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Abstract

We address the problem of characterizing the choice processes of two like-minded yet

non-communicating agents who intend to select, from a finite set of options, the same

possible world. Hence, we call the resulting framework “Rationality-as-conformity”

Within the scope of our formalisation, in which a choice problem is defined on a

non-empty subset of maps from a finite set A to the binary set {0, 1}, we introduce

and investigate three distinct logico-mathematical characterisations of Rationality-

as-conformity.

Finally, we discuss the applicability of our framework to problems such as pure

coordination games and radical interpretation which are traditionally related to “ra-

tionality”.

The key characterisation results presented throughout Chapters 3–6 appear in

Hosni and Paris (2005), whereas parts of Chapters 7–8 have been submitted for

publication.

Keywords: Rationality, reasons, coordination, choice functions, radical interpreta-

tion, selection of multiple-Nash equilibria, social choice.
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Chapter 1

Yet another characterisation of

rationality

Abstract: We introduce, motivate and justify the main ideas and con-

cepts underlying the Rationality-as-conformity framework.

1.1 What is Rationality-as-conformity all about?

Rationality-as-conformity begins with the idea that a “rational”, “commonsensical”,

“natural”, or simply “logical” choice is one which corresponds to the choice other

similar agents would come up with in similar situations. Our aim is to model the

choice processes leading to this sort of conformity. Consider the following example.

Example 1 (Supermarket shelf arrangement). There are numerous ways in which a

supermarket manager might choose to arrange the shelves in her store, for example

by alphabetical order of product name, by product size or weight, by price, by the

package’s colours, and so on indefinitely (not to mention the astronomic number of

random orderings!). However when stepping into a new supermarket (i.e. one we

have never visited before, and about which nothing is known to us, apart from the

fact it is a supermarket) we expect to find teas close to coffees, pastas close to rices,

nappies near to toilet rolls. At least we argue that it would surely seem natural

to hold expectations of this sort. In fact, if after ten minutes searching we finally

10
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located the sugar among the washing powders, we might well be inclined to question

the store manager’s rationality! After all, we see this as a situation where, for mutual

convenience, the store manager and ourselves are trying to conform on the selection

of a common world, i.e. shelf arrangement.

Although this is the sort of situation we intend to model within our framework, it

is not hard to see how rapidly the complications would arise, if we were to work with

this informal problem. For instance it could be put forward that in fact there is no

choice process to be modelled there, just the appropriate use of common knowledge.

The objection here would be that there are in fact rules or conventions (discovered

in all probability within marketing research) that regulate what a “rational” shelf

arrangement is. [Surely there seems to be some cold-blooded form of logicality when

it comes to shelving sweets right at the eyes-height of an invariably bored child

queueing at the till!] Hence, the objection would conclude, those rules or conventions

are all that a “rational” customer needs to learn to shop conveniently. This would

surely work if there were something like a “universal shelving rule” around. Yet,

needless to say, this is utterly unreasonable. Therefore it is not hard to see that this

possible objection just begs the question for “the new customer” would still have to

figure out which shelving convention the supermarket manager is in fact adopting.

The next objection then, might be to notice that supermarket managers might

indeed fill up the store with signs and maps indicating to the unlearned customer

where is what. An account of “rational shelving” pursuing this line, however, would

seem to be easily exposed to a very basic shortcoming: What if the customer doesn’t

happen speak the language(s) chosen by the manager for the sings? What if the

manager and the customer didn’t in fact share any language at all?

In this thesis we shall consider an idealised and mathematically abstract situation

where communication or knowledge of such rules and conventions are not available

to the agents. Since it is assumed that agents’ ultimate goal is that of conforming to

the expectations of their peers, we shall refer to the overall approach as Rationality-

as-conformity.
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Rationality (or common sense – we shall not make a distinction among these

terms) is, in its full generality an extremely complex and widely debated subject.

Yet within the scope of our simple mathematical formulation we shall be able to

provide what amounts to a three-fold characterisation or definition of what it means

to choose rationally. The hope is that such investigations will ultimately provide a

way of viewing and understanding these notions in a much more general real world

context.

1.1.1 Summary of the thesis

The thesis is organised as follows. The remainder of this chapter is devoted to tracing

the motivations for the study of the Rationality-as-conformity and to illustrating in

some detail the main problem and the corresponding assumptions. We then move

on in chapter 2 to recall the main mathematical characterisations of rationality that

directly relate to Rationality-as-conformity in order to point out their general inad-

equacy to provide a solution for our main problem. The proper characterisations

of Rationality-as-conformity are introduced in full detail throughout chapters 4–6,

based on the formalisation of the framework given in chapter 3. In chapter 7 some

variations on the main theme are considered, whereas in chapter 8 we discuss the

applicability of the Rationality-as-conformity framework to the problems of selecting

focal points in pure coordination games as well as facilitating triangulation in radical

interpretation problems. Chapter 9 concludes the thesis.

1.2 Probabilistic Common Sense

Suppose that an agent is required to assign a subjective degree of belief to events

about which she only has partial information. As usual we assume that the events

are represented by the sentences θ, φ, . . . ∈ SL built up from some propositional lan-

guage L in the usual way. Within the subjectivistic (Bayesian) picture, such degrees

of belief are operationally quantified in terms of betting quotients: the degree of be-

lief an agent has in the sentence (representing a certain event) θ being interpreted in
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terms of the agent’s willingness to bet on the truth (occurrence) of θ. The resulting

betting scenario – introduced independently by de Finetti (1931) and Ramsey (1964)

at the end of the 1920’s – leads to a definition of a rational (or coherent, or consis-

tent) assignment of degrees of belief in terms of fair betting quotients, that is to say,

assignments that prevent the agent from incurring into sure loss (in a certain series

of bets). The simple, yet fundamental intuition here is that it would be irrational,

incoherent, or simply illogical of the agent to bet in such a way that she would loose

under any circumstances, that is, no matter what the outcome of the bet itself will

be.

The cornerstone of the subjectivistic-Bayesian characterisation of rational belief

consists in the so-called Dutch Book Theorem (first stated by Ramsey and proved

(independently) by de Finetti (1931)), according to which a necessary and sufficient

condition for betting quotients to be fair, and hence for degrees of belief to be coher-

ent, is that they satisfy the standard (Kolmogorov) axioms for probability functions.

In other words if agents are to avoid sure loss – blatantly irrational behaviour – they

must choose degrees of belief according with the laws of probability.

Despite the criticisms related to the underlying assumptions of the betting frame-

work, this powerful theorem lies at the heart of the justification for taking rational

degrees of belief as coherent degrees of probability. It is surely not the only argument

for “belief as probability”, though. Notably Cox’s Theorem (Cox, 1946) and related

results by Aczel (1966) provide strong support to this view, as discussed at length in

(Paris, 1994, ch. 3) where a rigorous reconstruction of Cox’s result is given.

But does coherence (so construed) exhaust the intuitive notion of “rationality”?

For de Finetti there was no question about that for everything that probability

– the “logic of the uncertain” – can do for the agents’ choices is to fix, through co-

herence, the boundaries of their (ir)rationality. Within those boundaries however,

any choice of specific degrees of belief is still permitted. In his fundamental mono-

graph on the theory of probability (de Finetti, 1974, p.109) he notices that, whenever

xi, i = 1, . . . , n is a set of logically independent events, any probability assignment

pi, i = 1, . . . , n such that 0 ≤ pi ≤ 1, will be coherent and, as far as the betting
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framework goes, rational. Indeed, de Finetti seemed to believe that any refinement

beyond coherence would have resulted in a commitment to some adhockeries :

Whether one solution is more useful than another depends on further

analysis which should be done case by case, motivated by issues of sub-

stance, and not –as I confess to having the impression– by a preconceived

preference for that which yields a unique and elegant answer even when

the exact answer should instead be any value lying between specifiable

limits. (de Finetti (1974) as quoted by Coletti and Scozzafava (2002))

1.2.1 Rational degrees of belief beyond coherence

What de Finetti seems to claim is that beyond coherence there is only pragmatics.

However, fixing coherence, there are surely cases in which after some reflection, cer-

tain distributions of probabilities appear to be more “commonsensical” (“natural”,

“logical”, “obvious” etc.) than others. To see this in a special case, consider the

following simple example (Paris, 1994, p.67).

Example 2. Suppose that an agent i knows nothing, so her knowledge can be repre-

sented as K = ∅ and let L = {p1, p2} be a propositional language. The agent i is

asked to give a value to bel(p1 ∨ p2) under the assumptions that bel is a subjective

probability function (on SL) and that K is everything i knows (the Watts Assump-

tion of Paris (1994)). It is immediate to see that also in this case, as far as coherence

goes, any value between 0 and 1 would do for i. Still there seems to be a way of

reasoning that refines such an “uninformative” suggestion about the probability to

be assigned. For, if i knows nothing, she has no reason to prefer certain possible

valuations on L overs some others, that is to say that the atoms

p1 ∧ p2,¬p1 ∧ p2, p1 ∧ ¬p2,¬p1 ∧ ¬p2

of SL should all be assigned probability 1/4, given that there is no grounds for

distinguishing them apart and that the sum of their probability values must add up
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to 1. Using this bit of “structural” information, together with the fact that

� p1 ∨ p2 ↔ (p1 ∧ p2) ∨ (¬p1 ∧ p2) ∨ (p1 ∧ ¬p2)

the agent will be lead assign her probability accordingly, i.e.:

bel(p1 ∨ p2) = bel(p1 ∧ p2) + bel(¬p1 ∧ p2) + bel(p1 ∧ ¬p2) = 3/4.

The study of commonsensical inference processes developed over the past 20 years

by Paris and Vencovská addresses the problem of refining, by means of a small number

of “common sense principles” (similar to the ones implicitly applied in the example

above) the notion of subjective coherent assignment of probabilities subject to the

constraints imposed by the knowledge K possessed by an agent.

The emphasis of this characterisation - indeed a distinguishing feature of this

approach - is on the fact that “rationality” or “common sense” is being formalized by

specifying the desired properties of the reasoning process rather than by specifying the

desired features of its outcome. This approach, which could be termed process-based,

implies that an individual agent fails to be rational if she fails to adhere to (some

of) the principles which are identified with common sense. This contrasts with the

approach which could be called the outcome-based according to which irrationality is

synonymous with the selection of a sub-optimal option, where optimality is usually

characterised in terms of some utility function. As we shall note in more detail

throughout the following chapter the distinction between process- and outcome-based

characterisations constitutes an important ground of comparison between alternative

characterisations of rational choice.

For the sake of keeping the discussion self-contained, we recall now the main

elements of the Paris-Vencovská characterisation, starting with a very informal de-

scription of their Common sense Principles:

Renaming Changing the names things are called should not result in agents chang-

ing their assignment of probabilities.

Obstinacy Learning information already possessed by an agent should not result in

her changing her mind.
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Irrelevance Agents should ignore knowledge that is known to be “irrelevant” (where

this is formally defined) to the problem at hand.

Equivalence In the presence of two identical knowledge bases should engender the

same probability assignments.

Continuity Microscopic changes in the knowledge base possessed by an agent should

not cause macroscopic changes in the probabilities assigned.

Relativisation The probabilities that an agent would be willing to assign on the

occurrence of a certain event should only depend on the knowledge one agent

would have if that event occurred.

(Weak) Independence Conditional beliefs interpreted as conditional probabilities

should satisfy a (weak) notion of statistical independence.

In the case of knowledge being represented in terms of linear constraints on a

subjective probability function, the fundamental result of this characterisation goes

as follows:

Theorem 1.1 (Paris and Vencovská (1990, 1997)). If the above set of principles

is adhered to, then an agent’s assignment of probability values on the basis of a knowl-

edge base K is completely determined, for all K. That is, there is only one probability

distribution that is consistent with a given K, the one given by the Maximum Entropy

inference process. �

The remarkable feature of commonsensical probabilistic reasoning that emerges

from this framework is that the requirement of adherence to the common sense princi-

ples determines a unique way of assigning degrees of belief to the sentences in SL. So,

despite being “process-driven”, this characterisation has a deep, if indirect, impact

on the actual probabilities that agents should assign. As an immediate consequence

of this, if distinct agents possess essentially the same knowledge and satisfy common

sense, they must end up assigning essentially the same degrees of belief to the as yet

undetermined sentences of their language. This is in fact a normative requirement
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that implies that agents must conform if they are to be “rational”. This gives us a

first important justification and motivation for taking Rationality-as-conformity.

Note that this is in consonance with the subjective-probabilistic tradition. Suppes,

to take a remarkable example, suggested that

the task of the theory of rationality, for the Bayesian, is to understand how

to conceive and design experiments that will eliminate or reduce diversity

of opinion about serious questions, and part of the task of this theory

is being clear about puzzling matters like the paradoxes of confirmation.

(Suppes, 1966, p.204)

We conclude by noting, as discussed in full detail in Paris (1999), that the Paris-

Vencovská characterisation is based on the simple yet fundamental idea that choice,

if rational, must be grounded on (good) reasons. This idea materialises in the fact

that commonsensical agents who have no grounds for distinguishing among a pair

of options should not be willing to prefer one option over the other, for they would

fail to have good reasons to do so. Hence, we can see that the guiding idea for

the formalization of commonsensical inference processes consists in constraining, via

principles, invariance under such an indistinguishability. [Note that this relates to

some defences of (a suitably formulated version of) the principle of indifference and

notably that of Jaynes’ (see, e.g. Jaynes, 1979).]

The main goal of the Rationality-as-conformity framework is to account for this

very essential feature of rationality in what is arguably the simplest choice situation

consistent with this intuition.

1.3 Introducing Rationality-as-conformity

An upshot of the Paris-Vencovská characterisation is that two agents who(se infer-

ence processes) satisfy the principles of common sense recalled above and who share

essentially the same knowledge, must end up assigning essentially similar degrees of

belief.
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Now, in practice, we can look at the assignment of degrees of belief as a problem

of choice defined on possible probability distributions. In fact this correspondence

between assignments of probabilities and choices is often regarded as central in the

formalization of reasoning under uncertainty. A representative example of this posi-

tion is given by de Finetti, who remarks in his discussion of proper scoring rules as

ways of eliciting probabilities that

the choice of a particular action among a sufficiently wide set of permitted

possibilities is equivalent to an evaluation of the probability concerned.

(de Finetti, 1972, p.20, added emphasis)

and he refers to this as a “well-known conclusion of decision theory”.

In this spirit then, we can ask what sort of choice process should be adopted by

two agents who, sharing essentially the same way of reasoning yet being otherwise

mutually inaccessible, intended to select the same “world” from a given finite set of

possible ones. It is the choice of the same possible world that we shall identify here

with conformity.

If possible worlds coincided with probability distributions, the probabilistic com-

monsensical agents of the Paris-Vencovská characterisation would have no choice

other than the distribution with the largest possible entropy. What we undertake

to investigate with Rationality-as-conformity is the formalization of the choice pro-

cesses by means of which conformity can be achieved in a framework in which much

weaker assumptions are made about the nature of the knowledge possessed by the

agents. In fact we will move from the representation of knowledge given in terms of

consistent sets of linear constraints on a subjective probability function all the way

up to non-empty subsets of all the maps from a set A to a set B.

Before considering some examples of Rationality-as-conformity, we need to make

a little bit more precise the interpretation of our main problem as well as the main

assumptions on which the entire framework depends.
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1.3.1 The Main Problem and the assumptions

As already anticipated, the main problem addressed by the Rationality-as-conformity

framework is that of characterizing the choice processes of two like-minded yet non-

communicating agents who intend to select, from a finite set of options, the same

possible world. In particular, agents are not assumed to have any other goal or

intention (and corresponding ‘beliefs’) than achieving conformity. And as we shall

see in full detail, the mutual expectations of conformity constitute the only value for

possible worlds.

In our attempt to provide firstly a formalization and then a solution to the main

problem, we shall commit to some assumptions. We regard the minimality of those

assumptions (in terms of number and in terms of strength) as a distinctive feature of

Rationality-as-conformity.

Process-based perspective

A key standpoint of our framework is that “rational choice” is to be characterised

in terms of the process by means of which a choice is arrived at, rather than in

terms of its outcome. We shall call this the Process-based perspective. We have just

remarked that this approach is distinctive of the Paris-Vencovská characterisation.

It is, however, relatively uncommon in the “conventional” mathematical theories of

rational choice, like decision or game theory (social choice theory, as we shall illustrate

later on, can be consider to be an exception to this). In Nozick’s account of “rational

belief”, on the other hand, this assumption plays a central role:

The rationality of a belief may derive from the process by which that be-

lief is arrived and maintained, but not every (conceivably) effective way of

arriving at true belief would mark a belief as rational. [. . . ] [R]ationality

is not simply any kind of instrumentality. It requires a certain type of

instrument, namely reasons and reasoning. Suppose, then, that a partic-

ular procedure is a reliable way to arrive at a true belief. If an action

or belief yielded by that procedure is to be rational, not only must the
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procedure involve a network of reasons and reasoning, but this also must

be (in part) why the procedure is reliable. The reasons and reasoning

contribute to the procedure’s reliability. (Nozick, 1993, p.71)

Although Nozick’s passage concerns specifically the relation between the “ratio-

nality” of a belief and its “truth” (investigating the possibility of conceiving a false

albeit rational belief), it is entirely consonant with Rationality-as-conformity. It is

in fact in this spirit that we formalize rational choice in terms of reasons.

The Fundamental assumption

This brings us to what is perhaps the single most important assumption of Rationality-

as-conformity. Though widely endorsed in the mathematical characterisations of ra-

tionality, it rarely receives explicit mention. It is the assumption that unless certain

conditions apply, choosing randomly is not “better” than choosing according to some

reason, where the latter is intended as an adequate criterion (adequate, that is, to the

achievement of the agent’s goals). We refer to this as the Fundamental assumption.

The importance of the Fundamental assumption for the study of rationality is, as

Simon puts it, “outside dispute”:

Everyone agrees that people have reasons for what they do. They have

motivations, and they use reason (well or badly) to respond to these

motivations and reach their goals. (Simon, 1986)

Of course, this assumption does not imply that in the characterisation of ratio-

nality there can be no space for “random” choices, i.e. choices performed by picking

one option according to the uniform distribution. There are situations, in fact, in

which this is the only advisable strategy. At the most abstract level, those situations

will occur whenever an agent faces a set of options which, apart from being distinct,

are otherwise completely indistinguishable. In economics, to make a more concrete

example, it is generally accepted that in those games with Nash-equilibria in mixed

strategies, rational players should randomize. Finally, in autonomous robotic naviga-

tion, many examples are found of situations in which the best way for a robotic agent
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to avoid the obstacles that hinder its navigation involves randomizing its trajectory

(see e.g. Ram et al., 1997; Arkin, 1998).

If all those examples make a clear point for the respectability of random choice

in the characterisation of rationality, it must be appreciated that this must be sub-

ject to the satisfaction of certain specific conditions. These could be, in the above

examples, the agent’s failure to distinguish among options; the fact that a matching

pennies player’s choice of “heads” should be “as unpredictable as possible” for the

opponent; the fact that the obstacles that hamper the robot’s navigation are tightly

cluttered, and so on. We shall see that Rationality-as-conformity gives its place to

randomization as well.

Relativisation of rationality

We have already remarked that Rationality-as-conformity is heavily inspired and

motivated by the Paris-Vencovská characterisation. In fact the former can be seen as

an attempt to account for the normative requirement imposed by the latter, namely

that agents facing certain choice situations – if commonsensical – should conform.

Hence, it is immediate to appreciate how our main problem leads to a relativized

characterisation of an agents’ rationality, relative, that is, to the choices performed

by the others. We shall refer to this as the Relativization of rationality assumption.

Note that since we will also be assuming that agents cannot communicate, this

relativization makes the kind of interaction between the agents genuinely strategic.

Indeed, Relativization of rationality plays a primary role in many areas of the social

sciences and is surely one of the cornerstones of the theory of games (we shall discuss

this more extensively later on).

In epistemology, a counterpart of it can be found again in Nozick’s account of

rationality. He argues that

Sometimes it will be rational to accept something because others in our

society do. Consider the belief mechanism that brings you to accept that

what (you can see) most other people believe. We are all fallible, so the
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consensus of many other fallible people is likely to be more accurate than

my own particular view when it concerns a matter to which we all have

equal access. For a wide range of situations, the mean of a larger sample

of observations is likely to be more accurate than one randomly selected

individual observation. (Nozick, 1993, p. 129)

An interesting aspect of this sort of justification for the Relativization of ratio-

nality is that it pivots on the fallibility of agents. In other words it is the bounded

rationality of the individual that justifies her in revising her beliefs in the event of

blatant disagreement with the majority’s view. An important difference between this

idea and the Relativization of rationality, however, must be emphasized, namely the

fact that in the latter agents relativize to the expected choices of the others rather

than to their actual behaviour.

Another interesting analogue to the Relativization of rationality can be found in

Keynes discussion on the “investors” and “speculators” in financial markets:

[P]rofessional investment may be likened to those newspaper competitions

in which the competitors have to pick out the six prettiest faces from a

hundred photographs, the prize being awarded to the competitor whose

choice most nearly corresponds to the average preferences of the competi-

tors as a whole; so that each competitor has to pick, not those faces which

he himself finds prettiest, but those which he thinks likeliest to catch the

fancy of the other competitors, all of whom are looking at the problem

from the same point of view. It is not a case of choosing those which,

to the best of one’s judgment, are really the prettiest, nor even those

which average opinion genuinely thinks the prettiest. We have reached

the third degree where we devote our intelligences to anticipating what

average opinion expects the average opinion to be. And there are some, I

believe, who practise the fourth, fifth and higher degrees. (Keynes, 1951,

p.156)

Interestingly, however, the kind of relativization underlying the “beauty contest”
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is intended by Keynes as directed towards adopting a minority behaviour, rather

than a majority one. What the “clever” investor aims to do, in fact, is to outperform

the majority by, say, selling shares just before (she thinks that) everyone else will

start selling, hence maximizing the profit.

Introspective agents

The Relativization of rationality is closely connected with another assumption on the

nature of the agents featuring in the Rationality-as-conformity framework, namely

the fact that agents are capable of introspecting. This, which we shall refer to as the

Introspective agents assumption, is surely one of the key abstractions of the entire

framework. It amounts to assuming that agents have full access to their own options

and that they never make mistakes when doing that. It goes without saying that

these idealisations can easily fail in the “real world”. Nevertheless, given the nature

and the goals of our present analysis, we find this abstraction entirely acceptable.

Common knowledge

The last general assumption of Rationality-as-conformity consists in the fact that the

agents have common knowledge of the mathematical structure of the choice problem

that they are facing and common knowledge about each other’s intention to conform

to their mutual choice expectations. Naturally enough, we call this the Common

knowledge assumption.

Again, we endorse this assumption, as it is usually done in the theory of games,

despite the fact that it can exceed the powers of boundedly rational agents.

While the assumptions illustrated so far can be viewed as a set of maxims, episte-

mological or methodological, that underlie the general characterisation of Rationality-

as-conformity, the set to be introduced below captures the specific assumptions that

we make in the remainder of this work. Specific, that is, to the choice situation of

our main problem. The intuition behind distinguishing between these two sets of as-

sumptions is, fixing the general ones, that of being able to modify the latter in order

to apply the Rationality-as-conformity framework to various sorts of choice problems.
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As it will become clear later on, our three specific assumptions provide the main

guidelines for the formalization of Rationality-as-conformity to follow.

Inaccessibility

Given that our main problem aims at capturing the most basic (that is to say sim-

plest, least structured, etc.) situation consistent with the intuitions of Rationality-

as-conformity, we shall start by assuming that agents don’t know anything specific

(that is beyond what is entailed by Common knowledge) about each other’s way of

structuring the world. Moreover, we shall also assume that communication among

them is not allowed. Hence, putting these two together, we shall commit to what we

call the Inaccessibility assumption.

Inaccessibility ties the main problem to a number of situations which are widely

studied, from political science to the theory of strategic non-cooperative games, to

the theory of multi-agent systems. In each of these areas motivations can be found

for assuming that “rational” agents might have to operate in the absence of commu-

nication, and still must be able to conform (in our terminology). Indeed, in many

situations it is advantageous for agents to refrain from communicating, as the ex-

change of relevant information might be unreliable, unsafe, or simply too expensive

(compared to the resulting benefits).

Communication-less scenarios are of fundamental importance in the area of po-

litical science concerned with the so-called strategy of deterrence, of which an early

and very influential account was given by Schelling (1960). The problem of the un-

reliability of communication in coordination problems is studied extensively in the

distributed and multi-agent systems literature (see, e.g. the paradigmatic example of

coordinated attack problem Halpern et al. (1995)). It is folklore in economics, on the

other hand, that the open exchange of information can be risky and hence should be

avoided in many strategic situations, say when firms operating in oligopolies have to

decide their price policies. Finally, agents might have in principle the possibility of ex-

changing information in order to facilitate conformity, yet in practice this would just

be too onerous. Interesting examples of this situation, mainly from the distributed-
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and multi-agent systems literature, are described at length in Kraus et al. (2000).

Situations of this sort, which arise commonly in the so-called coordination problems,

all call for a formal study of rational choice behaviour in the absence of accessibility

among agents.

Note that Inaccessibility implies that agents cannot agree to adhere to (otherwise

arbitrary) conventions for the simple reason that they do not posses a shared language

in which to stipulate agreements of this sort. Hence, Rationality-as-conformity can

be utilized as a framework to investigate the origin of (spontaneous) convention.

Likemindedness

Yet our aim here is that of modelling the choice processes that lead agents to conform

on the selection of a possible world. Inaccessibility implies that there is no “specific

knowledge” that agents have about each other, like, for instance, their past behaviour

in similar situations, or information about their general preferences. All the actual

information they have is captured by the Common knowledge assumption. Yet,

in order to be able to wedge into each others’ minds, the agents involved in the

conformity problem must have some “structural” information about their peers. To

this effect, what seems to be the weakest assumption consists in informing the agents

that they are facing other similar agents, where similarity roughly refers to the way

the agents “see the world” and “reason about” it. We shall refer to this as the

Likemindedness assumption.

Of course it is by no means easy to specify what it really means in the “real world”

to share the same way of reasoning. Therefore we will be in a better position to

appreciate this point once a mathematical formulation of Reasons (choice processes)

will be available. However, we have already seen this concept in action in the Paris-

Vencovská characterisation, where the agents’ reasoning is captured by the notion

of a commonsensical inference process. In such a framework Likemindedness mainly

concerns the fact that agents who share the same views on what it is commonsense

must end up assigning essentially similar degrees of belief. This result, clearly, gives

us an initial motivation to consider Likemindedness.
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There is, however, another reason – which could be termed operational – to en-

dorse this assumption. Suppose that two agents are involved in a conformity problem.

If they don’t know anything about each other’s way of reasoning, it can be argued

that unless they collect strong evidence to the contrary, they have no reason to as-

sume that there are fundamental differences in their “world-views”. An argument of

this sort, captured by the so called Principle of Charity, lies at the heart of the discus-

sions on radical interpretation. This latter, very intuitively, amounts to accounting

for the process that leads two individuals, each with their own view world yet who

do not possess a shared language, to establish communication. The deep connections

between Rationality-as-conformity and radical interpretation will be discussed later

on in section 8.2.

Saliency

Our last assumption can appear to be a more or less direct consequence of the pre-

vious ones, and is the assumption that agents will indeed select a given option x on

recognition of the fact that x appears to be an outstanding element within the set

of possible worlds which defines the current choice problem faced by the agents. We

refer to this as the Saliency assumption.

The reason for endorsing Saliency is as follows: given Introspection, agents will

realize if among the set of possible worlds under consideration there exists some

option which stands out in comparison to the others. Likemindedness and Common

knowledge, on the other hand, will support the expectation that if one such option is

recognised as outstanding by an agent i, so it will be for his fellow j. And j will expect

that i expects this, and so on. At this point, given Inaccessibility, the outstanding

option looks to both agents as the “obvious” choice to be made in order to facilitate

conformity.

In the light of Saliency, we can see that as far as Rationality-as-conformity goes,

the “rational” choice amounts to what we might informally refer to as the “natural”,

“obvious”, or even “logical” choice to make. Although Saliency can be justified in

the grounds of the previous principles, we consider it as an independent assumption.
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A discussion of closely related concepts will follow in section 8.4.

1.4 Motivating Rationality-as-conformity

We have insisted that Rationality-as-conformity is indeed inspired by everyday con-

siderations of rationality coinciding with the informal use of the expression “rational”,

“commonsensical”, “intelligent” or “logical” choice. In this section we list some more

examples of Rationality-as-conformity emphasising its various aspects. The fact that

the structure of Rationality-as-conformity captures a wide class of interesting exam-

ples is clearly a further motivation for the investigation of the corresponding problem.

However, as pointed out at the end of this section, we will be able to propose that

a new formal framework is required in order to provide a general characterisation of

Rationality-as-conformity.

1.4.1 Some examples of Rationality-as-conformity

Example 3 (Robotic Rendez-vous). Suppose that the robotic rovers I and II are

conducting a joint operation on a terrain about which nothing was known to their

designer (say the units are operating on Mars). Suppose further that communication

among the units has been lost and that the only way I and II have to restore it is

to meet at some location l, chosen from a finite set of possibilities equally accessible

to both. Assuming that any location is as good as any other, provided that I and II

agree on it, how could the robots reason so as to facilitate their meeting? That is,

how should they choose l?

Example 4 (Keywords selection). It is common practice in the production of scientific

literature to add a small set of keywords to the papers submitted for publication. The

problem of selecting which keywords are appropriate (for a given paper) is clearly a

problem of achieving conformity. It seems, in fact, that a rational (natural, obvious,

logical, etc.) way for an author to get round this problem is to introspect and guess

which keywords a potential reader would type-in, say in a database search engine, if

he intended to retrieve exactly the kind of paper the author is submitting. Note the
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complete symmetry of the situation. It is likewise in the best interests of the reader

himself to conform to the author’s choice of keywords. Indeed, a natural strategy

for him to adopt in the selection of the keywords for his search, is to guess which

keywords would he choose, were he to be the author of the sort of paper he is looking

for.

Example 5 (Establishing communication). Embarking into the business of communi-

cating (verbally) with the others is essentially a problem of Rationality-as-conformity.

Take, as in the famous mental experiment of radical interpretation two individually

“rational” agents who share no language whatsoever. For definiteness we can think

of one agent as the interpreter and the other as the interpretee. Suppose further that

both agents are willing to establish communication, that is to say that the interpretee

is willing to be understood by the latter, whereas the interpreter is willing to under-

stand the former. All this is assumed to be common knowledge, yet nothing else and

specifically neither the “mental states” nor the “linguistic habits” of the two agents

can be assumed to be common knowledge.

In this form, the problem of conformity is, for each agent, to choose among the

possible interpretations of the linguistic utterances those which facilitate mutual un-

derstanding. We shall see later on in section 8.2 how closely connected is this problem,

and perhaps more generally the problem of language acquisition, to the structure of

Rationality-as-conformity.

Example 6 (Smart usernames). Rationality-as-conformity can also be a private ex-

ercise. Consider the problem of choosing a certain username or password, say for a

web service. Agreeing with ourselves in those cases is surely a very logical thing to

do! In other words, it seems to be advantageous to select those usernames that we

could easily recover by means of introspection: “if I were a logical sort of person,

this is the username that I would choose”! Notice that this example brings clearly

to the foreground the fact that the formalization of Rationality-as-conformity leaves

common knowledge out of consideration.

By performing suitable variations on the theme we can see how a broad class
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of coordination, classification and categorization problems relate to Rationality-as-

conformity. Hence this latter can be brought to bear to a wide spectrum of domains,

from economics, to artificial intelligence, to the cognitive sciences.

1.4.2 The need for a new formalisation

Having laid down the main intuitions underlying the problem we wish to investigate

it seems natural to ask whether the copious literature on the mathematical formal-

izations of rational choice doesn’t contain already what we set out to find here.

In fact, much of the literature on rational choice is permeated with intuitions

that relate to our main problem. Yet it turns out that, to the best of our knowl-

edge, no attempt has been made to provide a unitary characterisation of rational

choice behaviour taking into account all those features at once. In a sense, what

we seek here is a formal definition of Rationality-as-conformity which, in the limited

scope of the present framework, would serve as a yardstick for other, more specific,

characterisations of rationality.

The purpose of the next chapter is to point out more precisely, if still informally,

the nature of those features and locate them among some major existing accounts of

rationality ranging from individual choice to strategic choice to social choice. Clearly,

there is no claim of completeness in the topics surveyed which in fact have been chosen

according to their relevance to our main problem.

1.5 Further comments

The Dutch Book Theorem was stated independently by Ramsey and de Finetti,

though the first proof is due to the latter (de Finetti, 1931). Subsequent refinements

of the notion of fair betting quotient were discussed by Kemeny (1955) and Shimony

(1955). See Paris (1994) for a general proof involving the notions of “strict” fairness

and Paris (2001) for a generalization of the theorem that encompasses a variety of

possible worlds semantics. Note that “coherence” is used mainly after de Finetti,

whereas “consistency” is after Ramsey (1964), “fairness” and “strict fairness” after



CHAPTER 1. YET ANOTHER CHARACTERISATION OF RATIONALITY 30

Shimony (1955); Kemeny (1955).

Hintikka defines a notion of (ir)rationality which bears a close resemblance to the

one underlying the Dutch Book argument:

What is irrational is the behaviour of a man who would persist in subscrib-

ing to an indefensible statement after its indefensibility has been made

know to him (Hintikka, 1962, p.109)

The characterisation of the Maximum Entropy inference process as the unique

choice of a probability distribution consistent with an agent’s knowledge and with

the common sense principles outlined above was first given in Paris and Vencovská

(1990), and is fully developed in chapter 7 of Paris (1994), culminating in Theorem

7.9. See also Paris (1999) for the unification of the common sense principles under

the “Symmetry Principle”, and Paris and Vencovská (2001) for the study of the non

linear case. Some criticisms to the Maximum Entropy inference process are discussed

in Paris and Vencovská (1997).



Chapter 2

A brief excursion into economic

rationality

Abstract: We recall some fundamental accounts of “rational choice”

and propose that, despite the many similarities, an adequate solution to

the Rationality-as-conformity problem requires a novel framework.

2.1 A dimension for comparison

There is little doubt that providing an adequate, general and precise definition of

what we mean by “rational choice behaviour” in the real world is a daunting task.

This seems to contrast, however, with our daily experience: we seem to be more than

ready to attach to our peers labels of irrationality, lack of commonsense, illogicality,

and the like. In other words, despite the difficulties in providing a neat definition of

rationality, we don’t seem to be too bad at spotting the lack of it. Hence, we could

think of replacing the question of defining “what is rational behaviour” with the more

operational “how to assess the rationality of an agent’s behaviour”.

Once we rephrase the issue in these terms, we seem to have two alternative ways

of answering: we can either judge an agent’s rationality in terms of the outcome of the

choices she makes (or is willing to make), or we can evaluate the process that she has

adopted (or is willing to adopt) when performing her choices. Naturally enough, we

31
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can refer to accounts of rationality that mainly focus on the former as outcome-based,

while attaching the denomination process-based to the latter.

Indeed, we have already made use, if implicitly, of this distinction in the above

discussion of the Paris-Vencovská characterisation and we have explicitly mentioned

Process-based as a general assumption of the Rationality-as-conformity framework.

The reason for formulating it explicitly at this point is that it will help us emphasising

a major point of departure of the Rationality-as-conformity framework with respect

to the conventional accounts of rational choice to be discussed in the next sections.

The concept of “rationality” is one of the most fundamental in economics, and

economics-related research. As Sugden puts it:

In mainstream economics, explanations are regarded as ‘economic’ to the

extent that they explain the relevant phenomena in terms of the rational

choice of individual economic agents. (Sugden, 1991)

In a somehow critical vein, Hammond (1997) admits that “rationality is one of the

most over-used words in economics”, while Rubinstein finds the very word rationality

“mystical and vague” (Rubinstein, 1991, p.923). As noted by Simon (1986) however,

“Economics has almost uniformly treated human behavior as rational”.

But what exactly counts as ‘rational (choice) behaviour’ economics? In line with

the previous remarks, we can say that an almost universal feature of the economics-

related approach is the outcome-based characterisation of rationality. In other words,

an agent’s rationality is assessed in terms of the properties of the outcome produced

by her choice or decision (we shall treat the latter terms as synonyms throughout this

thesis). As a consequence, different desiderata on the outcome of the agents’ choice

give rise to distinct outcome-based accounts of rational choice. Yet there seems to be

little pluralism in the choice of the desiderata. There is in fact a neat convergence

on the requirement that the outcomes of a rational agent’s choices should lead to

what is traditionally recognised as the pursuit of the maximisation of the individual’s

self-interest. And given that this latter is the target of a somehow broad class of

formalizations of rational choice behaviour, we shall generally refer to this approach
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as economic rationality.

Without delving into any of the subtleties of the economic account of rationality,

we shall outline in this chapter the main aspects of this conception, stressing those

which most directly relate to the idea of Rationality-as-conformity.

2.2 The conventional theory of rational choice

We begin our excursus with a fundamental outcome-based characterisation of ratio-

nality. Its distinctive trait is the idea that in order to maximise the pursuit of her own

individual interests, an agent should have preferences over possible courses of actions

which satisfy certain consistency principles. A first exhaustive development of this

interpretation is to be found in Savage (1954) who combines the subjective interpre-

tation of probability pioneered by de Finetti and Ramsey, with the axiomatization of

utility developed in von Neumann and Morgenstern (1944).

Savage’s work is so fundamental and influential for economic rationality that

economists have been referring to him as the “best spokesman for conventional

rational-choice theory” (Sugden, 1991). In what follows we shall conform to this

view by taking Savage’s account as the representative of the ‘conventional, theory of

rational choice’. In fact, as we shall briefly point out in section 2.2.1, its centrality

goes well beyond the traditional domain of decision theory.

To frame our discussion, let’s start by recalling the fundamental elements of the

conventional theory. Usually these are spelled out in terms of a decision situation,

that is to say a tuple 〈S, E, A, F,≤〉, where:

• S is a non empty set of states of the world s1, s2, . . . (assumed to be mutually

exclusive);

• E is the set of events E1, E2, . . . (non empty subsets of S);

• F is the set of consequences f, g, h, . . . ;
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• A is the set of acts α1, α2, α3, . . . mapping states to consequences, that is

A = {α | α : S −→ F} ;

• A preference relation ≤ that individuals have over acts (interpreted as “it is

not preferred or indifferent to”).

Savage insists that “a consequence is anything that might happen to a person”

(Savage, 1954, p.13), so nothing specific needs to be assumed about the nature of the

elements of the set F apart from the intuitive fact that certain consequences may be

more attractive than others to an agent, formalized in the definition of “preference

among consequences” introduced below. Such a preference constitutes the basis for

distinguishing among options in a decision problem. Note in fact that any two acts

αi, αj ∈ A such that αi(s) = αj(s)∀s ∈ S are taken to be indistinguishable (Savage,

1954, p.14). Hence, fixing the state, acts can be identified with their consequences.

This is a fundamental aspect of the whole outcome-based approach: given that pref-

erences are defined over acts, all that agents can take into account in order to be able

to distinguish among the possible options are their (expected) consequences. As an

immediate formal consequence of this, the states of the world are not mentioned in

the formulation of the Weak ordering postulate (see below).

Against this background the axiomatization of rational choice takes place by

means of “logic-like criteri[a] of consistency in decision situations” (Savage, 1954,

p.19). Note that the justification offered by Savage for the acceptance of the fol-

lowing postulates is the “irrationality” that an agent would face as a consequence of

failing them (Savage, 1954, p.7). Following Savage’s exposition, we shall introduce

the required definitions along with the postulates. Notice that any critical assessment

of Savage’s postulates is beyond the scope of the present work. As usual we shall

write x < y whenever x ≤ y but not y ≤ x.
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Postulate 1 (Weak ordering) The preference relation ≤ is a weak-ordering (i.e.

total and transitive).

Postulate 2 (Sure-thing, part I) For all α1, α2, α
′
1, α

′
2 ∈ A and E ∈ E such that:

α1 � E = α′
1 � E; (2.1)

α2 � E = α′
2 � E; (2.2)

α1 � S− E = α2 � S− E; (2.3)

α′
1 � S− E = α′

2 � S− E (2.4)

and

α1 ≤ α2, (2.5)

then

α′
1 ≤ α′

2.

Definition (Conditional preference) The conditions (2.1)to (2.4) (relative to a

specific event E) are summarized by saying that α1 is not preferred over α2

given E, written α1 ≤E α2.

Definition (Null event) An event E is defined to be null if ∀α1, α2,∈ A, α1 ≤E α2.

Definition (Preferences among consequences) Let α ∈ A, f ∈ F and write α ≡

f if and only if α(s) = f,∀s ∈ S. Then, ∀f1, f2 ∈ F:

f1 ≤ f2 ⇐⇒ [if α1 ≡ f1 and α2 ≡ f2 then α1 ≤ α2].

Postulate 3 (Sure-thing, part II) If E is a non-null event with α ≡ f and α′ ≡

f ′, then

α ≤E α′ ⇐⇒ f ≤ f ′.

Definition (Qualitative personal probability) The event E is said to be not

more probable than E ′, written E ≤ E ′, if whenever:
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1. f, f ′ ∈ F are such that f ′ ≤ f ;

2. α(s) = f for s ∈ E and α(s) = f ′ for s 6∈ E;

3. α′(s) = f for s ∈ E ′ and α′(s) = f ′ for s 6∈ E ′

then α ≤ α′. (Notice that “probable” does not refer here to the usual, quanti-

tative, notion of a probability function or measure.)

Postulate 4 For all E1, E2 ∈ E, either E1 ≤ E2 or E2 ≤ E1.

Postulate 5 (Non-triviality) There is at least one pair of consequences among

which the agent is not indifferent, that is f1 < f2, for some 〈f1, f2〉 ⊆ F× F.

Postulate 6 (Archimedean axiom) If α1 < α2 and f ∈ F, there exists a (finite)

partition of S such that, if α′
1 agrees with α1 and α′

2 agrees with α2 except on

an arbitrary element of the partition, say x with α′
1(y) = α′

2(y) = f for x ∈ y,

then either α′
1 < α2 or α1 < α′

2.

Definition α1 ≤E f1(f1 ≤E α1) ⇐⇒ α1 ≤E α2(α2 ≤E α1) whenever α2(s) = f for

all s ∈ S.

Postulate 7 If α1 ≤E α2(s) (α2(s) ≤E α1) for every s ∈ E, then α1 ≤E α2 (α2 ≤E

α1).

Savage is then able to prove that whenever an individual’s preferences satisfy

the above consistency postulates, those determine uniquely a subjective probability

function and an equivalence class of utility functions by means of which the agent’s

preference can be represented.

Theorem 2.1 (Savage (1954)). Postulates 1-7 are sufficient to ensure the existence

of a unique real-valued probability function w such that

E is not more probable thanE ′ ⇐⇒ w(E) ≤ w(E ′).

�
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Theorem 2.2 (Savage (1954)). Postulates 1-7 are sufficient to ensure the existence

of a real-valued function u defined over the set of consequences F such that if:

(i) Ei, i = 1, . . . , n is a partition of S and α is an act with consequence fi on Ei

and

(ii) E ′
i, i = 1, . . . ,m is another partition of S and α′ is an act with consequence f ′i

on E ′
i,

then, α ≤ α′ if and only if

n∑
i=1

u(fi)w(Ei) ≤
m∑

i=1

u(f ′i)w(E ′
i).

Furthermore the utility function u is unique up to a positive linear transformation.

�

Thus, the consistency postulates 1 − 7 ensure the existence of a utility and a

probability function that lead to a definition of an agent’s expected utility over the

set of possible acts which reflects the individual’s preferences. This is the mathe-

matical pivot around which the entire outcome-based characterisation of rationality

revolves. So, according to this approach, the rational decision maker who faces po-

tential uncertainty about the consequences of her actions should be choosing as if she

were maximising her expected utility.

Notice that a distinctive feature of Savage’s theory is the following chain of depen-

dency relations between probability, preference and choice. Taking the subjectivistic

point of view, his conception on probability depends, ultimately, on preference, as

implied by the Dutch Book Argument. Preference, in turn, is interpreted in terms

of choice. Under the assumption that f and g are the only options, in fact, an agent

prefers f over g if, whenever facing the choice, she will select f (Savage, 1954, p.17).

Hence, by axiomatizing consistent preferences, Savages formalizes a theory of rational

choice (or decision). This fact makes it comparable to the Rationality-as-conformity

framework, a comparison which shows the fundamental point of departure of the

latter with respect to the “conventional” theory.
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Whilst, in fact, the goal of Rationality-as-conformity is the characterisation of the

choice processes that agents should adopt upon reflection on the choices that they

expect the others to expect (and so on) from them, Savage stresses very emphati-

cally that introspective considerations should not intervene in the characterisation of

consistent preference:

I think it of great importance that preference, and indifference, between

f and g be determined, at least in principle, by decision between acts and

not by response to introspective questions. (Savage, 1954, p.17)

But, as we have just remarked, “decisions between acts” are entirely dependent on

the correlated expected utilities. In other words, all that matters for the rationality

of an action (under uncertainty) is its (expected) outcome.

The upshot of this, is that the conventional theory of rational choice points to the

ordinal comparison of expected utility as the only criterion for distinguishing among

possible options. Hence, if the agent fails to distinguish options on the grounds of

some expected utility, then she fails to have any good reason to choose, and hence

prefer, one over the other.

Although its fundamental importance can hardly be questioned, the conventional

model is the object of countless criticisms, none of which will anyway be discussed

here. Rather, we shall insist on the fact that the outcome-based approach to the

theory of individual rational choice, is entirely shared by the theory of interactive

rational choice, namely the theory of games. This fact is responsible, among others,

for the impasse faced, for instance, by the traditional solution concepts for strategic

games in the presence of multiple Nash-equilibria, as in the case of (pure) coordina-

tion games briefly introduced below in section 2.3. Indeed, as we shall illustrate in

section 8.4, the radical change of perspective – which could be considered as an “in-

trospective turn” – operated by the Rationality-of-conformity framework has among

its consequences that of contributing towards defining an analytic solution concept

for pure coordination games.
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2.2.1 Generalised Expected Utility

Recent results by Halpern and Chu add emphasis to the centrality of the outcome-

based model of conventional rational choice. Indeed they are able to prove that Sav-

age’s characterisation results can be generalised to encompass a variety of outcome-

based decision rules other than expected utility maximisation, such as maximin and

minimax regret (Halpern, 2003).

The upshot of their results is a generalization of Theorems 2.1 and 2.2 to the effect

that a free choice of a preference relation over acts is allowed. More precisely, given

any preference relation over acts – specifically a relation that need not be transitive

– this yields a utility function and a plausibility measure representing the generalized

expected utility rule, where a plausibility measure maps events to an arbitrary par-

tially ordered set (Chu and Halpern, 2003, Theorem 3.1). Given that (subjective)

probability functions are a special case of plausibility measures, this result shows that

the outcome-based characterisation of rational choice is not necessarily a consequence

of the probabilistic representation of uncertainty.

Note in the general result of Chu and Halpern the uniqueness (up to positive linear

transformation) of the utility function is lost together with, clearly, the uniqueness

of the probability function.

2.3 Game theory

The conventional theory of rational choice focuses on individual – non interacting

– agents. Yet “rational” agents of the sort economists, social scientists, artificial

intelligence practitioners and ordinary people usually refer to, do live in highly inter-

active contexts. In particular it often happens that the rationality of one individual’s

choices depends essentially on the choices that other (rational) agents simultaneously

make. Think, for instance, of the price policies that a firm might adopt in a highly

competitive field (say low-cost airlines) or the behaviour of motorists approaching a

junction where the traffic light is temporarily out of order.

Modelling social interactions of this sort constitutes one of the goals of the theory
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of games. On the other hand we already pointed out in section 1.3 that among the

general assumptions of the Rationality-as-conformity framework is the Relativiza-

tion of rationality, an assumption which is clearly central in game theory. Yet, the

conventional theory of games relevant to the problem of Rationality-as-conformity,

falls short of providing an adequate framework for the latter. The goal of this sec-

tion is to illustrate this by outlining the main points of departures of Rationality-as-

conformity with respect to the conventional solution concept for one-shot, two-person,

non-cooperative games.

Given a strategic choice situation, that is one in which the desirability of a certain

action depends, for each individual, on the simultaneous choices made by other inac-

cessible agents, we can look at the theory of games as the study of the consequences

of the assumptions that:

(i) rational agents are utility maximizers;

(ii) it is common knowledge that they are so.

Note that (i) is a very special case of the Likemindedness assumption: the agents

are assumed to be similar to the extent that they are assumed to pursue their indi-

vidual self-interest. In terms of the mathematical characterisation of utility given by

von Neumann and Morgenstern (1944), and the subsequent extensions and general-

izations, agents are assumed to pursue the maximisation of their (expected) utility.

(We can appreciate at this point how Likemindedness constitutes a key aspect of the

generality of the Rationality-as-conformity approach.)

Hence, like Savage’s account, the characterisations of rational choice behaviour

underlying game theory are essentially outcome-based. Osborne and Rubinstein, for

instance, put it like this:

The models we study assume that each decision-maker is “rational” in

the sense that he is aware of his alternatives, forms expectations about

any unknowns, has clear preferences, and chooses his action deliberately

after some process of optimization. (Osborne and Rubinstein, 1994, p.4)



CHAPTER 2. A BRIEF EXCURSION INTO ECONOMIC RATIONALITY 41

where the “process of optimization” usually is, as already remarked, the maximisation

of (expected) utility. In fact, Osborne and Rubinstein (1994) go on by stating that

in the absence of uncertainty, a complete model of rationality is given by a tuple

〈A, C, c,≥〉:

• actions A

• consequences C

• a consequence function c associating an action with a consequence

• a preference relation ≥ on the set of consequences (represented via utilities, if

needed).

Hence a rational decision maker confronted with a set of feasible actions K ⊆ A

will choose an action a ∈ K such that c(a) ≥ c(a), ∀a ∈ K.

Before going into some details of the actual characterisation of rationality endorsed

by the theory of games, we must restrict somehow the scope of our discussion. In

fact, the theory of games is so extremely rich in variety and applicability that it would

be extremely hard - if not impossible (Luce and Raiffa, 1957, p.104) - to subsume

all the corresponding notions of rationality under a single heading. Thus, for present

purposes, we shall confine ourselves to the discussion of a sort of game that relates

directly to our main problem, one-shot, non-cooperative, non-zero-sum games.

A non-cooperative game is a kind of strategic interaction in which, n players face

the problem of simultaneously selecting a strategy from a set of possible ones without

being able to stipulate binding agreements (i.e. coalitions) with their opponents.

Games of this sort are also referred to as normal-form or strategic. A two-persons

non-cooperative game is non-zero-sum if a player’s win doesn’t imply her opponent’s

loss (and vice versa). In what follows, we shall mainly be referring to this type of

game.

Obviously, the mere maximisation of utility cannot constitute a “rational” solu-

tion concept for the players of strategic games, as the actual outcomes depend on the
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choices made by other, inaccessible, agents. It follows that a natural way of charac-

terizing “rational choice behaviour” for non-cooperative games consists in requiring

that each player should select the strategy which happens to be the “best response” to

whichever will be the one chosen by his opponent. A pair of such strategies is referred

to as a Nash-equilibrium, perhaps the single most important concept underlying the

conventional theory of non-cooperative games.

More precisely a strategic game is defined by

• a finite set N (the set of players)

• for each player i ∈ N a non-empty set Ai (the set of actions available to player

i)

• for each player i ∈ N a preference relation %i on A = ×j∈NAj (the preference

relation of player i)

so that a Nash-equilibrium of a strategic game 〈N, (AI), (%i)〉, can be defined as a

profile a∗ ∈ A of actions such that for every i ∈ N :

(a∗−i, a
∗
i ) %i (a∗−i, ai), ∀ai ∈ Ai,

where a∗−i is the complement of i in N .

If Theorems 2.1 and 2.2 provide the mathematical backbone for the conventional

theory of rational choice, the mathematical pivot of the theory of non-cooperative

games is provided by Nash’s Theorem which guarantees the existence, under certain

conditions, of at least one equilibrium pair (Nash, 1951).

Hence the theory of Nash-equilibrium accounts for a relativised notion of an

agent’s rational choices, a feature of Rationality-as-conformity that was clearly miss-

ing from the conventional model of rational choice outlined above. Yet it has in

common with this latter the fact that – being purely outcome-based – it fails to ac-

count for “rational choice” in those cases in which options (i.e. strategies, actions

etc.) cannot be distinguished on the grounds of their (expected) utility. In fact, as

noted, again, by Osborne and Rubinstein, the solution concept based on the notion

of a Nash-equilibrium
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[. . . ] captures a steady state of the play of a strategic game in which each

player holds the correct expectation about the other players’ behavior

and acts rationally. It does not attempt to examine the process by which

a steady state is reached. (Osborne and Rubinstein, 1994, p.14, latter

emphasis added)

This limitation, which is perceived by one of the pioneers of the investigations

on “bounded rationality” as typical of economic rationality (see, e.g Simon, 1986),

can be illustrated effectively by means of a particular class of strategic games, the

so-called pure coordination games. These make a clear point for a process-based

characterisation of rational, strategic choice. The main intuition being that whenever

outcomes are (utility-)indistinguishable, in fact, only the process utilised by the agent

to arrive at a choice can account for the rationality of the choice itself.

The next section briefly illustrates the main features of pure coordination games

(and consequently the problem that they pose to the traditional theory of Nash-

equilibrium). This will allow us to point to a second motivation for taking Rationality-

as-conformity. Besides the normative precept of the Paris-Vencovská characterisation

according to which commonsensical agents must conform (see Theorem 1.1), we will

find out that conformity (in the case of coordination games) is something that people

can achieve. In other words, the normative motivation for conformity is coupled with

evidence of the fact that the model prescribes that rational agents should follow a

pattern of choice behaviour that, in some way or another, they appear to be able to

follow “naturally”. As Schelling puts it:

People can often concert their intentions or expectations with others if

each knows that the other is trying to do the same. (Schelling, 1960, p.57)

2.3.1 Rational choice with multiple Nash-equilibria

Roughly speaking, a coordination game – introduced in the game theoretical literature

by Schelling (1960) – is a situation of interdependent, strategic choice characterised
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by the absence of communication among players who nonetheless aim at performing

the same choice – i.e. coordinating.

One of the classical examples introduced in Schelling (1960) concerns a married

couple who get accidentally separated in a supermarket and want to rejoin:

When a man loses his wife in a department store without any prior un-

derstanding on where to meet if they get separated, the chances are good

that they will find each other. It is likely that each will think of some

obvious place to meet, so obvious that each will be sure that the other is

sure that it is “obvious” to both of them. One does not simply predict

where the other will go, since the other will go where he predicts the first

to go, which is wherever the first predicts the second to predict the first

to go, and so on ad infinitum. Not “What would I do if I were she?”, but

“What would I do if I were she wondering what she would do if she were

I wondering what I would do if I were she . . . ?”. (Schelling, 1960, p.54)

Schelling calls this a problem of “tacit coordination” with “common interests”.

Note that this is a clear example of a conformity problem, that is, essentially similar

to those illustrated above in section 1.4.1

A fundamental feature of pure coordination games consists in the fact that they

are symmetric with respect to payoffs and players. That is, for each individual, any

choice among the possible strategies (the supermarket locations in the original exam-

ple) is “as rational as any other”, provided that it conforms to the choice of the other

agent. In fact, each point along the diagonal of identical pairs of feasible strategies

is a Nash-equilibrium. Thus, given that there are as many utility-indistinguishable

equilibria as there are feasible strategies, we must conclude that applying the conven-

tional solution concept for non-cooperative games to coordination problems amounts

to no progress whatsoever towards the characterisation of rational choice behaviour:

in practice players will be choosing according to the uniform distribution.

Very roughly then, if one assumes that the theory of Nash-equilibrium does char-

acterise rational choice behaviour in strategic games, one must conclude that pure
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coordination games admit of no “rational” solution. [We shall put this more precisely

later on, when the problem of defining rational choice in pure coordination games will

be re-examined in the light of the formalization of Rationality-as-conformity.]

In spite of this discouraging conclusion, as Schelling himself noted through a num-

ber of “unscientific” experiments, people do seem to be able to conform on coordina-

tion problems with a remarkable rate of success. Extensive empirical investigations

over the past two decades, both in the form of controlled experiments (see Mehta

et al., 1994; Sugden, 1995; Janssen, 1998) and in the form of computer simulations

(Kraus et al., 2000), strongly support Schelling’s early intuition that choice processes

exist that can facilitate people’s coordination through the selection of the so-called

focal points. The research agenda devised by Schelling then, consists in identifying

“rational rules” accounting for the ability shown by humans to select focal points,

and consequently coordinate, in the complete absence of communication.

We shall discuss in fuller detail the close connection between pure coordination

games and Rationality-as-conformity later on in section 8.4, where it will be argued

that Rationality-as-conformity does provide a solution concept for a certain class of

coordination problems, as captured by the conformity game.

2.4 Social choice functions

Both the conventional theory of rational choice and the conventional theory of (non-

cooperative) games recalled above are driven by an outcome-based characterisation

of rationality. In particular we have seen that the former begins with imposing some

consistency requirements on the individual’s preferences. Those constraints then, lead

to a representation of preference by means of some utility function, and against this

background, the maximisation of expected utility is defined as the desired outcome

of rational choices.

One important aspect of the outcome-based approach, which we haven’t yet em-

phasised, is that those consistency requirements are imposed on the preferences de-

fined on a set of options (actions in A) which is fixed once and for all. In contrast to
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this, a key feature of the approach to rational choice that we are about to discuss is

the characterisation of consistency constraints on the agents’ choices across varying

sets of possible options.

The traditional framework of social choice theory can surely be taken as rep-

resentative of this approach. While economic rationality (and in particular game

theory) aims at providing a normative framework for the rational (strategic) interac-

tion among agents, it still focuses on decidedly “individualistic” features of decision

making. Each agent aims only at maximising her own personal interests. The theory

of social choice, on the other hand, extends this dimension by modelling the choice

behaviour of the homo sociologicus whose aim is, to paraphrase Arrow, to mediate

between individual values and social welfare. The fact that this idea of rationality

must go beyond the pursuit of self interest is effectively schematised by Hammond:

In my view, social choice theory should be about specifying suitable objec-

tives for public officials and others responsible for major decisions affecting

large numbers of individuals. (Hammond, 1997)

In fact we can consider social choice theory as a somewhat two-fold approach:

with the first it aims at defining the conditions under which a “rational” aggregation

of individual preferences (or judgments) turns out to be (im)possible. A notable

example of this situation, which in many ways overlaps with the theory of cooperative

games, is given by voting systems. The second approach, on the other hand, puts

the emphasis on the definition of suitable conditions that any “rational” social choice

process should satisfy. Of course the fact that these are just two sides of the same

coin becomes clearly apparent by taking a social choice process to aim exactly at the

aggregation of preferences (or judgments).

The main goal of the choice-function approach – the one on which we focus here

– is to provide a set of constraints leading to the representation of rational choice in

terms of “selection of the best options”:

The fulfilling of these [constraints] for a choice [function] is equivalent to



CHAPTER 2. A BRIEF EXCURSION INTO ECONOMIC RATIONALITY 47

the existence of its optimizational representation. (Aizerman and Mali-

shevski, 1981, p.1030)

It is clear then, that as far as the characterisation of rational choice is concerned,

what distinguishes the choice-functions approach from the one endorsed by the con-

ventional theory of rational choice illustrated above is that it leads to a definition

of “optimization” by means of constraints (i.e. properties, axioms, desiderata, etc.)

imposed on the choice process rather than in terms of the desired properties of the

final outcome. Put in our terminology, whilst the conventional theory of rational

choice is outcome-based, the choice-function approach to social choice is fundamen-

tally process-based.

It is therefore hardly surprising that there are many points of convergence between

the target and the intuitions of Rationality-as-conformity and those of social choice

theory. The remainder of this section provides a rough outline of the choice-function

approach highlighting those common features.

The two fundamental ingredients of the choice-function model are:

• A set W of possible worlds f, g, . . . , whose non-empty subsets are denoted by

K1, K2, . . . ;

• A choice function R defined on every non-empty K ⊆ W such that ∅ 6= R(K) ⊆

K.

For present purposes we shall intuitively read R(K) as the set {f | f ∈ K} of

possible worlds that a rational agent has reason to prefer over all the other (distinct)

possible worlds in K. In the choice theoretic literature, the function R is otherwise

called a choice function or a selection function, whereas the set R(K) is often referred

to as the choice set or the set of best elements of K.

Note that, in a stringent parallel with the characterisation of belief as probability

via betting behaviour recalled above, the choice function R(K) is intended as an

abstract model of an agent’s disposition to choose from K, rather than an empirical

model of an agent’s actual choice behaviour.
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The conventional approach to characterizing what amounts, for a rational agent,

to having a reason to prefer R(K) over its complement in K, pivots on imposing

suitable constraints on the choice function R. The immense literature on the subject

contains a conspicuous number of such principles (i.e. constraints). Some fundamen-

tal results in the area, however, invest the following with the status of being “core

properties”:
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Property α (alias Heritage; Independence of irrelevant alternatives; Coher-

ence) :

if K1 ⊆ K2, then K1 ∩R(K2) ⊆ R(K1).

Arrow’s Axiom (alias Strict Heritage; Weak Axiom Of Revealed Prefer-

ence):

if K1 ⊆ K2, and R(K2) ∩K1 6= ∅ then R(K2) ∩K1 = R(K1).

Property γ (alias Concordance; Expansion):

R(K1) ∩R(K2) ⊆ R(K1 ∪K2).

Independence of rejecting the outcast variants (alias Nash’s axiom):

if R(K2) ⊆ K1 ⊆ K2 then R(K1) = R(K2).

(Note that if the latter equality is replaced by the subset relation, then we

obtain Aizerman’s axiom.)

The above are usually considered to embed the core properties that any rational

(social) choice function should satisfy as a consequence of a number of theorems,

such as the Aizerman-Malishevski characterisation of choice mechanisms. Stated

very informally, Theorem 1 of Aizerman and Malishevski (1981) asserts that certain

combinations of the above properties are necessary and sufficient to represent rational

choice functions in terms of the choice of the “best elements” from a given set of

options K. A prominent, specific, consequence of this is that Property α is proven to

be necessary and sufficient to ensure the rationalizability of a choice set by means of a

simple ordering. We shall come back to this sort of characterisation of rational choice,

which is not beyond internal criticism (see, e.g. Luce and Raiffa, 1957; Kalai et al.,

2002), after the formal framework of Rationality-as-conformity will be introduced.
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We note in passing that the above properties give rise in a natural way to a

semantical characterization of rational consequence relations (Lehmann, 2001), and

so are importantly connected to the study of nonmonotonic logics. (Rott, 2001, see

esp. p. 153–163) reconstructs the original representation results for rationalizable

choice functions and relates them to the study of nonmonotonic reasoning and belief

revision.

2.5 Further remarks

The outcome-based vs. process-based distinction is surely not novel in the discus-

sion of rational choice. A version of it can be traced back to the work of Simon,

who however, puts the emphasis on somewhat different aspects of this distinction.

In particular he stresses the fact that the outcome-based characterisation is suffi-

cient for adequate prediction only under the assumptions usually endorsed within

the economic-rationality approach. It becomes insufficient, however, once we take

into considerations agents with bounded rationality, both in terms of knowledge and

in terms of computational power. In this case, the process-based approach is needed:

The rational person of neoclassical economics always reaches the decision

that is objectively, or substantially, best in terms of the given utility

function. The rational person of cognitive psychology goes about making

his or her decisions in a way that is procedurally reasonable in the light of

the available knowledge and means of computation. (Simon, 1986, p.211)

Among many others, Simon pioneered alternative accounts of the distinguishabil-

ity among options of a choice problem, that is alternative to the comparison based

on plain ordinal utility. A typical example, mentioned e.g. in Simon (1986) concerns

people’s decision as to whether insure against flood damage or not. If utility was the

only yardstick, then all those agents for whom the “reimbursable damage from floods

was greater than the premium” should buy the insurance. But this is in plain contra-

diction with the actual buyers of such a kind of insurance, typically individuals who
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have been directly or indirectly involved into such events. If we want to understand

how people behave when it comes to choosing whether to buy or not an insurance, we

need to understand what makes it relevant for them to have one or not. And utility

maximisation is clearly neither necessary nor sufficient to this end.



Chapter 3

Formalising

Rationality-as-conformity

Abstract: We introduce the key concepts and definitions intervening in

the formalisation of the Rationality-as-conformity problem.

The general pattern in the mathematical modelling of rational choice which has

been outlined in the previous chapters consists of essentially two steps. The main

goal of the first one is to provide a formalization of the mathematical structure within

which the main problem is represented. This structure contains an explicit definition

of all the features that are considered to be relevant to the formal statement and

solution of the problem addressed by the corresponding “theory”. The next step,

then consists in proving the main results leading to an adequate characterisation

of “rational choice”. The formalization of Rationality-as-conformity constitutes no

exception to this general pattern. Pivoting on the intuitions and the assumptions

described in chapter 1.3 we shall:

• define an agent’s choice process ;

• formalise the Rationality-as-conformity choice context ;

• formalise the main choice problem of Rationality-as-conformity.

52
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This will provide all the necessary formal background to investigate the characteri-

sations of Rationality-as-conformity given in chapters 4 –6.

3.1 Choice processes

The notion of a choice process to be introduced is strictly related to the Aizerman-

Malishevski notion of a choice mechanism. As they point out (Aizerman and Mal-

ishevski, 1981, p.1031) a choice mechanism is specified by fixing an appropriately

formalised structure on a given universe, together with a rule for selecting, given any

non-empty subset of the universe, the set of its “best elements”.

The present notion of a choice process, which reflects this two-folded nature, can

be seen as a generalization of the Paris-Vencovská notion of an inference process. In a

nutshell (see ch.6 of Paris, 1994, for precise details), an inference process is defined, for

a consistent probabilistic knowledge base K, as an assignment of probability values to

the sentences of SL such that, the values assigned are consistent with K. As recalled

in chapter 1.2, the structure of the Paris-Vencovská characterisation is given in terms

of a rich probability logic. The main problem there is to select a consistent solution

to an agent’s knowledge base, whereas the “rule” for choosing the solution is arrived

at by imposing common sense constraints on the inference process itself.

In the formalization to follow, we will specify a much less structured universe,

or choice context, than the one occurring in the Paris-Vencovská model. Yet, its

spirit will be fully preserved as the set of “best options” is going to be specified by

rules, or Reasons, for discarding those options which are inadequate for the purpose

of achieving conformity.

A final important feature that the notion of a choice process inherits, so to speak,

from that of an inference process is that it will be fully identified with an agent’s

reasoning about the specific choice context. In other words, in our idealised formal

model, choice processes are taken to comprise the whole of the agent’s “reasoning”.

This allows us to make precise the Likemindedness assumption illustrated above.
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3.1.1 The choice context: possible worlds

The formalization of the main problem – choosing the same options we expect an-

other like-minded yet non-communicating agent to choose – must begin by fixing the

nature of the options that agents have to choose from. In line with the traditional ter-

minology of (logical approaches to) uncertain reasoning, we shall refer to the options

as possible worlds.

We denote the set of possible worlds f, g, h . . . (possibly with decorations) by W,

whilst non-empty subsets of W will be denoted by K1, K2, . . . .

A set K is intuitively interpreted as an agent’s knowledge, namely the knowledge

that K contains all the possible options from which she must choose only one. Since

this is clearly true for both the agents involved in a conformity problem, what this

amounts to saying is that the set K contains the world on which the choice of each

agent should converge. Notice that an immediate consequence of this conception is

that the size of K introduces, if implicitly, a qualitative measure of uncertainty: the

bigger the size of K, the greater the agents’ uncertainty about which possible world

will result in conformity. We can anticipate at this point that the characterisation of

rationality pursued here aims at exploiting choice processes to reduce this uncertainty

by the highest possible factor. This corresponds to a very general and fundamental

idea in the logical approaches to reasoning under uncertainty (see Halpern, 2003,

ch.2).

What is arguably the simplest possible choice context consistent with Rationality-

as-conformity, is the one in which we have some finite non-empty set K of otherwise

entirely structure-less options f , that is possible worlds that whilst different are

otherwise entirely indistinguishable. Then the very definition of ‘indistinguishable’

seems to suggest that in this case there is no better strategy available to the agents

involved in a conformity problem than to make a choice from K entirely at random

– that is to say according to the uniform distribution.

It would seem natural to refer to this particular choice context as the trivial one.
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The interesting thing to notice about it is that, in the trivial choice context, the “for-

malization” of a rational choice process is itself completely trivial. That is, assuming

that the agents cannot refuse to choose, the only reasonable choice process that they

could endorse is the one that makes no distinctions among the various options. In

the light of our Fundamental assumption this amount to saying that in trivial con-

texts, there is nothing that rationality can do for the agents. Note that whilst the

assumption that agents cannot refuse to choose is completely standard in the math-

ematical characterisations of rational choice, there are some recent investigations on

the subject that drop this requirement, as in e.g. Rott (2001).

Of course we can, and perhaps should, expect more realistic choice contexts to be

other than trivial. Mathematically, this means assuming that there indeed is some

structure on the possible worlds. In particular there are properties which may or may

not be true (to various degrees) of (or in) a world, the sum of which identifies the world

uniquely. Examples of “possible worlds” in this sense are given by the Carnapian

notion of state description or, in the propositional context, atoms as discussed in

Paris (1994).

In the most general case, we may model possible worlds by taking W to be BA, the

set of all functions from a non-empty set A (of otherwise indistinguishable elements)

to a non empty set B. As a consequence of this we shall sometimes denote the set of

all non-empty subsets of W by ℘+(BA). In fact our set of possible worlds is analogous

to the set of acts A of Savage’s framework (see section 2.2 above). However it is worth

emphasising that we do not assume any structure whatsoever on the sets A and B.

Clearly the choice of the sets A and – more importantly – B may suggest itself

certain “natural” interpretations of the set of possible worlds. For example taking A

to be a set of propositional variables, thereby identifying A with a given propositional

language L, various semantic interpretations can be naturally introduced by choosing

appropriately the set B. So if B is say, the binary set 2 = {0, 1}, the “natural”

interpretation of worlds would be the classical, two-valued semantics. If, instead, we

take the unit interval [0, 1] = B, this would “naturally” suggest taking worlds to

define either degrees of belief or degrees of truth on the sentences formed from L. Or,
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in the spirit of plausibility measures, we could just fix some minimal structure (i.e.

a partial order) on an arbitrary set B and constrain the maps from A to B so as to

satisfy certain desirable properties.

Rather than achieving full generality however, our intention in this work is to keep

things as simple as possible whilst deferring the study of the other interesting cases

to further investigations. As logicians then, the most obvious minimal structure on

these possible worlds is that there are some finite number of unary predicates which

each of them may or may not satisfy. To simplify matters for the present we shall

further assume that each world is uniquely determined by the predicates it does or

does not satisfy. In other words we are moving up from the language of equality of

the trivial context to a finite unary language. What this amounts to then is that K

is a non-empty subset of 2A, the set of maps f from the finite non-empty set A into

2 = {0, 1}.

3.1.2 Reasons

We understand Reasons are devices that agents apply to restrict their options, to go

part, or sometimes even all, of the way to choosing a course of action or making a

decision. In the present context, the terminology is motivated by the fact that those

are the tools that agents utilize to distinguish among possible worlds. In consonance

with our Fundamental assumption, this step gives agents reasons for their choices.

As a typographical convention, we shall write “Reason” (capitalised) when referring

to the specific component of a choice process, leaving the lower case for the informal

meaning.

Formally, Reasons amount to choice (or selection) functions defined on the choice

context described above (i.e. on non-empty sets of possible worlds). That is to say,

functions R : ℘+(2A) −→ ℘+(2A), where ℘+(2A) is as usual the set of non-empty

subsets of 2A, will be called a Reason if

R(K) ⊆ K, ∀K ∈ ℘+(2A).

It is immediate to realise that an optimal Reason is one that always returns a
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singleton R(K) for every K ∈ ℘+(2A). Such a Reason would be optimal to the extent

that its adoption would entail conformity with probability 1. We shall see, however,

that this situation represents the exception rather than the rule in the formalization

to follow. In the epistemic interpretation attached to the elements of ℘+(2A), it

could be said that whenever |R(K)| = 1, then the agents’ choice process eliminated

all the uncertainty present in their knowledge. Hence the sub-optimality of Reasons

amount to nothing but the fact that in the Rationality-as-conformity framework we

are dealing with uncertain reasoning in what is perhaps one of its most general and

basic forms.

At the opposite extreme of the spectrum we locate the trivial Reason, that is to

say the Reason R satisfying

R(K) = K, ∀K ∈ ℘+(2A). (3.1)

In practice, the progress ensured by the trivial Reason amounts to nothing at all!

Its interpretation, in the present context, is that the options among which agents have

to choose are too undistinguished for them to make, in accordance to the Fundamental

assumption, a reasoned choice. In other words, the choice from the set K at hand is

simply too hard.

Far more interesting and realistic, as we shall shortly see, is the case of non trivial

(yet often sub-optimal) Reasons. If |R(K)| > 1 we seem to have two possible ways

of proceeding. In the former we consider the possible worlds in R(K) as all “equally

good” to the agents’ lights, so in accordance to our Fundamental assumption, we

let the agent finalize the choice by picking one element from R(K) according to

the uniform distribution. This solution rests on the underlying assumption that the

options are so structure-less yet distinct that it is not possible for them to compromise

and select any given combination of them. The second solution is to combine in some

appropriate way the possible worlds in R(K) so as to obtain a singleton choice.

Consider, for example, the case in which R(K) = {f, g, h}. The idea here would be

define an appropriate concatenation ∗ on the set of possible worlds, allowing us to

reduce the above to the singleton R(K) = {f ∗ g ∗ h}.
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Those two strategies – randomizing or combining among the best options – bear

an interesting parallel to two established approaches to non-monotonic reasoning,

usually termed as bold (or credulous) and cautious (or sceptical), respectively. In this

area the latter strategy is often preferred (see, e.g. Rott, 2001, 146). Interestingly,

however, we shall find out that Rationality-as-conformity goes some way towards

combining these two perspectives in the study of the Minimum Ambiguity Reason

introduced in chapter 5 below.

Finally a word of notational conventions. Since we shall keep the choice context

fixed throughout we shall refer to Reasons and choice processes interchangeably and

we shall sometimes denote ℘+(2A) as K.

3.2 The main problem formalised

In order to illustrate the formalization of the Rationality-as-conformity main choice

problem let’s fix A = 4 and let K be the set of functions (possible worlds) {f1, f2, f3, f4, f5}

where

0 1 2 3

f1 0 0 0 1

f2 0 1 0 0

f3 0 1 1 0

f4 1 1 1 1

f5 0 0 1 0.

In this case the conformity problem, for a pair of like-minded yet inaccessible

agents, amounts to selecting one of the above rows so as to agree with each others’

choice. However in presenting the problem like this we should be aware that as far

as the agents are concerned there is not supposed to be any structure on A. Hence

there is no further structure on K beyond the fact that it is the (unordered) set

{f1, f2, f3, f4, f5}. For practical examples this can be accomplished by informing the

first agent that his or her counterpart may receive the matrix
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0 0 0 1
0 1 0 0
0 1 1 0
1 1 1 1
0 0 1 0

Figure 3.1: A matrix representation of K

with the columns permuted and the rows possibly permuted. That is to say, in place

of the matrix represented in figure 3.1, the agents might equally have, say either of

the matrices represented in figure 3.2 (where compared to matrix in figure 3.1 the

one on the left has the “second” and “third” rows permuted, whilst the one on the

right has the “first” and “second”: columns permuted):

0 0 0 1
0 1 1 0
0 1 0 0
1 1 1 1
0 0 1 0

0 0 0 1
1 0 0 0
1 0 1 0
1 1 1 1
0 0 1 0

Figure 3.2: Alternative matrix representations of K

The main goal of the Rationality-as-conformity framework can thus be rephrased

as the characterisation of the choice processes which, if adopted by the agents, would

enable (or at least facilitate) conformity. In fact we shall introduce three distinct

choice processes as possible solutions for the Rationality-as-conformity problem. The

common pattern among them can be illustrated again in analogy with the Aizerman-

Malishevski notion of a choice mechanism.

In their discussion of a General theory of best variants choice (Aizerman and Mal-

ishevski, 1981), they define several mechanisms for distinguishing among “variants”

or, in our terminology, possible worlds. The most basic one – the scalar optimization

choice (otherwise known as the rationalization of choice functions) – is simply speci-

fied by fixing a certain choice context, K in our case, and a mapping, say φ from the
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set of possible worlds to the “worse-better axis”. The key aspect of this choice mech-

anism emerges when one takes its associated selection “rule” to be the maximisation

of the value of φ (on its restriction to the choice context K). More precisely, the

scalar optimization choice mechanism, when applied to the choice context K returns

the set:

R(K) = {f ∈ K | φ(f) ≥ φ(g),∀g ∈ K} . (3.2)

In the light of this analogy our notion of a Reason can be interpreted as an act

of maximisation by means of which agents select the “best elements” from a given

choice context K. As we shall see, the structure of the Rationality-as-conformity

problem allows us to construct and justify three distinct ways of identifying the best

elements relative to a given choice context.

One might question at this point whether a better model for the agent’s actions

might be to have him or her put a probability distribution over K and then pick

according to that distribution. In fact in such a case the agent would do at least as well

by instead selecting the most probable elements of K according to this distribution

and then randomly (i.e. according to the uniform distribution) selecting from them

– which puts us back into the original situation.



Chapter 4

The Regulative Reasons

Abstract: Our first characterisation of a choice process facilitating con-

formity is based on the adherence of reasons to three “common sense

principles” which generalize analogous principles investigated in the Paris-

Vencovská probabilistic logic. Hence we call the corresponding Reasons

“Regulative”.

As illustrated in section 1.2 this work was in part motivated by considering why the

principles of probabilistic uncertain reasoning introduced in the Paris-Vencovská char-

acterisation warranted the description ‘common sense’. Recall that the underlying

problem in such a framework is entirely analogous to the one we are considering here,

that is how to sensibly choose one out of a set of probability functions. It has been

emphasised as well that the Paris-Vencovská solution is essentially process-driven as it

requires that the choice process should satisfy such common sense principles. In fact

this turns out well in the linear cases considered in Paris and Vencovská (1990, 1997)

as the imposed principles happily permitted only one possible choice, as illustrated

by Theorem 1.1 above.

Given such a fortunate outcome there, it would seem natural to attempt a similar

procedure here, namely to specify certain ‘common sense’ principles we would wish

the agent’s Reasons to satisfy and see what comes out. Clearly, the present problem

is much less structured then the one in which belief is represented via subjective

probability functions. Indeed the current setting is arguably one of the simplest

61
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ones in which we can make sense of rational choice concerning “knowledge” and

“possibilities”. It therefore follows that if choice processes analogous to the ones

that characterise probabilistic common sense could be specified, those would have an

undoubtedly high level of generality.

Our next step then is to introduce ‘common sense principles’ or rules that, ar-

guably, Reasons should satisfy if they are to prevent agents from undertaking “un-

reasonable steps”. Hence, we call the resulting Reason(s), Regulative. The key result

of this section is that their observance leads to a characterisation of a set R(K) of

“naturally outstanding elements” of K, formulated in Theorem 4.2.

4.1 Regulative Reasons defined

We now introduce the common sense principles constraining our first choice process

for Rationality-as-conformity. As they all generalize some principle of probabilistic

uncertain reasoning of the Paris-Vencovská characterisation introduced informally in

section 1.2 above, we preserve here the original names. For the sake of keeping the

presentation compact, we defer the discussion of these principles to the next section.

Renaming:

Let K ∈ K and let σ be a permutation of A. R satisfies Renaming if

whenever Kσ = {fσ | f ∈ K } then

R(Kσ) = R(K)σ.

(Notice that R(K)σ is, as usual, the set {fσ | f ∈ R(K) }.)

Intuitively, Renaming captures the idea that inessential changes in the presen-

tation of the choice problem (that is to say in the representation of the matrix K)

should not introduce grounds for distinguishing among possible worlds in K.

The justification for Renaming depends essentially on the formal properties of

the choice context defined above. In particular, since the elements of A have no

further structure other than being a set of distinct elements, any permutation of
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these elements simply produces an exact replica of what we started with. Hence,

such a permutation should be completely irrelevant in terms of distinguishing among

options : if an agent feels that the “best choice” of worlds from K coincides with the

set of worlds R(K) then she should feel the same for these replicas, i.e. that the “best

choices” of worlds from Kσ should be R(K)σ.

Obstinacy:

Let K1, K2 ∈ K. R satisfies Obstinacy if whenever R(K1) ∩K2 6= ∅ then

R(K1 ∩K2) = R(K1) ∩K2.

The rationale for this principle is that if each agent expects the other’s choices

from K1 to be R(K1) where in fact some of these possible worlds are also elements

of K2 then such worlds must still remain the “best elements” were the choice to be

restricted to K1∩K2. The refinement of K1 to K1∩K2 gives no reason to the agents

to turn any of the non-preferred element of K1 into a preferred one. On the other

hand, the preferred options from K1∩K2 should all be included among the preferred

options from K1 which happen to be also in K2. We shall illustrate this further with

some examples in section 4.1.1 below.

In order to introduce our final principle we need a little notation. For K ∈ ℘+(2A)

we say that X ⊆ A is a support of K if whenever f, g ∈ W and f � X = g � X then

f ∈ K ⇐⇒ g ∈ K.

The set A itself is trivially a support for every K ∈ ℘+(2A). More significantly

we can show that every K ∈ ℘+(2A) has a unique smallest support.

Lemma 4.1. If K ∈ ℘+(2A) has a support, than there is a unique smallest finite

support X for K.

Proof. We have to show that the support property is closed under intersection, so

let X1, X2 be support for K and let Y = X1 ∩X2. To show that Y is a support for

K it is enough to show that for f, g ∈ W if f � Y = g � Y then f ∈ K ⇔ g ∈ K. For
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given such f, g, Y we can pick from W a function h which agrees with f on X1 − Y

and with g on X2 − Y . Therefore:

f ∈ K ⇐⇒ h ∈ K

⇐⇒ g ∈ K.

�

Notice that if K has support X then Kσ has support σ−1X. If K has support X

then it is useful to think of this knowledge as telling the agent (just) how elements of

K act on X. Namely, for f to be in K it is necessary and sufficient that f � X = g

for some

g ∈ {h � X |h ∈ K }.

We can now formulate the following principle.

Irrelevance:

Suppose K1, K2 ∈ K are such that K1∩K2 6= ∅ and have supports X1, X2

respectively. If for any f1 ∈ K1 and f2 ∈ K2 there exists f3 ∈ W such

that f3 � X1 = f1 � X1 and f3 � X2 = f2 � X2 then,

R(K1) � X1 = R(K1 ∩K2) � X1

where

R(K) � X = { f � X | f ∈ R(K)}.

The condition on K1, K2 amounts to saying that as far as K1 is concerned K2

is irrelevant (and conversely) because given that we know (only) that f satisfies the

requirement for membership of K1 (i.e. that f � X1 is amongst some particular set of

functions on X1) the additional information that f ∈ K2 tells us nothing we didn’t

already know about f � X1.

The principle then amounts to saying that in these circumstances the choices from

K1 and K2 should also reflect that irrelevance. That is, if f1 ∈ R(K1), then there is

an f3 ∈ R(K1∩K2) such that f3 � X1 = f1 � X1 and conversely given f3 ∈ R(K1∩K2)

there exists such a f1 (and similarly for K2).
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Definition. We shall say that a Reason R is a Regulative Reason, if is satisfies

Renaming, Obstinacy and Irrelevance.

4.1.1 Comments on the principles

Renaming

A widely influential property of probabilistic uncertain reasoning related to Renaming

is de Finetti’s notion of Exchangeability. Suppose we are considering a series of

observations (say draws from an urn) to which we can attach certain properties.

Exchangeability then is satisfied whenever the inference based on such observations

is independent of their ordering. (See de Finetti (1995) and Kuipers (1998) p.533)

In the social choice literature, on the other hand, an entirely analogous property to

Renaming is assumed, namely the axiom of Anonymity. In a nutshell this amounts to

requiring that a social aggregation function (i.e. a function aggregating the individual

preferences or judgments of a whole society into one single preference or judgment)

should be invariant under permutations of the individuals’ “names”. Anonymity

is one of the properties assumed by May in his characterisation of simple majority

vote (May, 1952). Note also that an entirely analogous assumption to Renaming –

Symmetry – is made by Nash in his solution to the bargaining problem (Nash, 1950).

Obstinacy

The ‘justification’ we proposed for the acceptance of Obstinacy as a commonsensical

principle is, in general, more than a little suspect. For instance, consider the case in

which by intersecting K1 with K2 some otherwise rather nondescript world from K1

becomes, within K1∩K2, sufficiently distinguished to be a natural choice. Whilst this

will become clearer later when we have other Reasons to hand, it can nevertheless

still be illustrated informally at this point.
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Example 7. Suppose that K is

1 1 0 0

0 1 1 0

0 0 1 1

1 0 0 1

0 0 0 0

1 1 1 1

and let suppose further that the best elements from this set were R(K) = {0000, 1111}.

Now if we take K ′ ⊂ K to be

1 1 0 0

0 0 0 0

1 1 1 1

then it one might argue that R(K ′) = {1100} has now become the obvious choice,

not (a random element of) {0000, 1111}, thus contradicting Obstinacy. Reaching this

conclusion, however, requires changing the way we look at options, or equivalently,

adopting distinct choice processes for the same choice problem. Yet if we take agents

to be like-minded and “stable” in their adoption of Reasons for the solution of any

given choice problem, then the occurrence of this phenomenon is ruled out. (See 5.4

for more on this.)

An analogous point could be raised by considering the following example, a famil-

iar objection raised against the Maximum Entropy Inference Process and in favour

of the Centre of Mass Inference Process (see e.g. Jaeger, 1998).

Example 8. Suppose that agents are choosing points from closed subintervals of [0, 1].

Some appeal to symmetry might convince them that the “natural” choice from [0, 1]

itself should be 1/2. However, thoughts along similar lines might suggest 1/4 for

the choice from [0, 1/2] (because 1/4 has suddenly become ‘distinguished’ when we

intersected [0, 1] with [0, 1/2]) when Obstinacy would point instead to the choice of

1/2.
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Despite these potential difficulties, we still feel that in the context of our investi-

gations it is of some theoretical interest at least to persevere with this principle, and

also because of the conclusions it leads to. Moreover, in so as far as nothing specific

is assumed about the nature of the options, the property captured by Obstinacy is

widely endorsed by the social choice community under the form of the Independence

of the irrelevant alternatives (Independence, for short).

Independence, which we already encountered in section 2.4 above, is a key, if

highly debated, principle of the choice-theoretic characterisations of rationality. In-

tuitively, it states that the “best options” of a given set remain “best” in every

subset containing them. Hence it is justified as a principle warranting the internal

consistency of choice across varying menus and it turns out to be the key property

ensuring the rationalizability of choice functions (see section 2.4). In fact, if the ra-

tionalizing relation is a weak ordering then the axiom is a necessary and sufficient

condition for the representation of choice by means of such an ordering (Sen, 1986).

The importance of this result is often emphasised by referring to Independence as

the “rationality axiom” (Kalai et al., 2002).

In the social choice literature, the general criticisms towards Independence and

hence, by analogy, to the requirement imposed on rational choice by Obstinacy, de-

pend on the assumptions concerning some form of background knowledge. Thus, for

example, Sen (1997) points out that an agent i might choose an invitation to have

a cup of tea at j’s place in preference to going straight home after work, yet choose

to rush home if j offers cocaine and heroin with the tea. Sen’s argument, which goes

along the lines of the so-called “Luce and Raiffa dinner” (see Luce and Raiffa, 1957),

is that the two sets of options have for i distinct epistemic values. Specifically, the

latter, enriched set of options would allow i to draw tentative, plausible, etc., con-

clusions about the particular situation at hand which would not be possible in the

former. So for instance i might use defaults like “usually decent people do not make

use of heroin” to conclude that “it’s quite likely that j is not a decent person”. This,

together with i’s belief that “having tea is enjoyable only with decent people” may

lead i to prefer one course of action over the other.
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According to Kalai et al. (2002), i’s violation of the Independence axiom need

not lead to irrational choice. Their proposal is in fact to account for i’s rationality

by explaining its choice behaviour by means of multiple rationales, that is to say

by defining the standard maximization procedure on a (finite) number of preference

relations defined the choice context instead of just a single ordering. Hence, different

sets of options might support different rationalization orderings.

An interesting case of the rationalization by multiple rationales is the so-called

(u, v) procedure discussed in Kalai et al. (2002). In a nutshell, it recommends that

an agent i maximizes a utility function u so long as the expected value of the max-

imization of u is above a distinguished value v of the utility function v. Should the

maximal value of u fall below v, then i should pick the v−maximal element. A situa-

tion in which it seems realistic that agents could (or should) adopt a (u, v) procedure

arises from taking u to be “social welfare” and v “personal welfare”. Then, an agent

maximises the social welfare so long as doing so does not threaten her own well-being.

Note that the distinguished v−value v might roughly be taken as a measure of

i’s altruism. In the domain of artificial intelligence, the (u, v) procedure might be

interpreted in terms of planning: take u to represent the “main utility” relative, that

is to the agent’s current goals and v to represents some sort of “background utility”,

relative that is to, say, the avoidance of obstacles.

We conclude this small digression on Obstinacy and related principles by noting

that while all those potential criticisms may well be grounded on specific limitations

of the property captured by Obstinacy, we feel that the formalization within which we

are considering our choice problem is so abstract that most of the points mentioned

above would fail to have a direct bearing on the main Rationality-as-conformity

problem.

Irrelevance

The justification for Irrelevance goes along the following lines. In choosing a “best

element” from K1 agents are effectively choosing from K1 � X1 and then choosing



CHAPTER 4. THE REGULATIVE REASONS 69

from all possible extensions (in W) of these maps to domain A, and similarly for

K2. The given conditions allow that in choosing from K1 ∩K2 agents can first freely

choose from K1 � X1 then from K2 � X2 and finally freely choose from all possible

extensions to domain A. Viewed in this way it seems then that any function in

R(K1) � X1 should also be represented in R(K1 ∩K2) � X1. Notice, that there seems

to be an implicit assumption in this argument that for f ∈ K1, f � X1 and f � A−X1

are somewhat independent of each other. In the current simple case of W = 2A this

is true but it fails in the case, considered in section 7.1 below, in which the worlds

are probability functions.

4.2 Regulative Reasons characterised

We start by noticing that there certainly is one Reason satisfying the common sense

properties defined above, namely the trivial Reason R such that R(K) = K for all

K ∈ K, though of course in practice this ‘reason’ amounts to nothing at all. It

turns out that if we had taken A to be infinite and K the non-empty subsets of 2A

with finite support (so R : K −→ K) then the trivial one would have been the only

Regulative Reason, as shown by Proposition 4.12 below.

Theorem 4.2. Let R be a Regulative Reason. Then either R is trivial or R = R0 or

R1 where for i = 0, 1 Ri is defined by

Ri(K) = { f ∈ K | ∀ g ∈ K, |f−1(i)| ≥ |g−1(i)| }.

Conversely each of these three Reasons are Regulative, i.e. satisfy Renaming,

Obstinacy and Irrelevance.

We begin with the proof of the “if” part. As usual, ~0 : A −→ 2 is defined by

~0(x) = 0 for all x ∈ A and similarly, ~1 : A −→ 2 is defined by ~1(x) = 1 for all x ∈ A.

The first step consists in showing that Regulative Reasons are indeed three-fold.

Lemma 4.3. Let R be Regulative. Then either R(2A) = 2A or R(2A) =
{
~0
}

or

R(2A) =
{
~1
}
.
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Proof.

We first show the following claim:

If f, g ∈ R(2A) (possibly f = g) are such that 0, 1 are in the ranges of f, g

respectively, then R(2A) = 2A.

To this end let f, g ∈ R(2A) and f(x) = 0 and g(y) = 1 for some x, y ∈ A. For

σ a permutation on A transposing only x and y we have that 2Aσ = 2A. Hence, by

Renaming, R(2A)σ = R(2Aσ). In particular:

f ∈ R(2A) ⇒ fσ ∈ R(2A). (4.1)

Now let K =
{
h ∈ 2A | h(y) = 0

}
. Since fσ ∈ R(2A) ∩K 6= ∅ then:

R(2A) ∩K = R(2A ∩K) (by Obstinacy)

= R(K).

∴ fσ ∈ R(K).

(4.2)

If we take X1 = A− {y} and X2 = {y} to be supports of 2A and K respectively, we

can see that since ∅ = {y} ∩ X1, for any f1 ∈ 2A and f2 ∈ K, we can construct a

function f3 ∈ 2A such that f3 � X1 = f1 � X1 and f3 � X2 = f2 � X2. Thus

R(2A) � X1 = R(2A ∩K) � X1 (by Irrelevance)

= R(K) � X1.
(4.3)

Therefore, g � X1 ∈ R(K) � X1. Furthermore for

g′(z) =


g(z) if z 6= y

0 if z = y.

(4.4)

we have that g′ ∈ R(K). Hence g′ ∈ R(2A), by (4.2) above.

The claim now follows since we have shown that if we take any function h ∈ R(2A)

and change its value on one argument the resulting function is also in R(2A).
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The proof of Lemma 4.3 now follows by noticing that if R(2A) 6= 2A then by the

claim either 0 or 1 is not in the range of any f ∈ R(2A). Therefore, since R(2A) 6= ∅

it must either be that R(2A) = {~0} or R(2A) = {~1}. �

Our next step is to prove the required result for trivial Reasons.

Lemma 4.4. If R(2A) = 2A, then R(K) = K for any K ∈ K.

Proof. Notice that if R(2A) = 2A then for K ∈ K,

K ∩R(2A) = K 6= ∅

so by Obstinacy,

R(K) = K ∩R(2A) = K.

�

Hence, the final step in the proof of the “if” direction of Theorem 4.2 deals with

the more interesting case of non-trivial Reasons.

It will be useful here to introduce a little notation. For the remainder of this

section, let π : dom(π) −→ {0, 1}, where the domain of π, dom(π), is a subset of A.

Similarly for π1, . . . , πk. For such a π let

Kπ = { f ∈ 2A | f � dom(π) = π }.

Lemma 4.5. If R(2A) =
{
~1
}
, then

R(Kπ) =
{

π ∨~1
}

,

where

π ∨~1(x) =


π(x) if x ∈ dom(π)

~1(x) otherwise.

(4.5)

Proof. Suppose that z ∈ A − dom(π). To prove the result it is enough to show

that f(z) = 1 for f ∈ R(Kπ). Let {z} and dom(π) be supports of 2A and Kπ
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respectively. Notice that the conditions for the applications of Irrelevance are met

since ∅ = {z} ∩ dom(π). Hence

R(2A) � {z} = R(Kπ) � {z} .

Therefore, for f ∈ R(Kπ)

f(z) =


1 if z ∈ A− dom(π),

π(x) if z ∈ dom(π),

(4.6)

making f = π ∨~1.

�

This can be immediately generalized as follows.

Lemma 4.6. Suppose R(2A) =
{
~1
}

and let Z = {z1, z2, . . . , zn} ⊆ A with 0 ≤ r ≤ n.

Let τ r
1 , τ r

2 , . . . , τ r
q be all the maps from a subset of size r of Z to {0}. Then

R(Kτr
1
∪Kτr

2
∪ . . . ∪Kτr

q
) =

{
τ r
1 ∨~1, τ r

2 ∨~1, . . . , τ r
q ∨~1

}
.

Proof.

We first recall that, by the definition of R,

R
(
Kτr

1
∪Kτr

2
∪ . . . ∪Kτr

q

)
⊆ (Kτr

1
∪Kτr

2
∪ . . . ∪Kτr

q
) (4.7)

Now let σ be a permutation of A such that Zσ = Z. Then(
Kτr

1
∪Kτr

2
∪ . . . ∪Kτr

q

)
π =

(
Kτr

1
∪Kτr

2
∪ . . . ∪Kτr

q

)
.

Hence, by Renaming:

f ∈ R
(
Kτr

1
∪Kτr

2
∪ . . . ∪Kτr

q

)
⇐⇒ fσ ∈ R

(
Kτr

1
∪Kτr

2
∪ . . . ∪Kτr

q

)
(4.8)

By equation (4.7), R
(
Kτr

1
∪Kτr

2
∪ . . . ∪Kτr

q

)
∩Kτr

j
6= 0, for some 0 ≤ j ≤ q. Thus,

by Obstinacy,

R
(
Kτr

1
∪Kτr

2
∪ . . . ∪Kτr

q

)
∩Kτr

j
= R

((
Kτr

1
∪Kτr

2
∪ . . . ∪Kτr

q

)
∩Kτr

j

)
= R

(
Kτr

j

)
(for some 0 ≤ j ≤ q).

(4.9)
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Recalling, from Lemma 4.5, that R
(
Kτr

j

)
=

{
τ r
j ∨~1

}
we have that τ r

j ∨ ~1 ∈

R
(
Kτr

1
∪Kτr

2
∪ . . . ∪Kτr

q

)
for some 0 ≤ j ≤ q. By equation (4.8), however, this

can be generalized to any 0 ≤ j ≤ q. Hence

R
(
Kτr

1
∪Kτr

2
∪ . . . ∪Kτr

q

)
⊇

{
τ r
1 ∨~1, τ r

2 ∨~1, . . . , τ r
q ∨~1

}
. (4.10)

To see that the converse is also true, suppose h ∈ R
(
Kτr

1
∪Kτr

2
∪ . . . ∪Kτr

q

)
.

Then since

R
(
Kτr

1
∪Kτr

2
∪ . . . ∪Kτr

q

)
⊆ Kτr

1
∪Kτr

2
∪ . . . ∪Kτr

q
,

h ∈ Kτr
j
, for some j. But as we have just observed,

R
(
Kτr

1
∪Kτr

2
∪ . . . ∪Kτr

q

)
∩Kτr

j
= R

(
Kτr

j

)
,

so h =
{

τ r
j ∨~1

}
, as required. �

Lemma 4.7. Suppose Z = {z1, z2, . . . , zn} ⊆ A and let τ r
1 , τ r

2 , . . . , τ r
p be some maps

from a subset of Z of size r to {0}. Then

R(Kτr
1
∪Kτr

2
∪ . . . ∪Kτr

p
) =

{
τ r
1 ∨~1, τ r

2 ∨~1, . . . , τ r
p ∨~1

}
.

Proof. Let τ r
1 , τ r

2 , . . . , τ r
q be as in Lemma 4.6. Then by Obstinacy

R(Kτr
1
∪Kτr

2
∪ . . . ∪Kτr

p
) = R(Kτr

1
∪Kτr

2
∪ . . . ∪Kτr

q
) ∩

(
Kτr

1
∪Kτr

2
∪ . . . ∪Kτr

p

)
=

{
τ r
1 ∨~1, τ r

2 ∨~1, . . . , τ r
p ∨~1

}
.

�

We now have all the devices necessary to move on to the crucial step.

Lemma 4.8. Let τ r1
1 , τ r2

2 , . . . , τ
rp
p be maps each from some subset of Z of cardinality

r1, . . . rp to {0} respectively. If R(2A) =
{
~1
}
, then for r = min {ri | i = 1, . . . , p}

R
(
Kτ

r1
1
∪Kτ

r2
2
∪ . . . ∪Kτ

rp
p

)
=

{
τ

rj

j ∨~1 | rj = r
}

.
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Proof. Let δr
1, δ

r
2, . . . , δ

r
q be all the maps from a subset of size r of Z to {0}. Then{

τ
rj

j ∨~1 | rj = r
}
⊆

{
δr
i ∨~1 | i = 1, . . . , q

}
. (4.11)

Now, since each Kτ
ri
i
⊆ Kδr

k
, for some k, by Lemma 4.7 above and (4.11)

R
(
Kτ

r1
1
∪Kτ

r2
2
∪ . . . ∪Kτ

rp
p

)
= R(Kδr

1
∪Kδr

2
∪ . . . ∪Kδr

q
) ∩

(
Kτ

r1
1
∪Kτ

r2
2
∪ . . . ∪Kτ

rp
p

)
=

{
τ

rj

j ∨~1 | rj = r
}

.

�

Corollary 4.9. For K ∈ ℘+(2A), if R(2A) = {~1} then

R(K) =
{
f ∈ X |

∣∣f−1 {0}
∣∣ = r

}
,

where r is minimal such that |f−1 {0}| = r for some f ∈ K.

Proof. The result follows as an immediate consequence of Obstinacy and Lemma

4.8. �

Notice that by duality, Corollary 4.9 holds for ~1 being replaced by ~0.

This completes the proof of the “if” direction of Theorem 4.2. We now move on

to show its converse, namely that if a Reason R(·) is defined in any of the above

three ways, then Renaming, Irrelevance and Obstinacy are satisfied. This clearly

characterises completely Regulative Reasons for the special case in which worlds are

maps from finite set A to 2.

Again, we start with the trivial Reasons, and then we move on to the case of the

non-trivial ones.

Lemma 4.10. Suppose R(K) = K, for all K ∈ ℘+(2A). Then Renaming, Obstinacy

and Irrelevance are satisfied.

Proof. (Renaming) Suppose K ∈ ℘+(2A) with support X ⊆ A and

σ is a permutation of A. Then

R(K)σ = Kσ = R(Kσ)
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as required.

(Obstinacy) For K1, K2 ∈ ℘+(2A), with supports X1, X2 ⊆ A respectively,

R(K1) ∩K2 = K1 ∩K2 = R(K1 ∩K2)

as required.

(Irrelevance) Suppose K1, K2 ∈ ℘+(2A) (with supports X1, X2 respectively) are such

that for any f1 ∈ K1, f2 ∈ K2, there exists f3 ∈ W such that

f3 � X1 = f1 � X1 and f3 � X2 = f2 � X2. We have to show that R(K1) � X1 =

R(K1∩K2) � X1. Let g ∈ 2X1 . If g ∈ R(K1∩K2) � X1 then obviously g ∈ R(K1) � X1.

As to the other direction, suppose g = f1 � X1 with f1 ∈ K1. Then we are given that

for f2 ∈ K2 there is f3 ∈ W such that f3 � X1 = f1 � X1 = g and f3 � X2 = f2 � X2

Thus, f3 ∈ K1 ∩K2 and g = f3 � X1 ∈ R(K1 ∩K2) � X1, as required. �

Lemma 4.11. R1(K) satisfies Renaming, Obstinacy and Irrelevance.

Proof.

(Renaming) Let σ be a permutation of A. Then

f ∈ R1(K)σ ⇐⇒ f = gσ, for some g ∈ R1(K)

⇐⇒ f = gσ, for some g ∈
{
h ∈ K |

∣∣h−1 {1}
∣∣ = r

} (4.12)

where r = max {|h−1 {1}| | h ∈ K}. But since |h−1 {1}| = |(hσ)−1 {1}|, then

h ∈ K and
∣∣h−1 {1}

∣∣ = r ⇐⇒ hσ ∈ Kσ and
∣∣(hσ)−1 {1}

∣∣ = r.

and r = max {|(hσ)−1 {1}| | hσ ∈ Kσ}. Hence

f ∈ R1(X) ⇐⇒ fσ ∈ R1(Xσ),

as required.

(Obstinacy) Let K1, K2 ∈ ℘+(2A) and let R1(K1) ∩K2 6= ∅ and set

r′ = max
{∣∣g−1 {1}

∣∣ | g ∈ K1 ∩K2

}
.

We claim that r′ = r, where r is defined as above. To see that the result follows

from this claim notice that if r′ = r, then
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R1(K1 ∩K2) =
{
f ∈ K1 ∩K2 |

∣∣f−1 {1}
∣∣ = r

}
=

{
f ∈ K1 |

∣∣f−1 {1}
∣∣ = r

}
∩K2

= R1(K1) ∩K2.

We show the claim by contradiction. Since K1 ∩K2 ⊆ K1, the case r′ > r is clearly

not possible. To see that r′ < r is not possible either, and hence that r′ = r, let

h ∈ R1(K1)∩K2. Then r′ would be the largest n for which there exists h′ ∈ K1 ∩K2

such that
∣∣h′−1 {1}

∣∣ = n. But since h ∈ R1(K1), r would be such an n, giving r′ ≥ r

as required.

(Irrelevance) Suppose K1, K2 ∈ ℘+(2A) (with supports X1, X2, respectively) and

for any f1 ∈ K1, f2 ∈ K2, there exists f3 ∈ W such that f3 � X1 = f1 � X1 and

f3 � X2 = f2 � X2. We have to show that

R1(K1) � X1 = R1(K1 ∩K2) � X1.

So assume that g ∈ R1(K1) � X1. Then ∃f1 ∈ R1(K1) such that f1 � X1 = g. We

now claim that

∀x 6∈ X1 f1(x) = 1. (4.13)

Suppose otherwise and define

f ′(x) =


f1(x) if x ∈ X1

1 otherwise.

Then f ′ ∈ K1 but
∣∣f ′−1 {1}

∣∣ >
∣∣f−1

1 {1}
∣∣, which is impossible if f1 ∈ R1(K1). Hence

X1 ⊇ {x | f1(x) = 0} (and similarly, X2 ⊇ {x | f2(x) = 0}, for f2 ∈ R1(K2)). Thus

∃f ∈ K1 ∩ K2 such that f � X1 = f1 � X1 and f � X2 = f2 � X2. Moreover, since

X1 ∪X2 is a support for K1 ∩K2, can also assume that

f(x) = 1, for all x 6∈ X1 ∪X2. (4.14)

Claim now that there is no h ∈ K1 ∩K2 such that∣∣h−1 {1}
∣∣ >

∣∣f−1 {1}
∣∣ . (4.15)
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Suppose on the contrary that such an h existed. By (4.14) we may assume h(x) = 1

for all x 6∈ X1 ∪X2. Notice first that

x ∈ X1 ∩X2 ⇒ f(x) = h(x). (4.16)

To see this, notice that f ∈ K1, h ∈ K2. So ∃g′ such that g′ � X1 = f � X1 and

g′ � X2 = h � X2. Hence f(x) = g′(x) = h(x), as required. Now,

∣∣h−1 {1}
∣∣ =

αh︷ ︸︸ ︷
|{y ∈ X1 −X2 | h(y) = 1}|+ |{y ∈ X2 −X1 | h(y) = 1}|+

+ |{y ∈ X2 ∩X1 | h(y) = 1}| .

and

∣∣f−1 {1}
∣∣ =

αf︷ ︸︸ ︷
|{y ∈ X1 −X2 | f(y) = 1}|+ |{y ∈ X2 −X1 | f(y) = 1}|+

+ |{y ∈ X2 ∩X1 | f(y) = 1}| .

Without loss of generality then, if |h−1 {1}| > |f−1 {1}| then αh > αf . But this leads

to the required contradiction. To see that define

h′(z) =


h(z) if z ∈ X1

1 otherwise.

Then h′ ∈ K1 but
∣∣h′−1 {1}

∣∣ = |h−1 {1} ∩X1| >
∣∣f−1

1 {1}
∣∣, and this is clearly incon-

sistent with f1 ∈ R(K1). So f ∈ R(K1 ∩ K2) and hence g ∈ R(K1 ∩ K2) � X1, as

required for this direction of the proof.

As to the other direction for Irrelevance , assume that g ∈ R(K1 ∩K2) � X1 but

g 6∈ R(K1) � X1. Define

g′(x) =


g(x) if x ∈ X1

1 otherwise.

Then, g′ ∈ K1 as it agrees on X1 with g ∈ K1. Indeed g′ 6∈ R(K1) � X1 too, since

g′ � X1 = g � X1. Hence ∃f ∈ R(K1) such that

|{y ∈ X1 | f(y) = 1}| > |{y ∈ X1 | g(y) = 1}| . (4.17)
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Now pick h ∈ R(K1 ∩K2) such that h � X1 = g and define f ′ such that f ′ � X1 =

f � X1 and f ′ � X2 = h � X2. As above we can assume that

f ′(x) = 1 for all x 6∈ X1 ∪X2 (4.18)

Then f ′ ∈ K1 ∩ K2 and
∣∣f ′−1 {1} ∩X1

∣∣ > |h−1 {1} ∩X1| (by (4.17) and the facts

f ′ � X1 = f � X1 and h � X1 = g). Thus, since
∣∣f ′−1 {1} ∩X2

∣∣ = |h−1 {1} ∩X2| and

f ′ � X1 ∩X2 = h � X1 ∩X2, we have that∣∣∣f ′−1 {1} ∩ (X1 ∪X2)
∣∣∣ >

∣∣h−1 � {1} ∩ (X1 ∪X2)
∣∣ .

But this is inconsistent with the maximality of |h−1 {1}|, concluding the proof of the

converse of Theorem 4.2.

�

A pleasing aspect of Theorem 4.2 is that it seems to us to point to precisely the

answer(s) that people commonly do come up with when presented with a Rationality-

as-conformity choice problem. For example in the case

0 0 0 1

0 1 0 0

0 1 1 0

1 1 1 1

0 0 1 0

it is our experience that the “fourth” row, 1 1 1 1, is the favored choice. In other words

the (unique) choice according to R1. Of course that is not the only Regulative Reason,

R0 gives { 0001, 0100, 0010 } whilst the trivial reason gives us back the whole set.

Clearly though those two Reasons could be seen as inferior to R1 here because they

ultimately require a random choice from a larger set, thus increasing the probability of

non-agreement. (This idea will be explored further in the next chapter when we come

to Reasons based on Ambiguity.) This seems to point to a further elaboration of our

picture whereby the agent might for a particular K experiment with several Reasons

and ultimately settle for a choice which depends on K itself. Alternatively one might
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hedge one’s bets and adopt the “collected extremal choice”, R∪(K) = R0(K)∪R1(K),

in the sense of Aizerman and Malishevski (1981) (see also Rott (2001), p. 163) and

by the Aizerman-Malishevski Theorem (Theorem 4 of Aizerman and Malishevski

(1981)) R∪ is a Plott function, that is to say a function that satisfies the so-called

Path Independence property introduced in Plott (1973). In the context of the present

investigation, however, this route doesn’t seem to lead to any interesting development

of an alternative Reason.

Of course one might argue about this example that in making the choice of 1 1 1 1

one was not consciously aware of any obligation to satisfy Renaming, Obstinacy and

Irrelevance. This situation is in fact analogous to the one arising with the conventional

theory of rational choice outlined above in section 2.2. There we recalled how the

upshot of Savage’s framework was that agents whose preferences on acts satisfied

the consistency requirements captured by Postulate 1 – Postulate 7 would choose as

if they where maximising the expected utility of their acts. This analogy in fact

runs along two dimensions. Like Savage, we do not claim that the satisfaction of

the formal properties constraining the agents’ choice corresponds in a strict sense

to the actual cognitive processes underlying the act of choice. Yet those constraints

correspond to principles which are “justified” on the grounds that, were agents to

consciously consider the consequences of transgressing them, they would consider

such a transgression inappropriate.

Moreover, it turns out that the general intuitions underlying the common sense

principles approach, and hence the Rationality-as-conformity one, are remarkably

close to those considered by Carnap (in the context of probabilistic confirmation

theory) when developing his programme on Inductive Logic:

The person X wishes to assign rational credence values to unknown propo-

sitions on the basis of the observations he has made. It is the purpose of

inductive logic to help him to do that in a rational way; or, more precisely,

to give him some general rules, each of which warns him against certain
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unreasonable steps. The rules do not in general lead him to specific val-

ues; they leave some freedom of choice within certain limits. What he

chooses is not a credence value for a given proposition but rather certain

features of a general policy for determining credence values. (Hilpinen,

1973)

Indeed, the principles that characterise commonsense in terms of the Maximum

Entropy inference process as well as the principles introduced in this chapter are

understood exactly as policies helping agents to achieve their goal by forbidding

them to undertake certain unreasonable steps which, if on the one hand would not

lead agents to irrational choices (their degrees of belief are already secured against

sure loss by being probabilities) could prevent, on the other hand, agents from making

a “more reasonable”, i.e. commonsensical, choice.

Thus, be that as it may, we feel that observance of these principles turns out to

be both so restrictive and to rather frequently leads to ‘the people’s choice’. Notice

too that if one does adopt a Regulative Reason then one automatically also observes

Obstinacy. This could then be offered as another defense of Obstinacy against the

earlier criticism, that it is no more unreasonable than adopting a Regulative Reason

altogether. Whether or not there are alternative sets of “justified” principles which

yield interesting families of Reasons such as the one we have considered here remains

a matter for further investigation.

We conclude this chapter by showing the already mentioned fact that if we defined

a somewhat different choice context, in which we allowed A to be infinite, we would

arrive at the following, rather surprising, result.

Proposition 4.12. If A is infinite and K is the non-empty subsets of 2A with finite

support, then the trivial reason is the only Regulative Reason.

Proof. Let R be a Regulative Reason and suppose X is the unique smallest support

of R(2A). Since X is finite and A infinite we can choose a permutation σ such that



CHAPTER 4. THE REGULATIVE REASONS 81

X ∩ σ−1X = ∅. By Renaming σ−1X is a support of R(2A)σ (as noted above) but

R(2A)σ =R(2Aσ) (by Renaming)

=R(2A) (since 2Aσ = 2A).
(4.19)

Hence σ−1X is also a support of R(2A), so X = σ−1X, which is only possible if

X = ∅. Thus R(2A) = 2A.

Now let K ∈ K. Then

K = K ∩ 2A = K ∩R(2A) 6= ∅

so by Obstinacy,

R(K) = R(K ∩ 2A) = K ∩R(2A) = K

as required. �

As we can clearly see from the proof, this result is independent of the principle of

Irrelevance.



Chapter 5

The Minimum Ambiguity Reason

Abstract: Our second characterisation of a choice process facilitating

conformity is given in terms of an algorithm for computing the minimally

ambiguous (most outstanding) world(s) within a given element of ℘+(2A).

5.1 An informal procedure

In the previous chapter we saw how an agent might arrive at a particular canonical

Reason by adopting and adhering to certain principles, principles which (after some

consideration) one might suppose any other like-minded agent might similarly come

to. An alternative approach, which we shall investigate in this chapter, is to introduce

a notion of ‘distinguishability’, or ‘indistinguishability’, between elements of K and

choose as R(K) those most distinguished, equivalently least ambiguous, elements.

Instead of being based on principles this R(K) will in the first instance be specified

by a procedure, or algorithm, for constructing it.

The idea behind the construction of the Minimum Ambiguity Reason RA(K) is

based on trying to fulfill two requirements. The first requirement is that if f and g

are, as elements of K, indistinguishable, then R(K) should not contain one of them,

f say, without also containing the other, g. In other words an agent should not give

positive probability to picking one of them but zero probability to picking the other.

The argument for this is that if they are ‘indistinguishable’ on the basis of K then

82
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another agent could just as well be making a choice of R(K) which included g but

not f . Since agents are trying to make the same ultimate choice of element of K

this surely looks like an undesirable situation (and indeed, taking that route may

be worse, and will never be better, than avoiding it). So we can sum up the first

requirement on R(K) by saying that it should be closed under the ‘indistinguishability

relation’.

The second requirement is that the agent’s choice of R(K) should be as small as

possible (in order to maximize the probability of randomly picking the same element

as another agent) subject to the additional restriction that this way of thinking should

not equally permit another like-minded agent (so also, globally, satisfying the first

requirement) to make a different choice, since in that case any advantage of picking

from the small set is lost.

The first consequence of those desiderata is that initially the agent should be

looking to choose from those minimal subsets of K closed under indistinguishability,

‘minimal’ here in the sense that they do not have any proper non-empty subset closed

under indistinguishability. Clearly if this set has a unique smallest element then the

elements of this set are the least ambiguous, most outstanding, in K and this would

be a natural choice for R(K). However, if there are two or more potential choices

X1, X2, ..., Xk at this stage with the same number of elements then the agent could

do no worse than combine them into a single potential choice X1∪X2∪ ...∪Xk since

the choice of any one of them would be open to the obvious criticism that another

‘like-minded agent’ could make a different (in this case disjoint) choice, which would

not improve the chances of a match (and may make them considerably worse if the

first agent subsequently rejected X1∪X2∪ ...∪Xk in favor of a better choice). Faced

with this revelation our agent would realize that the ‘smallest’ way open to reconcile

these alternatives is to now permit X1 ∪ X2 ∪ ... ∪ Xk as a potential choice whilst

dropping X1, X2, ..., Xk. [Note that this strategy interestingly combines aspects of the

“sceptical” as well as the “credulous” approaches to non-monotonic inference recalled

above in section 3.1.2.]

The agent now looks again for a smallest element from the current set of potential
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choices and carries on arguing and introspecting in this way until eventually at some

stage a unique choice presents itself.

In what follows we shall give a formalization of this procedure.

5.2 Permutations and ambiguity

The first step in the construction of the Minimum Ambiguity Reason consists in

providing the agent with a notion of equivalence or indistinguishability among worlds

in a given choice contest K ∈ ℘+(2A).

In fact with the minimal structure we have available here the notion we want is

almost immediate: Elements g, h of K are indistinguishable (with respect to K) if

there is a permutation σ of A such that

K = Kσ and gσ = h,

where as usual Kσ = {fσ | f ∈ K }. From now on we shall say that a permutation σ

of A is a permutation of K if K = Kσ.

The idea here is that within the context of our choice problem a permutation

σ of K maps f ∈ K to an fσ in Kσ which has essentially the standing within

Kσ (= K) as f had within K. In other words as far as K is concerned f and fσ are

indistinguishable. We shall investigate a more general notion of indistinguishability

in section 7.2 below.

The following Lemma is immediate.

Lemma 5.1. If σ and τ are permutations of K then so are στ and σ−1.

Having now disposed of what we mean by indistinguishability between elements

of K ∈ ℘+(2A) we can introduce the key element of this characterisation.

Definition. For f ∈ K the ambiguity class of f within K at level m is recursively

defined by:

S′0(K, f) = {g ∈ K | ∃ permutation σ of K such that fσ = g},
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Sm+1(K, f) =

 {g ∈ K | |Sm(K, f)| = |Sm(K, g)|} if |Sm(K, f)| ≤ m + 1,

Sm(K, f) otherwise.

This recursive construction captures the idea of ‘measuring’ the ambiguity of a pos-

sible world f within K by, first of all, considering how ‘distinguished’ (in terms of

permutations) f is within K. At each of the subsequent stages we make sure that we

do not distinguish among worlds which happen to be in the same ambiguity class.

This is fully formalised by introducing the following.

Definition. For f, g ∈ K

g ∼m f ⇔ g ∈ Sm(K, f).

As expected the following can be proved.

Lemma 5.2. ∼m is an equivalence relation.

Proof. By induction on m. For the case m = 0 this is clear since if f, g, h ∈ K and

fσ = g, gτ = h with σ, τ permutations of K then gσ−1 = f, fστ = h and by Lemma

5.1 σ−1, στ are also permutations of K.

Assume true for m. If |Sm(K, f)| > m+1 then, by the definition of Sm+1(K, f), the

result follows immediately from the inductive hypothesis. Otherwise, the reflexivity

of ∼m is again immediate. For symmetry assume that g ∈ Sm+1(K, f). Then g ∈

{h ∈ K | |Sm(K, h)| = |Sm(K, f)|}, so |Sm(K, g)| = |Sm(K, f)| and f ∈ {h ∈ K |

|Sm(K, h)| = |Sm(K, g)|}. An analogous argument shows that ∼m+1 is also transitive.

�

Thus, as f ranges over K, ∼m induces a partition on K and the sets Sm(K, f) are

its equivalence classes. Moreover, this m-th partition is a refinement of the m + 1-st

partition. In other words, the sets Sm(K, f) are increasing and so eventually constant

fixed at some set which we shall call S(K, f).

The ambiguity of f within K is then defined by:

A(K, f) =def |S(K, f)|.
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Finally, we can define the Minimum Ambiguity Reason RA(K) by letting:

RA(K) = {f ∈ K | ∀g ∈ K, A(K, f) ≤ A(K, g)}. (5.1)

As a rather immediate consequence of the definition of RA we have the following

result.

Proposition 5.3. RA(K) = S(K, f), for any f ∈ RA(K)

Proof. Let f ∈ RA(K). To show that S(K, f) ⊆ RA(K) suppose S(K, f) = Sm(K, f)

and g ∈ Sm(K, f). Then Sm(K, g) = Sm(K, f) so Sm(K, g) must equal S(K, g)

(since m could be taken arbitrarily large) and |S(K, g)| = |S(K, f)|, so g ∈ RA(K).

Conversely let g ∈ RA(K) and fix some large m. If g 6∈ S(K, f), then S(K, f) ∩

S(K, g) = ∅ and since both f and g are in RA(K), then |S(K, f)| = |S(K, g)|. But

this leads to the required contradiction since for m large enough, |Sm(K, f)| ≤ m + 1

so Sm(K, f) and Sm(K, g) would both be proper subsets of Sm+1(K, f). Thus g would

eventually be in Sm(K, f), contradicting the hypothesis. �

Example 9. Let K ∈ K and suppose that as f ranges over K the 0-ambiguity classes

of f in K are given by the following partition of K

{a1, a2}, {b1, b2}, {c1, c2},

{d1, d2, d3}, {e1, e2, e3},

{f1, f2, ..., f6}, {g1, g2, ..., g6},

{h1, h2, ..., h12},

{i1, i2, ..., i24}.

For m = 1 the classes remain fixed. For m = 2 the first three classes get combined

and the S2(K, f) look like

{a1, a2, b1, b2, c1, c2},

{d1, d2, d3}, {e1, e2, e3},

{f1, f2, ..., f6}, {g1, g2, ..., g6},

{h1, h2, ..., h12},

{i1, i2, ..., i24}.
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Similarly for m = 3 where the two classes of size 3 are combined so that the

S3(K, f) become

{a1, a2, b1, b2, c1, c2},

{d1, d2, d3, e1, e2, e3},

{f1, f2, ..., f6}, {g1, g2, ..., g6},

{h1, h2, ..., h12},

{i1, i2, ..., i24}.

The ambiguity classes do not change until step 6 when the four classes with 6

elements are combined making S6(K, f) look like

{a1, a2, b1, b2, c1, c2, d1, d2, d3, e1, e2, e3, f1, f2, ..., f6, g1, g2, ..., g6},

{h1, h2, ..., h12},

{i1, i2, ..., i24}.

Finally, we combine the two classes with 24 elements and obtain S24(K, f) with

just two classes

{a1, a2, b1, b2, c1, c2, d1, d2, d3, e1, e2, e3, f1, f2, ..., f6, g1, g2, ..., g6, i1, i2, ..., i24},

{h1, h2, ..., h12}.

Clearly the ambiguity classes stabilize at this 24-th step and hence the Minimum

Ambiguity Reason for this K gives the 12-set {h1, h2, ..., h12}.

Notice that, in the definition of the ambiguity classes of K, the splitting of the

inductive step into two cases is indeed necessary to ensure that some sets closed under

permutations of K are not dismissed unnecessarily early. This same example shows

that if we allowed the inductive step in the definition to be replaced by the (somewhat

more intuitive) equation

Sm+1(K, f) = {g ∈ K | |Sm(K, f)| = |Sm(K, g)|} (5.2)

we would fail to pick the “obvious” smallest such subset of K. To see this suppose

again that K is as above but this time the alternative procedure based on (5.2) was

used to construct RA. Then we would have all the classes of the same size merged in

one step so that the 1−ambiguity classes S1(K, f) would look like:
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{a1, a2, b1, b2, c1, c2},

{d1, d2, d3, e1, e2, e3},

{f1, f2, ..., f6, g1, g2, ..., g6},

{h1, h2, ..., h12},

{i1, i2, ..., i24}.

Then S2(K, f) would look like this:

{a1, a2, b1, b2, c1, c2, d1, d2, d3, e1, e2, e3},

{f1, f2, ..., f6, g1, g2, ..., g6, h1, h2, ..., h12},

{i1, i2, ..., i24},

so that the procedure stabilizes at m = 3 with S(K, f) of the form:

{a1, a2, b1, b2, c1, c2, d1, d2, d3, e1, e2, e3},

{f1, f2, ..., f6, g1, g2, ..., g6, h1, h2, ..., h12, i1, i2, ..., i24},

Hence, the construction that follows the alternative definition of ambiguity classes,

which imposes no restriction on appropriate stage for the combination of the classes,

leads again to a 12-set. However, this alternative procedure appears to miss out what

naturally seems to be a more distinguished subset of K.

5.3 Justifying the Minimum Ambiguity Reason

We now want to show that the Minimum Ambiguity Reason defined in (5.1) is an

adequate formalization of the informal description given in section 5.1. Recall that we

put forward two informal desiderata for the resulting selection from K, firstly that it

should be closed under indistinguishability and secondly that it should be the unique

smallest possible such subset not eliminated by there being a like-minded agent who

by similar reasoning could arrive at a different answer.

As far as the former is concerned notice that by proposition 5.3 RA(K) is closed

under all the ∼m, not just ∼0. Thus this requirement of closure under indistinguisha-

bility is met, assuming of course that one accepts this interpretation of ‘indistin-

guishability’. Indeed RA satisfies Renaming as we now show.
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Theorem 5.4. RA satisfies Renaming.

Proof. As usual let σ be a permutation of A. We need to prove that

RA(K)σ = RA(Kσ).

We first show by induction on m that for all f ∈ K, Sm(K, f)σ = Sm(Kσ, fσ). To

show the base case m = 0 for all f ∈ K, let

S0(K, f) = { g1, . . . , gq }.

Choose a permutation τ of K such that fτ = gi. Then σ−1τσ is a permutation of Kσ

and (fσ)σ−1τσ = giσ. Hence, S0(K, f)σ ⊆ S0(Kσ, fσ). Similarly, S0(Kσ, fσ)σ−1 ⊆

S0(K, f), so equality must hold here.

Assume now the result for the Sm-th ambiguity class, so we want to prove that

Sm+1(K, f)σ = Sm+1(Kσ, fσ).

We distinguish between two cases, corresponding to the ones appearing in the con-

struction of the ambiguity classes. Recall that Sm+1(K, f) = Sm(K, f) if m + 1 >

|Sm(K, f)|. So, in this case, the result follows immediately by the inductive hypoth-

esis. Otherwise, since σ (on 2A) is 1-1, it is enough to see that

Sm+1(K, f)σ = {g ∈ K | |Sm(K, f)| = |Sm(K, g)|}σ

= {gσ ∈ Kσ | |Sm(Kσ, fσ)| = |Sm(Kσ, fσ)|} (i.h.)

= Sm+1(Kσ, fσ).

Since, by Lemma 5.3, RA(K) is the smallest S(K, f), this concludes the proof of the

Lemma. �

Before further considering how far our formal construction of RA(K) matches the

informal description in section 3.1, it will be useful to have the next result to hand.

Theorem 5.5. A non-empty K ′ ⊆ K is closed under permutations of K into itself

if and only if there exists a Reason R satisfying Renaming such that R(K) = K ′.
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Proof. The direction from right to left follows immediately from the Renaming

principle. For the other direction define, for K1 ⊆ 2A, K1 6= ∅,

R(K1) =

 K ′σ if K1 = Kσ for some permutation σ of A;

K1 otherwise .
(5.3)

Note that in the first case R(K1) is defined unambiguously, that is to say, whenever we

have two permutations σ1, σ2 of A such that K1 = Kσ1 = Kσ2, then K ′σ1 = K ′σ2.

This follows since in this case, σ2σ
−1
1 is a permutation of A and Kσ2σ

−1
1 = K so

K ′σ2σ
−1
1 = K ′, i.e. K ′σ1 = K ′σ2.

We now want to show that if σ is a permutation of A and K1σ = K2 then

R(K2) = R(K1)σ. If K1 is covered by the first case of (5.3), then so is K2, for

if τ is a permutation of A such that K1 = Kτ , then K2 = Kτσ and R(K1σ) =

R(K2) = K ′τσ = R(K1)σ. If K1 is covered by the second case of (5.3), so is K2 since

if K2 = Kτ for some permutation τ of A, then K1 = Kτσ−1 so R(K1) would be

defined by the first case. It follows then that here we must have R(K1σ) = R(K2) =

K2 = K1σ = R(K1)σ as required. �

The importance of this result is that in the construction of RA(K) the choices

Sm(K, f) which were eliminated (by coalescing) because of there currently being

available an alternative choice of a Sm(K, g) of the same size are indeed equivalently

being eliminated on the grounds that there is a like-minded agent, even one satisfying

Renaming, who could pick Sm(K, g) in place of Sm(K, f). In other words it is not

as if some of these choices are barred because no agent could make them whilst still

satisfying Renaming. Once a level m is reached at which there is a unique smallest

Sm(K, f) this will be the choice for the informal procedure. It is also easy to see

that this set will remain the unique smallest set amongst all the subsequent Sn(K, g),

and hence will qualify as RA(K). In this sense then our formal procedure fulfills the

intentions of the informal description of section 3.1.
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5.4 Comparing Regulative and Minimum Ambi-

guity Reasons

In this and the previous chapter we have put forward arguments for both the Reg-

ulative and Minimum Ambiguity Reasons being considered as “rational” choice pro-

cesses with respect to the conformity problem. It is interesting to note, however that

in practice neither seems to come out self evidently better in all cases. For example,

in the case considered earlier of

0 0 1 1

0 1 1 0

1 1 0 0

1 1 1 1

R1 gives the singleton {1111} whilst RA gives the somewhat unexceptional {0011, 1100}

and R0 the rather useless {0011, 0110, 1100}. On the other hand if we take the subset

0 0 1 1

0 1 1 0

1 1 0 0

of this set RA gives {0110} whilst both R1 and R0 give the whole set. And in fact we

noted earlier that one might argue against Obstinacy by saying that after applying

a Regulative Reason to K, 0011 could be seen to gain a somehow distinguished

status and hence should be selected violating Obstinacy. We can now refine our

rejection of this argument by saying that this violation of Obstinacy would require

an agent to change Reason “on the fly”, namely passing from the Regulative to

the Minimum Ambiguity Reason within the same choice problem. The argument

for rejecting this possibility is that if this were allowed, sufficiently large K’s would

generate an explosion of possible combinations of Reasons which in all probability

would put back the agents in a position of choosing randomly from K!

Concerning the defining principles of the Regulative Reasons, whilst as we have

seen RA does satisfy Renaming, the above example shows that it fails to satisfy
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Obstinacy. Indeed a simple example shows that it does not even satisfy Idempotence,

that is R(R(K)) = R(K), an immediate consequence of Obstinacy.

Example 10. Let K be

1 1 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

1 0 1 0 0 0

1 0 0 1 0 0

1 0 0 0 1 0

1 0 0 0 0 1

Here RA(K) gives {110000, 100000, 010000} whereas RA(RA(K)) returns {110000}.

It is interesting to note that, as far as the interest in “small size” goes, this failure of

Idempotence can be indeed welcome. In fact agents might exploit this fact and keep

applying RA until the set RA(K) stabilises. A consequence of this being that agents

will end up to randomising (when Idempotence fails) over a smaller set of possible

worlds, thus increasing their chances of conforming.

Finally RA does not satisfy Irrelevance either. For an example to show this let

K1 consist of

1 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗

1 1 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗

1 1 1 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗

1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗

and let K2 consist of
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∗ ∗ ∗ ∗ 1 0 0 0 0 0 0

∗ ∗ ∗ ∗ 0 1 0 0 0 0 0

∗ ∗ ∗ ∗ 0 0 1 0 0 0 0

∗ ∗ ∗ ∗ 0 0 0 1 1 0 0

∗ ∗ ∗ ∗ 0 0 0 1 0 1 0

∗ ∗ ∗ ∗ 0 0 0 1 0 0 1

∗ ∗ ∗ ∗ 0 0 0 0 1 1 0

∗ ∗ ∗ ∗ 0 0 0 0 1 0 1

∗ ∗ ∗ ∗ 0 0 0 0 0 1 1

where ∗ indicates a free choice of 0 or 1. Then K1, K2 satisfy the requirements of

Irrelevance and RA(K1), RA(K2) are respectively

1 0 0 0 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 1 1 1 1 1

0 0 0 1 0 0 0 0 0 0 0

1 1 1 1 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0

1 1 1 1 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0

1 1 1 1 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0

whereas RA(K1 ∩K2) is

1 0 0 1 1 0 0 0 0 0 0

1 0 0 1 0 1 0 0 0 0 0

1 0 0 1 0 0 1 0 0 0 0

1 1 0 1 1 0 0 0 0 0 0

1 1 0 1 0 1 0 0 0 0 0

1 1 0 1 0 0 1 0 0 0 0

1 1 1 1 1 0 0 0 0 0 0

1 1 1 1 0 1 0 0 0 0 0

1 1 1 1 0 0 1 0 0 0 0



Chapter 6

The Smallest Uniquely Definable

Reason

Abstract: The third approach to the characterisation of reasons fa-

cilitating conformity is model-theoretic. Given an adequate structure,

commonsensical agents should choose the smallest (first-order) uniquely

definable subset of the initial set of possible worlds.

6.1 The model theoretic structure of the main prob-

lem

In this chapter we present another Reason which, at first sight, looks a serious chal-

lenger to the Regulative and Minimum Ambiguity Reasons so far introduced.

Consider again the main problem of Rationality-as-conformity, i.e. an agent who

is given a non-empty subset K of 2A from which to attempt to make a choice which

is common to another like-minded yet inaccessible agent. A natural approach here

might be for the agent to consider all non-empty subsets of K that could be described,

or to use a more formal term, defined, within the structure available to the agent. If

some individual element was definable (meaning definable in this structure without

parameters) then this would surely be a natural choice, unless of course there were

94
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other such elements. Similarly choosing a small definable set and then choosing

randomly from within it would seem a good strategy, provided there were no other

definable sets of the same size. Reasoning along these lines then suggests that our

agent could reach the conclusion that s/he should choose the smallest definable set

for which there was no other definable set of the same size.

Of course all this depends on what we take to be the structure available to the

agent. In what follows we shall consider the case when the agent can recognize 0 and

1, elements of A, {0, 1} and K, composition and equality. Precisely, let M be the

structure

〈{0, 1} ∪ A ∪K, {0, 1}, A,K, =, Comp, 0, 1〉

where = is equality for {0, 1}∪A∪K (we assume of course that A, {0, 1}, 2A are all

disjoint) and Comp is a binary function which on f ∈ K, a ∈ A gives f(a) (and, say,

the first coordinate on arguments not of this form). As usual we shall write f(a) = i

in place of Comp(f, a) = i etc..

Note that at this point one might argue that the agent could then also recognize

automorphisms ofM so the set of these too should be added to our structure, and the

whole process repeated, and repeated . . . . In fact this does not change the definable

subsets of K so it turns out there is no point in going down this path.

6.2 The Uniquely Smallest Definable Reason char-

acterised

We define the Uniquely Smallest Definable Reason, RU, by setting RU(K) to be that

smallest ∅ 6= K ′ ⊆ K first order definable in M for which there is no other definable

subset of the same size.

The results that follow are directed towards understanding the structure of RU(K)

and its relationship to RA(K).
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Lemma 6.1. Every permutation σ0 of K determines an automorphism jσ0 of M

given by the identity on {0, 1} and

a ∈ A 7−→ σ−1
0 (a), (6.1)

and

f ∈ K 7−→ fσ0. (6.2)

Conversely every automorphism j0 of M determines a permutation σj0 of K given

by

σj0(a) = j−1
0 (a) (6.3)

for a ∈ A.

Furthermore for f ∈ K, fσj0 = j0(f) and the corresponding automorphism deter-

mined by jσj0
is j0 again.

Proof. For σ0 a permutation of K it is clear that jσ0 defined by (6.1) and (6.2) gives

a 1-1 onto mapping from A and K into themselves. All that remains to show this

first part is to notice that by direct substitution,

jσ0(Comp(f, a)) = Comp(f, a) = f(a) = fσ0(σ
−1
0 (a)) = Comp(jσ0(f), jσ0(a)).

In the other direction let j0 be an automorphism of M and define σj0 by (6.3).

Then since j0 is an automorphism of M, σj0 is a permutation of A and for f ∈ K,

a ∈ A,

f(a) = j0(f(a)) = j0(Comp(f, a)) = Comp(j0(f), j0(a)),

equivalently,

f(a) = j0(f)(j0(a)) = j0(fσ−1
j0

)(a).

Hence

j−1
0 (f)(a) = fσ−1

j0
(a)

so σ−1
j0

(and hence σj0 by Lemma 5.1) is a permutation of K since j−1
0 (f) ∈ K, as

required.

The last part now follows immediately from the definitions (6.1), (6.2), (6.3). �
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We say that K ′ ⊆ K satisfies Renaming within K if for all permutations σ of K,

K ′ = K ′σ. Thus ‘standard Renaming’ is just Renaming within 2A.

Theorem 6.2. A non-empty subset K ′ of K is definable (without parameters) in M

if and only if K ′ satisfies Renaming within K.

Proof. Suppose that K ′ is definable in M. Then clearly K ′ is fixed under all

automorphisms of M. In particular if σ is a permutation of K then by Lemma 6.1

jσ is an automorphism of M so

K ′ = jσ(K ′) = K ′σ

Conversely suppose that K ′ satisfies Renaming within K. Then since every auto-

morphism ofM is of the form jσ for some permutation σ of K and jσ(K ′) = K ′σ = K ′

it follows that K ′ is fixed under all automorphisms of M. Consider now the types

θi
1(x), θi

2(x), θi
3(x), ... of the elements fi of K in M. If there were fi ∈ K ′ and fj /∈ K ′

with the same type then by a back and forth argument (see e.g. Marker, 2002) we

could construct an automorphism of M sending fi to fj, contradicting the fact that

K ′ is fixed under automorphisms. It follows that for some n the formulae

θi
1(x) ∧ θi

2(x) ∧ ... ∧ θi
n(x)

and

θj
1(x) ∧ θj

2(x) ∧ ... ∧ θj
n(x)

are mutually contradictory when fi ∈ K ′ and fj /∈ K ′. From this it clearly follows

that the formula ∨
fi∈K′

n∧
m=1

θi
m(x)

defines K ′ in M for suitably large n. �

Corollary 6.3. The sets Sm(K, f) are definable in M

Proof. These sets are clearly closed under permutations of K so the result follows

from Theorem 6.2. �
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Theorem 6.4. For all K ∈ K, |RA(K)| ≤ |RU(K)|, with equality just if RA(K) =

RU(K).

Proof. We shall show that for all m. If f ∈ RU(K) then Sm(K, f) ⊆ RU(K). For

m = 0 this is clear since RU(K), being definable must be closed under permutations

of K. Assume the result for m and let f ∈ RU(K). If Sm+1(K, f) were not a subset

of RU(K) there would be g ∈ K such that |Sm(K, f)| = |Sm(K, g)| but g /∈ RU(K).

Indeed Sm(K, g) would have to be entirely disjoint from RU(K) by the inductive

hypothesis. By Corollary 6.3 Sm(K, f) and Sm(K, g) are both definable, and hence

so is

RU(K) ∪ Sm(K, g)− Sm(K, f).

But this set is different from RU(K) yet has the same size, contradiction.

Having established this fact we notice that for f ∈ RU(K) we must have S(K, f) ⊆

RU(K) so since RA(K) is the smallest of the S(K, g) the result follows. �

In a way Theorem 6.4 is rather surprising in that one might initially have imagined

that RU(K), by its very definition, was about as specific a set as one could hope to

describe. That RA(K) can be strictly smaller than RU(K) can be seen from the case

when the ∼0 equivalence classes look like

{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2, d3, d4}.

In this case RA gives {d1, d2, d3, d4} whereas RU just gives the union of all these sets

as each pairwise union of the above classes is in fact definable.

We now briefly consider the relationship between the Regulative Reasons and RU.

Since the set

Ri(K) = { f ∈ K | ∀ g ∈ K, |f−1(i)| ≥ |g−1(i)| }.

is definable in M Ri(K) is a candidate for RU(K). So if |Ri(K)| < |RU(K)| it must

be the case that there is another definable subset of M with the same size as Ri(K).

If |Ri(K)| = |RU(K)| then in fact Ri(K) = RU(K). From this point of view then RU

(and by Theorem 6.4 also RA) might be seen to be always at least as satisfactory as the
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Ri. On the other hand the Ri are in a practical sense computationally undemanding.

[The computational complexity of the relation f ∼0 g between elements of K is

currently unresolved, which strongly suggests that even if a polynomial time algorithm

does exist it is far from transparent.]

We finally remark that, using the same examples as for RA, RU also fails Obstinacy

and Irrelevance.



Chapter 7

Variations on the theme

Abstract: We investigate an analogue of the Regulative Reasons in

the case of probabilistic possible worlds. Then a generalisation of the

Minimum Ambiguity construction is discussed.

The purpose of this chapter is two-fold. In the first part we shall consider a

more sophisticated notion of possible worlds than the one adopted so far in the

formalisation of Rationality-as-conformity. In this revised formal setting we shall

be able to compare a probabilistic analogue of the Regulative Reasons to the Paris-

Vencovská characterization. As a consequence of the main result of this part, theorem

7.2, this initial comparison fails to be encouraging.

In the second part of the chapter we shall consider a generalisation of the Min-

imum Ambiguity construction introduced above. This will be based on a notion of

indistinguishability according to which the structure of the choice problem is invariant

under permutations of the set {0, 1}.

7.1 Probabilistic possible worlds

Much of our motivation for the investigation of Rationality-as-conformity came from

the Paris-Vencovská characterisation of common sense in probabilistic logic and the

desire to explain why it was that its underlying principles where considered ‘common

sense’. The Regulative Reasons characterised above could be said to supply such

100
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an explanation in a particularly simple situation. Certainly the resulting answers

seem to agree with rationality or common sense as conformity, though perhaps the

informal justifications given for Obstinacy and Irrelevance could be more convincing.

Nevertheless it would certainly be pleasing to press on and extend this explanation

to common sense as formulated for probabilistic uncertain reasoning.

Our initial investigations in this direction suggest that there are a number of

difficulties in extending the Regulative approach to the probabilistic case. In order

to illustrate some of these points, we need to fix a suitable framework to represent

our Rationality-as-conformity main problem. A somehow natural choice would be

to take probability functions on the sentences of a finite propositional language, as

in the Paris-Vencovská framework, as possible worlds. However, this route would

not allow us to have the property corresponding to (finite) support, necessary for

the characterisation of the Regulative Reasons. In order to cater for this property

one could consider the equivalent framework of probability functions defined on the

Lindenbaum algebra of the atoms of L and hence, by further abstraction, by defining

probabilistic possible worlds on a finite Boolean algebra B.

More precisely, we shall say, as usual, that a map w on B is a probability function

w : B −→ [0, 1]

if the following are satisfied:

w(1) = 1 and (7.1)

If b1 ∧ b2 = 0 then w(b1 ∨ b2) = w(b1) + w(b2), (7.2)

where b1, b2 ∈ B and 1 and 0 are the top and bottom elements of B, respectively.

In analogy with the Paris-Vencovská characterisation then, the set of probabilistic

possible worlds P can be taken to be the set of all probability functions w such that

∑
αi

w(αi) = 1,

where the αi run through the (finitely many) atoms of B. Consideration of the sort

of knowledge bases investigated there, where knowledge is represented in terms of
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linear constraints on a probability function (see e.g. Paris, 1994, ch.2), suggests that

the notion of a support for K in K might now be replaced by subalgebra support.

For B a finite Boolean algebra we say as usual that B is a subalgebra of B if 0 ∈ B

and B is closed under meet and complement. In this case we can go on and define

the choice contexts of the Rationality-as-conformity situation analogously to the case

studied before, that is we identify the elements K of the set C with the non-empty

subsets of P of the form

{
w ∈ P |

∑
α∈B

aiαw(α) = bi, i = 1, 2, . . . , r

}
,

where aiα, bi ∈ R.

Definition. For K ∈ C we say that the subalgebra B of B is a support of K if for

all w1, w2 ∈ P, if w1 � B = w2 � B then

w1 ∈ K ⇐⇒ w2 ∈ K.

As the following (presumably known) result shows, each such K has a unique

smallest such subalgebra support.

Proposition 7.1. If K ∈ C then K has a smallest support.

Proof. Let B and C be subalgebras of B, with atoms b1, b2, . . . , bk and c1, c2, . . . , cm

respectively, and suppose that B and C are both subalgebra supports for K. The

claim is that B ∩C is a subalgebra support for K. So we assume that f1, f2 agree on

B ∩ C and want to show that

f1 ∈ K ⇐⇒ f2 ∈ K.

Let d1, d2, . . . , dj be the atoms of D = B ∩ C and for α ≤ di an atom of B define

f(α) = f1(di)/|di|

where |di| is the number of atoms of B contained in di. Notice we get the same

function if we replace f1 here by f2.
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To prove the result it is enough to show the existence of g1, g2, . . . , gr such that

g1 = f1, gr = f and for each i = 1, 2, . . . , r − 1 gi agrees with gi+1 either on B or on

C (so certainly they all agree on D). [This is enough because it forces

f1 ∈ K ⇐⇒ g2 ∈ K ⇐⇒ g3 ∈ K ⇐⇒ . . . ⇐⇒ gr−1 ∈ K ⇐⇒ f ∈ K

and similarly starting with f2.] The idea is to produce such g1, g2, . . . so that at each

stage

|{α | gi(α) = f(α)}| < |{α | gi+1(α) = f(α)}|. (7.3)

Clearly this will work if at each stage i for which gi 6= f we can find such a gi+1. So

suppose we have such a gi and without loss of generality gi(α) < f(α) with α ≤ dn.

Then there must be an atom β ≤ dn such that gi(β) > f(β), since for γ ranging over

the atoms of the overlying algebra B,

∑
γ≤dn

gi(γ) = gi(dn) = f1(dn) = f(dn) =
∑
γ≤dn

f(γ).

Since α and β are both dominated by the same dn there must be some e1, e2, e3, e4, . . . , ek,

where the em are alternately atoms of B and C, and atoms of B αi ≤ ei ∩ ei+1 with

α = α1 ≤ e1 and β ≤ ek. To see that such e1, e2, e3, e4, . . . , ek must exist, let

m =
∨
{β | ∃e1, e2, e3, e4, . . . , ek as above} .

Then the set m is exactly the element of B ∩ C containing α. In fact dn ⊆ m since

∅ 6= α ⊆ m∩dn and m ∈ B, m ∈ C. To see that this follows suppose on the contrary

that m 6∈ B. Then there would be an atom e of B with ∅ 6= e ∩m < e while, by the

construction of m, e∩m = e. (Similarly for m ∈ C.) The converse inclusion m ⊆ dn

is also true since dn ∈ B ∩ C and therefore atoms em will satisfy that if ∅ 6= em ∩ dn

then em ≤ dn, so they will all be in dn.

Then somewhere along this path

(α =)α1, α2, . . . , αk−1, β
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there must be a consecutive pair γ, δ with gi(γ) > f(γ) = f(δ) > gi(δ). Pick such a

pair and define gi+1 to agree everywhere with gi except that

gi+1(γ) = f(γ), gi+1(δ) = gi(δ) + gi(γ)− f(γ).

Then since γ, δ are both dominated by of one of the eg and eg is either an atom of

B or an atom of C, gi+1 either agrees with gi on B or on C (as required) and clearly

(7.3) holds, as required.

�

Within this framework we can now press ahead and define the Regulative prin-

ciples of probabilistic possible worlds. By doing so we can compare directly the

resulting characterisation with Paris-Vencovská one.

Renaming:

Let K ∈ C and let j be an automorphism of B (i.e. permutations of the

atoms). R satisfies Renaming if whenever Kj = {wj |w ∈ K } then

R(Kj) = R(K)j.

Obstinacy:

Let K1, K2 ∈ C. R satisfies Obstinacy if whenever R(K1) ∩K2 6= ∅ then

R(K1 ∩K2) = R(K1) ∩K2.

Irrelevance:

Suppose K1, K2 ∈ C with supports B1, B2 respectively and for any w1 ∈

K1 and w2 ∈ K2 there exists w3 ∈ P such that w3 � B1 = w1 � B1 and

w3 � B2 = w2 � B2. Then

R(K1) � B1 = R(K1 ∩K2) � B1

where

R(K) � B = {w � B |w ∈ R(K)}.
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The trivial Reason surely satisfies the above principles so the question now is to

investigate the class of Reasons characterised by this probabilistic version of the Reg-

ulative principles in relation to common sense à la Paris-Vencovská . Unfortunately,

however, the comparison fails to be encouraging. Recall (Theorem 1.1 of section

1.2 above) that there is a unique inference process satisfying those common sense

principles given in Paris and Vencovská (1990, 2001), namely the Maximum Entropy

inference Process, ME. It turns out, however, that ME does not satisfy the version

of Irrelevance defined above. Indeed a somewhat stronger result can be proved that

probabilistic Regulative Reasons cannot be singleton valued on certain knowledge

bases, a property which ME does happen to satisfy.

Theorem 7.2. Assume that B has at least 8 atoms and that R satisfies the proba-

bilistic version of Renaming, Obstinacy and Irrelevance. Then provided C contains

certain non-empty subsets K of P (specified in the proof) there are some such K for

which |R(K)| > 1.

Proof. Suppose on the contrary that this does not hold. Let b1, b2, ..., b6 be disjoint

non-zero elements of B with sup the top element of B such that b2, b3, b4, b5 all have

the same number of atoms less than or equal to them whilst b1, b6 each have twice

that number. [This is possible by the assumption on B and the fact that in any finite

Boolean Algebra the number of atoms is a power of 2.] Let K1 be the set

{w ∈ P |w(b1) = 1/16, w(b2 ∨ b3) = 9/16, w(b4 ∨ b5 ∨ b6) = 3/8 }.

Using the assumption let R(K1) = {w1}. By Renaming and the assumption on

b1, ..., b6 it follows that we must have

w1(b2) = w1(b3) = 9/32,

w1(b4) = w1(b5) = w1(b6)/2 = 3/32.

Now let K2 be the set

{w ∈ P |w(b6) = 3/8− x, w(b3 ∨ b5) = 2x, w(b1 ∨ b2 ∨ b4) = 5/8− x, x ∈ [0, 3/8] }.
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Notice that w1 ∈ K2 (take x = 3/16). Hence by Obstinacy R(K1 ∩K2) = {w1}.

Let R(P) = {w2}. Then

w2(b1) = 1/4, w(b2 ∨ b3) = 1/4, w(b4 ∨ b5 ∨ b6) = 1/2

so w2 ∈ K2. By Obstinacy then, R(K2) = {w2}.

But now it happens that K1 and K2 satisfy the requirements of Irrelevance since

if w′ ∈ K1, w
′′ ∈ K2, say for a particular x ∈ [0, 3/8], then w agrees with w′ on

b1, b2 ∨ b3 and b4 ∨ b5 ∨ b6 and agrees with w′′ on b6, b3 ∨ b5, b1 ∨ b2 ∨ b4 where w is

defined as follows:

if 2x ≤ 9/16 then

w(b6) = 3/8− x, w(b5) = 0, w(b3) = 2x,

w(b4) = x, w(b2) = 9/16− 2x, w(b1) = 1/16,

whilst if 2x ≥ 9/16 then

w(b6) = 3/8− x, w(b5) = 2x− 9/16, w(b3) = 9/16,

w(b4) = 9/16− x, w(b2) = 0, w(b1) = 1/16.

By Irrelevance, and our assumption, it follows that since R(K1 ∩K2) = {w1} and

R(K2) = {w2}, w1 must agree with w2 on the subalgebra generated by b6, b3∨ b5, b1∨

b2 ∨ b4. But it does not, w2(b6) = 1/4 whilst w1(b6) = 3/16, contradiction! �

7.2 Generalizing RA

Recall that the idea behind the procedure leading to the minimisation of ambigu-

ity was that if agents are asked to choose from two indistinguishable sets of options

they should end up making similarly indistinguishable choices. In the characterisa-

tion given above in chapter 5, we defined indistinguishability by means of suitable

permutations of A. However, we could push this notion further to capture the fact

that the choice context, and specifically the choice problem at hand, does not change

essentially if 0’s and 1’s are uniformly transposed.
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The generalisation of the Minimum Ambiguity Reason that arises from this has

an interesting application in the construction of a solution concept for pure coordina-

tion games and consequently a tight connection with radical interpretation problems.

As to the former the idea is that of producing a Reason that facilitate the selection

of so-called “focal points” among the strategies available in a coordination game.

Allowing for a more general notion of indistinguishability here has the consequence

of producing a more “context independent” notion of a focal point than it would be

possible under the selection of strategies allowed by the canonical Minimum Ambi-

guity Reason described in chapter 5. As to the latter, this more general notion of

indistinguishability permits us to capture a more basic notion of synonymity, a key

concept intervening in the process of triangulation which underlie radical interpreta-

tion. These aspects will be fully developed in chapter 8 below, where the connections

between Rationality-as-conformity, coordination problems and radical interpretation

is discussed.

The key notion intervening in the generalization of RA is that of a transformation.

Definition. An injective function j : K → 2A is a transformation of K if there is a

permutation σ of A and a permutation δ of {0, 1} such that

j(f) = δfσ

for all f ∈ K. We shall say that a transformation j of K is a transformation of K

to itself if j(K) = K.

Note that in what follows σ, σ′ etc will always denote permutations of A and

similarly for δ, δ′ etc..

As for permutations above, transformations are closed under inverses and compo-

sition.

Lemma 7.3. Let j1 : K → 2A be a transformation of K and j2 : j1(K) → 2A a

transformation of j1(K). Then j−1
1 : j1(K) → K is a transformation of j1(K) and

j2j1 : K → j2j1(K) is a transformation of K.
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Proof. Notice that if j1(f) = δ1fσ1 and j2(h) = δ2fσ2 for f ∈ K, h ∈ j1(K) then

j−1
1 (h) = δ−1

1 hσ−1
1 for h ∈ j1(K) and j2j1(f) = δ2δ1fσ1σ2 for f ∈ K. �

The intuition here is that a transformation j of K to itself produces a copy of K

– j(K) – in which the “essential structure” of K is being preserved. To see this in

practice, simply take the matrix introduced above figure 3.1

0 0 0 1
0 1 0 0
0 1 1 0
1 1 1 1
0 0 1 0

Figure 7.1: The matrix representing K

It can be easily seen that putting δ to be the identity function (id) and σ = (1, 2)

(the permutation transposing 1 and 2 in {0, 1, 2, 3}), we will obtain the transformation

transposing the “second” and “third” column of the above matrix. Furthermore, by

letting σ′ = id and δ′ = (0, 1) we obtain a matrix with 0’s and 1’s exchanged. These

can be represented as:

0 0 0 1

0 0 1 0

0 1 1 0

1 1 1 1

0 1 0 0

and

1 1 1 0

1 1 0 1

1 0 0 1

0 0 0 0

1 0 1 1

let’s say j(K) and j′(j(K)), respectively.

Hence the requirement that the players’ choices should be invariant under these

“inessential” transformations is captured by the following:

Transformation principle

Let K ∈ K, and j be a transformation of K. Then

j(R(K)) = R(j(K)).
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Like Renaming, the Transformation principle states that applying some transfor-

mation j to the set of best elements (according to R) of K is just the same as choosing

the R-best elements of the transformation of K by j.

Clearly the Transformation Principle implies the Renaming Principle, just take δ

to be the identity. Notice however that by the proof of Proposition 4.3 if we replace

Renaming Principle by the Transformation Principle in Theorem 4.2 then the only

Regulative Reason is the trivial one.

We can now define the procedure for the minimization of ambiguity in an entirely

analogous way as before.

Definition. Let K ∈ ℘+(2A). Then for f ∈ K, the ambiguity class of f within K

at level m is recursively defined by:

S′0(K, f) = {g ∈ K | ∃ trans. j of K such that j(K) = K and j(f) = g}

S′m+1(K, f) =

 {g ∈ K | |S′m(K, f)| = |S′m(K, g)|} if |S′m(K, f)| ≤ m + 1;

S′m(K, f) otherwise.

This generalized ambiguity construction leads to a Reason which satisfies exactly

the same properties which hold for the Minimum Ambiguity Reason discussed above

in chapter 5. Indeed, the notion of transformation introduced here amounts to the

automorphisms of a certain structure, exactly in the same as way the permutations

before, except for the fact that in the present structure 0 and 1 are no longer distin-

guished elements. Hence, both constructions can be seen as special cases of a ‘general

ambiguity construction’. The fact that the Minimum Ambiguity construction (and

the Smallest Uniquely Definable Reason) are so generalizable would appear to be one

advantage that they have over the Regulative Reasons.

In particular we have the following generalization.

Theorem 7.4. RA satisfies Transformation.

Proof. (In order to avoid an excess of parentheses we shall sometimes, as here, write

jB etc. rather than j(B) for B ⊆ 2A.) As usual let j be a transformation of K. We
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need to prove that

j(RA(K)) = RA(j(K)).

We first show by induction on m that for all f ∈ K, jS′m(K, f) = S′m(j(K), j(f)). So,

for the base case, we want to show that j preserves the S′0-ambiguity classes, that is

to say, for all f ∈ K,

jS′0(K, f) = S′0(j(K), j(f)).

Let

S′0(K, f) = {g1, . . . , gq }.

Choose a transformation j′ such that j′(K) = K and j′(f) = gi. Then jj′j−1 is a

transformation of j(K) and jj′j−1(j(f)) = j(gi). Hence, jS′0(K, f) ⊆ S′0(j(K), j(f)).

Similarly, j−1S′0(j(K), j(f)) ⊆ S′0(K, f), so equality must hold here.

Assume now the result for the S′m-th ambiguity class, so we want to prove that

jS′m+1(K, f) = S′m+1(j(K), j(f)).

We distinguish between two cases, corresponding to the ones appearing in the con-

struction of the ambiguity classes. Recall that S′m+1(K, f) = S′m(K, f) if m + 1 >

|S′m(K, f)|. So, in this case, the result follows immediately by the inductive hypoth-

esis. Otherwise, since j is 1− 1, it is enough to see that

jS′m+1(K, f) = j{g ∈ K | |S′m(K, f)| = |S′m(K, g)|}

= {j(g) ∈ j(K) | |S′m(j(K), j(f))| = |S′m(j(K), j(g))|} (i.h.)

= S′m+1(j(K), j(f)).

Since, by Proposition 5.3, RA(K) is the smallest S(K, f), this concludes the proof of

the Proposition. �

Likewise we can prove a generalization of Theorem 5.5 above.

Theorem 7.5. A non-empty K ′ ⊆ K is closed under transformations of K into itself

if and only if there exists a Reason R satisfying Transformation such that R(K) = K ′.
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Proof. The direction from right to left follows immediately from the Transformation

principle. For the other direction define, for K1 ⊆ 2A, K1 6= ∅,

R(K1) =

 j(K ′) if K1 = j(K) for some transformation j of K;

K1 otherwise .
(7.4)

Note that in the first case R(K1) is defined unambiguously, that is to say, whenever

we have two transformations j1, j2 of K such that K1 = j1(K) = j2(K), then j1(K
′) =

j2(K
′). This follows since in this case, j−1

1 j2 is a transformation of K and j−1
1 j2(K) =

K so j−1
1 j2(K

′) = K ′, i.e. j1(K
′) = j2(K

′).

We want now to show that if j is a transformation of K1 to K2, then R(K2) =

jR(K1). If K1 is covered by the first case of (7.4), then so is K2, for if j′ is a transfor-

mation of K and K1 = j′(K), then K2 = j(j′(K)) and jj′ is a transformation of K

by Lemma 5.1. In this case, R(jK1) = R(K2) = jj′(K ′) = jR(K1). If K1 is covered

by the second case of (7.4), so is K2 since if K2 = j′(K) for some transformation j′ of

K, then K1 = j−1j′(K) so R(K1) would be defined by the first case. It follows then

that here we must have R(j(K1)) = R(K2) = j(K1) = jR(K1) as required. �

Note that we can generalise in exactly the same fashion the Smallest Uniquely

Definable Reason. In this case we just have to delete 0 and 1 from the distinguished

elements of the structure M thus obtaining the structure

M′ = 〈{0, 1} ∪ A ∪K, {0, 1}, A,K, =, Comp〉.

It is natural to ask, at this point, what the Regulative Reasons would look like

if we considered transformations in place of permutations there. However with this

change the requirement of Renaming cannot be strengthened to what is expected

here, i.e.

δR(K)σ = R(δKσ)

without reducing the possible Regulative Reasons to the trivial one alone – as can be

seen by considering the initial step in the proof of Theorem 4.2.



Chapter 8

Focal points, triangulation and

conformity

Abstract: We investigate two interconnected problems of “rational

choice” - the selection of focal points in pure coordination games and

the triangulation process in radical interpretation - in the light of the

Rationality-as-conformity framework.

Take again the Robotic Rendez-vous example introduced above in section 1.4.1

where two robotic agents I and II which have lost communication, need to meet at a

certain location to restore it. In what is perhaps the simplest situation, any location

is as good as any other, provided that I and II conform on it. How should the robots

reason so as to achieve their goal? That is, how should they choose a location l?

There is a close connection between pure coordination problems of this sort and

situations of radical interpretation. After all, and very schematically, what I and II

must do in order meet at an otherwise arbitrary location is to (i) attach a certain

“meaning” to the representation they have of their environment, (ii) form expecta-

tions about each other’s behaviour and (iii) choose accordingly. More specifically,

once the possible locations say l1, . . . , lk are identified, agents should choose on the

basis of some introspection in which they interpret each other by relating themselves

to the “external world” – the representation of the choice problem. Since I and II

112
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do not share a language, in fact they cannot communicate, the problem they end up

facing is one of radical interpretation (recalled below).

At the same time this situation embeds the essential features of strategic interac-

tion: what corresponds to the “rational” or “commonsensical” or even “logical” or

simply “best” course of action for I depends on the course of action adopted by II

(and the other way round). This quite naturally suggests that game theory might

provide us with somehow precise and well-understood guidelines for the mathemati-

cal solution of our problem. In fact, as it will be shortly illustrated, the framework of

non-cooperative games does provide us with a very clear and compact representation

of the corresponding choice situation. Yet, as we noted above in section 2.3, as far

as games of pure coordination are concerned, the classical solution concept based on

Nash-equilibrium is of no use whatsoever, theoretically or practically.

The purpose of this chapter is to investigate this connection between pure co-

ordination games and radical interpretation problems in the light of Rationality-as-

conformity. In order to do this we shall idealise on the nature of the interpretation

problem that we are to consider. At such a level of abstraction we shall be able to

highlight how radical interpretation and pure coordination share a common struc-

ture. This latter is, in turn, extremely close to the Rationality-as-conformity main

problem. Hence, the goal of our analysis will be to consider coordination games as

well as radical interpretation problems in terms of Rationality-as-conformity. Our

conclusion will be that the Minimum Ambiguity construction provides both a “nat-

ural” solution concept for pure coordination games based on the selection of “focal

points” and the core of a procedure to initiate, from scratch, radical interpretation.

Many connections between (linguistic) interpretation and (coordination) games

have been explored, from the classic investigation by Lewis (1969) to the game the-

oretic accounts of linguistic interpretation of Parikh (2000) and van Rooy (2004).

Though Lewis considers the “use of language” as a particular kind of “coordination

problem” (Lewis, 1969), and Camerer points to “language” as “an obvious example”

of coordination (Camerer, 2003, ch. 7), we have no knowledge of any attempt to

relate mathematically the structure of pure coordination games with that of radical
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interpretation.

Since coordination games do not correspond to the usual framework for discussing

radical interpretation problems, we shall start by showing how, under suitable ab-

straction, the two situations reduce to a common structure.

8.1 A first example: radical translation

Some of the key aspects of radical interpretation received their first systematic dis-

cussion under the heading of radical translation. Put roughly, a problem of radical

translation is one in which one agent – a linguist in the field – is trying to build up a

“translation manual” accounting for the utterances of a native speaker of a language

about which the linguist has no prior knowledge. This complete lack of information,

together with the fact that the two agents are assumed not to share a third language,

makes the translation problem radical.

In his classic example Quine, who was the first to introduce this problem in

connection with the translation of logical constants (Quine, 1960, ch.2), imagines that

the native speaker utters the expression GAVAGAI in response to a rabbit passing

by, causing, possibly on repetitions of similar events, the linguist to conjecture that

GAVAGAI translates into “rabbit”.

There are many subtleties connected with this example, none of which is of par-

ticular relevance for our present purposes. However the following issues involved in

the radical translation problem are central to our discussion:

1. What is it, if anything, that justifies (epistemologically) the translator in the

above conjecture?

2. How far can she go in relying on this conjecture?

Those questions are clearly not unrelated. The former calls for the observation

that a linguist may just introspect and conclude that “as a native speaker of the

English language, I would utter RABBIT in those circumstances in which the native

speaker uttered GAVAVAI”. Conditionals of this form are clearly grounded on the
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assumption that the linguist and the native speaker, though lacking of a shared

language, are nonetheless like-minded individuals and hence are inclined to adopt

“similar” linguistic behaviours under “similar circumstances”. Elevated to the status

of a normative maxim, this is known as the Principle of charity.

The latter question relates to the fundamental indeterminacy of radical trans-

lation. Quine argues that there cannot be a unique translation manual which the

linguist may be able to construct. Rather there must be a plurality of equally accept-

able manuals, that is to say, equally supported by the available evidence. Yet the

linguist can and should aim at reducing this indeterminacy by applying the Princi-

ple of charity throughout. In this way she would be lead to discard those possible

translation choices that will make the native utterances systematically wrong (or in-

coherent), by the translator’s lights. After this “rational” refinement, the choice of a

unique translation manual may simply be underdetermined by the empirical evidence

available to the translator.

We can note already at this stage how deep is the analogy between the guidance

offered by the Principle of charity in the selection of a translation manual and the

approach to rational choice based on Reasons (discussed above in section 3.1.2) which

constitutes the backbone of the Rationality-as-conformity framework.

8.2 Triangulation in radical interpretation

The issue of radical translation and its relation with the Principle of charity are taken

a step further by Davidson’s investigations on radical interpretation (Davidson, 1984).

Davidson assumes that the two agents involved in radical interpretation, despite being

individually “rational” and willing to establish communication, do not happen to

share any language. (Compare this with the discussion of the possible objections in

the supermarket example of 1.1.) This can be the case of an adult and an infant who

try to establish communication.

Note that the problem is more general than radical translation in two respects.

Firstly, it applies to those situations, as the one just mentioned, in which an agent
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(the infant) might potentially lack any language whatsoever. Secondly, besides be-

ing “foreign” as translation is, interpretation can as well be “domestic” (Davidson,

1984, p.125). Indeed one can press on (as Davidson does) and argue that given (an

appropriate version of) the Inaccessibility assumption (cf. section 1.3) all interpreta-

tion is radical. For if nothing is known about another agent’s “mental states”, there

can never be certainty about the fact that two speakers are actually using the same

language.

The next important difference between Quine and Davidson’s take on the problem

is that in the context of radical interpretation, the Principle of charity is sharpened

and indeed assumed to be a necessary condition for the manifestation of rational

behaviour tout court. Moreover, the interpretation problem is grounded on a funda-

mental symmetry which need not hold in the translation case, that is that both agents

share a common intention to communicate: the interpreter wants to understand the

interpretee who, in turn, wants to be understood by the interpreter, and so on.

Differences in the formulation of the problem lead to differences in the proposed

solutions. Quine’s major problem is that of locating the common cause of the lin-

guistic behaviour, which he identifies in the so-called “stimulus-meaning”. Davidson

overcomes many of the difficulties related to this concept by introducing the metaphor

of triangulation. While Davidson takes charity as a presumption of rationality upon

which the possibility of interpretation and mutual understanding themselves rest, he

acknowledges that it can only provide a “negative” contribution, namely - as we have

already pointed out - by guiding the interpreter towards discarding possible interpre-

tations which would systematically make the interpretee wrong or incoherent to her

own lights. Triangulation, on the other hand, is the recognition that the similarities

observed in each other’s linguistic behaviour find their common cause in the portion

of the external environment shared by the agents. It is the location of those causes

that results in getting a first clue about the other’s meanings.

Davidson introduces triangulation by considering a “primitive learning situation”,

in which a child learns to associate the expression ‘table’ to the actual presence of a

table in a room. The way the child can learn to do so, relies in her ability to generalise,
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to discover and exploit similarities among situations. Sharing similar generalization

patterns is what makes the child’s response to the presence of a table – the utterance

of the word ‘table’ – meaningful to us. This is the rational structure that agents must

have in order for communication to start.

The child finds tables similar; we find tables similar; and we find the

child’s responses in the presence of tables similar. It now makes sense for

us to call the responses of the child responses to tables. Given these three

patterns of response we can assign a location to the stimuli that elicit

the child’s responses. The relevant stimuli are the objects or events we

naturally find similar (tables) which are correlated with responses of the

child we find similar. It is a form of triangulation: one line goes from the

child in the direction of the table, one line goes from us in the direction

of the table, and the third line goes between us and the child. Where

the lines from child to table and us to table converge, ‘the’ stimulus is

located. Given our view of child and world, we can pick out ‘the’ cause

of the child’s responses. It is the common cause of our response and the

child’s response. (Davidson (2001), p. 119)

Triangulation, hence, is form of conformity where the two agents aim at “con-

verging” on the same interpretation of their linguistic behaviour. A fundamental

aspect of the triangulation process consists in the recognition of the role played by

constraints imposed by the “external world” on the interpretational choices. In par-

ticular, as a consequence of the Principle of charity, the interpreter should ascribe

“obvious beliefs” (e.g the presence of a table) to the interpretee, and project onto

her the likewise “obvious” consequences (that she will behave accordingly). Suppose,

for instance, that rover I in the initial example perceives the presence of a perfectly

round crater. According to this way of reasoning, I should expect II to be able to

perceive the crater as a perfectly round one. At the same time II should expect I to

expect that II itself would perceive the crater as a perfectly round one etc., and of

course consider this as a relevant feature for the selection of the rendez-vous location
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l.

We now can appreciate how close analogues of the Fundamental assumption, as

well as Likemindedness, Common knowledge and Saliency underlying the Rationality-

as-conformity framework (see 1.3 above) play a fundamental role in the radical in-

terpretation problem as well. This clearly encourages us to investigate radical inter-

pretation from the Rationality-as-conformity point of view. In particular we wish to

study the contribution of the latter towards providing a procedure to facilitate trian-

gulation. In this attempt, however, we should be aware of the fact that if we were

to consider the “full” case of linguistic interpretation, that is to say interpretation

as performed by human beings in everyday situations (involving natural languages),

we would run into enormous difficulties. Just to take an example, we should face the

daunting task of providing a rigorous definition of what intervenes in the “recogni-

tion of the common causes” of common linguistic behaviour. A recent comprehensive

discussion on the topic can be found in Glock (2003). Complications of this sort

surely contribute towards the fact that our current understanding of radical inter-

pretation doesn’t seem include any clear-cut procedure by means of which agents can

start triangulating.

In order to bypass those complications, we shall adopt here the ‘mathematician’s

point of view’ underlying the Rationality-as-conformity characterisations. Hence we

shall abstract from the complications related to the use of natural language and the

actual observation of non-verbal behaviour, which admittedly play an important role

in the general account of radical interpretation among humans. As a consequence we

shall consider radical interpretation in the context of a one-shot, pure coordination

game. Within this framework we argue that the Minimum Ambiguity construction

(especially in the generalised form of chapter 7), by contributing towards a general

understanding of focal points in pure coordination games, allows us to formalise the

key choice process intervening in triangulation. In fact, given its recursive nature,

the Minimum Ambiguity Reason provides us with effective procedure to initiate tri-

angulation.

It goes without saying that the structure within which this kind of solution is
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provided is much weaker than the one required by Davidson for the construction of

a theory of meaning, namely the full first-order logic with equality. Our hope is, of

course, that of eventually extending the results obtained in this initial framework to

cover more “realistic” situations.

8.3 The conformity game

Recall from section 3.1.1 above that possible worlds are all the maps from a finite set

A to the binary set 2 = {0, 1}. Nothing else is assumed about the structure of the

set A. The conformity game is a two-person, non-cooperative, non-zero-sum game

whose normal form goes like this: the domain of the game is ℘+(2A), the set of non

empty-subsets of possible worlds; players I and II are to choose one strategy from

an element K of ℘+(2A), identical for both agents up to permutations of A and 2

(more on this below). Hence each strategy available to the agents corresponds to one

element of K = {f1, . . . , fk}, say. Players get a positive payoff p if they play the

same strategy and nothing otherwise, all this being common knowledge. (Figure 8.1

represents the conformity game for k = 3. )

Figure 8.1: The conformity game.

Note that for present purposes we limit ourselves to case in which each identical

pair of strategies yields a unique positive payoff p, so that any point in the diagonal is

“as good as any other” as far as the agents are concerned: all that matters is that they

conform on their choice. Hence, as usual for pure coordination games, the conformity

game admits of multiple Nash-equilibria. And, as noted informally in section 2.3

above, in this case the traditional theory of non-cooperative games fails to be of
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substantial help: if “rational choice” is based on the notion of a Nash-equilibrium,

the players of a conformity game end up choosing randomly all the time.

Rationality-as-conformity, being process-based, helps us overcoming this difficulty.

Recall that the key elements intervening in the representation of the conformity prob-

lem are possible worlds, which in the present interpretation amount to the strategies

available to the players. We clearly have two possibilities: either worlds (strategies)

in K have no structure other than being distinct elements of a set, or worlds in K do

have some structure. In the former case we seem to be forced to accept that agents

have no better way of playing the conformity game other than picking some world

fi ∈ K at random (i.e. according to the uniform distribution). In the latter case,

however, agents might use the information about the structure of the worlds in K to

focus on some particularly “distinguished” option to be taken as a focal point. Taken

from this angle, the problem of devising a solution concept for pure coordination

games (and hence, for initiating triangulation) amounts to constructing a procedure

to isolate, within a given set of strategies, the salient ones.

Consider again, for example, the simple case in which worlds (strategies) are

maps f : 4 −→ 2 and suppose K = {f1, f2, f3, f4, f5} ⊆ 24 is presented as the matrix

in figure 8.2.

0 1 2 3
f1 0 0 0 1
f2 0 1 0 0
f3 0 1 1 0
f4 1 1 1 1
f5 0 0 1 0

Figure 8.2: A representation on the strategy set K

It is immediate to see from the strategic representation of the conformity game

that each pair of identical strategies yields the same utility, so players who intend

to conform must to look for properties other than utility in order to characterise

some of the options as those which are likely to be selected by another agent. At

the same time, however, we want rule out the possibility that agents might take into

account “inessential” properties of the set K as being salient, so our first goal is
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that of ensuring the complete symmetry of the representation. A way of achieving

this consists in informing each agent that it is being presented with a matrix K (for

instance the one illustrated in 8.2) which agrees with the one faced by the other

player only up to permutations of A and permutations of 2, that is to say, only up to

permutations of the columns (and of course rows) of the matrix as well as the uniform

transposition of 0’s and 1’s. Notice that this puts us in the situation of the generalised

Minimum Ambiguity construction of chapter 7. This greater generality, where 0 and

1 are not taken as distinguished elements of a certain structure, seems to fit better

the intuition according to which focal points - both in the context of triangulation

and in that of coordination games - must ‘arise’ from the structure of the choice

problem while minimising the import of the assumptions on the other agents. Of

course even greater generality could be introduced by dropping the assumption that

agents face essentially similar (up to transformations) sets of strategies, namely by

letting them “guess” which options their fellow players may be actually facing. This

route, pursued for instance by Kraus et al. (2000), would however introduce a number

of complications which, at least at this very first stage of formalisation, we prefer to

avoid.

The conformity game meets the structure of radical interpretation to the extent

that this latter is (i) abstracted to the case in which interpretation is defined over pos-

sible worlds, rather than the full natural language, and (ii) restricted to the process

that enables triangulation. Hence, in particular, subsequent adjustments of trian-

gulation that exploit the agents’ capability of observing each others’ non-linguistic

behaviour (over time) fall beyond the scope of the conformity game. This captures the

intuition that radical interpretation is somehow an intrinsically one-shot situation:

once agents can rely on past experience or “confirmed hypotheses”, the Inaccessibility

assumption clearly ceases to hold.
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8.4 From triangulation to focal points (and back)

The need for incorporating focal points in the game theoretic toolbox was firstly

put forward by Schelling (1960). A key message of this monograph can be roughly

summed up in the idea that whenever players do not have competitive interests, then

the traditional, outcome-based solution concepts fall short of providing satisfactory

accounts of rational choice. The specific focus of Schelling’s investigation concerns

the already recalled “tacit coordination” games with “common interest”.

The fundamental feature of those games is their complete symmetry with re-

spect to both players and strategies. If also equilibria are symmetric, coordination

games are said to be pure. This makes utility-based solution concepts inapplicable

and Schelling stressed this by referring to pure coordination games as “clueless” or

“genius-proof”. Rather, for players involved in such games

[w]hat is necessary is to coordinate predictions, to read the same mes-

sage in the common situation, to identify the one course of action that

their expectation of each other can converge on. They must “mutually

recognize” some unique signal that coordinates their expectations of each

other. We cannot be sure that they will meet, nor would all couples read

the same signal; but the chances are certainly a great deal better than if

they pursued a random course of search. (Schelling, 1960, p.54)

This passage makes the connections between pure coordination games, radical

interpretation problems and Rationality-as-conformity extremely clear. On the one

hand we can see that Schelling advocates for a triangulation-like solution for coordina-

tion games, where the “convergence” is about the mutual expectations – rather than

the actual observation – of the other’s behaviour. As discussed extensively above,

this is what happens in the Rationality-as-conformity case. On the other hand, we

can see that our Fundamental assumption underlies Schelling’s characterisation of the

problem, whilst in the context of radical interpretation this assumption is embedded

in the Principle of charity.
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The intuition underlying the solution based on focal points is that these corre-

spond to strategies (courses of actions) which enjoy some degree of “saliency” or

“conspicuousness”, in Schelling’s phraseology, which will lead agents to distinguish

among options. A variety of perspectives on what saliency can be taken to be has

been proposed in the literature (see, e.g. Sugden (1995); Janssen (1998); Kraus et al.

(2000)). The Rationality-as-conformity framework suggests we consider saliency as

arising from the a choice process which an agent might adopt upon reflection about

which choice process another like-minded agent with a common intention to coor-

dinate might herself adopt. Mehta et al. (1994) refer to this latter as Schelling’s

salience.

On the basis of the empirical evidence obtained from controlled experiments, the

authors argue that when faced with coordination problems akin to the conformity

game, players behave as if they adopted the following two-steps process. Firstly,

agents consider the rules (Reasons, in our terminology) that could be applied and

then choose to adopt a rule which, if followed by their fellow players, would eventually

facilitate conformity.

This explanation of the use of focal points in solving coordination problems is

consistent with the approach to the selection of Reasons discussed above in section 5.4.

There we stressed that the effectiveness (towards achieving conformity) of each of our

Reasons depends essentially on the particular choice context, with the consequence

that no Reason, justified as it may be, is likely to be optimal under any circumstances.

Hence, we suggested, agents might consider several Reasons in turn, and choose to

apply the one returning the subset of the initial set of possible worlds K with the

smallest cardinality. In the context of Rationality-as-conformity this amount exactly

to increasing one’s chances to achieve conformity. Of course this solution is open to

the obvious criticism that there might be situations in which distinct Reasons might

yield subsets of K of the same cardinality.

The study of Schelling salience, hence, amounts to the study of focal points as

identified through appropriate choice processes. The most distinctive constrains im-

posed on such a process turn out to be almost unanimously taken to be a combination



CHAPTER 8. FOCAL POINTS, TRIANGULATION AND CONFORMITY 124

of uniqueness and obviousness. The idea being that uniqueness and obviousness would

make a certain subset of possible worlds (strategies in the conformity game) stand

out when considered in the context of the choice context faced the agents. In this

sense the robotic rovers of our example would have good reasons to choose a location

lj which stands out in the set {l1, . . . , lk}. Naturally, if I can conclude that the

location lj does indeed stand out, the fact that II intends to conform to the choice

it expects I to make will lead, together with the assumption that I and II are like

minded, to the conclusion that lj is the obvious choice for this problem.

It is in this spirit that Schelling suggests that in order for agents to coordinate

successfully they must “mutually recognize a unique signal”. Intuitive as it may

be, however, a lighthearted resort to “uniqueness” can prove to be rather tricky.

As Kraus et al. (2000) suggested, this becomes a major concern once we take into

account the limitations (i.e. bounded reasoning capabilities) of the agents. In other

words, although a unique choice might be available to the agents, the computational

expenses required to reach it would make following that path undesirable. Moreover,

there could be circumstances in which appeal to uniqueness may lead to undesirable

conclusions, as we had already occasion to remark when introducing the Minimum

Ambiguity Reason. In particular uniqueness should never be pursued at the expense

of running the risk of never agreeing on the final choice. In fact radical translation

and interpretation warn us, as confirmed by the ubiquitous possibility sub-optimal

Reasons, against aiming at uniqueness. Therefore it seems more appropriate, in

general, to speak of aiming at facilitating coordination through focal points, in the

same way we speak of facilitating conformity by adopting Reasons.

Given the inapplicability of the outcome-based solutions, in order to locate fo-

cal points and hence facilitate coordination (and hence triangulation) we need to

introduce some asymmetries among the strategies available to the players of the con-

formity game. The structure of the problem makes the Minimum Ambiguity Reason

introduced in above in chapter 5 a natural candidate for achieving this goal.

Our first argument is that - somehow by ‘definition’ - the Minimum Ambiguity
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Reason aims at identifying those elements of a choice context K which are “nat-

urally distinguished” within the structure of the choice problem. This meets the

‘obviousness’ requirement for focal points, namely the fact that must stand out. At

the same time the Minimum Ambiguity construction aims at selecting the smallest

subset of outstanding options of K, meeting the idea of ‘uniqueness’. However in

the presence of indistinguishable options, strict uniqueness should be abandoned as

required by the Transformation principle. The upshot of this in the context of radical

interpretation is of indubitable importance. In our abstract framework, in fact, the

equivalence of possible worlds under transformations can be taken to capture the re-

lation of synonymity among linguistic expression. Now if the interpretational choices

of an agent were not closed under transformation, that is if any pair of indistinguish-

able possible worlds were not included among the set of best options from K, the

resulting interpretation process would fail to reflect synonymity among expressions.

But this would he highly undesirable as one of the ideal goals of translation as well

as interpretation, in fact, consists in individuating systematically synonymy among

linguistic expressions.

Surely the distinct levels of abstraction stand out in the comparison of the radical

interpretation and the conformity game situations. While the radical interpretation

problem is crucial in the attempt to lay down a theory of interpretation for natural

languages the choice problem faced by the agents in the conformity game is based on

the selection of otherwise meaningless binary strings. In both cases, however, agents

should rationally aim at performing disambiguating choices and the framework of

Rationality-as-conformity provides agents with an algorithmic procedure to achieve

this. It is a matter of future research to investigate the disambiguation of options

arising in gradually more and more complicated structures. For instance, an example

of sure interest is the so-called solution of anaphora in linguistics which involves

choosing the name to which a certain pronoun refers within a sentence like “the boy

stared at the man. He beat him”.
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8.5 Concluding remarks

Summing up, radical interpretation (when restricted to the structure of the process

of triangulation of mutual expectations) and pure coordination, can be seen as two

faces of the same problem of “rational choice”. Rationality-as-conformity, on the

other hand, provides a unitary framework for investigating a solution concept for

such a problem based on the minimisation of the ambiguity of possible worlds. As

well as accounting for the use of focal points in pure coordination games the Minimum

Ambiguity construction provides us with a procedure for initiating triangulation.

Note that in both cases the Minimum Ambiguity construction seems to be more

adequate than the alternative Reasons provided by the Rationality-as-conformity

framework. Interpretation involves choice among possible meanings, and this choice

must be a disambiguating one. As to pure coordination games, the very notion of a

focal point requires that these latter stand out within the context of a given choice

problem, making the Minimum Ambiguity Reason a natural candidate for such choice

processes.

As we have stressed, many of the investigations that followed Schelling’s original

intuitions can be seen as attempts at providing an explanation for the ability that

human agents seem to have in exploiting focal points in order to achieve, or at least

facilitate coordination. There has been a widespread scepticism, however, concerning

the possibility of providing a mathematical solution to coordination games. Schelling

himself, for instance, noted that

Poets might do better than logicians at this game, which is perhaps more

like ‘puns and anagrams’ than like chess. (Schelling (1960), p.58)

An entirely similar attitude is shared (four decades later) by Camerer, who indeed

argues in favour of the empirical (behavioural) investigation on the way players choose

among equilibria. As to the “logical” approach, he remarks that

This selection problem is unsolved by analytical theory and will only be

solved by observation. Camerer (2003)
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Within the scope of its abstractions, Rationality-as-conformity counters this pes-

simistic view by pointing to a general mathematical solution to the problem of facili-

tating coordination where focal points are located through the application of Reasons.

Among the Reasons investigated here, however, the Minimum Ambiguity construc-

tion seems to be able to place a serious bid for the most adequate choice process to

select focal points, especially given its built-in bias towards favouring outstanding

and “unique” choices.

That this very construction provides at the same time a procedure to initiate

triangulation in (abstract and pre-linguistic) radical interpretation problems is, in

our own view, a most intriguing connection.

8.6 Further remarks

It is interesting to compare, if briefly, the solution concept for the conformity game

based on the Minimum Ambiguity construction with the solution concepts for co-

ordination games arising from considerations of (approximate) common knowledge.

An early, influential example on the role of ‘structural’ common knowledge was in-

troduced with the electronic mail game (Rubinstein, 1989). The upshot of this in-

vestigation is that if it is assumed that players have common knowledge of the payoff

structure, it turns out that they can coordinate efficiently (in terms of payoff) whereas

if this assumption is weakened to almost common knowledge such an efficiency is lost.

In other words, if common knowledge is replaced by a “high” but finite number of lev-

els of knowledge in a way that at some depth n+1 one player will be uncertain about

whether the other player has knowledge of depth n, the selection of the equilibrium

for coordination can be forced to be inefficient. This situation is usually adduced

as an example illustrating the qualitative difference between common knowledge and

finite levels of knowledge.

An alternative take on this sort questions relating to “common knowledge”, and

specifically the role that higher order beliefs and mutual expectations have in the

selection of multiple equilibria in coordination games, is given by the so-called global
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games. The intuition here is that each player observes the payoff structure of the game

“with a very small amount of noise” (Morris, 2002). This can be compared with the

conformity game where each player is informed that she is receiving a strategy set

with agrees only up to transformations with the one observed by the other player.

And in fact, as we have seen, the intuition underlying construction on the Minimum

Ambiguity Reason turns out to be closely related to “working out the higher-order

beliefs that the information structure generates” (Morris, 2002).

A precise comparison between the conformity game on the one hand and global

games and related situations on the other surely deserves deeper investigations.



Chapter 9

Summary and conclusions

We have introduced Rationality-as-conformity as a simple and abstract mathematical

framework to investigate the notion of “rational choice”. The central problem we

have been focusing on is that of characterising the choice processes that two like-

minded yet inaccessible agents might adopt in order to conform on the selection of a

possible option. Three such choice processes have been discussed and their reciprocal

connections investigated.

Rationality-as-conformity has been compared with some of the key mathematical

accounts of “rational choice”. First of all, we have pointed out how Rationality-as-

conformity, in particular through the Regulative Reason, can be taken to provide a

general justification for the Paris-Vencovská characterisation of probabilistic common

sense. We have also shown, however, that a complete embedding of the latter in the

Rationality-as-conformity framework seems not to be possible in the case in which

possible worlds are interpreted probabilistically. A full explanation of such a failure

surely deserve deeper investigations.

As to the more traditional accounts of rational choice, we have pointed out how

many aspects of classical decision theory, game theory and social choice theory can

be accommodated within our framework. Savage’s characterisation is preserved in

its spirit, though Rationality-as-conformity permits of a more general notion of dis-

tinguishability among possible options. In particular, the fact that possible worlds

are not evaluated only in terms of their (expected) utility gives rise to a framework
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for the study of rationality which allows us to overcome, without almost any effort,

the difficulties presented by those game theoretic situations where strategies are not

distinguishable on the grounds of their utilities. This process-based analysis of ratio-

nal choice is very close to the spirit of the choice-functional approach to social choice

theory.

The structure of Rationality-as-conformity resonates with important epistemolog-

ical questions. We have illustrated this by recalling the problem of radical interpre-

tation, which by virtue of its “primitive” character constitutes an analogue to our

basic choice problem. In particular we have illustrated how a suitable abstraction

of radical interpretation can be captured and given a (partial) algorithmic solution

with the Minimum Ambiguity construction. Given that we have characterised ra-

tional choice in terms of the selection of the “obvious”, “outstanding” or “logical”

option, a related problem that appears to be amenable to investigation within the

Rationality-as-conformity framework is the origin of linguistic convention.

9.1 Rationality-as-conformity as a logic

Although we have been using concepts and techniques from the mathematical logician

tool-box, no consequence relation or proof system has been defined in the previous

chapters. So, can we say that Rationality-as-conformity is a piece of logic?

Unsurprisingly this all depends on what a logic is taken to be. In the sense, which

is perhaps the original one, of “what the thinking agent does” (Gabbay et al., 2002,

p.12), Rationality-as-conformity is no doubt a logic. In particular it can be seen as a

logic of practical reasoning.

[. . . ] a logic - a logic of practical reasoning, for example - gives a good

account of itself to the extent to which it is able to define procedures for

the competent production of practical reasoning. (Gabbay et al., 2002,

p.8)
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In fact we have noted on several occasions throughout the thesis, that Rationality-

as-conformity accounts for what we often refer to in ordinary speech as the “logical

thing to do”.

It is an interesting exercise, at this point, to look at the main problem of Rationality-

as-conformity from the other way round. When producing matrices (choice contexts)

of the sort illustrated above, one often has the feeling that some choices would surely

look more natural than others. Explaining this feeling requires a form of abduction

which Rationality-as-conformity, in its three characterisations does provide. Future

research along these lines may exploit this abductive framework to understand the

origin of spontaneous conventions, that is, loosely, those things on which people find

themselves to agree “for no particular reason”.

Hence, we seem to be back to a point which we discussed at the end of chapter

4. There we pointed to a certain tension between thinking that the principles char-

acterising the Regulative Reason can be adopted upon reflection, and the fact that

when choosing according to one of the (non-trivial) Regulatives agents were not to

be seen as consciously feeling an obligation to satisfy such principles. The abduc-

tive view of Rationality-as-conformity helps dissipating further this tension. In fact

one could think of the act of choosing according, say to R1 as a mainly unconscious

business, whereas the formal explanation of such an act requires conscious evaluation

of the principles involved. This opening to the sub-conscious elaboration of logical

reasoning is explicitly taken into account in the discussion of practical logic (see, e.g.

Gabbay et al., 2002; Gabbay and Woods, 2001), and surely resonates with the focal

points approach to pure coordination problems discussed above.

9.2 Pluralism in Reasons

In proposing our solution for the main Rationality-as-conformity problem, we have in

fact introduced what amount to four working Reasons, R0, R1, RA, RU. These arose

through very different considerations. In the case of the Regulative Reasons through

an adherence to rules, for RA through an algorithm based on repeatedly trying to
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fulfill two desiderata, and for RU through picking the smallest uniquely definable set

within the given structure of the problem. This plurality of approaches and answers

raises a vexing question. How can we feel any confidence that there are not other

approaches which will lead to entirely different answers?

As we have noted above, ideas and concepts from game theory would seem to have

very definite application in generating Reasons. Furthermore similar hopes might be

extended to other areas traditionally concerned with the formalisation of “rational

choice”, for example decision theory and social choice theory. Moreover other areas

of mathematics might also lead to the production of Reasons.

The idea behind the construction of the Minimum Ambiguity Reason, for in-

stance, is closely related to the study of certain permutational actions on symmetric

groups, investigated at the borders of group theory and combinatorics. In particular

the Minimum Ambiguity construction (especially in the generalised version) bears

a close connection with the so-called Polyà theory of counting, where the problem

investigated consists in computing the “essentially distinct” orbits induced by a per-

mutational action (like, e.g. a transformation j) on a given symmetric group. Given

the similarity of the problems addressed, there might well be an interesting and “new”

way of generating Reasons within this area.

Analogous points could be made about model theory, with its interests in defin-

able subsets, and Kolmogorov complexity, with its emphasis on minimum description

length. In short, the answer to the vexing question is that we can have little such

confidence beyond the modicum which comes from having failed to find any ourselves.

In fact, even with the candidates we already do have, we have seen that both

the Regulative and Minimum Ambiguity Reasons appear capable, on their day, of

monopolizing what could be perceived as the right, ‘logical’ answer. Hence one way

of explaining this situation is that even in this very simple context (let alone in the

real world) we should be ready to admit a plurality of good reasons giving rise to a

plurality of (distinct) ‘rational’ arguments, rather than looking restlessly for a unique,

universal one.

There seems to be a lesson for the supermarket shelving business too here.
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