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Abstract

Given an action of a Lie grou@® on a manifoldM, and a covelN of M (such as the universal cover
M) the natural question arises of whether the action liftstoer ofM. In these notes, we address this
guestion and determine whether Beaction itself lifts or whether it is necessary to pass toecofG
(there is always a lift of the action of the universal co@r The results are presumably well-known to
experts, but do not seem to be available in print.

These notes started life as the first section of [5], thougvag felt that they were too detailed for a
paper primarily on symplectic reduction. We are therefoekimg this available as a MIMS preprint.

Introduction

Suppose a connected Lie groBacts on a connected manifditli and supposh is a covering oM. Then

it may not be possible to lift the action &, but there is a natural lift to universal covers giving ariGct

of G on M. This can then be used to define an actioGafn the given coveN. This general construction
must be well-known, but we were unable to find it in the litarat and consequently we establish the main
results about these lifted actions. For example, shhean be written as a quotient N~f~by a subgroup of
the group of deck transformations, we use this to deternxaetly which subgroup o6 acts trivially on

N. We also determine the relation between isotropy subgrofifiee G action onM and the lifted action
onN, and we show that the action dhis proper, then so is the lifted action dh

1 The category of covering spaces

We begin by recalling a few facts about covering spaces. Mdilie details can be found in any intro-
ductory book on Algebraic Topology, for example Hatcher 3¢t (M, z) be a connected manifold with

a chosen base poigj, and letqy : (M,Zo) — (M, 7g) be the universal covering. We realize the universal
cover as the set of homotopy classes of pathd iwith base pointyp. For definiteness, we take the base
point in M to be the homotopy class of the trivial loop atzg. Throughout, ‘homotopic paths’ will mean
homotopy with fixed end-points, and all paths will be paraimet byt € [0, 1], and composition of paths
axbis defined by

a(2t ifte[0,1/2
(axb)(t) = { bgz)_ 1) ifte {1/2{1}.

(Of course, it is assumed thatl) = b(0).)

Any coverpy : (N,Yo) — (M, 2) has the same universal 00\(&47 %) as(M, zp), and the covering map
an : (M, %) — (N,yo) can be constructed as follows: L2t M and letz(t) be a representative path i,
s0z(0) = z. By the path lifting property of the covering mag, z(t) can be lifted uniquely to a patft)
in (N, o). Thenan(2) = y(1).

Let ¢ be the category of all covers @1, z). The morphisms are the covering maps. Since any element
(N,Yo) € € also shareM as universal cover, it sits in a diagram,

(M, 20) 2% (N,yo) 2% (M, z0).

1Copyright lies with the authors
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Note that with this notation for the covering maps, the ivap> M can be written both agy and aspy;-

Itis well-known that this category is isomorphic to the ¢atey of subgroups of the fundamental group
™ (M, 2) of M, where the morphisms are the inclusion homomorphisms afrsuips. The isomorphism
is defined as follows. Lepy : (N,yo) — (M, 2) be a cover. Thefy := pn.(Ta(N,Yo)) is the required
subgroup of” := (M, z). 'y consists of the homotopy classes of closed path#irey) whose lift to
(N,yo) is also closed, and the number of sheets of the coveminig equal to the indek : I'y. Note that

sinceM is simply connected; ; is trivial.

The inverse of this isomorphism can be defined using deckfvamations. Lef = (M, 7). Then
I is the fibre ofqy overz, and it acts orM by deck transformations defined via the homotopy product:
if ye I andZe M thenyx Z gives the action of onZ. Then giveny < I', defineN = M/Fl, and put
Yo = 1Z. Then from the long exact sequence of homotopy, it folloved th(N,yo) ~ I'1. Furthermore,
if M1 < T2 <T then there is a well-defined morphism (covering mpp)Ny — Np, whereN; = M/I’,-,
obtained from noting that arly;-orbit is contained in a unigue;-orbit, so we pup(l'12) = IMZ

Let (N1,y1) be a cover of(M,z) with groupl;, and letl; = y1y~1 be a subgroup conjugate to
1 (wherey e ). ThenN; = M/T3 is diffeomorphic toN;, but the base point is noye = 7. The
diffeomorphism is simply induced from the diffeomorphigm-"y- Z of M, which does not in general map

y1 1o ya.

If M1 < (normal subgroup), then the covéM,y1) is said to be axormal cover In this case thé -
action (by deck transformations) &h descends to an action dh(with kernell 1), andrl /I'1 is the group
of deck transformations of the coverihg— M. For a general covering, the group of deck transformations
is isomorphic taNr (1) /"1, whereNr (1) is the normalizer of 1 in . Only for normal covers does the
group of deck transformations act transitively on the sheéthe covering. See [3] for examples.

Let us emphasize here that we view= 1y (M, 2) both as a group acting v by deck transformations,
and as a discrete subsetM{—the fibre overy. In particular, fory e I,

In other wordszg is the identity element iff.

2 Lifting the group action

Now let G be a connected Lie group acting on the connected manifioldnd letpy : (N,Yyo) — (M, 2)
be a covering. To define the lifted action Nipwe first describe the lift td and then show it induces an
action onN, using the coveringy : M — N.

The action ofG onM does not in general lift to an action 6fon M but of the universal cove®, which
is also defined using homotopy classes of paths, with base {he identity elemeng. The covering map
is denotedyg : G — G. So if §is represented by a patfft) thenqe(g) = g(1). The product structure in
G is given by pointwise multiplication of paths: @ is represented by a path(t) andg. by go(t), then
0102 is represented by the path- g1 (t)ga(t).

Definition 2.1 Letg € G be represented by a padtt) (with g(0) =€), andZ'e M be represented by a path
Z(t) (with z(0) = zp). Then we defing- Zto beye M, wherey’is the homotopy class represented by the
patht — g(t) - z(t). Itis readily checked that the homotopy class of this patiedels only on the homotopy
classegy andZ

With this definition for the action o6 on M, it is clear that the following diagram commutes:
GxM — M
! ! (2.1)
GxM — M
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where the vertical arrows agg x gy andqy respectively, and the horizontal arrows are the group astio
In particular,

¥y=0%2 — y=g-z (2.2)
where forZ’e M we denote its projection thl by z, and similarly with elements dB. Note for future
reference that it follows immediately from (2.2) that theti®py subgroups satisfy

geG; — geG, (2.3)

Remark 2.2 A second approach to defining the actior®6n M is as follows. The action & gives rise

to an ‘action’ of the Lie algebrg. That is, to eacly € g there is associated a vector fig€Jg on M; these
are the so-called generating vector fields of@action. LetN — M be any covering. The covering map is
a local diffeomorphism, so the vector fielelg can be lifted to vector field& onN. Because this covering
map is a local diffeomorphism, this gives rise to an ‘actioij onN. Now g is the Lie algebra of a unique
simply connected Lie grou@. To see that the vector fields dhare complete, so defining an action®f
one needs to compare the local actiondvoandN. Itis not hard to see that the two definitions of actions
of G are equivalent.

Lemma 2.3 Let gt) be a path in G with @0) = e, and #t) a path in M with Z0) = zp and 1) = z;. Then
the following three homotopy classes coincide:

g(t)-zt), [9(t) -z *[9(1) - 2(t)], z(t)*[g(t) -z,

wherex is the homotopy product of paths.

ProoFr.  Denote the three curves layt),b(t) andc(t) respectively. So for example,

(A2 if t € [0,3]
ct) = {g(2t—1)-21 ifte [%j-] .

A homotopy between andb can be given by

g(1+9t) - A(1-)) ift< g
A(t’s):{g(n-z«us)t—s) 2

Then,A(t,0) = a(t) andA(t, 1) = b(t). Itis readily checked th&(t,s) is continuous. A similar homotopy
can be defined betweerandc. O

Recall thatl := 4 (M, %) acts onM by deck transformations; that is, givgre I andZc M then
y-Z:=yxZ This action is transitive on fibres of the covering ntgp Furthermore, the fibrq,\jll(zo) is the
I"-orbit of the constant loopy"Which we identify withl", see equation (1.1).

Proposition 2.4 The action ofG onM commutes with the deck transformations. Furthermoregfuh
g € (G, e) the homotopy class(y) - o lies in the centre ofy (M, 7).

PROOF Letge G,5el andZe M with qu(2) =y € M. We want to show thai- (5-2) = 3- (g-2). By
Lemma 2.3 (applied witly = 8« 2), we have

g-(8-2 =[6+Z+[g-Y],

while again by Lemma 2.3 (how with= 2),
0-(9-2) =32+ (G-y)l-

The result follows from the associativity of the homotopwgghuct.
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Now letg € Ty (G, e) andd € I'. We want to show thdfj- Zp) « d = 8 [§- Z], wherez; is the constant
loop atx. By Lemma 2.30x[§-Z0] =§- 0= [ Z] O (sinceg(1) = €), as required. O

As a particular example, this leads to the following welbium result

Corollary 2.5 (G, e) lies in the centre o6. Consequently the following is a central extension:

1-m(Ge—G62Gc-1 (2.4)
PROOF  This follows by applying the proposition to the left actiohG on itself. O

Now we are in a position to define the action®bn an arbitrary coveN, yo) of (M,z9). Asiin 81, let
M'n = pns«(Ta(N,¥o)) <T. So,N~M/Iy. Thatis, a pointirN is al'y-orbit of points inM.

Definition 2.6 TheG-action onN is defined simply by

@- er = I'N(g- 2).

This is well-defined as the actions 6fand ™ commute, by Proposition 2.4. It is clear too that the
analogues of (2.1), (2.2), and (2.3) hold wiXhin place ofM.

Proposition 2.7 Let py : (N,yo) — (M, 2) be a covering map. Thé&-orbits on N are the connected
components of the inverse images undgiopthe orbits on M. More precisely, ife pgl(z) c NthenG-y

is the connected component qflpG -z) containing y. In particular if the G-orbits in M are closed oo
are theG-orbits in N.

PROOF  LetZ C M be any submanifold. Thed := p,gl(Z) is a submanifold oN and the projection
Pn|z :Z' — Z is a covering, and iZ is closed so too iZ’. Moreover, ifZ is G-invariant (henceé-
invariant), then by the equivariance pf so isZ/, and ifZ is a single orbit, the’ is a discrete union of
orbits: discrete becaug® is a covering. Sinc& is connected, the orbits are the connected components
of Z'. 0

3 The kernel of the lifted action

The natural action o6 on M described above need not be effective, even if the actid® @f M is, and
the kernel is a subgroup ofi (G, e) (the kernel ofa,, described below). But first let us recall some work of
Daniel Gottlieb [2].

Given a manifoldM (or more generally a CW complex) witly as base point. Ldt= [0, 1] and let
H:M x| — M be a cyclic homotopy, which is a homotopy satisfying

H(z0)=H(z1) =2z VzeM.

Thetraceof a cyclic homotopy is defined to be the culéz,t),t € |, which is a closed curve and so
defines an element afi (M, z). The set of all such elements forms a subgroupdM, zp) that Gottlieb
denotes5(M, z), and his paper [2] is dedicated to determining propertighisfsubgroup; here we quote
two particular results.

Theorem 3.1 (Gottlieb [2]) Let G(M, z,) be as defined above. Then
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(). G(M,z) is a subgroup of BV, z) (defined below);

(i). if M has the homotopy type of a compact polyhedron gtM) = O (Euler characteristic) then
G(M, 2) is trivial.

The subgrou?(M, zp) < ™1 (M, 29) is defined as follows. For eadh> O there is a natural action of
™ (M,2) onT(M, z9) andP(M, zp) is the common kernel of these actions; that is, it is the sulggof the
fundamental group that acts trivially on all the homotopygrst for k > 1. In particular, it is a subgroup
of the centrez(mu (M, 25)).

Part (i) of Gottlieb’s theorem refines Proposition 2.4 ah@ral its proof is similar. The proof of part
(ii) relies on ideas from Nielsen-Wecken fixed point theory.

Now return to the lifted group action. Léte m(G,e) be represented by a padi), with g(1) = e.
The pathg(t) determines a cyclic homotopy, whose tra¢s - zo determines an element of Gottlieb’s group
G(M,z) < m(M,z). Moreover, homotopic loops i& give rise to homotopic loops ill, so this induces
a well-defined homomorphism

az, : (G, e) — (M, 2), (3.1)

whose image lies iG(M).

Proposition 3.2 (i) The kernel K< 1 (G, e) of a,, is independent ofpzand acts trivially onM and hence
on every cover of M.

(i) If (N,yo) is a cover of(M,z), with associated subgroupy of i (M, z), then K := a;ol(I'N) is
independent of the choice of base pointryN, and acts trivially on N.

(iii) If G acts effectively on M then\G= G/KN acts effectively on N.

Note that since the domain e, is (G, e) which is in the centre o6, it follows thatKy is a normal
subgroup ofG. And with the notation of the propositioK, = K sincerl ; is trivial. We will write

G :=G/K (3.2)

for the group acting oM.

In particular, ifag, is trivial thenK = 1 (G, €) and theG-action onM lifts to an action ofG on M. That
i, 8z, is the obstruction to lifting th&-action. A particular case is where the actiorG®bn M has a fixed
point. If 7y is such a fixed point thes,, = 0 and so the action oM lifts to an action ofG on M, and hence
on any other coveN. More generally this is true if any (and hence eveBydrbit in M is contractible in
M, since in that case toay, is trivial.

PrRoOOF. (i) Letzp,z1 € M and letn be any path fronz to z (recall we are assumind is a connected
manifold), and le € Ty (G, e) with a representative patt). For T € [0,1] defineg' (t) = g(Tt) (for
t €[0,1]), sog" € G. Then varyingT defines a homotopy from to (g" - Zo)  (g(T)(n)) * ((@") ). In
particular, puttingl’ = 1 shows that) is homotopic tca, (g) *n * azl(gj*l), or equivalently that

N*az(§ ) *N=2a5(g "),

wheren is the reverse of the patf. This composition of paths defines the standard isomorphism
m(M,z1) — (M,2). We have shown therefore thaf = n. oaz , and so both have the same kernel.
ThatK acts trivially onM follows from the definition oby,: letZe M andg € K, theng-z=g- (Zox2) =
az(0) *Z=Z (using Lemma 2.3).

(i) Letyo,y1 € N, letz; = pn(yj) € M and let{ be any path fronyg to y1, with ) its projection toM. The
result follows from the fact that the following diagram comt@s:
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(M, 29) m(M,z)

P(N.yo) P(Ny1).

&

m(N,yo) —— m(N,y1)

Writing N = M/FN, if ge a;ol(I'N) theng € KI'y and,glMyz ¢ F'ynKZ = T'yZ so @ acts trivially (using
Proposition 2.4 and part (i)).
(iii) Suppose € G acts trivially onN, so for ally € N, §-y =y. Projecting taV, this implies thag(1) -z=z
(forallze M) sog(1) € NzxemG; = {e}. Thusg € m(G,e).

To prove the statement, we first consider the ddseM. If § & K thenaz,(9) # 2 € w(M, 29). Since

™ (M, 20) acts effectively (by deck transformations) on the fitfg (zo) ~ T (M, 20) C M it follows that
az (0) acts non-trivially, which is in contradiction with the assption thatg acts trivially.

Now supposegj € G acts trivially onN. We haveglnZy = M'nZp, SO thatg € ThnK = a;ol(I'N) as
required. O

In conclusion we have shown thay, is the obstruction to lifting th&-action, and the following result
therefore follows from Gottlieb’s theorem above.

Corollary 3.3 If M has the homotopy type of a compact polyhedron, afM) £ 0 then the G-action on
M lifts to a G-action on any cover of M.

4 Isotropy subgroups

In this section we consider the isotropy subgroups for titediaction ofGy on N and relate them to the
isotropy subgroups for the origin&-action onM.

Fixyoe Nandletge Gyo, the isotropy subgroup & for theG action onN. It follows thatgg(g) € G,
wherezy = pn(Yo), sinceg-y=y=g9-z=1z Consequentlyﬁ%vyo is a subgroup of\z := qgl(GzO).
Restricting the exact sequence (2.4), we have

1T (G,e) — Ay & Gy — 1. (4.1)

The group\, consists of those homotopy classes of pathswith g(0) = eandg(1) € G,. Itfollows that
g(t)-zpis a closed loop, and so determines a well-defined elemat{tfzy). That is, the homomorphism
a, described above extends naturally to a homomorphism

Az, 1 N\zy — Tu(M, 20).

In contrast toag,, this homomorphisndoesdepend orrg. Let Ly, be the kernel of this homomorphism
(which obviously containK), andL ) := 5;01(FN) (which containKy). Recall thalGy := G/Ky from
Proposition 3.2.

Remark 4.1 While the image o#y, lies in the centre of the fundamental grouphdf the same cannot be
said of the image of;,. The most one can say in general is that it lies in the (imapedM ), 2), and
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centralizest (MM, z), whereH = G, andM" the set ofH-fixed points, andVl ;) = G-M" is the set of
points of isotropy typed. (The last statement follows like Proposition 2.4, but vaits g (MM, z9).)

Proposition 4.2 The isotropy subgroups for the lifted actions are as follows
(i) atZ for theG-action onM it is Gz, = L4, and for G it is Gj, = Lz /K

(i) atyp e N for theG-action on N it isfsvyo =~ L(nyo) @nd consequentlyGn )y, =~ Ln.y,) /KN-

PROOFE  We just prove (ii) as (i) is a special case. iget Gbe represented by a patt). Theng-yo =Yo
impliesg(1) € Gy,; that is,g € Az. Usingyo = 'nZ, we haveg- 'nZy = M'nZg and this is equivalent to
g-Z0€nZ=Tn (asin (1.1)); that isaz(Q) € ', so we are done. O

Corollary 4.3 If the G-action on M is free, then so is the,@ction on N.

PROOFR  SinceGy, is trivial, we have/;, = Ty (G, €) andag, = az, and thud (v y,) = Kn, SO(Gn)y, IS
trivial. 0

To identify the isotropy subgroups, /K or L(y,y,)/Kn with subgroups of the isotropy subgroGg,
we define a homomorphism

Yz, : Gz — cokeraz) 4.2)
g +— §-z mod imagé¢ay,) '
whereg € A\ is any lift of g. We takeright cosets, sg modH = Hg.

The homomorphisny,, is well defined, for given any two lift§; andg, of g € G,, definefy € (G, e)
to be the homotopy product of the paf(t) and the reverse path gf(t) (which goes frong to €):

[ (2) fort e [0,3]
Go(t) = {92(2— 2t) forte[3,1] "
Theng: 2o = (Go- %) * (02 Z0) € imageay,).(Gz2- %), as required.

The homomorphismag, induces a morphism between two short exact sequences vike t@wo rows
of the following commutative diagram:

K Lz, Gy,
m(G A P , G
1(G,e) — % 2

m(M,z0) — m(M,z) —— 1

where the first row consists of the kernels of the vertical borarphisms.
Proposition 4.4 (i). There is an exact sequence

0—-K—Llgy— Gy Yo, cokerag,) — cokelaz,) — 0 (4.3)

where the homomorphisty, : G;, — cokel(ay,) is defined above (4.2). Consequently,
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(ii). G/?o is isomorphic tdkery,, which is a subgroup of &

(iii). (Gn)y, is isomorphictap;ol(FN mod imagéay,)).

Since imagéa,) is not in general normal imy (M, zp), cokefag,) here is just the set of right cosets of
imagea;,) in (M, 2); and exactness at cokeg,) means only that the map cokey,) — coker(az,) is
surjective (which is obvious a&, is an extension o). The first part of the proposition would be an
instance of the snake lemma, but for the fact that the groapsdre not all abelian.

PrROOF. (i) Although not all the groups involved are abelian, thegdtfollows the usual diagram chasing
proof of the snake lemma, so the details are omitted. Letstsjake explicit the argument at cokay, ).
Write j : cokel(az) — cokerag,), and lety € ker(j) C Tu(M,2). Theny € imageaz,), So3g € Az such
thaty = a,,(9). Thenpg(9) = g € G, andy,(g) =y as required.

(i) By (i), keryz, = imagél,, — Gz ~ L5 /K which is(G')z, by Proposition 4.2.

(iii) If we replacem (M, z) by A :=m(M,z)/I'y in the bottom row of the diagram above, thaga :
m™(G,e) — A has kernel equal t&y = a;ol(I'N) anda} : Az — A has kernel equal thy y,). The proof
follows now in the same way as the proof of (ii). O

Notice firstly that the connected component of the ider@8y of G, is contained in kep,,. To see
this it is enough to takg to be a path contained entirely @, .

On the other hand, _

__ imagday,)

~ imaggay,)

so that for a given isotropy subgro@,, the larger the difference between the imagea,pfinda,, the
smaller the isotropy subgroug.

imageyy)

Example 4.5 Let M be the open Mobius bandvl = R x St/ ~, where(x,0) ~ (—x,8+m), andSt =
R/21Z. We will denote points oM as|x,0]. The fundamental groum (M, 2) is isomorphic tdZ. Con-
sider the usual action & = S' onM given by [x,8] = [x,0+@. Then for any, € M, imagéay,) = 27 <
Z, so thaty, : G — Z /27 ~ Z. On the other hand, fap on the ‘equator'G,, ~ Z» and imagéay,) = Z.
Consequently for suchy, Yy, : Z — Z is an isomorphism, and the action®¥on the universal cover is
then free.

Theorem 4.6 Let N be a cover of M, and suppose the G-action on M is effeatieeproper. Then the
Gn-action on N is also proper.

PROOF.  SinceG acts properly orM there is aG-invariant Riemannian metric dd. This metric can
be lifted by the covering map to one dh Since the covering map is equivariant, it follows that fifted
metric is alsoGy-invariant.

To show that action is proper, we need to show that the actaEmdy : Gy x N — N x N is closed and
has compact fibres. The fibegy(x,y) = {(g,y) € Gn x N | g-x=y}. If this is non-empty, anth-x =y
then@gl(x, y) ~ h(Gn)x, wWhich is compact since thg-action is proper, using Proposition 4.4.

To see that the action map is closed, consider a sequgneg in Gy x N for which (g; - x, %) con-
verges tay,z). Then of course; — z. We claim that; - z— y. This is because,

d(gi-zy) <d(gi-zgi-x)+d(gi-x,y) =d(zx)+d(gi-X%,Y),

whered is theGy-invariant metric orN defined above. Both terms on the right tend to 0 sodbgt z,y) —
0 as required.
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Now, by Proposition 2.7 th&y-orbits inN are closed and hence there isggp Gy withy = g-z That
is, gi-z— g-z Consequenthyg;(Gn)z — 9(Gn)zin Gn/(Gn)z. By taking a slice to the propé6y )-action
onG, this can be rewritten agh; — g in Gy, for some sequendg € (Gy),. Since(Gy)z is compact(h;)
has a convergent subsequentg— h. Theng;, — gh~1. It follows therefore thatgi,, x,) — (gh™t,2)
and®y(gh™t,2) = (y,2). a

Remark 4.7 There is an alternative argument for proving this theorefolé@vs. Any invariant (Rieman-
nian) metric orM lifts to an invariant metric oN. By a standard result, the groufiN) of isometries oN
acts properly ol (see [6, problem 26, p.31] and [1, p.106], although neitler g detailed proof). Since
the action ofGy is by isometries, it follows from the monomorphigin Gy — | (N) that the action oGy
is proper. The argument we give is more direct, using thertogetructure of the action.

5 Orbit spaces and covers for free actions

It can be useful to compare the orbit spabe&G andM /G (or M /G’ whereG' = G/K) when theG-action
is free and proper, and more generally WithiGy whenN is a normal cover oM.

Let N be a normal cover d¥l (see the end of 81), with associated gréyp Then there is an action of
Gn x I onN (the action of” by deck transformations factors through oné€ @F 1, and commutes with the
Gn-action, by Proposition 2.4). We assume @action onM is free and proper, in which case it follows
from Proposition 4.3 and Theorem 4.6 that so too is the acti@y onN.

Recall from equation (3.1) that the action @fdefines a natural homomorphisay, : T (G,e) —
m(M,z), whose image lies in the centrerf(M, zp).
Proposition 5.1 Let G act freely and properly on M. Then the natural mgp :q\ﬁ/G’ —M/Gis a
covering map, with deck transformation group equattdera,) acting transitively on the fibres.

More generally, if j : N — M is a normal covering thengp: N/Gny — M/G is a normal covering with
deck transformation groupokeraz,)/I'n = '/(IT'n.imag€ay,)).

PROOE  SinceG acts freely and properly od thenGy acts freely and properly o, so bothM /G and
N/Gy are smooth manifolds. Moreover, sines a normal cover oM, it follows thatAy :=T /Iy acts
freely and transitively on the fibres of the covering map, solfl ~ N/Ay (as described in §1).

Consider the following commutative diagram:

MM M/G
o s

N —™ . N/Gy (5.1)
S

M —™ . M/G

Since the coveringgy andpy are local diffeomorphisms, it follows that slices to Beactions can be
chosenirM, N andM in a way compatible with the coverings. Consequently thésamaps on the right
in the diagram are also coverings (the same is true if therdéve not normal).

First consider the coveringj, : M/G — M/G. Since the action df onM commutes with the action
of G, it descends to an action &h/G’. Moreover, sincéM/I" ~ M, so

(M/G)/T ~M/(G xT)~M/G.
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(All diffeomorphisms~ are natural.) Furthermore, sinEeacts transitively on the fibres ol — M, soit
does on the fibres /G’ — M/G.

We claim that the isotropy subgroup of the actiof gbr any point inM/G’ is > =imag€ay,). Indeed,
for the action ofG’ x I onM the isotropy subgroup ofi§
H={(@V) g y-X=%}.

Clearly then,(@,y) € H implies in particulag € (G, e), and for sucly, (7,y) - X = a5 (0) *y+ X and so
(@,y) €H iff az,(@) =y . Thusye I acts trivially onM /G’ if and only if 3§ € G’ such thaby, (§) =y, as
required for the claim. Consequently, for the covenifyg the deck transformation groupligimageay, ) =
coker(a,), and this acts transitively on the fibres.

The same argument as above can be used for the more genenall woveringpy : N — M, with G’
replaced byGy andl” by I /T'n. O

Remark 5.2 If N is a cover ofM but not a normal cover, then as pointed out in the pféoE is a cover
of M/G. Moreover, the fibre still has cardinality cokey,)/I'n, but the latter is not in this case a group.

Notice that ifG acts freely and properly o, thenl\ﬁ/G/ is connected and simply connected (the latter
becausé&’ is connected). Consequentht,/G' is the (a) universal cover &l /G.
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