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The normal form for codimension one border collision bifurcations of �xed points of discrete
time piecewise smooth dynamical systems is considered in the unstable case. We show that in
appropriate parameter regions there is a snap-back repeller immediately after the bifurcation, and
hence that the bifurcation creates chaos. Although the chaotic solutions are repellers they may
explain observations, and this is illustrated through an example.
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Many applications of computer software involve the
modelling and control of systems which depend on both
discrete and continuous variables, and so a good under-
standing of the interaction between these components of
the system is important. These systems are often called
hybrid or embedded systems, and there is a growing lit-
erature of both applications and theory [1{4]. From the
perspective of dynamical systems a description of the
simple bifurcations which can occur in these systems is
important, and many examples are now well understood.
The systems considered here are piecewise smooth and

have discrete time and continuous variables. There is a
switching surface � dividing the regions in which the dy-
namics is determined by smooth maps, and the equations
are continuous across �. Thus the left and right sides of
� could be labelled by L and R respectively, and a dis-
crete variable de�ned to take values in fL;Rg according
to which side of � the continuous variables are at time n.
This discrete variable then determines which dynamical
system is applied at the next time step.
Perhaps the most obvious codimension one bifurcation

of such systems occurs if a �xed point (or periodic orbit)
of the system is on (or has a point on) the switching
boundary �. The two-dimensional normal form for this
bifurcation was derived in [1, 5], and if the switching
surface is transformed to be the y�axis (x = 0) then the
local evolution with x = (x; y)T is

xn+1 =

(
ALx+m if x � 0

ARx+m if x � 0
(1)

where the matrices AL and AR, and the vector m are
de�ned as

A� =

�
T� 1
�D� 0

�
; and m =

�
�
0

�
(2)
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for � = L;R. The constants T� and D� are the trace and
determinant of the Jacobian of the de�ning equations
on the left and right of �, whilst � is the bifurcation
parameter. If � = 0 then the origin is a �xed point, and
this is clearly in �. The question for bifurcation theory
is what happens close to the origin when j�j is small.

If jDRj and jDLj are less than one then the local dy-
namics which can occur has been discussed in a number
of papers [1, 3, 6{9]. In this case bifurcations analogous
to the standard saddlenode are possible, as is a border
crossing in which the �xed point simply moves across
the boundary. Depending on the values of the other con-
stants, more complicated possibilities occur, with the cre-
ation of other periodic orbits and even chaos. Since the
determinant of the Jacobian matrix of a map shows how
areas are increased or decreased by iteration, the deter-
minant less than one cases can be expected to give infor-
mation about the stable dynamics which can be observed.
It might be imagined that the case of a determinant with
modulus greater than one is either uninteresting or could
be obtained from the modulus less than one case by re-
versing time. However, neither of these is the case { since
the map is not necessarily invertible we cannot simply re-
verse time, and the dynamics described below is certainly
interesting and relevant to some examples.

The demonstration that there is complicated (chaotic)
dynamics in the case of a determinant with modulus
greater than one follows the ideas used in the study of
snap-back repellers [10{13]. Since the systems considered
here are not di�erentiable across the boundary, we give
a brief description of how this theory works below. Next
we prove the existence of a snap-back repeller and hence
chaos in (1) for appropriate values of the constants de�n-
ing AL and AR and then show how this bifurcation can
be observed in an example of a blowout bifurcation.

Let GL denote the half-plane with x � 0 and GR de-
note the half-plane with x � 0. For a map such as (1),
we will use the notation FL and FR to denote the map
in GL and GR respectively. We say that the map has a
simple snap-back repeller if, possibly after the transfor-
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FIG. 1: The geometry of a simple snap-back repeller.

mation x! �x (which exchanges the roles of L and R),
there exists a �xed point xR� in x > 0 and

1. the eigenvalues s� of AR satisfy js+j � js�j > 1;

2. there is a point xL0 in x < 0 such that FL(x
L
0 ) = x

R
� ;

and

3. there exists a sequence xR
i
in x > 0 which tends

to xR� as i ! 1 such that FR(x
R

i+1) = x
R

i
, i =

1; 2; 3; ::: and FR(x
R
1 ) = x

L
0 .

This is shown in Figure 1. Note that the �rst condition
implies that xR� is a source with a two dimensional local
unstable manifold and so there can be no conventional
homoclinic orbits such as those of the Lozi map.
Of course, more complicated connections are possible,

with several passages across the boundary, or more than
one path, but this is su�cient for our needs here.
We need to de�ne a set of neighbourhoods of the points

which de�ne the snap-back repeller and on which the
chaotic dynamics can be de�ned. We start by choosing
a closed ball of radius r centred on xR1 , B(1; r), and take
r small enough so that B(1; r) � GR, FR(B(1; r)) =
B(0; r) � GL and none of the other points xR

i
, i = 2; 3; :::,

are contained in B(1; r).
Now de�ne B(2; r) to be those points in GR which

map to B(1; r) under one iteration of FR, and again,
possibly reducing the size of r this is a closed set in GR

which does not contain any points in �. Note that if
s� are real and distinct then B(2; r) is an ellipse with
major and minor axes of length js�j

�1r. De�ne B(n; r)
inductively so that FR(B(n; r)) = B(n�1; r) and B(n; r)
does not intersect �. Note that after a �nite number of
steps these sets, which are ellipses with major and minor
axes of length js�j

�n+1r in the case of real eigenvalues,
will be su�ciently close to xR� and su�ciently small so
that no reduction of r will be necessary.
Let N(r) = FL(B(0; r)), which is a set in GR (pos-

sibly having reduced r to ensure no intersection with
�) containing xR� in its interior. By de�nition, the sets
B(n; r) converge to xR� and their maximal diameters tend
to zero, so there exists K > 0 such that B(k; r) 2 N(r)
for all k > K. By construction FL � F

k

R
(B(k; r)) = N(r)

and FL � F
k

R
restricted to B(k; r) is a homeomorphism

(in fact, a�ne). Hence for every k1 > K there exists
a closed connected set B(k; k1; r) � B(k; r) such that
FL � F

k

R
(B(k; k1; r)) = B(k1; r). The standard induction

argument for dynamical systems (using the convergence
of nested close sets) implies that for any M > 0 and any
sequence k0; k1; k2; : : : withK < ki < K+M there exists
a non-empty set B(k0; k1; k2; : : : ; r) 2 B(k0; r) such that

FL � F
k0

R
(B(k0; k1; k2; : : : ; r)) = B(k1; k2; k3; : : : ; r) (3)

and hence that there are in�nitely many periodic points
and uncountably many aperiodic points in the dynamics
of the map close to the simple snap-back repeller.
Because the argument is so simple in this restricted

case it has been worth rehearsing how the simple snap-
back repeller implies chaos, as there has been some con-
troversy about the original idea [10, 11], and the system
(1) does not formally satisfy all the conditions usually
imposed, although [13] does apply here.
Now return to the normal form (1). Suppose that T�

and D�, � = L;R, are given. The �xed points of the
maps are given by

x�� =
�

1� T� +D�

; y�� = �D�x
�

� ; � = L;R (4)

and xR� exists provided xR� > 0, with a similar inequality
for the existence of xL� . Given T� and D� these inequali-
ties de�ne the sign of � for which these �xed points exist.
The �xed points in GR and GL coincide at the origin (on
�) if � = 0.
The geometry of the map near the boundary controls

much of what can be observed. The image of the bound-
ary � is the x�axis, and since yn+1 = �D�xn, GR (with
x > 0) is mapped to the upper (respectively lower) half
plane if DR < 0 (resp. DR > 0) and GL is mapped to
the upper (respectively lower) half plane if DL > 0 (resp.
DL < 0). In other words, the images of GL and GR over-
lap if DR and DL have opposite signs (one positive and
one negative), and do not overlap if they have the same
signs. This observation goes a long way towards explain-
ing why boundary crossing occurs if the determinants
have the same sign, and more complicated bifurcations
can occur otherwise.
To �x ideas we will consider the case

DR > 1; DL < 0 (5)

and aim to show the existence of a snap-back repeller to
xR� . For geometric simplicity we will make the further as-
sumption that x�

R
is an unstable node, so the eigenvalues

of AR are real and distinct and greater than one. This
corresponds to the additional condition

TR > 2; T 2
R
> 4DR; 1� TR +DR > 0 (6)

which implies that the �xed point in GR given by (4)
exists if � > 0. Then (5) implies that the images of GR

and GL lie in the lower half plane, and hence that there is
a preimage of xR� in GL if yR� < 0, which is automatically
satis�ed from (4) as DR > 0.
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A short calculation using (1) shows that this point,
x
L
0 = (x0; y0) in the notation of the previous section is

given by

x0 =
DR

DL

xR� ; y0 =
1

DL

(TRDL�TLDR�DLDR)x
R

� (7)

By de�nition the point xR1 of Figure 1 is a preimage of
x
L
0 in x > 0, and for this preimage to exist we must have
y0 < 0 since the images of both GR and GL are in the
lower half plane. Since DL < 0 and xR� > 0 this implies
that the condition

TRDL � TLDR �DLDR > 0 (8)

must hold. In this case xR1 = (x1; y1) exists and by de�-
nition xR0 is mapped to it by the map in x > 0 so

x0 = TRx1 + y1 + �
y0 = �DRx1

(9)

and hence, using (4) and (7)

x1 = � 1

DLDR
(TRDL � TLDR �DLDR)x

R
�

y1 = 1

DLDR
(DR(DR �DL �DLDR)

+TR(TRDL � TLDR))x
R
�

(10)

Note that (8) ensures that this point does exist in GR.
Looking back to the de�nition of a snap-back repeller

it remains to show that xR1 lies in the two dimensional un-
stable manifold of xR� , i.e. if x

R
1 is iterated in backwards

time using the map in x > 0 then this orbit remains in
x > 0 and converges to xR� .
By (6) the eigenvalues and eigenvectors of the linear

part of the map in x > 0 are

s� = 1

2
(TR �

p
T 2
R
� 4DR); e� =

�
s�
�DR

�
(11)

with s� > 1 and hence the eigenvectors both have neg-
ative slopes. Except for solutions on e+, orbits of the
linear map therefor converge in backwards time to xR�
on generalized parabolas which are tangential to e� (the
eigenvalue with smaller modulus) at the �xed point, and
this is the eigenvector with the steeper slope. Thus so-
lutions in backwards time lie on curves as sketched in
Figure 2, and clearly all solutions in y < 0 which start
to the left of e+ tend to the �xed point along solution
curves which lie in x > 0 and y < 0 for all time and so
there will be a simple snap-back repeller.
The remaining (su�cient but not necessary) condition

for the snap-back repeller to exist if TR > 0 is that xR1
lies to the left of e+ (the second iterate has the same
eigenvector as the �rst iterate). The line of the eigen-
vector through xR� is y = �DR

s+
(x � (s+ � 1)xR� ) and so

the geometric condition which guarantees the existence
of the snap-back repeller is

s+y1 � �DR

�
x1 + (s+ � 1)xR�

�
(12)

FIG. 2: The geometry of the linear 
ow in GR. Solutions lie
on curves which (with the exception of e+) are linear trans-

formations of generalized parabolas y = xln s+= ln s� .

which, after some manipulation gives

s+DR(DR �DL) + (s+TR �DR)(TRDL � TLDR) � 0
(13)

In the arguments above we have accumulated a number of
conditions: (5), (6), (8), and (13) with TR > 0. We now
need to show that there are some values of the parame-
ters which satisfy all these conditions simultaneously. We
start by setting

DR = 10; TR = 7 (14)

in which case s+ = 5 and since 1�TR+DR = 4 the �xed
point exists if � > 0. The �nal two constraints give

�3DL � 10TL > 0; 10 + 3DL � 5TL > 0 (15)

To show how the existence of the snap-back repeller is to
some extent independent of the linear type of the 
ow in
GL we consider brie
y several possibilities which satisfy
these constraints.
First suppose that

TL = 0; 0 < �DL < 1 (16)

Then both conditions in (15) are satis�ed so the snap-
back repeller exists if � > 0. The �xed point in GL is
stable and since 1 � TL + Dl > 0 it exists if � < 0.
Hence, as � increases through zero a stable �xed point
is destroyed and an unstable �xed point with a strange
invariant set from the snap-back repeller is created (pos-
sibly with other recurrent dynamics; we have not made
an exhaustive study here). If TL = �1 and DL = � 1

4

there is a similar bifurcation but in this case the stable
�xed point in � < 0 is replaced by a saddle.
Another interesting transformation occurs if

DL = �2; TL <
3

5
(17)
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FIG. 3: Bifurcating orbits in the (�; x) plane for the third
iterate of the map for the border collision of (18) with a =
1:8. Except for the period three orbit in x < a�1, each orbit
has one point in x > a�1 and n in x < a�1; orbits with
n = 0; 1; 2; 3; 4 are shown (periods 3 to 15 for the map).

which satis�es (15), so the snap-back repeller exists in
� > 0. If �1 < TL <

3

5
then 1� TL +DL < 0 and so the

�xed point in GL also exists if � > 0. So in this case we
know of no recurrent dynamics if � < 0, but two �xed
points and the strange invariant set exist if � > 0. Note
that (17) shows that the snap-back repeller can exist for
� > 0 over an unbounded set of the values of the other
parameters in the problem.
If TR < 0 and both eigenvalues are real and less than

minus one, then the same arguments can be made, and
(6) needs to hold, but the equivalent simple geometric
condition to (13) is less helpful. Of course, given an ex-
ample it is straightforward to determine whether (x1; y1)
given by (10) lies in the two dimensional unstable man-
ifold of xR� in GR by backwards iteration of one branch
of the map. This allows us to consider the coupled map
system introduced in [14] to investigate blowout bifurca-
tions:

xn+1 = (1� �)fa(xn) + �fa(yn)
yn+1 = �fa(xn) + (1� �)fa(yn)

(18)

where � 2 (0; 1
2
) and fa : [0; 1] ! [0; 1] is the skew tent

map

fa(z) =

�
az if z � a�1
a

a�1
(1� z) if z > a�1

a > 1: (19)

The synchronized state x = y is transversely stable pro-
vided � > 1

2a
, but if � < 1

2a
non-synchronized orbits can

be created from the two boundaries x = a�1 and y = a�1.
One of the simplest border collisions in this example is
for orbits of period three. If a = 1:8 and � = 0:18, then
there are two period 3 orbits, one with a point close to
x = a�1 � 0:555 at (0:553; 0:737) and the other with a
point at (0:559; 0:736). As � increases these tend to the
boundary, one from the left and the other from the right,
and there is a border collision at � � 0:1845. For the
third iterate of the map these are repelling �xed points,
and (again for the third iterate) TL � �9:83, DL � 21:77,
TR � �1:44 andDR � �27:21. Condition (6) is satis�ed,
and since this is the negative trace case we have checked
numerically that the backward orbit of the preimage of
the periodic point does indeed tend to the periodic point
in backwards time without crossing the border, which
shows that the left hand period 3 point (0:553; 0:737) is
a snap-back repeller. Figure 3 shows some of the bifur-
cating orbits.

In this note we have shown that snap-back repellers ex-
ist in the normal form for unstable border collision bifur-
cations, which makes it possible to predict the existence
of chaotic solutions. These solutions are repelling, but
can help explain the existence of periodic and aperiodic
orbits which play an important role in the dynamics of
the system as described in [15]. A fuller description of
the cases, including DR < �1, will be given elsewhere.
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