
Notes on lifting group actions

Montaldi, James and Ortega, Juan-Pablo

2008

MIMS EPrint: 2008.90

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/


Notes on lifting group actions1

James Montaldi & Juan-Pablo Ortega

October 13, 2008

Abstract

Given an action of a Lie groupG on a manifoldM, and a coverN of M (such as the universal cover
M̃) the natural question arises of whether the action lifts to acover ofM. In these notes, we address this
question and determine whether theG-action itself lifts or whether it is necessary to pass to a cover ofG
(there is always a lift of the action of the universal coverG̃). The results are presumably well-known to
experts, but do not seem to be available in print.

These notes started life as the first section of [5], though itwas felt that they were too detailed for a
paper primarily on symplectic reduction. We are therefore making this available as a MIMS preprint.

Introduction

Suppose a connected Lie groupG acts on a connected manifoldM, and supposeN is a covering ofM. Then
it may not be possible to lift the action ofG, but there is a natural lift to universal covers giving an action
of G̃ on M̃. This can then be used to define an action ofG̃ on the given coverN. This general construction
must be well-known, but we were unable to find it in the literature, and consequently we establish the main
results about these lifted actions. For example, sinceN can be written as a quotient of̃M by a subgroup of
the group of deck transformations, we use this to determine exactly which subgroup of̃G acts trivially on
N. We also determine the relation between isotropy subgroupsof theG action onM and the lifted action
onN, and we show that the action onM is proper, then so is the lifted action onN.

1 The category of covering spaces

We begin by recalling a few facts about covering spaces. Manyof the details can be found in any intro-
ductory book on Algebraic Topology, for example Hatcher [3]. Let (M,z0) be a connected manifold with
a chosen base pointz0, and letqM : (M̃, z̃0) → (M,z0) be the universal covering. We realize the universal
cover as the set of homotopy classes of paths inM with base pointz0. For definiteness, we take the base
point in M̃ to be the homotopy class ˜z0 of the trivial loop atz0. Throughout, ‘homotopic paths’ will mean
homotopy with fixed end-points, and all paths will be parametrized byt ∈ [0,1], and composition of paths
a∗b is defined by

(a∗b)(t) =

{
a(2t) if t ∈ [0,1/2]
b(2t−1) if t ∈ [1/2,1].

(Of course, it is assumed thata(1) = b(0).)

Any coverpN : (N,y0)→ (M,z0) has the same universal cover(M̃, z̃0) as(M,z0), and the covering map
qN : (M̃, z̃0) → (N,y0) can be constructed as follows: Let ˜z∈ M̃ and letz(t) be a representative path inM,
soz(0) = z0. By the path lifting property of the covering mappN, z(t) can be lifted uniquely to a pathy(t)
in (N,y0). ThenqN(z̃) = y(1).

LetC be the category of all covers of(M,z0). The morphisms are the covering maps. Since any element
(N,y0) ∈ C also shares̃M as universal cover, it sits in a diagram,

(M̃, z̃0)
qN−→ (N,y0)

pN−→ (M,z0).

1Copyright lies with the authors
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Note that with this notation for the covering maps, the mapM̃ → M can be written both asqM and aspM̃.

It is well-known that this category is isomorphic to the category of subgroups of the fundamental group
π1(M,z0) of M, where the morphisms are the inclusion homomorphisms of subgroups. The isomorphism
is defined as follows. LetpN : (N,y0) → (M,z0) be a cover. ThenΓN := pN∗(π1(N,y0)) is the required
subgroup ofΓ := π1(M,z0). ΓN consists of the homotopy classes of closed paths in(M,z0) whose lift to
(N,y0) is also closed, and the number of sheets of the coveringpN is equal to the indexΓ : ΓN. Note that
sinceM̃ is simply connected,ΓM̃ is trivial.

The inverse of this isomorphism can be defined using deck transformations. LetΓ = π1(M,z0). Then
Γ is the fibre ofqM overz0, and it acts onM̃ by deck transformations defined via the homotopy product:
if γ ∈ Γ and z̃∈ M̃ thenγ ∗ z̃ gives the action ofγ on z̃. Then givenΓ1 < Γ, defineN = M̃/Γ1, and put
y0 = Γ1z̃0. Then from the long exact sequence of homotopy, it follows that π1(N,y0) ≃ Γ1. Furthermore,
if Γ1 < Γ2 < Γ then there is a well-defined morphism (covering map)p : N1 → N2, whereNj = M̃/Γ j ,
obtained from noting that anyΓ1-orbit is contained in a uniqueΓ2-orbit, so we putp(Γ1z̃) = Γ2z̃.

Let (N1,y1) be a cover of(M,z0) with groupΓ1, and letΓ2 = γΓ1γ−1 be a subgroup conjugate to
Γ1 (whereγ ∈ Γ). ThenN2 = M̃/Γ2 is diffeomorphic toN1, but the base point is nowy2 = Γ2z̃0. The
diffeomorphism is simply induced from the diffeomorphism ˜z 7→ γ · z̃of M̃, which does not in general map
y1 to y2.

If Γ1 � Γ (normal subgroup), then the cover(N,y1) is said to be anormal cover, In this case theΓ-
action (by deck transformations) oñM descends to an action onN (with kernelΓ1), andΓ/Γ1 is the group
of deck transformations of the coveringN → M. For a general covering, the group of deck transformations
is isomorphic toNΓ(Γ1)/Γ1, whereNΓ(Γ1) is the normalizer ofΓ1 in Γ. Only for normal covers does the
group of deck transformations act transitively on the sheets of the covering. See [3] for examples.

Let us emphasize here that we viewΓ = π1(M,z0) both as a group acting oñM by deck transformations,
and as a discrete subset ofM̃—the fibre overz0. In particular, forγ ∈ Γ,

γ∗ z̃0 = γ (1.1)

In other words, ˜z0 is the identity element inΓ.

2 Lifting the group action

Now let G be a connected Lie group acting on the connected manifoldM, and letpN : (N,y0) → (M,z0)
be a covering. To define the lifted action onN, we first describe the lift tõM and then show it induces an
action onN, using the coveringqN : M̃ → N.

The action ofG onM does not in general lift to an action ofG onM̃ but of the universal cover̃G, which
is also defined using homotopy classes of paths, with base point the identity elemente. The covering map
is denotedqG : G̃→ G. So if g̃ is represented by a pathg(t) thenqG(g̃) = g(1). The product structure in
G̃ is given by pointwise multiplication of paths: if̃g1 is represented by a pathg1(t) andg̃2 by g2(t), then
g̃1g̃2 is represented by the patht 7→ g1(t)g2(t).

Definition 2.1 Let g̃∈ G̃ be represented by a pathg(t) (with g(0) = e), andz̃∈ M̃ be represented by a path
z(t) (with z(0) = z0). Then we definẽg · z̃ to beỹ∈ M̃, where ˜y is the homotopy class represented by the
patht 7→ g(t) ·z(t). It is readily checked that the homotopy class of this path depends only on the homotopy
classes̃g andz̃.

With this definition for the action of̃G on M̃, it is clear that the following diagram commutes:

G̃× M̃ −→ M̃
↓ ↓

G×M −→ M
(2.1)
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where the vertical arrows areqG×qM andqM respectively, and the horizontal arrows are the group actions.
In particular,

ỹ = g̃· z̃ =⇒ y = g ·z (2.2)

where forz̃∈ M̃ we denote its projection toM by z, and similarly with elements of̃G. Note for future
reference that it follows immediately from (2.2) that the isotropy subgroups satisfy

g̃∈ G̃z̃ =⇒ g∈ Gz. (2.3)

Remark 2.2 A second approach to defining the action ofG̃ on M̃ is as follows. The action ofG gives rise
to an ‘action’ of the Lie algebrag. That is, to eachξ ∈ g there is associated a vector fieldξM on M; these
are the so-called generating vector fields of theG-action. LetN →M be any covering. The covering map is
a local diffeomorphism, so the vector fieldsξM can be lifted to vector fieldsξN onN. Because this covering
map is a local diffeomorphism, this gives rise to an ‘action’of g onN. Nowg is the Lie algebra of a unique
simply connected Lie group̃G. To see that the vector fields onN are complete, so defining an action ofG̃,
one needs to compare the local actions onM andN. It is not hard to see that the two definitions of actions
of G̃ are equivalent.

Lemma 2.3 Let g(t) be a path in G with g(0) = e, and z(t) a path in M with z(0) = z0 and z(1) = z1. Then
the following three homotopy classes coincide:

g(t) ·z(t), [g(t) ·z0]∗ [g(1) ·z(t)], z(t)∗ [g(t) ·z1],

where∗ is the homotopy product of paths.

PROOF: Denote the three curves bya(t),b(t) andc(t) respectively. So for example,

c(t) =

{
z(2t) if t ∈ [0, 1

2]

g(2t−1) ·z1 if t ∈ [1
2,1]

.

A homotopy betweena andb can be given by

A(t,s) =

{
g((1+s)t) ·z((1−s2)t) if t ≤ 1

1+s

g(1) ·z((1+s)t−s) if t ≥ 1
1+s

.

Then,A(t,0) = a(t) andA(t,1) = b(t). It is readily checked thatA(t,s) is continuous. A similar homotopy
can be defined betweena andc. ❒

Recall thatΓ := π1(M,z0) acts onM̃ by deck transformations; that is, givenγ ∈ Γ and z̃∈ M̃ then
γ · z̃ := γ∗ z̃. This action is transitive on fibres of the covering mapqM. Furthermore, the fibreq−1

M (z0) is the
Γ-orbit of the constant loop ˜z0 which we identify withΓ, see equation (1.1).

Proposition 2.4 The action ofG̃ onM̃ commutes with the deck transformations. Furthermore, foreach
g̃∈ π1(G,e) the homotopy class g(t) ·z0 lies in the centre ofπ1(M,z0).

PROOF: Let g̃∈ G̃, δ ∈ Γ andz̃∈ M̃ with qM(z̃) = y∈ M. We want to show that̃g· (δ · z̃) = δ · (g̃· z̃). By
Lemma 2.3 (applied withγ = δ∗ z̃), we have

g̃· (δ · z̃) = [δ∗ z̃]∗ [g̃·y],

while again by Lemma 2.3 (now withγ = z̃),

δ · (g̃· z̃) = δ∗ [z̃∗ (g̃·y)].

The result follows from the associativity of the homotopy product.
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Now let g̃∈ π1(G,e) andδ ∈ Γ. We want to show that[g̃ · z̃0]∗ δ = δ∗ [g̃ · z̃0], wherez̃0 is the constant
loop atx. By Lemma 2.3,δ∗ [g̃· z̃0] = g̃·δ = [g̃· z̃0]∗ δ (sinceg(1) = e), as required. ❒

As a particular example, this leads to the following well-known result

Corollary 2.5 π1(G,e) lies in the centre of̃G. Consequently the following is a central extension:

1→ π1(G,e) → G̃
qG−→ G→ 1. (2.4)

PROOF: This follows by applying the proposition to the left actionof G̃ on itself. ❒

Now we are in a position to define the action ofG̃ on an arbitrary cover(N,y0) of (M,z0). As in §1, let
ΓN = pN∗(π1(N,y0)) < Γ. So,N ≃ M̃/ΓN. That is, a point inN is aΓN-orbit of points inM̃.

Definition 2.6 TheG̃-action onN is defined simply by

g̃·ΓNz̃ := ΓN(g̃· z̃).

This is well-defined as the actions of̃G andΓ commute, by Proposition 2.4. It is clear too that the
analogues of (2.1), (2.2), and (2.3) hold withN in place ofM̃.

Proposition 2.7 Let pN : (N,y0) → (M,z0) be a covering map. ThẽG-orbits on N are the connected
components of the inverse images under pN of the orbits on M. More precisely, if y∈ p−1

N (z) ⊂ N thenG̃·y
is the connected component of p−1

N (G·z) containing y. In particular if the G-orbits in M are closed, so too
are theG̃-orbits in N.

PROOF: Let Z ⊂ M be any submanifold. ThenZ′ := p−1
N (Z) is a submanifold ofN and the projection

pN|Z′ : Z′ → Z is a covering, and ifZ is closed so too isZ′. Moreover, if Z is G-invariant (henceG̃-
invariant), then by the equivariance ofpN so isZ′, and if Z is a single orbit, thenZ′ is a discrete union of
orbits: discrete becausepN is a covering. SincẽG is connected, the orbits are the connected components
of Z′. ❒

3 The kernel of the lifted action

The natural action of̃G on M̃ described above need not be effective, even if the action ofG on M is, and
the kernel is a subgroup ofπ1(G,e) (the kernel ofaz0 described below). But first let us recall some work of
Daniel Gottlieb [2].

Given a manifoldM (or more generally a CW complex) withz0 as base point. LetI = [0, 1] and let
H : M× I → M be a cyclic homotopy, which is a homotopy satisfying

H(z,0) = H(z,1) = z, ∀z∈ M.

Thetraceof a cyclic homotopy is defined to be the curveH(z0,t), t ∈ I , which is a closed curve and so
defines an element ofπ1(M,z0). The set of all such elements forms a subgroup ofπ1(M,z0) that Gottlieb
denotesG(M,z0), and his paper [2] is dedicated to determining properties ofthis subgroup; here we quote
two particular results.

Theorem 3.1 (Gottlieb [2]) Let G(M,z0) be as defined above. Then
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(i). G(M,z0) is a subgroup of P(M,z0) (defined below);

(ii). if M has the homotopy type of a compact polyhedron andχ(M) 6= 0 (Euler characteristic) then
G(M,z0) is trivial.

The subgroupP(M,z0) < π1(M,z0) is defined as follows. For eachk > 0 there is a natural action of
π1(M,z0) onπk(M,z0) andP(M,z0) is the common kernel of these actions; that is, it is the subgroup of the
fundamental group that acts trivially on all the homotopy groupsπk for k≥ 1. In particular, it is a subgroup
of the centreZ(π1(M,z0)).

Part (i) of Gottlieb’s theorem refines Proposition 2.4 above, and its proof is similar. The proof of part
(ii) relies on ideas from Nielsen-Wecken fixed point theory.

Now return to the lifted group action. Let̃g ∈ π1(G,e) be represented by a pathg(t), with g(1) = e.
The pathg(t) determines a cyclic homotopy, whose traceg(t) ·z0 determines an element of Gottlieb’s group
G(M,z0) < π1(M,z0). Moreover, homotopic loops inG give rise to homotopic loops inM, so this induces
a well-defined homomorphism

az0 : π1(G,e) → π1(M,z0), (3.1)

whose image lies inG(M).

Proposition 3.2 (i) The kernel K< π1(G,e) of az0 is independent of z0 and acts trivially onM̃ and hence
on every cover of M.

(ii) If (N,y0) is a cover of(M,z0), with associated subgroupΓN of π1(M,z0), then KN := a−1
z0

(ΓN) is
independent of the choice of base point y0 in N, and acts trivially on N.

(iii) If G acts effectively on M then GN := G̃/KN acts effectively on N.

Note that since the domain ofaz0 is π1(G,e) which is in the centre of̃G, it follows thatKN is a normal
subgroup ofG̃. And with the notation of the proposition,K = KM̃ sinceΓM̃ is trivial. We will write

G′ := G̃/K (3.2)

for the group acting oñM.

In particular, ifaz0 is trivial thenK = π1(G,e) and theG-action onM lifts to an action ofG onM̃. That
is, az0 is the obstruction to lifting theG-action. A particular case is where the action ofG onM has a fixed
point. If z0 is such a fixed point thenaz0 = 0 and so the action onM lifts to an action ofG onM̃, and hence
on any other coverN. More generally this is true if any (and hence every)G-orbit in M is contractible in
M, since in that case tooaz0 is trivial.

PROOF: (i) Let z0,z1 ∈ M and letη be any path fromz0 to z1 (recall we are assumingM is a connected
manifold), and let̃g ∈ π1(G,e) with a representative pathg(t). For T ∈ [0,1] definegT(t) = g(Tt) (for
t ∈ [0,1]), sogT ∈ G̃. Then varyingT defines a homotopy fromη to (gT · z̃0)∗ (g(T)(η))∗ ((gT)−1z̃′0). In
particular, puttingT = 1 shows thatη is homotopic toaz0(g̃)∗η∗az1(g̃

−1), or equivalently that

η∗az1(g̃
−1)∗ η̄ = az0(g̃

−1),

whereη̄ is the reverse of the pathη. This composition of paths defines the standard isomorphismη∗ :
π1(M,z1) → π1(M,z0). We have shown therefore thataz0 = η∗ ◦az1 , and so both have the same kernel.
ThatK acts trivially onM̃ follows from the definition ofaz0: let z̃∈ M̃ andg̃∈ K, theng̃· z̃= g̃· (z̃0 ∗ z̃) =
az0(g̃)∗ z̃= z̃ (using Lemma 2.3).

(ii) Let y0,y1 ∈ N, let zj = pN(y j) ∈ M and letζ be any path fromy0 to y1, with η its projection toM. The
result follows from the fact that the following diagram commutes:
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π1(G,e)

π1(M,z0) π1(M,z1)

π1(N,y0) π1(N,y1)

az0 az1

p(N,y0)∗
p(N,y1)∗

η∗

ζ∗

Writing N = M̃/ΓN, if g̃ ∈ a−1
z0

(ΓN) then g̃ ∈ KΓN and, g̃ΓNz̃⊂ ΓNKz̃ = ΓNz̃ so g̃ acts trivially (using
Proposition 2.4 and part (i)).

(iii) Supposẽg∈ G̃ acts trivially onN, so for ally∈N, g̃·y= y. Projecting toM, this implies thatg(1) ·z= z
(for all z∈ M) sog(1) ∈ ∩z∈MGz = {e}. Thusg̃∈ π1(G,e).

To prove the statement, we first consider the caseN = M̃. If g̃ 6∈ K thenaz0(g̃) 6= z̃0 ∈ π1(M,z0). Since
π1(M,z0) acts effectively (by deck transformations) on the fibreq−1

M (z0) ≃ π1(M,z0) ⊂ M̃ it follows that
az0(g̃) acts non-trivially, which is in contradiction with the assumption that̃g acts trivially.

Now supposẽg ∈ G̃ acts trivially onN. We haveg̃ΓN z̃0 = ΓN z̃0, so thatg̃ ∈ ΓNK = a−1
z0

(ΓN) as
required. ❒

In conclusion we have shown thataz0 is the obstruction to lifting theG-action, and the following result
therefore follows from Gottlieb’s theorem above.

Corollary 3.3 If M has the homotopy type of a compact polyhedron, andχ(M) 6= 0 then the G-action on
M lifts to a G-action on any cover of M.

4 Isotropy subgroups

In this section we consider the isotropy subgroups for the lifted action ofGN on N and relate them to the
isotropy subgroups for the originalG-action onM.

Fix y0 ∈N and letg̃∈ G̃y0, the isotropy subgroup aty0 for theG̃action onN. It follows thatqG(g̃)∈Gz0,
wherez0 = pN(y0), since g̃ · y = y ⇒ g · z = z. Consequently,̃Gy0 is a subgroup ofΛz0 := q−1

G (Gz0).
Restricting the exact sequence (2.4), we have

1→ π1(G,e) → Λz0

qG−→ Gz0 → 1. (4.1)

The groupΛz0 consists of those homotopy classes of pathsg(t) with g(0) = eandg(1)∈Gz0. It follows that
g(t) ·z0 is a closed loop, and so determines a well-defined element ofπ(M,z0). That is, the homomorphism
az0 described above extends naturally to a homomorphism

āz0 : Λz0 → π1(M,z0).

In contrast toaz0, this homomorphismdoesdepend onz0. Let Lz0 be the kernel of this homomorphism
(which obviously containsK), andL(N,y0) := ā−1

z0
(ΓN) (which containsKN). Recall thatGN := G̃/KN from

Proposition 3.2.

Remark 4.1 While the image ofaz0 lies in the centre of the fundamental group ofM, the same cannot be
said of the image of ¯az0. The most one can say in general is that it lies in the (image of) π1(M(H),z0), and
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centralizesπ1(MH ,z0), whereH = Gz0 andMH the set ofH-fixed points, andM(H) = G ·MH is the set of
points of isotropy typeH. (The last statement follows like Proposition 2.4, but withδ ∈ π1(MH ,z0).)

Proposition 4.2 The isotropy subgroups for the lifted actions are as follows:

(i) at z̃0 for theG̃-action onM̃ it is G̃z̃0 = Lz0 and for G′ it is G′
z̃0

= Lz0/K

(ii) at y0 ∈ N for theG̃-action on N it isG̃y0 ≃ L(N,y0) and consequently,(GN)y0 ≃ L(N,y0)/KN.

PROOF: We just prove (ii) as (i) is a special case. Letg̃∈ G̃ be represented by a pathg(t). Theng̃·y0 = y0

impliesg(1) ∈ Gz0; that is,g̃∈ Λz0. Usingy0 = ΓNz̃0, we haveg̃ ·ΓNz̃0 = ΓNz̃0 and this is equivalent to
g̃· z̃0 ∈ ΓNz̃0 = ΓN (as in (1.1)); that is, ¯az0(g̃) ∈ Γ, so we are done. ❒

Corollary 4.3 If the G-action on M is free, then so is the GN-action on N.

PROOF: SinceGz0 is trivial, we haveΛz0 = π1(G,e) andāz0 = az0 and thusL(N,y0) = KN, so(GN)y0 is
trivial. ❒

To identify the isotropy subgroupsLz0/K or L(N,y0)/KN with subgroups of the isotropy subgroupGz0

we define a homomorphism

ψz0 : Gz0 −→ coker(az0)
g 7−→ g̃·z0 mod image(az0)

(4.2)

whereg̃∈ Λz0 is any lift of g. We takeright cosets, sog modH = Hg.

The homomorphismψz0 is well defined, for given any two lifts̃g1 andg̃2 of g∈Gz, defineg̃0 ∈ π1(G,e)
to be the homotopy product of the pathg1(t) and the reverse path ofg2(t) (which goes fromg to e):

g0(t) =

{
g1(2t) for t ∈ [0, 1

2]

g2(2−2t) for t ∈ [1
2,1]

.

Theng̃1 · z̃0 = (g̃0 · z̃0)∗ (g̃2 · z̃0) ∈ image(az0).(g̃2 · z̃0), as required.

The homomorphism ¯az0 induces a morphism between two short exact sequences, the lower two rows
of the following commutative diagram:

K Lz0 Gz0

π1(G,e) Λz0 Gz0

π1(M,z0) π1(M,z0) 1

az0 āz0

pG

=

where the first row consists of the kernels of the vertical homomorphisms.

Proposition 4.4 (i). There is an exact sequence

0→ K → Lz0 → Gz0

ψz0−→ coker(az0) → coker(āz0) → 0 (4.3)

where the homomorphismψz0 : Gz0 → coker(az0) is defined above (4.2). Consequently,
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(ii). G′
z̃0

is isomorphic tokerψz0, which is a subgroup of Gz0

(iii). (GN)y0 is isomorphic toψ−1
z0

(ΓN mod image(az0)).

Since image(āz0) is not in general normal inπ1(M,z0), coker(āz0) here is just the set of right cosets of
image(āz0) in π1(M,z0); and exactness at coker(āz0) means only that the map coker(az0) → coker(āz0) is
surjective (which is obvious as ¯az0 is an extension ofaz0). The first part of the proposition would be an
instance of the snake lemma, but for the fact that the groups here are not all abelian.

PROOF: (i) Although not all the groups involved are abelian, the proof follows the usual diagram chasing
proof of the snake lemma, so the details are omitted. Let us just make explicit the argument at coker(az0).
Write j : coker(az0) → coker(āz0), and letγ ∈ ker( j) ⊂ π1(M,z0). Thenγ ∈ image(āz0), so∃g̃∈ Λz0 such
thatγ = āz0(g̃). ThenpG(g̃) = g∈ Gz0, andψz0(g) = γ as required.

(ii) By (i), kerψz0 = image[Lz0 → Gz0] ≃ Lz0/K which is(G′)z̃0 by Proposition 4.2.

(iii) If we replaceπ1(M,z0) by ∆ := π1(M,z0)/ΓN in the bottom row of the diagram above, thena′z0
:

π1(G,e) → ∆ has kernel equal toKN = a−1
z0

(ΓN) andā′z0
: Λz0 → ∆ has kernel equal toL(N,y0). The proof

follows now in the same way as the proof of (ii). ❒

Notice firstly that the connected component of the identityGo
z0

of Gz0 is contained in kerψz0. To see
this it is enough to takẽg to be a path contained entirely inGo

z0
.

On the other hand,

image(ψz0) ≃
image(āz0)

image(az0)

so that for a given isotropy subgroupGz0, the larger the difference between the images ofaz0 andāz0, the
smaller the isotropy subgroupG′

z̃.

Example 4.5 Let M be the open Mobius band:M = R×S1/ ∼, where(x,θ) ∼ (−x,θ + π), andS1 =
R/2πZ. We will denote points ofM as[x,θ]. The fundamental groupπ1(M,z0) is isomorphic toZ. Con-
sider the usual action ofG= S1 onM given byφ · [x,θ] = [x,θ+φ]. Then for anyz0 ∈M, image(az0) = 2Z <
Z, so thatψz0 : Gz0 →Z/2Z≃Z2. On the other hand, forz0 on the ‘equator’,Gz0 ≃Z2 and image(āz0) = Z.
Consequently for suchz0, ψz0 : Z2 → Z2 is an isomorphism, and the action ofS1 on the universal cover is
then free.

Theorem 4.6 Let N be a cover of M, and suppose the G-action on M is effectiveand proper. Then the
GN-action on N is also proper.

PROOF: SinceG acts properly onM there is aG-invariant Riemannian metric onM. This metric can
be lifted by the covering map to one onN. Since the covering map is equivariant, it follows that the lifted
metric is alsoGN-invariant.

To show that action is proper, we need to show that the action mapΦN : GN×N → N×N is closed and
has compact fibres. The fibreΦ−1

N (x,y) = {(g,y) ∈ GN ×N | g ·x = y}. If this is non-empty, andh ·x = y
thenΦ−1

N (x,y) ≃ h(GN)x, which is compact since theG-action is proper, using Proposition 4.4.

To see that the action map is closed, consider a sequence(gi,xi) in GN ×N for which (gi · xi ,xi) con-
verges to(y,z). Then of coursexi → z. We claim thatgi ·z→ y. This is because,

d(gi ·z,y) ≤ d(gi ·z,gi ·xi)+d(gi ·xi ,y) = d(z,xi)+d(gi ·xi ,y),

whered is theGN-invariant metric onN defined above. Both terms on the right tend to 0 so thatd(gi ·z,y)→
0 as required.
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Now, by Proposition 2.7 theGN-orbits inN are closed and hence there is ang∈ GN with y = g·z. That
is,gi ·z→ g·z. Consequently,gi(GN)z→ g(GN)z in GN/(GN)z. By taking a slice to the proper(GN)z-action
onG, this can be rewritten asgihi → g in GN, for some sequencehi ∈ (GN)z. Since(GN)z is compact,(hi)
has a convergent subsequence,hik → h. Thengik → gh−1. It follows therefore that(gik ,xik) → (gh−1,z)
andΦN(gh−1,z) = (y,z). ❒

Remark 4.7 There is an alternative argument for proving this theorem asfollows. Any invariant (Rieman-
nian) metric onM lifts to an invariant metric onN. By a standard result, the groupI(N) of isometries ofN
acts properly onN (see [6, problem 26, p.31] and [1, p.106], although neither give a detailed proof). Since
the action ofGN is by isometries, it follows from the monomorphismA : GN → I(N) that the action ofGN

is proper. The argument we give is more direct, using the covering structure of the action.

5 Orbit spaces and covers for free actions

It can be useful to compare the orbit spacesM/G andM̃/G̃ (or M̃/G′ whereG′ = G̃/K) when theG-action
is free and proper, and more generally withN/GN whenN is a normal cover ofM.

Let N be a normal cover ofM (see the end of §1), with associated groupΓN. Then there is an action of
GN×Γ onN (the action ofΓ by deck transformations factors through one ofΓ/Γ1, and commutes with the
GN-action, by Proposition 2.4). We assume theG action onM is free and proper, in which case it follows
from Proposition 4.3 and Theorem 4.6 that so too is the actionof GN onN.

Recall from equation (3.1) that the action of̃G defines a natural homomorphismaz0 : π1(G,e) →
π1(M,z0), whose image lies in the centre ofπ1(M,z0).

Proposition 5.1 Let G act freely and properly on M. Then the natural map q′
M : M̃/G′ → M/G is a

covering map, with deck transformation group equal tocoker(az0) acting transitively on the fibres.

More generally, if pN : N →M is a normal covering then p′N : N/GN → M/G is a normal covering with
deck transformation groupcoker(az0)/ΓN := Γ/(ΓN.image(az0)).

PROOF: SinceG acts freely and properly onM thenGN acts freely and properly onN, so bothM/G and
N/GN are smooth manifolds. Moreover, sinceN is a normal cover ofM, it follows that∆N := Γ/ΓN acts
freely and transitively on the fibres of the covering map, andsoM ≃ N/∆N (as described in §1).

Consider the following commutative diagram:

M̃
πM̃−−−−→ M̃/G′

qN

y
yq′N

N
πN−−−−→ N/GN

pN

y
yp′N

M
πM−−−−→ M/G

(5.1)

Since the coveringsqN andpN are local diffeomorphisms, it follows that slices to theG̃-actions can be
chosen inM̃, N andM in a way compatible with the coverings. Consequently the vertical maps on the right
in the diagram are also coverings (the same is true if the cover N is not normal).

First consider the coveringq′M : M̃/G′ −→ M/G. Since the action ofΓ onM̃ commutes with the action
of G′, it descends to an action oñM/G′. Moreover, sincẽM/Γ ≃ M, so

(M̃/G′)/Γ ≃ M̃/(G′×Γ)≃ M/G.
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(All diffeomorphisms≃ are natural.) Furthermore, sinceΓ acts transitively on the fibres of̃M → M, so it
does on the fibres of̃M/G′ → M/G.

We claim that the isotropy subgroup of the action ofΓ for any point inM̃/G′ is Σ = image(az0). Indeed,
for the action ofG′×Γ onM̃ the isotropy subgroup of ˜x is

H = {(g̃,γ) | g̃· γ · x̃= x̃}.

Clearly then,(g̃,γ) ∈ H implies in particular̃g∈ π1(G,e), and for such̃g, (g̃,γ) · x̃ = az0(g̃) ∗ γ ∗ x̃ and so
(g̃,γ)∈H iff az0(g̃) = γ−1. Thusγ∈Γ acts trivially onM̃/G′ if and only if∃g̃∈G′ such thataz0(g̃

−1) = γ, as
required for the claim. Consequently, for the coveringq′M, the deck transformation group isΓ/image(az0)=
coker(az0), and this acts transitively on the fibres.

The same argument as above can be used for the more general normal coveringpN : N → M, with G′

replaced byGN andΓ by Γ/ΓN. ❒

Remark 5.2 If N is a cover ofM but not a normal cover, then as pointed out in the proofN/G is a cover
of M/G. Moreover, the fibre still has cardinality coker(az0)/ΓN, but the latter is not in this case a group.

Notice that ifG acts freely and properly onM, thenM̃/G′ is connected and simply connected (the latter
becauseG′ is connected). Consequently,M̃/G′ is the (a) universal cover ofM/G.
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