literals from J (notice by single-
connectedness this application is valid) we obtain

w(

mi
∧

j=1

∧

pk∈L[ij,i]

pǫk
k ) · w(

mi
∧

k=1

pǫik
ik )mi =

mi
∏

j=1

w(
∧

pk∈L0∪L[ij,i]

pǫk
k ) · w(

mi
∧

k=1

pǫik
ik ). (19)

Using (18), (6) and cancelling now gives

w(

mi
∧

j=1

∧

pk∈L[ij,i]

pǫk
k ) =

mi
∏

j=1

w(
∧

pk∈L[ij,i]

pǫk
k ). (20)

Having established these identities we now press ahead to show that the con-
straints of type (2) must hold. Let L∗

i be the set of vertices pj such that there is
a path from pj to some parent pik of pi which does not pass through pi, together
with pi itself. Let L−

i be the set of pk from which there is a directed path to pi.
Our plan is to show that if J is a set of vertices such that

L∗
i ∩

⋃

pj∈J

L−
j = ∅ (21)

then
w(

∧

pj∈L∗
i

p
ǫj

j ∧
∧

pj∈J

p
ǫj

j ) = w(
∧

pj∈L∗
i

p
ǫj

j ) · w(
∧

pj∈J

p
ǫj

j ). (22)

The required result follows from this by taking J to be the set of pk with k < i
and pk /∈ L∗

i and summing over the literals not in {±pk | k ≤ i} to give

w(
∧

k≤i

pǫk
k ) = w(

∧

pk∈L∗
i

k≤i

pǫk
k ) · w(

∧

pk /∈L∗
i

k≤i

pǫk
k ). (23)

Summing over ±pi and dividing both sides of (23) gives

w(pi|
∧

k<i

pǫk
k ) = w(pi|

∧

pk∈L∗
i

k<i

pǫk
k ). (24)

Again by Separation (with {pi1, pi2, ..., pimi
}, L∗

i − (L0 ∪ {pi}), and the set of
remaining vertices corresponding to the L0, L1, L2 of that formulation) we have

w(
n

∧

k=1

pǫk
k ).w(

∧

pk∈L0

pǫk
k ) = w(

∧

pk∈L0∪L1

pǫk
k ) · w(

∧

pk∈L0∪L2

pǫk
k ). (25)

Summing over the literals ±pk with k > i or pk ∈ L2 gives

w(
∧

pk∈L∗
i

k≤i

pǫk
k ).w(

∧

pk∈L0

pǫk
k ) = w(

∧

pk∈L∗
i

k<i

pǫk
k ) · w(

∧

pk∈L0∪{pi}

pǫk
k ), (26)
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and hence, with (24),

w(pi|
∧

k<i

pǫk
k ) = w(pi|

∧

pk∈L0

pǫk
k ), (27)

as required.

It remains only to show (22). The proof is by induction on |J |. Clearly it
holds if J = ∅ so suppose |J | > 0 and the result holds for any smaller such set.
If the set J ′ of vertices in J which are in the same component of the graph as pi

is not all of J then by the degenerate version of Separation (and summing over
the remaining literals)

w(
∧

pj∈L∗
i

p
ǫj

j ∧
∧

pj∈J

p
ǫj

j ) = w(
∧

pj∈L∗
i

p
ǫj

j ∧
∧

pj∈J ′

p
ǫj

j ) · w(
∧

pj∈J−J ′

p
ǫj

j ), (28)

and the required conclusion follows straightforwardly.

Otherwise let pk ∈ J . Then there is a non-self intersecting path (not directed)
from pi to pk and by (21) on this path there must be a vertex pt with neighbors
ps, ph on this path, in that order, such that s, h < t, say ph = pt1. Now by (20),

w(

mt
∧

j=1

∧

pk∈L[tj,t]

pǫk
k ) =

mt
∏

j=1

w(
∧

pk∈L[tj,t]

pǫk
k ),

from which it follows that

w(

mt
∧

j=1

∧

pk∈L[tj,t]

pǫk
k ) = w(

mt
∧

j=2

∧

pk∈L[tj,t]

pǫk
k ) · w(

∧

pk∈L[t1,t]

pǫk
k ). (29)

Hence if J ′ = J ∩ L[t1, t] then J ′ 6= ∅ and by summing over suitable literals in
(29),

w(
∧

pj∈L∗
i

p
ǫj

j ∧
∧

pj∈J

p
ǫj

j ) = w(
∧

pj∈L∗
i

p
ǫj

j ∧
∧

pj∈J−J ′

p
ǫj

j ) · w(
∧

pj∈J ′

p
ǫj

j ),

from which, by induction, the required result follows.
�

All of this has been proved for a particular maxent solution w. Unfortunately
the assumption that there is always a unique maxent solution (made implicitly
in some of the Rhodes-Garside-Holmes algorithms) turns out to be false, even in
the case where the graph is simply an inverted tree, as we now show.

A counter example to the uniqueness assumption

Fix large k to be a large natural number. Consider the following inverted
tree. On the top we have p1, p2. They have a child, p3, who in turn is the single
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parent of a child p4, who in turn is the single parent of a child p5, and so on down
to pm+3 for some large (compared even with k) m.

The w(p1), w(p2) are unknown but apart from that

w(p3|p1 ∧ p2) = w(p3|¬p1 ∧ ¬p2) = 0,
w(p3|p1 ∧ ¬p2) = w(p3|¬p1 ∧ p2) = 1,
w(pi+1|pi) = k/(k + 1), i = 3, 4, 5, ..., m + 2,
w(pi+1|¬pi) = 0, i = 3, 4, 5, ..., m + 2.

For this network (assuming the full set of independence conditions (2)) the
entropy, E(w(p1), w(p2)), comes out to be

−w(p1) log w(p1) − (1 − w(p1)) log(1 − w(p1))

−w(p2) log w(p2) − (1 − w(p2)) log(1 − w(p2)) (30)

−(w(p1)(1 − w(p2)) + w(p2)(1 − w(p1))) · {
m+3
∑

i=4

∏

4≤j<i

w(pj|pj−1)((w(pi|pi−1) log w(pi|pi−1)+

(1 − w(pi|pi−1)) log(1 − w(pi|pi−1)))} . (31)

Expanding the term in (31) between the braces {, } we see that this equals

m−1
∑

i=0

(k/(k + 1))i((k/(k + 1)) log(k/(k + 1)) + (1/(k + 1)) log(1/(k + 1))

= ((1 − (k/(k + 1))m)(1 − (k/(k + 1)))−1((k/(k + 1)) log(k) − log(k + 1))

= ((1 − (k/(k + 1))m)(k log(k) − (k + 1) log(k + 1)). (32)

Let ǫ > 0 be small and k so large that

ǫ2 log(k + 1) > 1. (33)

Then from (31) and (32),

E(1/2, 1/2) = 2 log 2+1/2((1− (k/(k+1))m)((k +1) log(k +1)−k log(k)) (34)

whilst

E(1/2 + ǫ, 1/2 − ǫ) = −(1 − 2ǫ) log(1/2 − ǫ) − (1 + 2ǫ) log(1/2 + ǫ)

+((1/2 + ǫ)2 + (1/2 − ǫ)2) · {

((1 − (k/(k + 1))m)((k + 1) log(k + 1) − k log(k))}

= 2 log 2 + O(ǫ) + (1/2 + 2ǫ2) · {

((1 − (k/(k + 1))m)((k + 1) log(k + 1) − k log(k))}.

12



But clearly since m is large compared with k the component involving ǫ2 in
the last term of this expression is at least

2ǫ2 · (1/2) · log(k + 1)

which by (33) is at least 1.
From this, and the fact that ǫ is chosen small, it follows that E(1/2+ǫ, 1/2−ǫ)

exceeds E(1/2, 1/2) so the maxent solution in this case cannot satisfy w(p1) =
w(p2) = 1/2. However there is clearly complete symmetry here between p1 and
p2 so if the maxent solution were unique this would be the only possible value.
We conclude that in this case there is no unique maxent solution.

This counter-example also deals a blow to the algorithms proposed in [3]
and [5] for finding maxent solutions. In short the method is to first guess the
unknowns to be 1/2 and then sequentially tune each of them in turn to the value
which maximizes the entropy when all the others are fixed at their current values.
The problem is that attempting that process here will simply keep you where you
started (because if w(p2) is fixed at 1/2 then the best value for w(p1) remains at
1/2 etc.). In other words the algorithm will converge, but to a saddle point, not
a maximum. Of course in this case an alternative starting point may lead to one
of the two points of global maximum entropy. But in general it is not obvious
how can we know whether we have found all, or indeed any, global maxima, and
even if we have found them all what method for choosing between them can we
adopt in this context of (objective) probabilities4?

Filling-in using limiting centre of mass

In view of the somewhat disappointing result which concluded the previous sec-
tion it would seem sensible to briefly reassess the argument for using maxent to
fill in missing values in the first place.

It would seem that there are three possible justifications for this choice. The
first is that, as shown in [16] (see also [13]), maxent is the only inference pro-
cess which is consistent with ‘common sense’, that is satisfies a particular set of
‘common sense principles’ described in these papers. However these principles,
and hence that result, are uncompromisingly set within the context of subjec-
tive probability, where probabilities correspond to an agent’s personal degrees of
belief as willingness to bet and the knowledge base sums up the totality of the
agent’s knowledge. As far as causal networks are concerned however that is not
at all the situation in general. Typically the data which are known are empirical
frequencies and the intention in filling in missing values is to estimate values of

4See [18] for an analogous, but we would argue, essential unproblematic, problem of assigning
subjective probabilities.
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the underlying, objective, probability function. Furthermore the fact that we
are dealing here with a real world probability function would seem to give us
background knowledge beyond the specified knowledge base of identities (2), (3)
(for more on this point see [19], [14]). In this case it seems hard to manufacture
a convincing argument that an objective probability function should in any way
be constrained by what we judge to be common sense in an entirely different
context.

In a rather similar flavor a second ‘justification’ for using maxent here is that
the resulting probability function has minimum Shannon information content
(see [24]) amongst all those probability functions satisfying the knowledge base.
In other words that this choice assumes, or goes, as little as possible beyond
what is already implicit in the knowledge base. Attractive as this might initially
appear it suffers the same criticisms as the first case. Namely, in this case the
knowledge base goes beyond simply the constraints (2), (3), and there seems no
obvious reason why the ‘true’ probability function should be in any way obliged
to minimize its Shannon information content.

The third possible justification for using maxent here however is altogether
more serious and dates back to the origins of maxent in thermodynamics, see in
particular the discussion in [8] and [9]. Within the present notation the basic
argument is given in [15] and goes as follows. Let us suppose that the constraints
we have are actually frequencies derived from some large population, P say, of
N individuals, or more reasonably very close to such frequencies. So, for each
propositional variable of the language and each individual from P that individual
either does or does not satisfy the property corresponding to the propositional
variable. More formally then we can think of each x ∈ P as determining a {0, 1}-
valuation Vx on the language and the ‘true’ probability function wP being given
by

wP(θ) =
|{ x ∈ P | Vx(θ) = 1 }|

|P|
.

Now, of course, ostensibly all we know about P is that wP satisfies our knowl-
edge base (approximately), and in general there will be many such P. However,
it turns out that if N is sufficiently large then for almost all such P wP is corre-
spondingly close to the maxent solution of this knowledge base. In other words,
if we accepted that the knowledge base had derived from some such P in this way
and that all such possible P were equally likely then guessing the missing values
to be the maxent values would almost certainly be close to the actual answer.

An immediate criticism of this argument arises once one looks a little more
closely at the role of the chosen approximation. For whilst this makes little
difference (within some rather loose bounds, see [15]) to the answers obtained it
does, in general, make a significant difference to the distribution of the resulting
data sets. For apart from some exceptional circumstances almost all the data sets
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will actually give frequencies clustering tightly around points which differ from
the maxent values. Tightening the approximation (for fixed, large, N) then will,
in general, have the effect of simply removing the vast majority of these possible
data sets. From the viewpoint then that the constraints are (presumably) being
prescribed as accurately as possible this would seem to cast a question mark over
how representative the overwhelming majority of the data sets actually are.

Our second criticism of using this justification for applying maxent in the
context of causal networks is somewhat less formal and is aimed at what we
believe to be the underlying assumption justifying ‘indifference’ across data sets5,
namely that it is the data set that is primary and determines the distribution.

Certainly there do seem to be situations in which the individuals involved
interact together, for example the speeds of the molecules in a container of gas,
or trends in fashion wear, and in these cases it may well be argued that the data
determines the distribution and that it makes no sense to talk of probabilities
applying to individuals in vaccuo. However these probability distributions do not
seem to be particularly representative of those currently being modeled by causal
networks, indeed it is hard to see that they are even amenable to such model-
ing. Typically in the distributions modeled by causal networks the individuals
involved are influenced by factors existing independently of the particular indi-
viduals themselves. For example the ultimate fate of a ball in a pin-ball machine,
or the signs and symptoms relevant to diagnosing chest pains. In these cases it
surely does seem to make sense to talk of the probability of a pin-ball scoring,
say 100 points, simply on the basis of the layout of the pin-ball table itself.

Of course this is a drastic simplification and arguments certainly can be ad-
vanced to blur the distinction. Nevertheless we cannot see, in the current realm of
application of causal networks, that the assumption that all data sets are equally
likely (as described above) is any more justified than the assumption that, say,
all probability functions satisfying the known constraints are equally likely67.

This alternative, of treating all probability functions satisfying the constraints
as equally likely to be the true probability function, is clearly very much in the
flavor of Bayesian methods and immediately suggests approximating, or esti-
mating, the true probability by taking the ‘average’ of all probability function

5As a general ‘principle’ we have little sympathy for ‘indifference’ in general, unless, as in the
Renaming Principle, see [12], it can be justified in terms of invariance under symmetries of the
language. In neither this case, nor in the case of CM∞ which we shall shortly be considering,
are any such supporting arguments apparent.

6Of course the assumption of a uniform distribution of probability functions is not the only
one we could make here. (For an attempt to derive a justified ‘prior’ here see [19].)

7To quote a (private) comment by Jon Williamson to this effect, ‘arguably the distribution
determines the the data not vice versa; intuitively one ought to be indifferent over causes rather
than effects; in which case one is better to be indifferent over the partition of distributions than
the partition of data sets.’
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satisfying the constraints, or more precisely the centre of mass of V L(K), where
K is the knowledge base, assuming uniform mass distribution/prior. Alterna-
tively we could think of this as the function minimizing the mean square error,
see for example [12], p70. In these ways then taking the centre of mass of V L(K)
could be said to be somewhat justified as an estimate for missing probabilities.

Unfortunately however this estimate suffers from a, to our mind serious, fault.
Namely the assigned probabilities do not satisfy Language Invariance. That is if
L′ ⊃ L then the values given to sentences of L by the centre of mass of V L(K)
may differ from those given by the centre of mass of V L′

(K), despite there being
no differences in the underlying knowledge K. One solution to this difficulty is to
acknowledge that in reality the overlying language, though finite, is indefinitely
extendible and replace the values given to the sentences of L by the centre of
mass of V L(K) by the limiting values given to theses sentences by V L′

(K), for
L′ ⊇ L, as |L′| tends to infinity. Fortunately this limit probability function on SL,
denoted CM∞(K) (see [12]), does exist and the corresponding inference process
does satisfy Language Invariance. Indeed, as shown in [17],

CM∞(K) = that ~x ∈ V L(K) for which
∑

i

log xi is maximal.

where the sum is over those i for which there is an ~x ∈ V L(K) with xi > 08.
Apart from its being somewhat justified in the envisaged context of practical
causal networks it turns out that using CM∞ in place of maxent avoids the
problems on non uniqueness and is computationally trivial, just give all missing
probabilities value 1/2. [Of course this is a value that one might have chosen of
‘indifference’ in any case, the difference is that these 1/2’s are justified !!]

To see this let w be a solution to the constraints of types (2) and the existing
constraints of type (3). Using (4) the sum of the logs of the atoms,

∑

α log α, in
this case can be expressed as

∑

~ǫ

log w(pǫ1
1 ∧ pǫ2

2 ∧ ... ∧ pǫn
n )

=
∑

~ǫ

n
∑

i=1

log w(pǫi
i |p

ǫi1
i1 ∧ pǫi2

i2 . ∧ ... ∧ p
ǫimi
imi

) (35)

Now clearly the term w(pi|p
ǫi1
i1 ∧ pǫi2

i2 ) only appears in this sum as

R{log w(pi|p
ǫi1
i1 ∧ pǫi2

i2 ) + log(1 − w(pi|p
ǫi1
i1 ∧ pǫi2

i2 ))}

8It is worth remarking that according to Hartley’s measure, see [4], − logxi is the information
contained in the outcome αi in this context.
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for some positive constant factor R (the number of choices for the unspecified
ǫj). Hence if the constraint

w(pi|p
ǫi1
i1 ∧ pǫi2

i2 ∧ ... ∧ p
ǫimi
imi

) = b(i; ǫi1, ǫi2, ..., ǫimi
)

is missing the choice of
w(pi|p

ǫi1
i1 ∧ pǫi2

i2 )

which maximizes (35) is independent of what other missing values are assigned
and is that x ∈ [0, 1] which maximizes

log x + log(1 − x),

that is x = 1/2.

Conclusion

In this paper we have, under the assumption of uniqueness, given direct proofs
using the Separation Principle of earlier results of Rhodes, Garside and Holmes
on the extent to which the maxent solution of an incomplete causal network
satisfies the full set of associated independences. However we have shown that,
contrary to their implicit assumption, uniqueness need not hold even for inverted
trees. And indeed that their algorithms (which we do not otherwise consider in
this paper) may not even converge to a maxent solution.

We then briefly criticized the rationale of using maxent to fill in missing values
in a causal network, suggesting instead the limiting centre of mass inference
process CM∞ which we showed does satisfy uniqueness and is computational
trivial, indeed it agrees with, and serves to vindicate, the standard ad hoc choice
of simply guessing 1/2 for all missing probabilities!
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[18] J.B. Paris, & A. Vencovská, Common sense and stochastic independence,
in: D.Corfield & J.Williamson, eds., Foundations of Bayesianism (Kluwer
Academic Press, 2001) 203-240.

[19] J.B. Paris, P.N. Watton & G.M. Wilmers, On the structure of probability
functions in the natural world, International Journal of Uncertainty, Fuzzi-
ness and Knowledge-Based Systems 8 (3) (2000) 311-329.

[20] J. Pearl, Probabilistic Reasoning in Intelligent Systems. Networks of Plausi-
ble Inference (Morgan Kaufman, 1988).

[21] P.C. Rhodes, & G.R. Garside, Computing marginal probabilities in multi-
way causal trees given incomplete information, Knowledge-Based Systems 9
(1996) 315-327.
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